Retrieving Argument Graphs Using Vision Transformers

Kilian Bartz!

and Mirko Lenz!?

and Ralph Bergmann'?

!German Research Center for Artificial Intelligence (DFKI),
Behringstr. 21, 54296 Trier, Germany, ebls.dfki.de
2 Artificial Intelligence and Intelligent Information Systems, Trier University,
Universitétsring 15, 54296 Trier, Germany, www.wi2.uni-trier.de

Correspondence: info@mirko-lenz.de

Abstract

Through manual annotation or automated ar-
gument mining processes, arguments can be
represented not only as text, but also in struc-
tured formats like graphs. When searching for
relevant arguments, this additional information
about the relationship between their elemen-
tary units allows for the formulation of fine-
grained structural constraints by using graphs
as queries. Then, a retrieval can be performed
by computing the similarity between the query
and all available arguments. Previous works
employed Graph Edit Distance (GED) algo-
rithms such as A* search to compute mappings
between nodes and edges for determining the
similarity, which is rather expensive. In this pa-
per, we propose an alternative based on Vision
Transformers where arguments are rendered as
images to obtain dense embeddings. We pro-
pose multiple space-filling visualizations and
evaluate the retrieval performance of the vision-
based approach against an existing A* search-
based method. We find that our technique runs
orders of magnitude faster than A* search and
scales well on larger argument graphs while
achieving competitive results.

1 Introduction

Argumentation plays an important role in daily
life and is essential for cultural, social, and in-
tellectual progress (Van Eemeren, 2018). Argu-
ments are deeply woven into decision-making pro-
cesses: People who have the most convincing ar-
guments are more likely to influence others and
shape public opinion. Traditional search engines
allow users such as journalists to find relevant ar-
guments based on their semantics, but have lim-
ited to no support for incorporating structural as-
pects into the retrieval. To overcome this limitation,
structure-aware representations combined with Ar-
gument Mining (AM) (Lawrence and Reed, 2019)
techniques may be used—for instance, argument
graphs with nodes representing Argumentative Dis-

32

course Units (ADUs) (Peldszus and Stede, 2013)
and edges representing relationships between them
(see Section 2). Consider the following example
shown in Figure 1: A journalist is looking for a
counter-argument against a policy that is being dis-
cussed in the media. In addition, they would like
to obtain another argument attacking the relation
between the policy and its counter-argument. In
a traditional search engine, they would have to
formulate a text-based query describing these con-
straints in a rather verbose way. This might work
for smaller arguments, but as the complexity in-
creases, it becomes increasingly difficult to express
them in natural language. In contrast, with argu-
ment graphs, the journalist can create a graph-based
query where the constraints are expressed via edges
and only the semantics of the arguments need to
be described in natural language (by labeling the
nodes). Now, the search engine can incorporate
both aspects into the retrieval process.

This structured graph format introduces a new
challenge: How to efficiently retrieve arguments
based on their structure? Existing approaches em-
ploy graph matching (Livi and Rizzi, 2013) to
tackle this problem—for instance, by computing
the Graph Edit Distance (GED) using the A* algo-
rithm (Bergmann et al., 2019; Lenz et al., 2019).
While effective, these techniques do not scale well
as the computing the GED is an NP-hard prob-
lem (Bunke, 1997), requiring the use of heuristics
to reduce the search space. One could also use
graph embeddings to determine similarity scores
between graphs by mapping them to some vector
space (Marro et al., 2022). Their main advantage is
that the resulting vectors can be computed in paral-
lel on powerful Graphics Processing Units (GPUs)
and can even be cached for future use—making the
retrieval process much faster and scalable. How-
ever, these models typically require feature engi-
neering to obtain sensible vector representations
and need to be trained on large annotated datasets—

Proceedings of the 12th Argument Mining Workshop, pages 32-45
July 31, 2025 ©2025 Association for Computational Linguistics

https://orcid.org/0009-0007-9184-5701
https://orcid.org/0000-0002-7720-0436
https://orcid.org/0000-0002-5515-7158
https://ebls.dfki.de
https://www.wi2.uni-trier.de
mailto:info@mirko-lenz.de

which are often not available for specific domains.
In this paper, we propose an alternative approach
to obtain structure-aware embeddings based on Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2021)
and visualizations of argument graphs. Building
on the idea of Bergmann et al. (2019), we use a
two-step retrieval process: First, a set of seman-
tically similar argument graphs is retrieved from
the corpus at hand (e.g., using a text embedding
model). Then, the remaining arguments are ren-
dered to images, fed to the aforementioned ViT
to determine structure-aware embeddings, and fi-
nally assess the similarity to the query—Ileading to
a ranking of semantically and structurally relevant
argument graphs. Special consideration is given
to the design of the visualizations, as they need to
be optimized for characteristics of ViTs and not
human perception. Compared to the previously
discussed graph embeddings, the use of visualiza-
tions as an intermediate representation also offers
increased interpretability. In addition, the “fuzzier”
ViT embeddings may even be a better approxima-
tion to the way human experts assess structural
similarity by focusing on the global structure of the
graphs rather than local features.

Hence, the following research question is eval-
uated in this paper: “Are vision-based graph simi-
larities more efficient than and equally effective as
ones based on GED for the retrieval of argument
graphs?” Our vision is to speed up the structural
similarity computation in a way that enables real-
time argument graph retrieval that is backed by AM
to construct the required graph representations. Our
main contributions for answering this question are:
(i) Three space-filling visualizations for argument
graphs optimized for the characteristics of ViT,
(ii) a pre-training and fine-tuning pipeline for ViT
models to learn structural similarities from these
visualizations, (iii) an open-source implementation
of the visualization for hierarchical graphs and the
training pipeline, and (iv) an experimental evalua-
tion comparing our vision-based to a baseline A*
retrieval on a dataset with reference rankings from
human experts.

In the remainder of this paper, we first intro-
duce the foundations of argumentation and discuss
related work concerning graph-based retrieval in
Section 2. Then, we present our visualization tech-
niques and training pipeline in Section 3, followed
by an evaluation of the proposed approach in Sec-
tion 4. Finally, we conclude the paper and discuss
future work in Section 5.

33

2 Foundations and Related Work

In this section, we will briefly introduce the core
concepts behind our work and discuss relevant
works from the literature, starting with the con-
cept of argumentation. In its simplest form, an
argument consists of one claim that is supported
or attacked by one or more premises (Peldszus and
Stede, 2013). A claim may also serve as a premise
for other claims, allowing for the creation of com-
plex argument structures—in which case the argu-
ment often also contains a major claim that encodes
the overall conclusion. Such larger constructs can
be represented as argument graphs, for example via
the Argument Interchange Format (AIF) (Chesiie-
var et al., 2006). This standard specifies two types
of nodes: Information Nodes (I-nodes) represent-
ing the contents of the argument and Scheme Nodes
(S-nodes) representing the applied argumentation
schemes. Such argument graphs are acyclic and
directed, an example is shown in Figure 1.

