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Abstract

Few-shot learning via in-context learning (ICL)
is widely used in NLP, but its effectiveness
is highly sensitive to example selection, often
leading to unstable performance. To address
this, we introduce BACKGEN, a framework
for generating structured Background Knowl-
edge (BK) as an alternative to instance-based
prompting. Our approach leverages Frame Se-
mantics to uncover recurring conceptual pat-
terns across data instances, clustering exam-
ples based on shared event structures and se-
mantic roles. These patterns are then synthe-
sized into generalized knowledge statements
using a large language model (LLM) and in-
jected into prompts to support contextual rea-
soning beyond surface-level cues. We apply
BACKGEN to Sentiment Phrase Classifica-
tion (SPC), a task where polarity judgments
frequently depend on implicit commonsense
knowledge. In this setting, BK serves as an ab-
stract representation of prototypical scenarios,
enabling schematic generalization to help the
model perform analogical reasoning by map-
ping new inputs onto generalized event struc-
tures. Experimental results with Mistral-7B
and Llama3-8B demonstrate that BK-based
prompting consistently outperforms standard
few-shot approaches, achieving up to 29.94%
error reduction1.

1 Introduction

Few-shot learning has become a standard approach
in NLP, enabling models to generalize from lim-
ited labeled data. In particular, in-context learning
(ICL) (Brown et al., 2020) allows large language
models (LLMs) to perform tasks without parameter
updates, relying instead on a well-designed prompt
that includes relevant examples (Dong et al., 2024;
Liu et al., 2022a; Lu et al., 2022; Wu et al., 2023).
However, ICL suffers from high variance due to its
sensitivity to example selection (Zhang et al., 2022;

1https://github.com/crux82/BacKGen

Task: Determine the polarity (either ’positive’ or
’negative’) of the target phrase.
Input:

- Text: "The government phases out fossil fu-
els."

- Target Phrase: "phases out fossil fuels"

Model Output: negative

(a) Example of zero-shot SPC prompt.

Task: Determine the polarity (either ’positive’ or
’negative’) of the target phrase, using background
knowledge if helpful.
Input:

- Text: "The government phases out fossil fu-
els."

- Target Phrase: "phases out fossil fuels"
Background Knowledge:

1. The fact that a public entity wants to remove
something related to green initiatives is per-
ceived negatively.

2. Public entities’ intention to reduce non-
renewable energy sources is seen as a positive
step.

Model Output: positive

(b) Example of bk-shot SPC prompt with injected back-
ground knowledge.

Figure 1: Examples of prompts used for Sentiment
Phrase Classification (SPC). The zero-shot prompt lacks
external context, while the BK-injected prompt includes
relevant background knowledge that helps disambiguate
sentiment. These are abbreviated versions for illustra-
tion; full prompt templates are reported in Appendix B.

Köksal et al., 2023; Pecher et al., 2024a). Prior
research has attempted to mitigate this issue by
selecting examples based on informativeness (Liu
et al., 2022a; Liu and Wang, 2023; Köksal et al.,
2023), representativeness (Levy et al., 2023), or
learnability (Song et al., 2023), but these methods
often come at a high computational cost.

A complementary approach is knowledge
prompting, where explicit background knowledge
(BK) replaces example-based selection in prompts,
enabling analogical reasoning by mapping new in-
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puts onto abstracted conceptual patterns derived
from semantically related instances.

Prior work has explored using LLM-generated
knowledge for commonsense reasoning (Liu et al.,
2022b) or integrating structured knowledge from
external sources (Baek et al., 2023). In this paper,
we hypothesize that background knowledge (BK)
can be particularly useful for Sentiment Phrase
Classification (SPC), where the goal is to determine
the sentiment polarity of a target phrase in a given
text. SPC becomes especially challenging when
the sentiment of a phrase is context-dependent or
ambiguous. Figures 1a and 1b illustrate such a
case: given the sentence “The government phases
out fossil fuels”, the target phrase “phases out fos-
sil fuels” might be misclassified as negative in a
zero-shot setting (Figure 1a), as “phases out” of-
ten conveys abandonment. However, in the context
of environmental policy, the action of phasing out
fossil fuels is typically seen in a positive light. Fig-
ure 1b shows how injecting BK into the prompt can
guide the model toward the correct interpretation.
Statements such as “public entities’ intention to
reduce non-renewable energy sources is seen as
a positive step” help contextualize the sentiment,
enabling the model to move beyond surface-level
heuristics. This example demonstrates how BK can
resolve subtle ambiguities in sentiment interpre-
tation and reinforces our motivation for replacing
concrete examples with structured, generalizable
knowledge.

