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Abstract

Though access to one’s own radiology reports
has improved over the years, the use of complex
medical terms makes understanding these re-
ports difficult. To tackle this issue, we explored
two approaches: supervised fine-tuning open-
source large language models using QLoRA,
and refinement, which improves a given gen-
erated output using feedback generated by a
feedback model. Despite the fine-tuned model
outperforming refinement on the test data, re-
finement showed good results on the validation
set, thus showing good potential in the genera-
tion of lay radiology reports. Our submission
achieved 2nd place in the open track of Subtask
2.1 of the BioLaySumm 2025 shared task.

1 Introduction

There has been a growing demand in recent years
for patients’ ability to access their own medical
records, particularly their radiology reports (Steitz
et al., 2023, Vincoff et al., 2022). However, even
when made accessible, radiology reports, as writ-
ten by radiologists, are difficult to understand due
to highly technical vocabulary. A 2019 review
showed that the majority of radiology reports re-
quired at least college-level reading skills, with
only 4.2% of radiology reports being readable
at the 8th-grade reading level or below (Martin-
Carreras et al., 2019). The BioLaySumm 2025
shared task addresses this issue by introducing a
new task which aims to create patient-friendly (i.e.
layman) versions of radiology reports (Xiao et al.,
2025).

Large language models (LLMs) such as Qwen
(Bai et al., 2023), LLaMA (Touvron et al., 2023)
and GPT-4 (OpenAl et al., 2024b) have demon-
strated notable ability in summarising medical texts
(Das et al., 2025, Zhou et al., 2024). Likewise, the
results of previous editions of the BioLaySumm
shared task (Goldsack et al., 2023, Goldsack et al.,
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Figure 1: Our refinement framework for the lay radiol-
ogy report generation task.
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2024) have shown that LLLMs are capable of pro-
ducing lay versions of biomedical texts. Therefore,
there is potential in using LLMs for the generation
of lay radiology reports.

Recent research (Zhao et al., 2024, Sterling et al.,
2024) has demonstrated the ability of OpenAl’s
GPT-3 (Brown et al., 2020) and GPT-4 models to
generate lay radiology reports. However, OpenAl
models can be costly over time thus potentially
making lay radiology reports financially infeasible.
As such, fine-tuning open-source LLMs may be
more viable down the line for lay radiology report
generation. Furthermore, fine-tuning allows open-
source models to adapt to domain- or task-specific
data. In the context of healthcare, this allows mod-
els to become familiar with medical vocabulary
which, in turn, improves the quality of generated
lay reports.

Welleck et al. (2022) and Madaan et al. (2023)
have shown that, just as humans evaluate and edit
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their own work, LLMs are not only capable of eval-
uating and refining their own outputs but also ben-
efit from doing so. At the same time, lay reports
must be readable and maintain factual accuracy.
Despite the ability of LLMs to produce medical
summaries, the results obtained are still riddled
with hallucinations (Das et al., 2025). Therefore,
we see refinement as a potential approach in ensur-
ing readability whilst being faithful to the original
professional lay reports.

We experimented with two approaches for the
shared task: (1) supervised fine-tuning an open-
source LLM and (2) refinement. We fine-tuned
an LLM using QLoRA (Dettmers et al., 2023) on
pairs of radiology reports and their corresponding
lay reports to generate layman versions of radiol-
ogy reports, and we used the GPT-40-mini model
(OpenAl et al., 2024a) to refine the output gener-
ated by the fine-tuned model. Although refinement
showed promising results on the validation set, the
model that performed best on the test data was a
fine-tuned Qwen3-4B (Yang et al., 2025) model,
which achieved 2nd place in the shared task.

2 Methods

2.1 Supervised Fine-Tuning (SFT)

We fine-tuned open-source large language models
on pairs of radiology reports and their correspond-
ing lay reports to train the model to generate a lay
report given a professional radiology report. We
performed SFT with QLoRA to optimise memory
usage and increase efficiency. The prompt we used
to fine-tune our models can be seen in Appendix A.

