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Abstract

Argumentative fallacy classification plays a cru-
cial role in improving discourse quality by iden-
tifying flawed reasoning that may mislead or
manipulate audiences. While traditional ap-
proaches have primarily relied on textual anal-
ysis, they often overlook paralinguistic cues
such as intonation and prosody that are present
in speech. In this study, we explore how multi-
modal analysis, in which we combine textual
and audio features, can enhance fallacy classi-
fication in political debates. We develop and
evaluate text-only, audio-only, and multimodal
models using the MM-USED-fallacy dataset to
assess the contribution of each modality. Our
findings indicate that the multimodal model,
which integrates linguistic and acoustic signals,
outperforms unimodal systems, underscoring
the potential of multimodal approaches in cap-
turing complex argumentative structures.

1 Introduction

Argumentative fallacies are the reasoning errors
that may appear rhetorically persuasive yet lack
logical validity. They pose a significant challenge
to both critical thinking and automated discourse
analysis. In high-stakes communicative contexts
such as political debates, these fallacies (e.g., ad
hominem, appeal to emotion, slippery slope, false
cause) are frequently employed to sway audiences
while circumventing sound logic. Automatically
identifying such flawed reasoning patterns, a task
known as argumentative fallacy classification, is in-
creasingly recognized as a crucial objective in com-
putational argumentation with implications for mis-
information detection, media literacy, and demo-
cratic accountability.

Recent work has demonstrated the potential of
large-scale pretrained language models for detect-
ing fallacies in text. Jin et al. (2022) introduced a
benchmark taxonomy and showed that transformer-
based models such as ROBERTa outperform tradi-
tional classifiers. Goffredo et al. (2022) extended

this research to political discourse, annotating U.S.
presidential debates and highlighting the impor-
tance of nuanced semantic understanding for iden-
tifying reasoning flaws. These contributions under-
score the ability of neural models to capture struc-
tural properties of argumentation when grounded
in high-quality text data.

Fallacious reasoning often depends not only on
what is said but also on how it is delivered. Par-
alinguistic features such as intonation, stress, and
rhythm convey speaker intent and emotional ap-
peal. Early multimodal work like M-Arg (Mestre
et al., 2021) combined audio and transcripts to en-
hance argumentative analysis, while (Mancini et al.,
2022) showed how prosodic signals complement
lexical cues in detecting fallacies.

Building on this, Mancini et al. (2024a) intro-
duced MAMKit, which includes the MM-USED-
fallacy dataset (Mancini et al., 2024b), annotated
with aligned audio and text across six fallacy types.
In this paper, we evaluate a broad set of mod-
els and focus on three best-performing configu-
rations based on validation performance: text-only
(RoBERTa), audio-only (BiLSTM with MFCC),
and multimodal (RoBERTa with Wav2Vec2), as-
sessed under a unified framework for comparative
analysis. !

2 Related Work

The classification of argumentative fallacies has
evolved from early rule-based and shallow learning
methods to modern neural architectures built on
large-scale pre-trained language models. Jin et al.
(2022) framed fallacy detection as a structured clas-
sification task and demonstrated the advantages of
transformer-based approaches, such as ROBERTa,
in capturing complex reasoning patterns. Goffredo
et al. (2022) extended this line of work to political
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discourse, introducing a richly annotated corpus
of U.S. presidential debates and showing that en-
coding argument structure improves textual fallacy
classification.

Beyond text, multimodal approaches have
gained traction as researchers increasingly recog-
nize the role of delivery in persuasive discourse.
Mestre et al. (2021) introduced M-Arg, a dataset
that combines transcripts and aligned audio from
political debates, showing that models incorporat-
ing both modalities outperform unimodal baselines.
Mancini et al. (2024b) released the MM-USED-
fallacy corpus, which includes six fallacy cate-
gories annotated over real-world political debate
clips. This was followed by the release of MAMKit
(Mancini et al., 2024a), a toolkit that provides stan-
dardized preprocessing and modeling routines for
this dataset. Their work highlighted how prosodic
cues can complement lexical signals in fallacy de-
tection.