ICL typically addresses these issues and miti-
gates the negative impact of missing context by
injecting example sentences into the prompt. How-
ever, in tasks involving short texts, the relationship
between a support example and the test instance
may be weak or even nonexistent, reducing the ef-
fectiveness of example-based prompting. Instead,
structured BK provides a more reliable alternative,
as it captures the higher level generalizations that
underpin sentiment-bearing expressions.

In scenarios where we have annotated examples
but do not perform fine-tuning, an alternative ap-
proach is to transform these examples into struc-
tured knowledge statements that generalize beyond
individual instances. The goal is to construct a BK
repository where each entry captures recurring con-
ceptual patterns that can support multiple examples
from the original dataset.

To achieve this, we propose a methodology for
clustering similar examples and extracting their
underlying commonalities. Instead of selecting in-

stances arbitrarily, we group them based on shared
semantic properties and identify the minimal con-
ceptual structure that describes their sentiment po-
larity in both positive and negative contexts. The
clustering process leverages Frame Semantics (Fill-
more, 1985), as it provides a structured representa-
tion of situations by encoding events, participants,
and their relationships. This enables us to general-
ize beyond lexical choices and focus on the core
elements that shape sentiment interpretation. Once
structured, the extracted knowledge is verbalized
using an LLM, producing natural language state-
ments that encapsulate the core sentiment-related
concepts within each cluster. These statements are
then injected into the prompt as BK, replacing ex-
plicit few-shot examples. This approach aims at
mitigatating performance variance due to instance
selection (Zhang et al., 2022) and enhances the
model’s ability to reason over sentiment phrases in
context, particularly in ambiguous cases.

Experiments with two LLMs show that integrat-
ing BK into prompts systematically improves per-
formance over zero-shot and few-shot learning,
yielding a 26-29% error reduction. These results
confirm that structured BK enhances sentiment
classification by providing essential context and
reducing misinterpretations.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work, Section 3
describes the proposed methodology, Section 4
presents experiments and results, and Section 6
concludes with future directions.

2 Related Works

Few-shot learning via ICL. The ICL (Brown
et al., 2020) has an essential role in solving many
NLP tasks as it allows the LLM to learn some ex-
amples via specific template (then, this technique
is called as few-shot prompting) without updating
the model parameters (Dong et al., 2024; Liu et al.,
2022a; Lu et al., 2022; Wu et al., 2023). Unfortu-
nately, the classical few-shot prompting is very sen-
sitive to sample selection strategies (Zhang et al.,
2022; Köksal et al., 2023; Pecher et al., 2024a). De-
spite many techniques that have been introduced to
solve that problem (Liu et al., 2022a; Liu and Wang,
2023; Köksal et al., 2023; Levy et al., 2023; Song
et al., 2023; Pecher et al., 2024b), most of them
come at a high computational cost since the proce-
dure to retrieve complex examples should be run
for each instance, leading to a new ICL approach
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Figure 2: The BACKGEN pipeline.

called knowledge prompting.

Knowledge Prompting. A new approach of ICL
was introduced to inject knowledge to the prompt
where the knowledge is retrieved from a particular
source or generated based on the instance. Guu
et al. (2020) and Lewis et al. (2020) inject docu-
ments to LLM so that the model can retrieve an-
swers from them. Baek et al. (2023) gives addi-
tional information to the LLM by retrieving knowl-
edge graph triplet knowledge and converting it to
strings to be injected to the prompt. Liu et al.
(2022b) generate knowledge for each instance to be
added to the prompt. In knowledge prompting via
knowledge retrieval, a problem arises if the selected
knowledge is not close enough to the instance. This
can lead the model to a confusion and later it to
give a wrong result. Meanwhile, the knowledge
generation method proposed by Liu et al. (2022b)
may produce hallucination since it simply asks the
model to generate knowledge based on the instance
only, without giving a context, thus leading the
LLM to give a wrong answer because of misinfor-
mation. Moreover, as they generate knowledge for
each instance, the computational cost of this ap-
proach is high. To address these issues, we propose
a framework that generates background knowledge
(BK) only once, as a preprocessing step. We then
integrate this BK into the prompt for all relevant
instances, eliminating the need to generate knowl-
edge for each input and reducing computational
overhead.