2.2 Refinement

We adapted the Self-Refine framework by Madaan
et al. (2023) for lay radiology report generation
(Figure 1). The refinement framework can be bro-
ken down into three steps: (1) Generation, (2) Feed-
back, and (3) Refinement.

Generation. We used an SFT model, Mg g7, for
the initial generation. We used a few-shot prompt
Dgen to generate the initial lay report yo given a
professional radiology report x so that:

Yo = Msrr(pgen||). (D

Feedback. Given a radiology report and gen-
erated lay report pair < z,y; >, where ¢ € n is
the iteration step and n is the maximum number
of iteration steps, feedback is generated for the lay

report y; using few-shot prompting on our feedback
model, M gy:

fbi = Myy(pyol|z[yi),

We generated a synthetic dataset containing ra-
diology reports, generated lay reports and their
feedback for our few-shot prompt p ;. The lay re-
ports used in our feedback dataset were generated
by GPT-40, and base open-source instruction mod-
els (particularly Llama-3.1-8B-instruct (Grattafiori
et al., 2024) and Qwen2.5-7B-instruct (Yang et al.,
2024)). We used the few-shot examples only on
the first feedback pyy, .

To prevent My, from generating feedback that
contradicts feedback from previous iterations, we
appended previous feedback to ps,, where 1 <7 <
n in lieu of the examples from the feedback dataset
for iterative refinement so,

1bi = Mppopllalyil - lwollbo)- 3

As per Madaan et al. (2023), we prompted the
model to encourage actionable feedback i.e. feed-
back that specifically pointed out sections of the
text that should be improved on (see Figure 5 in
Appendix A).

Refinement. We use a refinement model, Mg,
to generate the refined lay report given the gener-
ated feedback, fb; and radiology report-lay report
pair < x,y; > so that

yi+1 = Mr(prllz|yill fb:)- )

Similar to the feedback step, we appended previ-
ous feedback and refined lay reports from previous
iterations to the prompt for iterative refinement (see
Figure 8 in Appendix A) to prevent My from gen-
erating outputs similar to previous iterations i.e. to
learn from previous iterations so that

Yit1 = Mgr(prllzlly| foill - - - llvoll fbo).  (5)

Stop Condition. For iterative refinement, we
employed a stop condition to control the number
of iterations in the refinement framework. For this,
we used two stop conditions: (1) a score thresh-
old, & = Nyspects X 9, where the score is extracted
from fb;, and (2) a set number of maximum itera-
tions n. Refinement is performed iteratively until
0 is reached or exceeded, or until n iterations are
performed (whichever occurs first).

We detail our experiments with the refinement
framework further in Section 3.3, where we discuss
the different models used for feedback and refine-
ment and the different aspects used by the feedback
model to evaluate the lay reports.

i=0,1,...,n. (2
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3 Experiment Setup

The prompts we used for generation, feedback and
refinement are detailed in Appendix A.

3.1 Data

We used the open-source track dataset provided
by Xiao et al. (2025) for the second task of the
BioLaySumm shared task, which is based on the
LaymanRGG dataset by Zhao et al. (2024). The
dataset comprises radiology images and their corre-
sponding radiology reports and lay reports from the
PadChest, BIMCV-COVID19 and Openl datasets.
Out of the three data sources, the PadChest dataset
makes up the majority of the dataset, followed
by the BIMCV-COVID19 and Openl datasets (Ta-
ble 1).

Source Train Validation Test
PadChest 116,847 7,824 7,130
BIMCV-COVID19 31,364 2,042 3,221
Openl 2,243 134 186
Total 150,454 10,000 10,537

Table 1: Number of samples from each data source in
the dataset.

As we did not participate in the multi-modal
version of the task, we did not use the radiology
images in our experiments.

3.2 Supervised Fine-Tuning

We experimented with fine-tuning Qwen2.5-3B-
Instruct and Qwen3-4B using QLoRA, which in-
jects trainable low-rank adapter layers (LoRA) into
specified model layers. We injected these layers
into all the model’s linear projection layers, as that
tended to result in performance comparable to a
fully fine-tuned model according to Dettmers et al.
(2023).