While prior studies highlight the potential of
multimodal approaches, they often lack systematic
comparisons across modalities. In our work, we
evaluate several transformer-based text models and
audio models, ultimately selecting RoBERTa for
text and BiLSTM for audio based on validation per-
formance. For the multimodal setup, we combined
RoBERTa with Wav2Vec2.0. These three configu-
rations were chosen for their strong performance
under consistent settings on the MM-USED-fallacy
dataset, forming the basis of our controlled com-
parison across the modalities.

3 Data

We performed the experiments on the MM-USED-
fallacy dataset (Mancini et al., 2024b), a multi-
modal resource released as part of the MAMKit
toolkit for argument mining. This dataset is specif-
ically designed for the Argumentative Fallacy
Classification (AFC) task and contains aligned
textual and audio segments drawn from political
debates. Each snippet is annotated with one of six
fallacy types: ad hominem, appeal to authority, ap-
peal to emotion, slippery slope, slogans, and false
cause.

Inspired by the setup in Mancini et al. (2024b),
our work leverages both linguistic and paralin-
guistic information from the MM-USED-fallacy
dataset. Table 1 presents the count of instances for
each fallacy type. This distribution provides insight
into the prevalence of each class within the dataset

Fallacy MM-USED-fallacy
Appeal to Emotion 800
Appeal to Authority 191
Ad Hominem 149
False Cause 56
Slippery Slope 46
Slogans 36
Total Count 1,278

Table 1: Distribution of fallacy types in the MM-USED-
fallacy dataset.

and informs model training, particularly in terms
of addressing class imbalance. Notably, some cate-
gories such as appeal to emotion and ad hominem
occur more frequently, whereas others like false
cause and slogans are relatively underrepresented,
potentially impacting classification performance.
We employed a stratified data splitting strategy
using the mm-argfallacy-2025 custom dataset
splitter, introduced (Mancini et al., 2024a) as part
of the MAMKit toolkit. This splitter partitions the
data into non-overlapping train, validation, and test
sets while maintaining label distribution. The final
evaluations were conducted on a held-out secret
test set to ensure unbiased assessment of model
performance. For further details refer Appendix B.

3.1 Preprocessing and Cleaning

The preprocessing pipeline was tailored to meet the
requirements of unimodal and multimodal classifi-
cation models:

Text Modality.

BERT Text was tokenized wusing the
BertTokenizer. Inputs were lowercased
(for bert-base-uncased), tokenized using

WordPiece encoding, and padded or truncated to a
fixed sequence length.

RoBERTa We used the RobertaTokenizer
from Hugging Face. To incorporate broader con-
text, each sentence was concatenated with its pre-
ceding and following sentences. Standard text nor-
malization procedures were applied to eliminate
inconsistencies, special characters, and formatting
noise.

DeBERTa The DebertaTokenizer was used for
tokenization. Similar to RoBERTa, preprocessing
included sentence normalization and cleaning. The
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pipeline was adapted to accommodate DeBERTa’s
disentangled attention mechanism.

Audio-Modality.

BiLSTM + MFCC Audio recordings were con-
verted to mono-channel at 16 kHz and standardized
to a duration of 5 seconds via padding or trunca-
tion. We extracted 13-dimensional Mel-Frequency
Cepstral Coefficients (MFCCs) using Librosa, fol-
lowed by mean-variance normalization to stabilize
training.

Wav2Vec2 Raw audio waveforms sam-
pled at 16 kHz were fed directly into the
wav2vec2-base-960h model without handcrafted
feature extraction. Padding or truncation was
applied to conform to model input constraints.

Text-Audio Modality.

RoBERTa + Wav2Vec2 Text and audio in-
puts were preprocessed independently, following
the procedures described in the respective uni-
modal sections. Text was tokenized using the
RobertaTokenizer, with adjacent sentences con-
catenated to provide contextual information. Audio
inputs were raw waveforms sampled at 16 kHz and
padded or truncated to a fixed length of 5 seconds
before being passed to the wav2vec2-base-960h
model. This ensured consistency in input dimen-
sions across both modalities.