Background Knowledge Prompting. In con-
trast with the approaches described above, we pro-
pose to inject common-sense knowledge into the
prompt. We postulate that this approach can be
better than the classical prompting with few-shot in
terms of the number of required examples, since it
synthesizes several similar examples. As BK gen-
eralizes the information, the LLM can learn the rea-
soning from this generalization rather than focusing
on a specific input-output pair. Moreover, our pro-
posed method does not rely on specific knowledge
sources as in the case of knowledge prompting
via knowledge graph retrieval. The proposed BK

generation is inspired by Shah et al. (2017) and
Basile et al. (2018) who propose to utilize frame
semantics theory to build default knowledge by ex-
tracting frames from raw texts, cluster them, and
finally extract the prototypical frame from that clus-
ter. Nevertheless, our approach differs from theirs
in that our goal is to synthesize the clustered frame
into BK in the form of natural language via LLM
prompting.

3 BACKGEN: A BK Generation
Framework

The BACKGEN framework is a structured pipeline
for generating Background Knowledge (BK) to
support Sentiment Phrase Classification (SPC). As
shown in Figure 2, it consists of three main steps:
(i) Frame-based Parsing, where semantic frames
and their elements are extracted from annotated
examples; (ii) Frame-based Clustering, which
groups similar frames to identify shared conceptual
structures; and (iii) Background Knowledge Gen-
eration, where a generative model verbalizes the
common information in each cluster into reusable
BK.

Frame-based Abstraction for Background
Knowledge. To generalize beyond individual ex-
amples, we rely on Frame Semantics (Fillmore,
1985), which models meaning through structured
representations called frames. A frame encapsu-
lates a conceptual scenario, consisting of a Lexical
Unit (LU) and its associated Frame Elements (FEs),
which define roles such as agents, attributes, or af-
fected entities. Unlike lexical approaches, frames
capture abstract relationships that recur across dif-
ferent linguistic expressions, enabling a more struc-
tured and reusable representation of meaning.

One of the key advantages of Frame Semantics
is its ability to disambiguate lexical meaning based
on conceptual structures. Consider the verb reduce,
which can evoke different frames depending on
the context: in “The government is reducing coal
power”, it evokes the frame CAUSE CHANGE OF

POSITION ON A SCALE, where an AGENT actively
decreases a QUANTITY. In “The army reduced
enemy resistance”, however, the verb belongs to
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the frame CONQUERING, where a CONQUEROR

overcomes a THEME rather than simply decreasing
something. If we relied only on lexical similarity
we would will not be able to distinguish between
these cases, whereas with frame-based parsing we
can generalize meaning in a structured way that
aligns with conceptual distinctions rather than sur-
face word forms.

Beyond disambiguation, frames also facilitate
generalization by capturing shared prototypical
structures rather than simple text-level similarities,
and analogical reasoning through schematic gen-
eralization at inference time by providing anchors
to map unseen instances in a coherent symbolic
structure. A key property of frames is their Frame
Elements, which define the roles participating in
an event. By clustering instances based on frames
and their arguments (such as AGENT or ASSET) we
can link sentences that share the same underlying
linguistic primitive, regardless of the lexical items
they use. For example, “The government is phas-
ing out coal power” and “Public authorities are
limiting nuclear energy” both evoke the CAUSE

CHANGE OF POSITION ON A SCALE frame, de-
spite differing in lexical selection. The presence
of an AGENT (e.g., government, public authori-
ties) and an ATTRIBUTE (e.g., coal power, nuclear
energy) establishes a conceptual equivalence, al-
lowing the method to identify structurally similar
examples even when surface-level word similarity
is low. Our aim is to go beyond traditional vector-
space models, which primarily capture lexical and
distributional similarity (Reimers and Gurevych,
2019), by leveraging frame semantics to identify
deeper conceptual patterns.

Structuring Background Knowledge. A key
step in our approach is clustering examples that
evoke similar situations (frames), involve analo-
gous participants (frame elements), and exhibit
comparable role-filler relations which are obtained
from the frame parsing process. The objective
is to group instances based on deeper structural
properties, ensuring that clusters capture proto-
typical conceptual structures rather than surface-
level resemblances. To achieve this, we structure
each parsed instance as a tree representation, as
illustrated in Figure 3. In this representation, the
frame serves as the root node, while frame ele-
ments and lexical units form intermediate nodes.
The role fillers, which instantiate the semantic ar-
guments of the frame, appear as terminal nodes.