We performed our experiments on an NVIDIA
GeForce RTX 3090 graphics processing unit
(GPU). We trained our models for 5 epochs with
a learning rate of 5e-4 and an effective batch size
of 128. For QLoRA, we set our rank R = 64
and o = 128 to maximise performance whilst still
training the model efficiently.

3.3 Refinement

We chose Qwen3-4b-SFT as our generation model
as it showed the best performance on the valida-
tion set. For the feedback and refinement models,
we experimented with using the SFT model for

both feedback and refinement, using GPT-40-mini
(which performed best among the GPT models
(see Table 2) on the validation set) for only feed-
back whilst using the SFT model for only refine-
ment, and using GPT-4o0-mini for both feedback
and refinement (see Appendix B). Subsequently,
we found that the framework that worked best was
when we used GPT-40-mini as both the feedback
and the refinement models.

We initially had our feedback model evaluate the
generated report on seven aspects: factuality, read-
ability, completeness, conciseness, writing style (to
avoid conversational language), format (to avoid
verbose commentary), and structure (to discourage
bullet points and lists). However, when examin-
ing the impact of each aspect on a single sample
(see Appendix C), the aspects that showed signifi-
cant improvement when used were completeness,
factuality and format. Readability was shown to
negatively impact the overall quality of the report,
with improvements to the readability scores (sec-
tion 4.1) being minimal compared to most of the
other aspects.

We also experimented with iterative refinement
on our validation sample set (see Section 4.2) with
n = 1,3,5, where n is the number of iterations.
Experiments show that a single iteration (i.e., with-
out looping) consistently outperformed n = 3
and n = 5 when max_new_token = 256 for
the first generation, but 3 iterations and 5 itera-
tions consistently outperformed one iteration when
max_new_token = 512 for the first generation,
with n = 3 performing better than n = 5. Of
the three iteration settings, the setting that per-
formed the best was the 3-iteration setting with
max_new_token = 512.

Furthermore, based on the scores extracted from
the feedback, experiments conducted to evaluate
the necessity of few-shot feedback prompting and
the inclusion of past history found that few-shot
feedback prompting on the first iteration and the
inclusion of past history in subsequent iterations
consistently resulted in an improvement of scores
with each iteration across all model and iteration
settings (provided that n # 1), whilst using only
few-shot feedback prompting (in all iterations) or
only including past history or using neither tended
to result in a decrease in scores with each iteration.

These experiments found that the best refinement
setting was max_new_token = 512, n = 3 with
few-shot feedback prompting on the first iteration
and the inclusion of past history.
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Relevance

Readability Clinical

Model ROUGE BLEU METEOR BERTScore Semantic| FKGL DCRS CLI|F1CheXbert F1RadGraph|r28¢
GPT-4o-mini 5827 3679  62.66 9469  68.19 | 759 959 840| 83.42 3431 6261
GPT-40 4790 2615  48.86 9351 6665 | 659 9.08 8.10| 81.86 28.24 56.17
GPT4.1 4375 2668 4872 9273 6247 | 650 877 7.03| 79.22 22.49 5372
Qwen2.5-3b-Instruct-SFT| 56.95 2082  63.30 9478 6553 | 774 9.68 873 79.12 28.68 58.45
Qwen3-4b-SFT 5684 3157  65.67 94.69 668 | 802 953 798/ 8243 33.09 61.58
+Refinement: iter=1 | 5912 2869  63.50 9494 6889 | 778 926 8.07| 8245 38.01 6223
+ Refinement: iter=3 | 56.07 2853  64.87 9443 7273 | 784 926 9.21| 82.68 43.40 63.24
+ Refinement: iter=5 | 5496 28.16  62.70 9436 69.89 | 657 875 8.14| 83.08 38.57 61.67

Table 2: Evaluation results of our experiments based on 100 validation samples. Refinement here refers to our
refinement framework using GPT-40-mini as our feedback and refinement model. Readability is excluded in the

calculation of the average scores.