Vision Transformers and Image Retrieval The
original transformer architecture (Vaswani et al.,
2017) was developed for text processing tasks,
such as machine translation. To support image
data, Dosovitskiy et al. (2021) proposed divid-
ing an image into fixed-size patches, which are
then fed into a linear projection layer. After com-
bining the patch embeddings from the projection
with position embeddings, they can be fed into a
Transformer model as a sequence of vectors where
self-attention can be applied. Based on the orig-
inal ViT architecture, Swin Transformer V1 (Liu
etal., 2021) and V2 (Liu et al., 2022) improve on
it by increasing its efficiency and suitability as a
large-scale vision model. ViTs have been success-
fully applied for general image retrieval (EI-Nouby
et al., 2021) by training a ViT with a Siamese ar-
chitecture and a metric learning objective to gen-
erate image embeddings. More broadly, generat-
ing a ranking of images w.r.t. to some query is
tackled by Content-based Image Retrieval (CBIR)
systems (Pedronette and Torres, 2013). Besides
optimizations regarding the numeric representa-
tion of images, re-ranking based on similarity of
ranked lists (Pedronette and Torres, 2013), query-
specific semantic signatures (Wang et al., 2013),
click data (Jain and Varma, 2011) and other means
available to the respective CBIR system have been
explored to improve the retrieval quality.

Graph Embeddings for Retrieval The goal of
graph embeddings is to encode the graph’s structure
and content into a fixed-size vector representation
suitable for downstream tasks (Xu, 2021). Popular
approaches are random walk-based methods (Per-
ozzi et al., 2014; Grover and Leskovec, 2016) and
neural network-based methods, using Graph Con-
volutional Networks (Kipf and Welling, 2016) or
Graph Transformers (Tang et al., 2020). These em-
bed the elements of a graph individually and then
aggregate them. To represent an entire graph as a
vector instead, graph kernels have been used (Cai
et al., 2018). Here, the resulting vector contains the
counts of the elementary substructures from which
the graph is constructed. Different methods in-
clude decomposing a graph into so-called graphlets
(fixed-sized sub-graphs) or subtree patterns (Cai
et al., 2018).

Graph Edit Distance for Retrieval As men-
tioned in Section 1, incorporating structural aspects
into the retrieval of arguments has been tackled by
multiple works in the past (Bergmann et al., 2019;
Lenz et al., 2019)—their approach will serve as a
baseline for our evaluation. The authors employ
Case-Based Reasoning (CBR) (Aamodt and Plaza,
1994)—a methodology that uses past experience to
solve new problems and often works with highly
structured data. A core idea for such representa-
tions is the use of global and local similarities: In-
stead of a sophisticated measure for complex data,
one can break it down into simpler (local) similarity
metrics for its components and combine them into
a global similarity measure (Burkhard and Richter,
2001). The subfield Process-Oriented Case-Based
Reasoning (POCBR) (Minor et al., 2014) applies
this methodology to graph-based representations of
business workflows—here, similarities are defined
for the nodes and edges of the graphs and combined
into a global score by finding an optimal mapping
between two graphs (Bergmann and Gil, 2014).
This mapping is defined via a type-preserving, par-
tial, injective function that maps the nodes and
edges of the query graph to the case graph. For
argument graphs, Bergmann et al. (2019) propose
the use of embeddings for the similarity between
I-nodes a binary or taxonomy-based measure for
S-nodes. Finding the optimal mapping usually re-
quires an exhaustive search, which is infeasible for
large graphs. The authors use two optimizations
to reduce the search space: (i) An A* search algo-
rithm with admissible heuristics to prune the search

34

space and (ii) a pre-filter based on embeddings to
reduce the number of cases that have to be con-
sidered in the search phase—also known as Many
Are Called / Few Are Chosen (MAC/FAC) (Forbus
etal., 1995). Recent works also investigated the use
of GPUs for this task (Hoffmann et al., 2022), but
there exists no universally applicable solution for
GPU-based graph matching that could be applied
to the problem at hand.

3 Vision-Based Graph Retrieval

In the following, we describe the vision-based
pipeline for structural argument graph retrieval. It
uses argument graphs that can be obtained from
AM systems—for instance, from plain texts or
other prestructured data like debates or discussions.
Given some query graph ¢, the goal is to generate a
ranking with the £ most relevant/similar argument
graphs (cy, ..., ck),¢; € C from some corpus/case
base C. The structured query may be constructed
either by hand from expert users or automatically
built using AM techniques—even enabling novices
to benefit from structure-aware retrieval. Both the
query ¢ and the cases ¢; are represented as AIF
graphs (see Section 2), meaning that the arguments
contain structural and semantic information that
should be incorporated into the ranking. We pro-
pose a three-step pipeline for this task: (i) Filter the
argument graphs in C to remove all cases which are
topically (semantically) irrelevant to the query g,
(ii) convert the remaining argument graphs to some
visual representation, and (iii) use a ViT model
to generate embeddings from these visualizations.
This allows us to calculate the similarity between
arguments using standard methods like cosine sim-
ilarity and re-rank the arguments based on this.

A critical aspect of this pipeline is the visual-
ization choice, as this image is the only input the
model receives. Traditional node-link diagrams are
well studied and probably used most frequently for
graph-based structure. However, layout algorithms
for node-link drawings may produce hardly read-
able visualizations when data gets too large and
complex. Such a graph drawing generally inher-
its the shape of the underlying structure when us-
ing uniform node sizes, possibly leading to sparse
graphs that may be overly wide or deep and thus
not ideal for ViT models with a square input win-
dow. Therefore, we propose three space-filling
visualizations that are more suitable for this task,
as they can be scaled up or down to fully utilize its

context size. They are specialized for displaying
hierarchical data and as such, need some starting
point—which in our case is the major claim of the
graph. If the graph has no explicit major claim, one
can be set arbitrarily (e.g., the topmost node).

3.1 Visualization

We explored the curated tree visualization library
treevis.net (Schulz, 2011) to obtain an initial set of
candidates. As of April 2025, it contains a collec-
tion of 341 techniques grouped by dimensionality,
representation, and alignment. After implement-
ing and adapting some of the listed options for our
use case, we settled on three variants: (i) Treemap,
(ii) Logical, and (iii) Space Reclaiming Icicle Plots
(SRIP). All of them visualize the structure of the
argument graphs (which are often trees) hierarchi-
cally in a space-filling manner, bringing the follow-
ing advantages: (i) Vision models tend to ignore
filigree lines (i.e., edges) of traditional node-link
drawings, which might lead to vision models com-
pletely ignoring certain relations between ADUs.
Because of this, we also avoid using explicit lines
to mark borders between areas and instead rely on
different colors and hues to separate ADUs. (ii) In
node-link drawings, related nodes might be sepa-
rated by a large space if this suits the layout algo-
rithm better. This makes it harder for the vision
model to capture these relations. (iii) All node-link
graph visualizations, even if they are intended to
visualize very large graphs, use white-space, on
which a graph’s nodes and edges are then laid out.
When an image constructed using one of these visu-
alizations must be scaled down to fit into the square
input window of a vision model, the first issue is
further amplified. (iv) The layout of our space—
filling visualizations is unambiguous and simple
in contrast to some node-link visualizations (e.g.,
force-directed layouts), allowing us to generate de-
terministic embeddings. An example of an argu-
ment graph in all three visualizations can be found
in Figure 1.