4 Experimental Setup

This section outlines the overall architecture and
training configuration of models developed for ar-
gumentative fallacy classification using text, audio,
and multimodal inputs. The models are evaluated
using the MM-USED-fallacy dataset, which com-
prises annotated conversational data collected from
political discourse. As illustrated in Figure 1, the
multimodal framework integrates a text module
and an audio module, whose respective feature rep-
resentations are concatenated and passed through a
classifier to predict the fallacy label.

e ﬂ
Module

Figure 1: The schema for multimodal Argumentative
Fallacy Classification model.

Audio

4.1 Model

We evaluated three distinct model configurations
for fallacy classification: a Text-Only Model, an
Audio-Only Model, and a Text-Audio Model. Each
model is trained independently and assessed on the
validation dataset to enable comparative analysis.
Based on the results achieved and displayed in Ta-
ble 2, we elected to proceed with the model that
demonstrated the highest F1-score across labels on
the validation set.

Model AH AE AA FC SS S Average
(T+to)
Text-only
RoBERTa J0 .81 .22 .19 11 .03 .24+.26
BERT 09 74 2 16 .12 .02 22+.13
DeBERTa 06 .13 .12 .08 .07 .01 .078£.08
Audio-only
BiLSTM w/ MFCC 00 76 .05 .11 .06 .00 .16+.38
Wav2Vec2 00 56 .04 .11 .05 .00 .12+.06
Multi-Modal
RoBERTa + Wav2Vec2 .09 .79 .19 .09 .07 .06 .22+.27

Table 2: Macro F1-scores across fallacy types for each
model configuration. AH: Ad Hominem, AE: Appeal
to Emotion, AA: Appeal to Authority, FC: False Cause,
SS: Slippery Slope, S: Slogans.

4.1.1 Text-Only Model

The text-only models are trained to classify fal-
lacies using only the linguistic content of an-
notated snippets. We experiment with three
transformer-based architectures: DeBERTa, BERT,
and RoBERTa,, each trained on the fallacy-labeled
text segments. These models enable a compara-
tive analysis of how different pretrained language
encoders capture argumentative patterns in polit-
ical discourse. The results presented in Table 2
are based on validation data and reflect the perfor-
mance of the models under a standardized training
setup. As seen in Table 2, RoBERTa and BERT
outperform the other models, achieving the highest
validation F1-score. Based on this observation, we
selected RoBERTa as the final text encoder for our
text-only and multimodal configurations due to its
consistent performance.

4.1.2 Audio-Only Model

We evaluated two audio-only pipelines: one using
MFCC features with a BILSTM classifier, and an-
other using raw audio with a pretrained Wav2Vec2
encoder. In the MFCC-BiLSTM setup, audio clips
were converted to 16 kHz mono and standardized
to 5 seconds by padding or truncation. We ex-
tracted 13-dimensional MFCC features using Li-
brosa, which capture tone and rhythm patterns, and
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fed them into a BiLSTM for temporal modeling,
followed by a dense classification layer (Aldeneh
and Provost, 2017). The Wav2Vec?2 pipeline, by
contrast, operated directly on raw audio to extract
high-level embeddings. As shown in Table 2, the
MFCC-BiLSTM model outperformed Wav2Vec2
on the validation set and was selected for further
experimentation.

4.1.3 Text-Audio Model

The multimodal architecture integrates both textual
and audio modalities to enhance fallacy detection
performance. For the textual modality, we employ
a pre-trained RoOBERTa model as the unimodal text
encoder, extracting contextual embeddings from
input sequences. For the audio modality, we uti-
lize Wav2Vec2 to encode raw audio signals into
high-level feature representations. The outputs
from both unimodal encoders are then concatenated
and fed into a logistic regression meta-classifier,
which performs the final classification. This late
fusion strategy allows the model to leverage com-
plementary information from both text and audio
streams, facilitating more robust fallacy identifi-
cation. The validation F1-score of the text-audio
model is shown in Table 2.