Model Relevance Readability Clinical Average
ROUGE BLEU METEOR BERTScore Semantic| FKGL DCRS CLI|F1CheXbert FlRadGraph‘ 2

Qwen3-4B-SFT 5293 28.66 57.73 93.49 84.26 753 929 825 82.69 26.54 59.01
+ Refinement: iter=1| 5229 27.84  57.50 93.34 83.70 847 9.65 9.09 81.51 26.84 58.55
GPT-40-mini 52.66 26.61 53.92 93.42 82.50 6.89 9.28 7.52 83.47 25.83 58.24

Table 3: Evaluation results of selected models across relevance, readability, clinical accuracy, and their averaged
metrics based on the test set. Readability is excluded in the calculation of the average scores.

4 Results and Discussion

4.1 Metrics

We use the official evaluation script provided by
the organisers (Xiao et al., 2025) to evaluate our
models on three aspects: relevance, readability
and clinical. Relevance metrics include averaged
ROUGE-1, -2, and -L (Lin, 2004) scores, BLEU
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), BERTScore (Zhang et al., 2020) and
semantic scoring based on SentenceTransformer’s
fine-tuned MiniLM' (Wang et al., 2020). Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
Dale-Chall Readability Score (DCRS) (Dale and
Chall, 1948) and the Coleman-Liau Index (CLI)
(Coleman and Liau, 1975) were used to evaluate
readability, and F1CheXbert (Smit et al., 2020) and
F1RadGraph (Jain et al., 2021) were used for the
clinical metrics.

4.2 Results

We used GPT-40-mini, GPT-40 (OpenAl et al.,
2024a) and GPT-4.12 as baselines. Due to Ope-
nAl costs, we randomly sampled 100 samples from
the validation split to be used for evaluation. To
make the results comparable, we performed all our
experiments on the 100 samples set. We detail our
results for each metric in Table 2.

1https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
https://openai.com/index/gpt-4-1/

We calculated the averages of the metrics (ex-
cluding the readability metrics) after evaluation to
be able to calculate the average of all metrics for
each model. From this, we determined that the best
performing model was the 3-iteration refinement
framework. However, due to limited resources,
we submitted the 1-iteration refinement framework
instead.

We submitted our fine-tuned Qwen3-4b model
and 1-iteration refinement framework for the shared
task, along with GPT-40-mini for our baseline (Ta-
ble 3). Upon our submissions, we found that the
refinement framework underperformed on the test
set compared to the fine-tuned model. Calculating
the averages of these scores (without the readability
metrics) showed that the best model was Qwen3-
4b-SFT, which we used as our final submission.

4.3 Analysis

The results in Table 2 show that the refinement
framework, particularly when iterations n = 1 or
n = 3, succeeded in improving generations from
the fine-tuned model. However, a drop was ob-
served on the test set (Table 3). This section aims
to explore possible reasons as to why this had oc-
curred.

4.3.1 Readability and Clinical Metrics

Both tables 2 and 3 show that there is a cor-
relation between the readability metrics and the
F1RadGraph metric. To analyse this further, we
calculate the correlation between each readability
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Metric Corr

FKGL vs. F1RadGraph | -0.46
DCRS vs. F1RadGraph | -0.11
CLI vs. F1RadGraph | -0.68

Table 4: Correlations between each readability metric
and the F1RadGraph metric (after normalisation).

metric and the F1RadGraph metric (Table 4). From
this, a negative correlation can be observed be-
tween the readability metrics and F1RadGraph. It
can then be inferred that models that scored higher
in the F1RadGraph metric tended to have higher
readability scores (i.e. produced less readable lay
reports). This can be observed in tables 2 and 3,
where all the GPT models tended to have better
readability scores at the expense of F1RadGraph,
and the refinement framework tended to have better
F1RadGraph scores at the expense of readability.
This is also evidenced by the test set (Table 3),
where refinement had the best F1RadGraph scores
and the worst readability scores, whereas GPT-4o-
mini had the best readability scores but the worst
F1RadGraph scores. Our best model on the test set,
Qwen3-4B-SFT, was able to balance both readabil-
ity and F1RadGraph scores.

4.3.2 Affect of Feedback on Refinement
Outputs

Madaan et al. (2023) observed that instances where
their framework did not improve the original out-
put were primarily caused by erroneous feedback.
Therefore, we analysed particular instances within
the validation set where using refinement improved
on the original generated lay report and where us-
ing refinement resulted in worse output to confirm
this.