Treemap Visualization Argument graphs often
have a hierarchical, tree-like structure—for which
treemaps (Johnson and Shneiderman, 1991) are a
commonly used visualization. This visualization
works by recursively subdividing the space of a
parent node into rectangles for its children and as
such allows to completely fill the available space.
While in principle it would be possible to add I-
nodes together with S-nodes to the visualization,

35

Z 1\

-

Treemap Visualization Logical Visualization SRIP Visualization

Figure 1: Example of an argument graph (top) in all
three visualization (bottom). (Peldszus and Stede, 2015)
The treemap only visualizes S-nodes, while the Logi-
cal and SRIP visualization also include I-nodes. Blue
represents I-nodes, red attacking S-nodes, and green
supporting S-nodes.

this would lead to a very cluttered image. Instead,
we chose to only visualize S-nodes, as we argue
the branching degree of I-nodes is secondary to the
overall graph structure in the context of argument
retrieval. Relying solely on S-nodes allows us to
focus on the relations between them to visually rep-
resent serial, linked, or convergent premises. As
this greatly reduces the number of nodes that need
to be visualized, even images of large graphs re-
main readable. The colors red and green are used
to represent attacking and supporting S-nodes re-
spectively. While the choice of red and green as
a differentiator may not be ideal for human con-
sumption w.r.t. color deficiencies, it maximizes the
contrast in the RGB color space and is therefore
well-suited for ViT models.

Traditionally, treemaps work by only displaying
a single layer: The entire space for one parent node
is equally divided into rectangles of its children.
However, this means that nested parent nodes are
lost, meaning that the chain/hierarchy of S-nodes
from the root of the tree to its leaf nodes is not
visible. To overcome this limitation, we propose a
modification to the traditional treemap algorithm:
We reserve a fixed percentage of the parent’s area
to visualize the parent itself. This way, the parent
node is always visible even if it has many children.
Based on our experiments, we found that a 10%

https://treevis.net

WY YISO 17
S\l gz
S a2

3\\\” Y N\\\‘(

Logical visualization SRIP visualization

Figure 2: Visualization of a large argument graph. (Agar-
wal et al., 2022) The nodes are too small to discern an
S-node’s type. The space-reclaiming visualization re-
mains more readable and wastes less space, especially
at the bottom.

area for the parent node is a good compromise
between visibility and space utilization.

Logical Visualization Our second visualization
is based on a “Formal Logical Representation of
Set Inclusions” (Baron, 1969). Here, we visual-
ize the entire argument graph including I-nodes
from the bottom up—similar to the way node-link
diagrams for argument graphs are commonly con-
structed. The reason for including I-nodes is that
the focus of this visualization is not on showing
nested structures, but rather on the argumentation
threads themselves in a row-by-row manner. All
of the major claim’s incoming nodes are processed
recursively with the current node being treated as
the root node of the respective subgraph. As a re-
sult, the visualization is a series of rectangles, each
representing a node in the argument graph.

Space-Reclaiming Icicle Plots (SRIP) Our log-
ical representation has the weakness that a child
can only ever use the full width of its parent, even
if there are no other nodes in the current row.
This leads to a subpar space utilization for argu-
ment graphs with a single, very long argumentation
thread (see Figure 2). SRIP (van de Wetering et al.,
2020) can remedy this by allowing a node (i.e., an
area) to begin with the width of a parent, but, if
no other nodes are in the same row, the area can
grow at the bottom (reclaim space), to form trape-
zoids instead of rectangles. This still preserves the
hierarchical structure, but enlarges small-sized hi-
erarchy elements in deeper levels to increase the
readability. To reduce meandering, SRIP can pre-
vent nodes from growing by placing invisible sticky
nodes beneath nodes without children which last
for a configurable depth.

36

3.2 Model Training

We trained three different Vision Transformer
models for our three visualizations using self-
supervised training methods to reduce the need
for labeled training data. As a base model, we
used a Swinv2 Transformer model which was al-
ready trained on the ImageNet dataset (Deng et al.,
2009). However, because that dataset is comprised
almost entirely of photos of natural objects, we
implemented an additional pre-training step on a
large corpus of synthetic, random graph visualiza-
tions. Similarly to the way Vision Transformers
are able to recognize relations between objects in
a photo, we expect the pre-training step to enable
our models to pick up on relations between graph
segments. To improve performance on real argu-
ment graphs, we then performed a fine-tuning step
on visualizations of argument graphs. For this, we
used contrastive fine-tuning. We expect it to be
especially well suited for our task, as the training
objective of learning to recognize similar objects
and differentiating them from unrelated ones aligns
well with the goal of graph retrieval. More infor-
mation is provided in Section A

In order to compare the performance of our rel-
atively specialized Vision Transformers to much
larger, universal models, we also fine-tuned Ope-
nAI’s model “gpt-40-2024-08-06", capable of ad-
vanced text and image comprehension, on a dataset
of argument graph visualizations, generated using
our SRIP visualization. Because of its generic na-
ture, we were able to adapt our contrastive fine-
tuning strategy for this as well. Additional details
are given in Section B.

4 Evaluation

Having introduced the core concepts and related
work in the previous section, we now present our
evaluation of the vision-based structural argument
graph retrieval. We examine the argument graph
retrieval task outlined in Section 3. The seman-
tic pre-filter has already been evaluated in other
works (Bergmann et al., 2019; Lenz et al., 2019),
so we focus on the structural re-ranking part of
our pipeline. To this end, we use an ideal filter
that chooses all relevant argument graphs as de-
termined by the human experts, resulting in a per-
fectly filtered set of semantically similar arguments.
Then, we compare the re-ranking performance of
our vision-based pipeline (separately for each vi-
sualization design and ViT model) to the baseline

approach of an A* search as described in Section 2
against a benchmark ranking of human experts.
Additionally, we perform an ablation study to ex-
amine how our pipeline’s retrieval time scales with
graph complexity. To assess the research question
formulated in Section 1—Are vision-based graph
similarities more efficient than and equally effective
as ones based on GED for the retrieval of argument
graphs?—we evaluate the following hypotheses:

H1 (Effectiveness). The retrieval quality of vision-
based structural similarity computation closely ap-
proximates those of an A* search.