4.2 Model Training

Model training was conducted under constrained
computational resources, without access to a ded-
icated GPU. This limitation imposed significant
restrictions on batch size, model complexity, and
training time, thereby influencing design choices
throughout our experiments. Due to these software
and hardware constraints, lightweight architectures
and efficient preprocessing pipelines were priori-
tized. Kindly refer to Appendix A for more details
on training configuration and hyperparameter set-
tings.

4.3 Role of the Meta-Classifier

For the multimodal pipeline, we adopted a late
fusion strategy, where a logistic regression meta-
classifier combines the feature representations
from the unimodal text and audio encoders. While
this approach allows aggregation of complemen-
tary representations, its benefits were limited under
current conditions, likely due to weak individual
model confidence on rare classes and high modal-
ity noise. Future work could explore deeper fusion
strategies to improve effectiveness.

5 Results

We evaluated three distinct configurations for the
task of argumentative fallacy classification in po-
litical debates: a text-only model, an audio-only
model, and a multimodal text-audio model. Model
performance was assessed on the test set. Table 3
shows the macro F1 scores values of our proposed
models, alongside results from other participating
teams in the shared task, enabling a direct com-
parison of system performances, alongside their
respective baselines.

Team Name F1-Score
Text-only
Team NUST 0.4856
Baseline BiLSTM 0.4721
Alessiopittiglio 0.4444
Baseline RoBERTa 0.3925
Team EvaAdriana 0.3746
Team CASS 0.1432
Audio-only
Alessiopittiglio 0.3559
Team EvaAdriana 0.1858
Team NUST 0.1588
Baseline BiLSTM + MFCC 0.1582
Team CASS 0.0864
Baseline WavLM 0.0643
Text-Audio
Team NUST 0.4611
Alessiopittiglio 0.4403
Baseline RoBERTa + WavLM 0.3816
Team EvaAdriana 0.3746
Baseline BiLSTM + MFCC 0.2191
Team CASS 0.1432

Table 3: Performance (F1-score) of our models (Team
CASS) on the shared task test set, compared with other
participating systems and official baselines

Opverall, the classification results reveal relatively
low performance across all models, with macro-F1
scores ranging from 0.08 to 0.14 (Table 3). While
the audio-only model produced slightly different
results compared to the text-only and multimodal
configurations, it exhibited a significantly lower F1-
score, indicating imbalanced precision and recall
across classes. This may hinder consistent fallacy
classification performance, especially in the pres-
ence of class imbalance.
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5.1 Analysis of Results

These outcomes suggest that textual cues remain
the most reliable modality in fallacy classifica-
tion, aligning with findings from Jin et al. (2022)
and Mancini et al. (2024b). Despite employing pre-
trained architectures for both text and audio modal-
ities (Mancini et al., 2024b), our models exhibited
relatively low macro-F1 scores across all configura-
tions. This underperformance, detailed in Tables 2
and 3, is not merely an artifact of architecture se-
lection but reflects deeper challenges inherent in
the dataset and experimental constraints. Factors
that may contribute to this are as follows:

Overfitting and Generalization Failure. We
observe a significant discrepancy between valida-
tion and test performance, largely due to overfit-
ting. As shown in Table 2, models achieve high
F1-scores for the dominant class Appeal to Emo-
tion (over 70%), and fail to generalize fallacy types,
which constitutes the majority of both validation
and test data. Consequently, when the test distri-
bution slightly shifts or includes more ambiguous
examples, performance drops sharply. This overfit-
ting is likely exacerbated by severe class imbalance,
which causes the model to memorize rather than
learn fallacy-specific patterns.

Class imbalance and Limited Training. As
shown in Table 1, the MM-USED-fallacy dataset
is heavily skewed towards “Appeal to Emotion,”
which comprises over 60% of the samples. This
imbalance likely biases model predictions toward
dominant classes and penalizes underrepresented
ones like “Slogans” or “Slippery Slope.” The mod-
els were trained under constrained computational
settings, with only 3-5 training epochs per config-
uration. In contrast, prior baselines, such as those
reported in Mancini et al. (2024b) were trained for
up to 500 epochs. Kindly refer to Appendix A for
more details on training configuration.