Specific examples are noted in Appendix D. We
noticed the feedback model tended to suggest the
use of more technical medical terms despite being
explicitly instructed that the aim was the generation
of lay (i.e. readable) reports, which could affect
readability scores. Furthermore, Table 7 shows
that poor suggestions could result in less accu-
rate reports (e.g. ’long-term changes’ generated
by the SFT model vs. ’ongoing changes’ gener-
ated by the refinement model to describe the term,
"chronic’ due to the feedback describing the former
as ’vague’).

Refined lay reports that achieved higher scores
than the initial lay report were those that were ac-

curate but could be written better according to the
generated feedback (Tables 8, 9). This implies that
refinement works well as an editor for language,
but may need fine-tuning on domain data in order
to increase factual accuracy.

4.3.3 Lexical Overlap vs. Semantic Overlap

Table 10 in Appendix D shows an example where
the refined version of a lay report scored lower
than the initial generated report despite being more
factually accurate. The term ’interstitial opacities’
in the original radiology report could refer to is-
sues such as inflammation or growths; thus, the use
of the phrase ’fluid buildup’ could be considered
an instrinsic hallucination, and the refined report’s
use of the phrase ’increased density’ more faithful
to the original radiology report. As metrics such
as F1CheXbert and F1RadGraph uses named en-
tity recognition (NER) to evaluate factual accuracy
(Smit et al., 2020, Jain et al., 2021), this could lead
to bias towards outputs with more overall n-gram
overlap with the reference reports. That the refined
lay reports that outperformed the initial generated
report were primarily those that simply rephrased
the initial generated report without changing its
meaning (see Section 4.3.2) also supports this hy-
pothesis.

5 Conclusion

By fine-tuning Qwen models, we show that open-
source LLMs such as Qwen are capable of gen-
erating lay radiology reports that can be easily
understood by patients. Despite the refinement
framework’s performance on the test set, it showed
significant results on the validation set and did not
underperform the SFT model by a large margin;
hence, it has potential for future work. We also
analysed potential causes behind the discrepancy
in performance between the validation set and the
test set. Both approaches exceeded GPT-40-mini
during evaluation, thus proving to be viable ap-
proaches in the lay radiology report generation.

Limitations

Due to limited resources, we were unable to utilise
the full validation set (which contained 20K sam-
ples), which potentially led to a discrepancy when
running our models on the full test set. Future work
could expand refinement further by experimenting
with fine-tuning GPT models and/or open-source
LLMs for feedback and refinement to improve per-
formance and increase potential.
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A Prompts

A.1 Few-shot Prompting For Generation

We used the following prompt to fine-tune our mod-
els.

### Radiology Report: {example[’radiology_report’]1}
### Layman Report: {example[’layman_report’]1}

Figure 2: Prompt used for SFT.

We used a 3-shot prompt to generate lay reports
(Figure 3).

### You are translating professional radiology
reports into layman’s terms. Do not include any
medical jargon. Write concisely. When rewriting the
radiology reports, follow these examples:

Radiology Report: {example[@][’radiology_report’]}
Layman’s Report: {example[@][’layman_report’]1}

Radiology Report: {example[1][’radiology_report’]}
Layman’s Report: {example[1][’layman_report’]1}

Radiology Report: {example[2][’radiology_report’]}
Layman’s Report: {example[2][’layman_report’]1}

### Radiology Report: {radiology_report}
### Layman’s Report:

Figure 3: 3-shot prompt used for generation
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### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the **entire
model outputx* (not just the lay report section) based on the following 3 criteria.

For each, provide a **concise explanation (1-2 sentences max)*x and a **score in the format
x/10**. At the end, provide the total score as the x*sum of all three criteriax*, formatted as
*%n/30%* .

1. =x*xFactuality (x/10)**: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

3. x*xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

4. *xTotal Score (n/30)#*x: Sum of the seven individual scores.