This hierarchical encoding allows us to compare
examples not merely by their lexical content but
through their structural alignment within the frame-
semantic paradigm.

Measuring the similarity between these struc-
tured representations requires a metric sensitive to
both tree structure and semantic similarity of role
fillers. We employ the Smoothed Partial Tree Ker-
nel (SPTK) (Croce et al., 2011), which extends the
Partial Tree Kernel (Moschitti, 2006) by incorporat-
ing distributed word representations into the kernel
computation. This method evaluates the similar-
ity of two trees by counting the number of shared
substructures, while also weighting the contribu-
tion of lexically different but semantically related
elements. In this way, two instances that share the
same frame and structural configuration but differ
in the lexical realizations of their role fillers will
still be considered as similar. For example, the sen-
tences “The government is phasing out coal power”
and “Public authorities are limiting nuclear en-
ergy” both evoke the frame CAUSE CHANGE OF

POSITION ON A SCALE, with an AGENT and an
ATTRIBUTE: they are structurally analogous, and
SPTK ensures that their similarity is preserved in
the clustering process.

With a well-defined kernel function, we perform
clustering using Kernel-based k-means (Dhillon
et al., 2004), which embeds the tree structures in an
implicit feature space where each dimension cor-
responds to a possible substructure. Unlike tradi-
tional k-means, which relies on explicit Euclidean
distances, Kernel-based k-means operates in this
high-dimensional space, ensuring that structurally
similar examples are grouped together even if their
surface forms differ significantly.

Since our task involves sentiment classification,
we cluster positive and negative instances sepa-
rately to maintain polarity coherence. To deter-
mine the number of clusters k, we follow a stan-
dard heuristic by setting it to the square root of the
number of instances in each polarity group.

Background Knowledge Generation. The final
step of BACKGEN is the generation of the struc-
tured BK from the clustered examples. At this
stage, each cluster contains instances that share
key semantic properties (such as the evoked frame,
the roles of its participants, and the fillers of these
roles) while allowing for lexical and syntactic vari-
ability. Given this structure, we employ a LLM to
generate a concise generalization that synthesizes
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Figure 3: Examples of frame-semantic parse trees obtained from parsing. Each tree represents a frame (root node)
with its frame elements (children) and lexical unit (LU).

the core meaning of each cluster.
The strong capabilities demonstrated by LLMs

in summarization and abstraction (Liu et al., 2024)
make them well-suited for this synthesis step. The
prompt, exemplified in Figure 4, instructs the
model to generate a general statement based on the
provided examples, explicitly leveraging Frame Se-
mantics. The input consists of clustered sentences
along with the identified frames, their definitions,
and the corresponding lexical units and role assign-
ments. Additionally, the prompt enforces a senti-
ment constraint, ensuring that the generated BK
aligns with the sentiment orientation of the cluster.
By providing explicit semantic constraints (such
as frame definitions, role structures, and example
sentences directly extracted from the dataset) we
also aim to mitigate the risk of hallucinations, a
common issue in open-ended text generation. This
controlled setting ensures that the generated BK
remains grounded in the linguistic and conceptual
structure of the dataset while still allowing for gen-
eralization. For the example shown in Figure 4,
where the clustered sentences evoke the PROTECT-
ING frame, the generated BK is: “The efforts of en-
vironmental activists to protect wildlife from harm
are viewed as a positive and crucial step toward
conservation.” The generated statements are then
stored as BK, forming a knowledge base that can
later be queried to enhance in-context learning.

Prompt Injection with BACKGEN’s Generated
Knowledge. Once the BK base has been pop-
ulated, the next challenge is determining how to
retrieve relevant information when processing a
new instance. Given a new example, the goal is
to retrieve BK instances that offer useful general-
izations and can be integrated into a prompt in a
one-shot or few-shot learning setting. An efficient
retrieval strategy is needed that allows selecting
representative knowledge from the BK collection.
Since the BK is structured into clusters, each con-

Write one sentence expressing general background
knowledge based on the provided input sentences that
are grouped by shared situations (or frames) modeled
according to Frame Semantics Theory. Each input
sentence explicitly indicates the Lexical Unit (evok-
ing the frames) and the corresponding role. Defini-
tions of the frames will also be provided to guide the
generation. Ensure that the generated text conveys
a positive sentiment.