Multimodal misalignment.  Although the
dataset contains aligned audio and text, the quality
of alignment can vary. Minor temporal mismatches
or noisy segments may hinder the effectiveness of
Wav2Vec2 embeddings, especially when combined
with textual representations.

Limited dataset size. With only 1,278 sam-
ples and significant class disparity, models espe-
cially with deep architectures like ROBERTa and
Wav2Vec2, may be prone to overfitting or under-
generalization.

5.2 Label-Wise Performance

Detailed class-wise performance (Table 2) further
confirms that models struggle to predict minority
classes. For example, “Slogans” and “Slippery
Slope” received near-zero F1 scores across all mod-
els, while “Appeal to Emotion” showed high F1
scores. Table 3 reports the macro f1-score for each
fallacy category, averaged across all models. These
scores reflect model performance on the validation
set and illustrate the impact of class imbalance on
model behavior.

5.3 Data and Alignment.

During preprocessing, we identified instances of
misaligned or corrupted audio-text pairs, similar
to the alignment issues noted by Mancini et al.
(2024b). One notable case involved the audio file
653.wav under the dialogue folder 46_2020, which
was found to be corrupted and unreadable. Accord-
ing to the dataset, this sample was labeled as Ap-
peal to Emotion, and the corresponding dialogue
was the phrase "Excuse me". Due to the corrupted
audio and the impossibility of establishing a valid
alignment, we excluded this sample from our cor-
pus. This exclusion was part of a broader quality
control effort aimed at ensuring the reliability of
audio-text pairs used in our unimodal and multi-
modal models. Model performance is influenced
by the quality of text-audio alignment. Imperfect
or noisy alignments can lead to incomplete mul-
timodal inputs, negatively affecting classification
accuracy.

6 Conclusion

This study underscores the enduring primacy of
textual semantics in argumentative fallacy classi-
fication, while also illuminating the potential and
current limitations of multimodal integration. De-
spite modest gains, the multimodal model’s perfor-
mance reveals unresolved challenges in aligning
linguistic and acoustic signals, particularly under
class imbalance and data sparsity (Mancini et al.,
2024b; Mestre et al., 2021). These findings call
for deeper representational synergy across modali-
ties and more robust, corpora rich in argumentative
discourse to advance the frontier of computational
argumentation in real-world settings.
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A Training Details

This appendix outlines the implementation frame-
work and experimental configurations used to con-
duct our study on multimodal argumentative fallacy
classification. All experiments were conducted on
a system equipped with an Intel Core i5 processor
and 8 GB of RAM. The system used an integrated
Intel Iris Xe graphics card, which handled all com-
putational tasks during model training and infer-
ence. Each model required approximately 6 hours
to complete training.

Despite the absence of a dedicated GPU, the ex-
periments were optimized to run efficiently within
these hardware constraints. The following tables
present the detailed hyperparameter configurations
used across our experiments:

Modality Model Ep. BS LR
Text RoBERTa 3 8 2e-5
Audio BiLSTM + MFCC 5 8 le-3
Text+Audio RoBERTa + Wav2Vec2 5 16  2e-5

Table 4: Hyperparameters used for each model. Ep:
Epochs, BS: Batch Size, LR: Learning Rate.

B Data Loading

To facilitate standardized experimentation, we
adopted the data loading and splitting utilities in-
troduced by (Mancini et al., 2024a) for the MM-
USED-fallacy dataset, targeting the task of Ar-
gumentative Fallacy Classification (AFC). The
loader initializes the dataset with the task pa-
rameter set to 'AFC’. For consistency in eval-
uation, we utilize the custom dataset split de-
fined as mm-argfallacy-2025, accessed through
the get_splits() method. This splitter provides a
70:15:15 ratio for training, validation, and test sets,
ensuring dialogue-level separation to prevent con-
text leakage. The use of this academically vali-
dated split facilitates meaningful comparisons with
prior work. By leveraging this modular and well-
supported pipeline, we ensure that our experiments
conform to the dataset’s structure and are directly
comparable with established baselines in the field.
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