Here are some examples of evaluations:
Original Radiology Report: \n {examples[@][’radiology_report’]}

Lay Report:\n {examples[@][’lay_report’]1}
Feedback:\n {examples[@][’feedback’]}

Lay Report:\n {examples[1][’lay_report’]1}
Feedback:\n {examples[1][’feedback’]}

Lay Report:\n {examples[2][’lay_report’]1}
Feedback:\n {examples[2][’feedback’]}

## Lay Report:\n {lay_report}
## Feedback:

Original Radiology Report:\n {examples[1][’radiology_report’]}

Original Radiology Report:\n {examples[2][’radiology_report’]}

## Original Radiology Report:\n {radiology_report}

Figure 4: Few-shot feedback prompt for the first iteration.

A.2 Feedback and Refinement Prompts

We detail the feedback generation prompts we used
in figures 4 and 5. Figure 4 is our few-shot feed-
back prompt for the single iteration model and the
first iteration of the iterative model, whilst Figure 5
is our feedback prompt with past history for sub-
sequent iterations of the iterative model. Figure 6
shows the prompt that includes all seven aspects.

Our prompts for refinement can be seen in fig-
ures 7 and 8. Figure 7 is the prompt we use for the
first iteration, and Figure 8 is the prompt we use
for subsequent iterations.
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### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the x*xentire
model output** (not just the lay report section) based on the following 3 criteria.

For each, provide a #*xconcise explanation (1-2 sentences max)** and a **score in the format
x/10x*. At the end, provide the total score as the x*sum of all three criteriax*, formatted as
**n/30%* .

1. =*xFactuality (x/1@)x*x: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

3. #*xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

4. *xTotal Score (n/30)*x: Sum of the seven individual scores.

Here are past edits for your reference:
{past_history}

## Original Radiology Report:
{radiology_report}

## Lay Report:

{lay_report}

## Feedback:

Figure 5: Few-shot feedback prompt for the first iteration.

### You are an expert medical language reviewer. You are given a radiology report and the full
output generated by a language model in response to it. Evaluate the quality of the **xentire
model output** (not just the lay report section) based on the following 7 criteria.

For each, provide a #*xconcise explanation (1-2 sentences max)** and a **score in the format
x/10x*. At the end, provide the total score as the x*sum of all seven criteriax*, formatted as
*%N/TOx* .

1. =**Factuality (x/10)**: How factually consistent is the output with the original radiology
report? Highlight factually incorrect or inconsistent phrases and penalize accordingly.

2. x*Readability (x/1@)**: Is the output easy to understand for a patient with no background in
medicine? Identify medical terms or unclear phrasing and penalize as needed.

3. **Completeness (x/10)**: Does the output include all important information from the radiology
report? Penalize omissions.

4. x*Conciseness (x/10)**: Is the output concise and succinct? Penalize unnecessarily verbose
outputs (e.g., Outputs that over-explain, or repetitive outputs).

5. **Writing Style (x/10)x*: Is the tone formal, objective, and clinical? Penalize conversational
phrasing, direct address (e.g., “you”), or quoting of the original report.

6. **Structure (x/10)**: Does the output follow a clear paragraph-based structure similar to
clinical reports? Penalize if it uses headings, bullet points, or numbered lists.

7. *xFormat (x/1@)**: Penalize any commentary or non-report language, such as “Here is your
revised report,” “Translation:”, or any explanation of changes. Full marks only if the output
**onlyx* contains the lay summary, without extra headers or commentary.

8. *xTotal Score (n/70)**: Sum of the seven individual scores.

Figure 6: Few-shot feedback prompt for the first iteration.
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### You are translating radiology reports into layman’s terms. You are given feedback for a lay
report. Use the given feedback to improve and rewrite the lay report.

Do not include any commentary, section titles, or explanation of any changes made. The output
should contain only the lay report, written clearly.

### Original Radiology Report: {radiology_report}

### Model Output: {lay_report}

### Feedback: {feedback}

### Use the feedback to improve the lay report. ### Revised Lay Report:

Figure 7: Refinement prompt for the first iteration.

### You are translating radiology reports into layman’s terms. You are given feedback for a lay
report. Use the given feedback to improve and rewrite the lay report.