Here are the definitions of the involved frame(s):
- Protecting: Some Protection prevents a Danger

from harming an Asset.

Here are the input texts:
1. Environmental activists shield endangered

species from extinction caused by poaching.
- Protecting:

- Lexical Unit (LU): shield
- Roles: Asset(endangered species),

Protection(environmental activists)
2. Volunteers protect local forests from the threat

of wildfires by maintaining firebreaks.
- Protecting:

- Lexical Unit (LU): protect
- Roles: Asset(local forests), Protec-

tion(volunteers)

Answer:

Figure 4: Example prompt for generating positive Back-
ground Knowledge (BK) from clustered instances, using
frames, original text, and frame definitions. The full
prompt is in Appendix A, with a simplified version
shown here.

taining semantically related examples, retrieval can
be efficiently performed by selecting the medoid
of each cluster as an entry point. The medoid is
the instance within the cluster that is closest to the
centroid in the implicit space induced by the simi-
larity measure (Dhillon et al., 2004), ensuring that
it corresponds to a real example in the dataset. This
choice allows selecting representative knowledge
without needing to compare against all examples.

To retrieve the most relevant BK for a new in-
put, we explore two alternative similarity-based
approaches: one leveraging structural similarity
through kernel functions and another using seman-
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tic similarity in a dense embedding space. The first
method is consistent with the clustering process
used in BACKGEN as it relies on the same tree-
structured representation of frames. Given a new
input sentence, its frame representation is extracted
and compared against each cluster medoid using
the adopted tree kernel function (Croce et al., 2011),
selecting those entry whose medoid maximizes the
kernel function, i.e. the similarity. This approach
captures fine-grained structural alignment between
examples, reflecting similarities in event structures
and role assignments. The main advantage is that
it ensures coherence between the retrieved BK and
the input instance. However, it requires parsing
the new input according to FrameNet, which may
introduce additional computational overhead, par-
ticularly in tasks where fast inference is required.
An alternative retrieval strategy is based on text
similarity. Instead of relying on structured frame
representations, dense vector embeddings of both
the new input and the BK entry points are com-
puted using a pre-trained language model such as
BERT (Reimers and Gurevych, 2019). The sim-
ilarity between the new instance and each clus-
ter medoid is then measured using cosine similar-
ity, based on the original, unaltered text without
frame labeling. This approach avoids the need for
explicit frame parsing, making it more adaptable
across different tasks, and captures broader con-
textual relationships beyond frame-level structures.
Each retrieval method presents a trade-off between
interpretability and efficiency. In our hypothesis,
kernel-based retrieval maintains structural coher-
ence, making it preferable when fine-grained se-
mantic consistency is required. Embedding-based
retrieval, however, provides a more flexible and
computationally efficient alternative. In the exper-
imental section, we evaluate both approaches in
terms of their effectiveness in selecting useful BK
for prompt augmentation and analyze their impact
on task performance. This approach also keeps
retrieval efficient, as the number of cluster medoids
remains at most O(

√
n), where n is the number of

original instances.

4 Experimental Validation

Evaluating a Background Knowledge (BK) reposi-
tory typically involves assessing the factual accu-
racy of its statements with respect to real-world
knowledge. However, such an evaluation is beyond
the scope of this work. Instead, we assess the prac-

Attribute Statistic
# negative phrase 1,697
# positive phrase 876

avg. span length
(# token)

neg. phrase 3.09
pos. phrase 2.69

# tweets no sentiment phrase 198
# tweets - total 1,500

Table 1: Data overview of the aggregated dataset for the
sentiment phrase layer.

tical utility of BACKGEN by measuring its impact
on a downstream task-Sentiment Phrase Classifi-
cation (SPC). Specifically, we examine whether
integrating BACKGEN-derived BK into prompts
improves the ability of a Large Language Model
(LLM) to classify the sentiment polarity of a given
phrase in context.

Experimental Setup. We created an SPC dataset
for the environmental sustainability domain by ex-
tending the English dataset by Bosco et al. (2023)
with additional language data from the social me-
dia platform X. The dataset consists of tweets
discussing environmental and socio-political is-
sues, where sentiment interpretation often relies
on domain-specific background knowledge. Given
the nuanced nature of these discussions, implicit
assumptions and contextual understanding play a
crucial role in correctly assessing sentiment polar-
ity. The extended dataset follows the same data
collection and annotation process as the original,
ensuring safety regarding identifying individual
people and absence of offensive content. Each mes-
sage is annotated by three native English speakers
from the crowdsourcing platform Prolific2, at a rate
of 9 GBP per hour, and the labels are aggregated
by majority voting over sequence (Rodrigues et al.,
2014). Personal information on the annotators is
not disclosed in the final dataset. After filtering out
the instances with no sentiment phrases, the dataset
comprises 2,573 phrases (Table 1).