H2 (Efficiency). Vision-based structural similarity
computation greatly reduces retrieval times com-
pared to A* search by utilizing GPUs.

H3 (Specialization). Contrastive fine-tuning in-
creases the effectiveness of ViT models compared
to pre-training only.

4.1 Experimental Setup

For our evaluation, we implemented the visualiza-
tion strategies in Python using Matplotlib (Hunter,
2007) and set up a training and inference pipeline
that is publicly available on GitHub.! To allow
comparisons with the existing approach, we used
the corpus of annotated microtexts (Peldszus and
Stede, 2016) containing 110 argument graphs with
the same 24 queries as Bergmann et al. (2019). Half
of these queries do not contain any S-node (only
one [-node), while the other half contains up to two
S-nodes. The queries come with a reference rank-
ing from human experts, which we use to evaluate
the retrieval quality of our approach. As part of an
ongoing project, we have developed an additional
set of 15 more complex queries with corresponding
expert ranking having at least two S-nodes that we
also include in our evaluation to better assess the
scalability of our approach. The A* search was
conducted using the original implementation of
the authors® with the Universal Sentence Encoder
(USE) (Cer et al., 2018) embedding model (their
best performing variant). To ensure a fair compari-
son, we use the same ideal semantic pre-filter based
on expert rankings for the A* search. In total, we
perform six experiments: one for each of our visu-
alizations (Treemap, Logical, and SRIP) using only
pre-trained models and one for each visualization
with the fine-tuned models.

! github.com/recap-utr/vision-retrieval (MIT license)
2github.com/recap-utr/argument-graph-retrieval

37

We use the following metrics to assess our
hypotheses: DURATION, Average Precision
(AP) (Turpin and Scholer, 2006), Normalized Dis-
counted Cumulative Gain (NDCG), and CORRECT-
NESS/COMPLETENESS (Cheng et al., 2010). All
metrics except for CORRECTNESS are in the range
[0, 1], with higher values indicating better retrieval
quality. CORRECTNESS is in the range [—1, 1] with
—1 meaning an inversely correct ranking, 0 mean-
ing random ordering, and 1 meaning a correct rank-
ing. For our vision-based models, DURATION only
includes the time to embed the visualized argument
graphs and compute the cosine similarities for re-
ranking. These durations are measured on a single
Nvidia Tesla V100 GPU and are averaged over 10
runs. The time to visualize the argument graph is
not included as it heavily depends on the implemen-
tation of the visualization algorithm. In a practical
application, the visualizations of a large case base
would most likely be cached, contributing only to
the one-time cost of creating the case base. The
A* computations are performed on 2019 MacBook
Pro with an 8-core Intel Core 19 CPU.

4.2 Results and Discussion

Having outlined our setup, we now present the re-
sults of our evaluation as shown in Table 1, starting
with the set of simple queries used in previous work
and then moving on to the more complex queries.

Simple Queries Regarding NDCG, the devia-
tions between different visualizations and models
are quite small, although the fine-tuned model for
Treemaps and the pre-trained model for the SRIP
visualization marginally outperform the other mod-
els. Contrary to our expectations, the pre-trained
SRIP model, not A*, delivers the best retrieval qual-
ity across all metrics. The CORRECTNESS for all
models (including the baseline) is very low, indi-
cating that the queries are too limited for any of
the approaches to closely match the ranking of the
human experts. However, our vision models seem
to be more capable in placing the most important
queries at the beginning of the ranking which is
over proportionally valued by NDCG.

Regarding DURATION, the initial embedding
process of our vision models for the argument
graphs within the case base takes between 95%
and 108% of the entire retrieval time using A*
search with Treemaps taking the longest time. This
only has to be done once upfront, meaning that the
embeddings can be cached in main memory and

https://github.com/recap-utr/vision-retrieval
https://github.com/recap-utr/argument-graph-retrieval

Table 1: Evaluation results for all queries. The column FT refers to the use of contrastive fine-tuning in addition to
pre-training. EMB is time in seconds to embed all 110 argument graphs (upfront cost), while DUR measures the
time for re-ranking the queries. For OpenAl, the duration is defined by the API request.

Model FT Queries NDCG AP Cor CoM DurR EMB
Treemap v Simple 0.92 1.00 0.10 1.00 0.02 2945
Treemap X Simple 0.91 1.00 0.09 1.00 0.02 26.78
Logical v Simple 090 1.00 -0.05 1.00 0.02 25.87
Logical X Simple 0.91 1.00 007 100 0.02 2657
SRIP v Simple 090 1.00 -0.05 1.00 0.02 28.63
SRIP X Simple 092 1.00 o011 1.00 002 26.03
GPT-40 - Simple 0.91 1.00 -0.021 1.00 195.74 -

A* — Simple 085 1.00 0.05 1.00 27.16 -

Treemap v Complex 0.94 1.00 0.38 1.00 0.01 2642
Treemap X Complex 091 1.00 0.21 1.00 0.01 25.67
Logical v Complex 098 1.00 0.68 1.00 0.01 25.51
Logical X Complex 096 1.00 066 1.00 0.01 2546
SRIP v Complex 097 1.00 062 1.00 001 30.84
SRIP X Complex 095 100 059 1.00 0.01 2642
GPT-40 - Complex 091 1.00 020 1.00 96.53 -

A* Complex 095 1.00 0.632 1.00 199 -

reused for each query. The time needed for retrieval
using the GPT-40 model is the longest (at 7 times
the processing time of A*) and also has the highest
fluctuations. This likely stems from the rather com-
plex model (although OpenAl does not disclose
the number of parameters) and the heterogeneous
workload of the APL

Complex Queries When using more complex
queries, all models perform better. There are mi-
nor gains in regard to NDCG (from 0 to 0.08) and
especially CORRECTNESS (from 0.12 to 0.73) for
the vision models. This is expected as the com-
plex queries carry more information which can be
visualized and embedded. Lack of information
in simple queries is a problem specially for the
trivial queries, with 0 S-nodes, where our visu-
alizations only produce an unicolored image that
does not enable the derivation of any meaningful
graph structure. This is likely also the reason why
our Treemap performs worst, as it only displays S-
nodes and therefore contain less information. Our
best model is the fine-tuned Logical model, out-
performing the other visualization in all retrieval
quality metrics. This suggests that the evaluated
graphs were not complex enough to demonstrate
the advantages of SRIP.

Comparing the DURATION to those of the sim-
ple queries, we see that the value for GPT-40 and

38

our vision models scales linearly with the num-
ber of requests, while the small increase in query
complexity does not have any noticeable effects.
On the other hand, the added complexity of the
query graphs over proportionally influences A* pro-
cessing times. These noticeably lower request pro-
cessing times together with the improved retrieval
quality leads to a much better user experience and
suitability for a real argument retrieval machine.