Do not include any commentary, section titles, or explanation of any changes made. The output
should contain only the lay report, written clearly.

Here are past feedbacks for your reference:

{past_feedbacks}

### Original Radiology Report: {radiology_report}

### Model Output: {lay_report}

### Feedback: {feedback}

### Use the feedback to improve the lay report. #i## Revised Lay Report:

Figure 8: Refinement prompt for the first iteration.
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Generation  Feedback Refinement |Few-shot Past History Iter | Relevance Readability Clinical Avg
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT v v 3 78.17 88.77 50.00 72.31
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 1 88.80 63.38 50.00 67.39
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT v X 3 71.99 57.98 50.00 59.99
Qwen3-4b-FT - - - - 3 71.99 57.98 50.00 59.99
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 5 87.69 40.73 50.00 59.47
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT | First X 3 62.91 59.72 50.00 57.54
Qwen3-4b-FT GPT-40-mini GPT-40-mini First v 3 87.64 30.87 50.00 56.17
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT All X 3 54.12 57.43 50.00 53.85
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT All v 3 55.10 54.51 50.00 53.20
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT| First X 3 62.19 36.53 56.25 51.66
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT | First v 3 66.85 28.02 50.00 48.29
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT All v 3 55.21 36.33 50.00 47.18
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT v v 3 55.02 33.05 50.00 46.02
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT| First v 3 49.64 29.33 50.00 42.99
Qwen3-4b-FT Qwen3-4b-FT Qwen3-4b-FT v X 3 12.50 49.59 50.00 37.36
Qwen3-4b-FT GPT-40-mini Qwen3-4b-FT All X 3 47.55 8.15 50.00 35.23

Table 5: Comparison of refinement configurations on one validation sample. Few-shot denotes the use of few-shot
feedback prompts (First = only on first iteration; All = in every iteration). Past History indicates whether or not past
iterations were included in the prompts. Iter is the number of refinement iterations.

B Setting-level Inspection

We also compared the results of different models
for feedback and/or refinement with different re-
finement settings (Table 5).

C Aspect-level Inspection

Aspect ‘Relevance Readability Clinical ‘ Total Average
Completeness| 42.77 67.46 89.28 66.50
Factuality 95.11 37.67 50.00 60.93
Format 62.50 64.53 50.00 59.01
Writing Style | 61.65 0.00 100.00 53.88
Conciseness 5.44 100.00 50.00 51.81
Structure 17.95 84.39 50.00 50.78
None 43.25 58.90 50.00 50.72
Readability 37.97 61.78 50.00 49.92

Table 6: Average scores across each aspect for relevance,
readability, clinical metrics, and overall total on one
validation sample.

We inspect the influence each aspect we initially
used on the lay report generation. The scores show
the average of the evaluation metrics after applying
min-max normalisation (Table 6).

D Case Study

We examined specific samples where the initial
generation (SFT model) outperformed the refine-
ment framework and vice versa in tables 7, 8, 9 and
10 for the analyses in sections 4.3.2 and 4.3.3.
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Original Radiology Report

| First Generation

Feedback

| Refined

Cardiomegaly. Aortic elongation.
Chronic parenchymal lung changes.

An enlarged heart is seen. The main
blood vessel (aorta) is longer than usual.
There are long-term changes in the lung
tissue.

1. **Factuality (7/10)**: The output accurately
reflects the findings of the original report, but
the phrase "long-term changes in the lung tis-
sue" could be interpreted as vague compared to
"chronic parenchymal lung changes." This slight
discrepancy in terminology affects the factuality
score.

2. **Completeness (8/10)**: The lay report
captures all key findings from the original report,
but it could be more specific regarding the nature
of the lung changes. The term "parenchymal" is
omitted, which is a significant descriptor in the
context of lung changes.

3. **Format (9/10)**: The output is mostly
well-formatted, containing only the lay summary
without additional commentary or headers. How-
ever, the phrase "is seen" in the first sentence
could be considered unnecessary and slightly
detracts from the directness of the report.

4. **Total Score (24/30)**: The total score
reflects the evaluation across all three criteria,
indicating a generally good quality of the model
output with some areas for improvement.