Discussion Overall, H1 can be accepted as the
vision-based structural similarity pipeline with non-
fine-tuned SRIP for simple queries and fine-tuned
Logical for complex queries provides the best re-
trieval quality based on our metrics. When looking
at the gains in retrieval quality for complex queries,
it is even plausible that the retrieval quality slightly
increases for even more complex queries. H2 can
be accepted, as only the new query embeddings and
cosine similarities have to be computed with each
query, while the bulk of the work, the computation
of embeddings for the (large) static case base only
has to occur once. Also, the scaling is far superior,
based on the durations reported in Table 1 and our
scaling study in Section 4.3. H3 has to be partly
discarded as the pre-trained model for SRIP out-
performed the fine-tuned model for simple queries.
However, H3 holds for complex argument graphs.

4.3 Ablation Study on Scaling

In this study, we evaluate how the graph complexity
(measured by the number of the graph’s S-nodes)
affects the computation time of structural similarity.
This is sufficient to estimate a graph’s complexity,
as the number of I-nodes equals the number of
S-nodes + 1 for every argument graph we evalu-
ate. To study graph complexity scaling, we chose
117 argument graphs from the Kialo GraphNLI
dataset (Agarwal et al., 2022) making up the set of
case base argument graphs C' with 4-120 S-nodes.
As the query, we randomly selected a single ar-
gument graph from the same dataset with 2540
S-nodes. As the query’s complexity is constant,
this setup allows studying the impact of increasing
graph complexity on retrieval time in isolation. In
this study, we use our SRIP visualization together
with our fine-tuned model. This is because, even
though our Logical visualization outperformed the
SRIP visualization in our evaluation, the SRIP vi-
sualization should in theory work better for really
deep argument graphs (see Figure 2).

Vision-based similarity computation requires the
3 steps outlined in Section 3: visualization, embed-
ding, and cosine similarity calculation. The scaling
behaviors of each of these steps can be seen in Fig-
ure 3. The embedding step, as well as the cosine
similarity calculation, require constant time and
are not influenced by the complexity of the input
graphs. The visualization time increases linearly
with graph complexity, even though there are sev-
eral outliers. These could be caused by deviations
in the size of the argument graph files, of which
the entire content (i.e., also the argumentative text)
is read, although only the information about the
node types is considered to visualize the argument
graph.

For a practical implementation of an argumen-
tation machine, the linear scaling of visualization
time in respect to graph complexity is likely not a
problem, as only the query has to be visualized at
runtime, whereas the case base graphs visualiza-
tions and embeddings can be pre-computed.

Comparing the total processing time of our
vision-based approach to A*-search, it can be seen
clearly that while the processing time using our
vision-based approach increases linearly with re-
spect to the number of S-nodes, they over propor-
tionally hurt the performance of the A* search. Re-
garding the absolute times for both approaches, it
is apparent that A* is not viable for retrieval of

39

complex arguments in a production argumentation
machine, as a single comparison between a com-
plex argument graph with 2540 S-nodes, and an
argument graph with more than 8 S-nodes takes at
least 1,000s.

4.4 Limitations

While our results are promising, there are some lim-
itations to our approach. In order to layout graphs
in a compressed format, we made simplifications
such as ignoring I-nodes in treemaps. Also, graphs
containing cycles currently cannot be rendered due
to our focus on hierarchical visualizations. For
large graphs with skewed distributions of nodes
(e.g., long chains of ADUs), the ranking quality
of our approach may suffer due to large amounts
of whitespace. Similarly, for graphs with nearly
identical structure but different content, the visual-
izations may be indistinguishable, potentially lead-
ing to poor retrieval quality—which we solved by
introducing a semantic pre-filter.

Regarding the vision models, we used rela-
tively small models (197M parameters) with lim-
ited training datasets. Graphs having more ele-
ments than the model’s maximum number of pixels
(e.g., 256 x 256) need to be clipped or downsam-
pled, meaning that some information is lost. Given
the scalability of transformers, we anticipate that
larger models with more extensive training data
could yield improved performance in future eval-
uations. Lastly, our scaling study disregards the
quality of the retrieval for larger argument graphs
due to missing ground truth data.

5 Conclusion and Future Work

We proposed a vision-based pipeline for argument
graph retrieval based on their structure that builds
on the output of AM systems. It works by filter-
ing for semantically similar arguments, visualizing
their graph representations, embedding these ren-
dered images with a vision model, and finally rank-
ing the arguments based on the cosine similarity
to the query’s embedding. The research question
whether vision-based argument retrieval can pro-
vide a faster and more scalable alternative to A*
search for structural argument graph retrieval can
be affirmed; however, not every dataset of argu-
ments allows for the effective use of the vision-
based approach. On the one hand, our evaluation
suggests that there is a minimum complexity ar-
gument graphs should have for our vision-based

0.10

Performance Scaling with Number of S-nodes

o o o
o o o
= = ®

Vision Processing Time (seconds)

o
o
~

—— Visualization Time (ViT)

—— Embedding Time (ViT)

—— Similarity Computation Time (ViT)
Total Processing Time (ViT)

—— Total Processing Time (A*)

6000

5000

4000

3000

* Search Time (seconds)

2000 %

1000

A

0.00

20 40

60

80 100 120

Number of S-nodes

Figure 3:

approach to be able to perform meaningful sim-
ilarity computation. On the other hand, the in-
formation which can be displayed in the limited
input window of a vision model imposes an upper
limit on argument graph complexity which can be
sensibly processed using our approach. Regard-
ing efficiency and scaling, the use of embeddings
allows storing a uniform, query-independent rep-
resentation of the original argument graphs, which
can be pre-computed to allow for fast comparisons
even across large case bases. While we investigated
a re-ranking task for our evaluation, vision-based
argument retrieval could also be used to enhance
the pipeline proposed by Bergmann et al. (2019):
Our vision-based retrieval could serve as a second
pre-filter to further decrease the search space of
the expensive A* search to ensure that only graphs
that are semantically and structurally similar are
considered at all. This pipeline enables to construct
mappings between queries and case base graphs
which are absent in purely vision-based retrieval.

One possible avenue for future work is to in-
vestigate the use of more detailed argumentation
schemes (Walton, 2013) to differentiate between
additional types of S-nodes in the argument graph.
As Lenz et al. (2019) showed, using schemes can
have a positive impact on the retrieval quality. A
key challenge in this regard is the inclusion of the
additional information into the generated visualiza-
tions. Furthermore, we focused on a single model
training pipeline. As has been shown before (Qu
et al., 2020; Asai et al., 2022; Khan et al., 2022;
Wang et al., 2022; El-Nouby et al., 2021; Grill et al.,
2020; Tian et al., 2021), training pipeline refine-
ments can notably improve the predictions. An

40

Processing times of vision-based and A* retrieval for graphs between 4 and 124 S-nodes.

open question here is how to apply existing train-
ing techniques for texts or pictures for our graph
visualizations.

Additionally, our evaluation was limited to a
single dataset (Peldszus and Stede, 2015). Future
work should verify whether the findings can be
generalized to other datasets, especially with more
complex argument graphs and extended ADU rela-
tions. One candidate for this could be the AbstRCT
dataset (Mayer et al., 2020).

References

Agnar Aamodt and Enric Plaza. 1994. Case-Based
Reasoning - Foundational Issues, Methodological
Variations, and System Approaches. AI Commun.

Vibhor Agarwal, Sagar Joglekar, Anthony P. Young,
and Nishanth Sastry. 2022. Graphnli: A graph-based
natural language inference model for polarity predic-
tion in online debates. In The ACM Web Conference
(TheWebConf).

Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Lau-
rent Kirsch, Michael Lazos, Mario Lezcano, Yanbo
Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso,
Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Michael Suo, Phil Tillet, Eikan Wang, Xiaodong
Wang, William Wen, Shunting Zhang, Xu Zhao,
Keren Zhou, Richard Zou, Ajit Mathews, Gregory
Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Com-
pilation. In 29th ACM International Conference on

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366

Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’'24).
ACM.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen tau Yih. 2022. Task-aware retrieval
with instructions. Preprint, arXiv:2211.09260.

Margaret E. Baron. 1969. A Note on the Historical
Development of Logic Diagrams: Leibniz, Euler and
Venn. The Mathematical Gazette, 53(384):113-125.

Elias Bassani. 2022. Ranx: A Blazing-Fast Python
Library for Ranking Evaluation and Comparison. In
Advances in Information Retrieval, pages 259-264,
Cham. Springer International Publishing.

Ralph Bergmann and Yolanda Gil. 2014. Similarity
assessment and efficient retrieval of semantic work-
flows. Information Systems, 40:115-127.

Ralph Bergmann, Mirko Lenz, Stefan Ollinger, and
Maximilian Pfister. 2019. Similarity Measures for
Case-Based Retrieval of Natural Language Argument
Graphs in Argumentation Machines. In Proceedings
of the Thirty-Second International Florida Artificial
Intelligence Research Society Conference, pages 329—
334, Sarasota, Florida, USA. AAAI Press.

H. Bunke. 1997. On a relation between graph edit
distance and maximum common subgraph. Pattern
Recognition Letters, 18(8):689—694.

Hans-Dieter Burkhard and Michael M. Richter. 2001.
On the Notion of Similarity in Case Based Reasoning
and Fuzzy Theory. In Sankar K. Pal, Tharam S.
Dillon, and Daniel S. Yeung, editors, Soft Computing
in Case Based Reasoning, pages 29-45. Springer
London, London.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-
Chuan Chang. 2018. A comprehensive survey of
graph embedding: Problems, techniques, and appli-
cations. IEEE transactions on knowledge and data
engineering, 30(9):1616-1637.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal Sentence Encoder.
arXiv:1803.11175 [cs].

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020a. A simple framework for
contrastive learning of visual representations. CoRR,
abs/2002.05709.

Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey E. Hinton. 2020b. Big
self-supervised models are strong semi-supervised
learners. CoRR, abs/2006.10029.

41

Weiwei Cheng, Michaél Rademaker, Bernard De Baets,
and Eyke Hiillermeier. 2010. Predicting Partial Or-
ders: Ranking with Abstention. In Machine Learn-
ing and Knowledge Discovery in Databases, Lec-
ture Notes in Computer Science, pages 215-230,
Barcelona, Spain. Springer.

Carlos Ivan Chesiievar, Jarred McGinnis, Sanjay Mod-
gil, Iyad Rahwan, Chris Reed, Guillermo Ricardo
Simari, Matthew South, Gerard Vreeswijk, and
Steven Willmott. 2006. Towards an argument inter-
change format. The Knowledge Engineering Review,
21(04):293.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages
248-255.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An Image
is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference
on Learning Representations.

Alaaeldin EI-Nouby, Natalia Neverova, Ivan Laptev, and
Hervé Jégou. 2021. Training vision transformers for
image retrieval. arXiv preprint arXiv:2102.05644.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Kenneth D Forbus, Dedre Gentner, and Keith Law. 1995.
MAC/FAC - A Model of Similarity-Based Retrieval.
Cognitive Science, 19(2):141-205.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. CoRR, abs/2104.08821.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. 2020. Bootstrap your own latent: A
new approach to self-supervised learning. CoRR,
abs/2006.07733.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855-864.

Annette Hautli-Janisz, Zlata Kikteva, Wassiliki Siskou,
Kamila Gorska, Ray Becker, and Chris Reed. 2022.
QT30: A corpus of argument and conflict in broad-
cast debate. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
3291-3300, Marseille, France. European Language
Resources Association.

https://arxiv.org/abs/2211.09260
https://arxiv.org/abs/2211.09260
https://doi.org/10.2307/3614533
https://doi.org/10.2307/3614533
https://doi.org/10.2307/3614533
https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1016/j.is.2012.07.005
https://doi.org/10.1016/j.is.2012.07.005
https://doi.org/10.1016/j.is.2012.07.005
https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1007/978-1-4471-0687-6_2
https://doi.org/10.1007/978-1-4471-0687-6_2
https://arxiv.org/abs/1803.11175
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029
https://arxiv.org/abs/2006.10029
https://arxiv.org/abs/2006.10029
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1017/S0269888906001044
https://doi.org/10.1017/S0269888906001044
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.1207/s15516709cog1902_1
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733
https://aclanthology.org/2022.lrec-1.352
https://aclanthology.org/2022.lrec-1.352

Maximilian Hoffmann, Lukas Malburg, Nico Bach,
and Ralph Bergmann. 2022. GPU-Based Graph
Matching for Accelerating Similarity Assessment
in Process-Oriented Case-Based Reasoning. In Case-
Based Reasoning Research and Development, pages
240-255, Cham. Springer International Publishing.

J. D. Hunter. 2007. Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90—
95.

Vidit Jain and Manik Varma. 2011. Learning to re-rank:
query-dependent image re-ranking using click data.
In Proceedings of the 20th international conference
on World wide web, pages 277-286.

B. Johnson and B. Shneiderman. 1991. Tree-maps: A
space-filling approach to the visualization of hierar-
chical information structures. In Proceeding Visual-
ization 91, pages 284-291.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. 2022. Transformers in vision: A
survey. ACM computing surveys (CSUR), 54(10s):1-
41.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

John Lawrence and Chris Reed. 2019.
Mining: A Survey.
45(4):765-818.