The heart appears larger than normal.
The major blood vessel leaving the heart,
called the aorta, is stretched out. There
are ongoing changes in the breathing
part of the lungs.

Table 7: Sample where refinement performed worse

feedback.

in the evaluation metrics than the first generation due to

Original Radiology Report

| First Generation

Feedback

| Refined

Cardiomegaly. Pulmonary parenchyma
without significant alterations. Correlate
clinically.

The heart appears larger than normal.
The lung tissue looks fine without major
issues. Discuss this with your doctor for
further evaluation.

1. **Factuality (8/10)**: The output accurately
conveys the essence of the original report, but
the phrase "the heart appears larger than normal"
could be more precise by using the term "car-
diomegaly" directly. Additionally, "lung tissue
looks fine" lacks the nuance of "without signif-
icant alterations," which could imply a more
technical assessment.

2. **Completeness (7/10)**: The lay report
captures the main findings but omits the recom-
mendation to "correlate clinically," which is an
important aspect of the original report indicating
the need for further clinical correlation.

3. **Format (9/10)**: The output is presented in
a clear and straightforward manner without un-
necessary commentary or headers, but the phrase
"Discuss this with your doctor for further eval-
uation" could be seen as slightly extraneous, as
it doesn’t directly reflect the original report’s
wording.

4. **Total Score (24/30)**: The overall output is
mostly accurate and well-formatted, with minor
issues in factual precision and completeness.

The heart is enlarged. The lungs look
normal without any major problems.
Work with your doctor to discuss these
results.

Table 8: Sample where refinement performed better in the evaluation metrics than the first generation.

Original Radiology Report

| First Generation

Feedback

| Refined

No pulmonary alterations suggestive of
lung infection or other relevant abnor-
malities are observed.

The lungs look fine, showing no signs of
infections or other serious problems.

1. **Factuality (8/10)**: The lay report accu-
rately reflects the findings of the original radi-
ology report, stating that there are no signs of
infection or serious problems in the lungs. How-
ever, the phrase "the lungs look fine" could be
seen as overly simplistic and not as precise as
the original wording, which may warrant a slight
deduction.

2. **Completeness (10/10)**: The lay report
includes all important information from the orig-
inal report, effectively conveying that there are
no pulmonary alterations or relevant abnormali-
ties.

3. **Format (8/10)**: While the lay report is
mostly straightforward, it includes the phrase
"The lungs look fine," which could be inter-
preted as informal commentary. A more direct
paraphrase of the original report would have
been preferable for a formal report format.

4. **Total Score (26/30)**: The overall score
reflects a strong performance, with minor deduc-
tions for factual precision and format.

There are no signs of lung infections or
other significant issues in the lungs.

Table 9: Sample where refinement performed better in the evaluation metrics than the first generation.
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Original Radiology Report

| First Generation

| Refined

| Reference

Findings in the lung parenchyma show

interstitial opacities with a diffuse dis-
tribution throughout the lung fields, par-
ticularly in the middle and lower regions
of the right lung and the middle and
lower regions of the left lung. Con-
clusion: Findings are consistent with
COVID-19.

The lungs show signs of fluid buildup
between the air sacs, spread all over
both sides of the lungs, especially in
the middle and bottom parts of the right
lung and the middle and bottom parts of
the left lung. Conclusion: These find-
ings match what we see in people with
COVID-19.

The images show areas of
increased density within the lung
tissue that are evenly distributed across
both lungs, mainly affecting the central
and lower sections on both sides. It
looks like these patterns are typical
of what you would expect to see in

someone with COVID-19.

The examination of the lung tis-
sue shows a widespread pattern of
haziness affecting the lung fields, es-
pecially in the middle and lower parts
of both the right and left lungs. Conclu-
sion: These findings are typical of what
is seen in COVID-19.

Table 10: Sample where refinement performed worse in the evaluation metrics than the first generation despite being
more factually accurate. The highlighted phrases represent different interpretations of the same finding from the

original radiology report with varying degrees of faithfulness to the original text, as mentioned in Section 4.3.3.
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