Argument
Computational Linguistics,

Mirko Lenz, Stefan Ollinger, Premtim Sahitaj, and
Ralph Bergmann. 2019. Semantic Textual Similar-
ity Measures for Case-Based Retrieval of Argument
Graphs. In Case-Based Reasoning Research and De-
velopment, volume 11680 of Lecture Notes in Com-
puter Science, pages 219-234, Otzenhausen, Ger-
many. Springer International Publishing.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda
Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, Furu Wei, and Baining Guo. 2022. Swin
Transformer V2: Scaling Up Capacity and Resolu-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12009-12019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin Transformer: Hierarchical Vision Transformer
Using Shifted Windows. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 10012-10022.

Lorenzo Livi and Antonello Rizzi. 2013. The graph
matching problem. Pattern Analysis and Applica-
tions, 16(3):253-283.

TorchVision maintainers and contributors. 2016.
Torchvision: Pytorch’s computer vision library.
https://github.com/pytorch/vision.

42

Santiago Marro, Elena Cabrio, and Serena Villata. 2022.
Graph Embeddings for Argumentation Quality As-
sessment. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 4154—
4164, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare
applications. In ECAI 2020 - 24th European Confer-
ence on Artificial Intelligence, volume 325 of Fron-
tiers in Artificial Intelligence and Applications, pages
2108-2115. IOS Press.

Mirjam Minor, Stefania Montani, and Juan A. Recio-
Garcia. 2014. Process-oriented case-based reasoning.
Information Systems, 40:103—105.

Daniel Carlos Guimaraes Pedronette and Ricardo da S
Torres. 2013. Image re-ranking and rank aggregation
based on similarity of ranked lists. Pattern Recogni-
tion, 46(8):2350-2360.

Andreas Peldszus and Manfred Stede. 2013. From Ar-
gument Diagrams to Argumentation Mining in Texts
- A Survey. IJCINI, 7(1):1-31.

Andreas Peldszus and Manfred Stede. 2015. An anno-
tated corpus of argumentative microtexts. In Argu-
mentation and Reasoned Action: Proceedings of the
1st European Conference on Argumentation, Lisbon,
volume 2, pages 801-815.

Andreas Peldszus and Manfred Stede. 2016. An An-
notated Corpus of Argumentative Microtexts. In Ar-
gumentation and Reasoned Action: Proceedings of
the 1st European Conference on Argumentation, vol-
ume 2, pages 801-816, Lisbon, Portugal. College
Publications.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014.
Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 701-710.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. 2020. Rocketqa: An opti-
mized training approach to dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2010.08191.

Chris Reed. 2006. Preliminary results from an argument
corpus. Linguistics in the twenty-first century, pages
185-196.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. Imagenet
large scale visual recognition challenge. Preprint,
arXiv:1409.0575.

Hans-Jorg Schulz. 2011. Treevis.net: A Tree Visual-
ization Reference. IEEE Computer Graphics and
Applications, 31(6):11-15.

https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1007/978-3-031-14923-8_16
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1007/978-3-030-29249-2_15
https://doi.org/10.1007/978-3-030-29249-2_15
https://doi.org/10.1007/978-3-030-29249-2_15
https://doi.org/10.1007/s10044-012-0284-8
https://doi.org/10.1007/s10044-012-0284-8
https://github.com/pytorch/vision
https://doi.org/10.18653/v1/2022.findings-emnlp.306
https://doi.org/10.18653/v1/2022.findings-emnlp.306
https://doi.org/10.1016/j.is.2013.06.004
https://doi.org/10.4018/jcini.2013010101
https://doi.org/10.4018/jcini.2013010101
https://doi.org/10.4018/jcini.2013010101
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/MCG.2011.103

Maria Skeppstedt, Andreas Peldszus, and Manfred
Stede. 2018. More or less controlled elicitation of
argumentative text: Enlarging a microtext corpus via
crowdsourcing. In Proceedings of the 5th Workshop
on Argument Mining, pages 155-163, Brussels, Bel-
gium. Association for Computational Linguistics.

Christian Stab and Iryna Gurevych. 2017. Argument
annotated essays (version 2).

Hao Tang, Donghong Ji, Chenliang Li, and Qiji Zhou.
2020. Dependency graph enhanced dual-transformer
structure for aspect-based sentiment classification. In
Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 6578—
6588.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. 2021.
Understanding self-supervised learning dynamics
without contrastive pairs. CoRR, abs/2102.06810.

Andrew Turpin and Falk Scholer. 2006. User perfor-
mance versus precision measures for simple search
tasks. In SIGIR 2006: Proceedings of the 29th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
Seattle, Washington, USA, August 6-11, 2006, pages
11-18.

Huub van de Wetering, Nico Klaassen, and Michael
Burch. 2020. Space-Reclaiming Icicle Plots. In 2020
IEEE Pacific Visualization Symposium (PacificVis),
pages 121-130.

Frans H. Van Eemeren. 2018. Argumentation Theory: A
Pragma-Dialectical Perspective, volume 33 of Argu-
mentation Library. Springer International Publishing,
Cham.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jacky Visser, Barbara Konat, Rory Duthie, Marcin Kos-
zowy, Katarzyna Budzynska, and Chris Reed. 2020.
Argumentation in the 2016 us presidential elections:
annotated corpora of television debates and social me-
dia reaction. Language Resources and Evaluation,

54(1):123-154.

Marilyn A Walker, Jean E Fox Tree, Pranav Anand,
Rob Abbott, and Joseph King. 2012. A corpus for
research on deliberation and debate. In LREC, vol-
ume 12, pages 812-817. Istanbul, Turkey.

Douglas Walton. 2013. Argumentation Schemes for
Presumptive Reasoning. Routledge.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval. arXiv
preprint arXiv:2207.02578.

43

Xiaogang Wang, Shi Qiu, Ke Liu, and Xiaoou Tang.
2013. Web image re-ranking using query-specific
semantic signatures. IEEE transactions on pattern
analysis and machine intelligence, 36(4):810-823.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Mengjia Xu. 2021. Understanding graph embedding
methods and their applications. SIAM Review,
63(4):825-853.

A Reproducibility

In the following section, we outline how we trained
our vision models and which dataset was used for
the sake of reproducibility. For both training steps
we used PyTorch (Ansel et al., 2024) version 2.5.0
together with PyTorch Lightning (Falcon and The
PyTorch Lightning team, 2019). The vision trans-
former models were integrated via the transformers
package (Wolf et al., 2020) (version 4.45.2). The
evaluation is based on the ranx package (Bassani,
2022).

A.1 Pre-Training

For each of the visualizations, a separate large
Swinv2 Transformer model (Liu et al., 2022) (re-
leased under Apache 2.0 License) with 195M pa-
rameters was pre-trained. We chose this model for
its improved efficiency in relation to the original Vi-
sion Transformer model (Dosovitskiy et al., 2021)
and its architecture which makes use of hierarchi-
cal feature maps and should align well with the na-
ture of hierarchical graph drawings. A checkpoint
which has been trained on the ImageNet-1k dataset
(Russakovsky et al., 2015) is used as a starting
point, which should speed up training compared to
completely random initial weights. For the training,
we used an Auto-Encoder setup, where the Swinv2
model was used as a encoder, transforming an in-
put image into corresponding embeddings. During
the training, a very simple decoder (a single lin-
ear layer) is used to reconstruct a lower resolution
form of the original image using the embeddings
provided by the encoder. The MSE loss is com-
puted between the raw pixel values of the original

https://doi.org/10.18653/v1/W18-5218
https://doi.org/10.18653/v1/W18-5218
https://doi.org/10.18653/v1/W18-5218
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2422
https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2422
https://arxiv.org/abs/2102.06810
https://arxiv.org/abs/2102.06810
https://doi.org/10.1145/1148170.1148176
https://doi.org/10.1145/1148170.1148176
https://doi.org/10.1145/1148170.1148176
https://doi.org/10.1109/PacificVis48177.2020.4908
https://doi.org/10.1007/978-3-319-95381-6
https://doi.org/10.1007/978-3-319-95381-6
https://doi.org/10.4324/9780203811160
https://doi.org/10.4324/9780203811160
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

images (resized to 32x32px) and the reconstructed
image. An AdamW optimizer with a learn rate of
0.001 is used. Additionally, we used early stopping
after 3 epochs without a reduction in validation loss.
The models are trained with a batch-size of 32 for
a maximum of 50 epochs on 6 Nvidia Tesla V100
GPUs. The actual training time was 20-23 epochs
(174-198 GPU hours).

As our pre-training dataset, we used a dataset of
synthetic argument graphs. For every of our three
visualizations, we generated 1.2 million random
graphs with a maximum depth of 9 and a maxi-
mum branching number of 7, which decreases with
increased depth. The motivation behind this is to
generate graphs which deviate from each other;
however the minimum area allocated to a single
node in the corresponding visualization is fixed by
the limited depth and number of siblings. The re-
sulting images are then de-duplicated using fclones
3 which left us with 1,062,679 samples for the
Logical model, 1,062,513 for the Treemaps model
and 917,558 for the SRIP model. Of those samples,
we always chose 90% as training samples and the
remaining 10% as test samples.

A.2 Fine-Tuning

Each of the models from the pre-training stage are
fine-tuned on a corpus of 6474 argument graphs
(see Table 2) after filtering out too complex graphs
which took longer than 3s to visualize. After de-
duplication with fclones, this left us with 4317
SRIP images, 4309 Logical images and 4173
Treemap images. The setup used for contrastive
fine-tuning is derived from SimCLR (Chen et al.,
2020a):

1. Each image x from the training batch is ran-
domly augmented twice which generates two
contrastive views of every input which repre-
sent each others positive pairs: g, k.

q and k are encoded using the encoder net-
work (the pre-trained Swin Transformer v2
model), resulting in the embeddings e, and
k.

The embedding dimensionalities are reduced
by passing them through an MLP projection
head to prevent the curse of dimensional-
ity (Chen et al., 2020b).

3 github.com/pkolaczk/fclones

44

4. A contrastive loss is calculated between ev-
ery element’s corresponding image view and
every other element in the batch (in-batch neg-
atives) on the reduced embeddings.

The contrastive views are derived from the origi-
nal images by using the following transformations:
(i) random horizontal flips, (ii) random vertical
flips, (iii) Gaussian Blur (iv) random crop (an area
of 40% - 90% of the original image is resized to the
original dimensions) and (v) dropout to simulate
random noise. For these transformations, we used
the implementations from torchvision (maintain-
ers and contributors, 2016) (version 0.20.0). The
first four transforms are derived from the original
SimCLR transforms (Chen et al., 2020a); dropout
is inspired by (Gao et al., 2021). It should be
noted that color jitter, as one of the most impor-
tant transforms (Chen et al., 2020a) could not be
used. This is because a change of color for a node
might completely change its meaning in all of our
visualizations and therefore represent a different
graph structure. The following contrastive loss is
used (Chen et al., 2020a):

f(q, k) = exp <W)

f(4gi, ki)
F(ais ki) + 3250 F @i kj)

)]

NT-Xent __
0 -

— log 2

for i,7 in {0, ..., batch_size} where sim(-, -) de-
notes cosine similarity, and 7 represents tempera-
ture as a hyperparameter. Our models were trained
with a hidden dimension of 64, 7 = 0.07 and a
weight decay of 0.0001.

As an optimizer, AdamW with a learn rate of
0.0005 is used. Additionally a Cosine Annealing
Scheduler was used for the learn rate with a max-
imum of 500 iterations and a minimum learn rate
of 0.00001. The same early stopping criterion was
applied as for pre-training, however no fine-tuned
model training was interrupted early. The fine-
tuning is performed with a batch-size of 16 (i.e., 16
contrastive pairs) for a maximum of 500 epochs on
6 Nvidia Tesla V100 GPUs.

B GPT-40 Fine-Tuning

To emulate contrastive training with the limited
interface OpenAl provides (i.e., training samples
have to represent a conversation with a prompt and
an expected answer from the model), we generated
900 samples containing two SRIP visualizations

https://github.com/pkolaczk/fclones

Table 2: Argument graph corpora used to construct our fine-tuning dataset.

Dataset Source

Description

Kialo Graph-NLI ~ Agarwal et al. (2022)

Araucaria Reed (2006)

IAC Walker et al. (2012)
QT30 Hautli-Janisz et al. (2022)
US2016 Visser et al. (2020)

Persuasive Essays
Microtexts Part 2

Stab and Gurevych (2017)
Skeppstedt et al. (2018)

Graphs model discussion trees on Kialo, an online
debates platform

Corpus of analyzed argumentation, constructed using
the Araucaria tool

A corpus for research on deliberation and debate
Argument and conflict in broadcast debate
Television debates and social media reactions to the
2016 US presidential elections

Annotated persuasive essays

Short argumentative texts

each. The model’s task during the training process
was to predict whether the images represent the
same argument graph or a different graph. 450
samples contained two contrastive views of the
same graph (see above) while the remaining 450
samples contained two different graphs. The model
was trained for a single epoch with a batch size of
1 and a LR multiplier of 2. The training took about
one hour.

During evaluation, we provide the model aSRIP
representation of the query and the SRIP visualiza-
tion of the retrieval candidates acquired from the
MAC phase. The model’s task is ordering the case
graphs based on their relevance to the query. To
eliminate any run-to-run variance, the temperature
during evaluation is set to 0.

Note: We only trained the model for a sin-
gle epoch as prior experiments indicated that the
model’s performance degraded for models with
more epochs. This is most likely because our train-
ing dataset consisted only of singular, short answers
(“Are the images visualizations of the same or dif-
ferent graphs?” — “same” or “different””’) which
caused the further trained checkpoints to adapt to
this and only provide too short and therefore largely
incomplete answers during the evaluation.

45