To parse the text with Frame Semantics, we em-
ploy LOME (Xia et al., 2021), a state-of-the-art
parser for FrameNet that performs the full pipeline
from lexical unit (LU) detection to complete se-
mantic role labeling (SRL). For computing simi-
larity between frame representations, we use the
Smoothed Partial Tree Kernel (SPTK) (Croce et al.,
2011), implemented within the KELP library (Fil-
ice et al., 2018), which also provides the kernel-

2https://www.prolific.com/
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based k-means clustering algorithm (Dhillon et al.,
2004). For generating BK, we use a LLM with a
structured prompt following the example in Fig-
ure 4. The prompt template, detailed in Ap-
pendix A, is designed to extract generalizable
knowledge from clustered examples by summariz-
ing their common conceptual patterns. The binary
task distinguishes positive and negative sentiment.
Due to class imbalance, we report per-class preci-
sion, recall, and weighted F1-score. Experiments
were run on an NVIDIA A-100.

Experiment and Results. We evaluate the effec-
tiveness of BACKGEN using two state-of-the-art
open-source models, Mistral-7B3 and Llama3-8B4

(Dubey et al., 2024). Each model is employed
both for generating background knowledge (BK)
and for performing sentiment phrase classification
(SPC), ensuring a consistent evaluation across the
entire pipeline. The evaluation follows a 5-fold
cross-validation setup. For each fold, BACKGEN is
applied to 4/5 of the dataset (training set) to gen-
erate a BK database, while the remaining 1/5 is
used for testing. The models are tested under dif-
ferent prompting conditions. In the 0-shot set-
ting, the LLM receives only the input text and
target phrase, without additional context. In the
few-shot setting, one (1-shot) or two (2-shot) ex-
amples from the training set are provided in the
prompt, either selected randomly (Rand) or based
on text similarity (TSim). The text similarity is com-
puted via Sentence-BERT embeddings (Reimers
and Gurevych, 2019) using all-MiniLM-L6-v25.
For background knowledge prompting, the exam-
ples are replaced with retrieved BK entries. The re-
trieval process selects entries based either on frame-
based similarity (Kernel) or text similarity (TSim), the
latter computed using the same Sentence-BERT
model. In both cases, the number of BK entries
matches the few-shot setting, with one or two re-
trieved statements included in the prompt. The
specific templates used for 0-shot, few-shot, and
BK-shot prompting are reported in Appendix B6.
In all cases, greedy search is used for token genera-

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

5https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

6The model is expected to output Positive or Negative as
the first word. If absent, the first occurrence of either label in
the response is used; if neither is found, the instance is marked
as unanswered, lowering recall.

tion to ensure reproducibility and robustness.
Tables 2 and 3 summarize the results in terms

of per-class precision, recall, and F1 score. The
weighted F1 score, which accounts for class imbal-
ance, provides an overall measure of performance.
As expected, few-shot prompting improves over
0-shot, with 2-shot generally outperforming 1-shot.
Additionally, selecting examples based on their
similarity to the test instance (TSim) leads to bet-
ter performance than random selection (Rand), con-
firming that more relevant examples contribute to
better predictions. The most significant improve-
ment comes from replacing explicit examples with
structured background knowledge. In particular,
BK-based prompting consistently outperforms tra-
ditional few-shot methods, demonstrating that syn-
thesized knowledge captures generalizable patterns
that are more informative than individual training
examples. The 2-BKTSim configuration achieves
the best weighted F1 scores across both models,
with an error reduction relative to 0-shot of 29.94%
for Mistral-7B and 26.76% for Llama3-8B. Com-
pared to the stronger 2-shotRand baseline, our pro-
posed method yields a substantial relative error
reduction, with Mistral-7B achieving 22.73% and
Llama3-8B achieving 19.59%. While the absolute
improvement in weighted F1 over the best few-shot
baseline may appear modest, these error reduction
rates demonstrate the practical value of integrating
structured background knowledge into the prompt.
We anticipate that this benefit could be even more
pronounced in settings where the zero-shot and
few-shot baselines are less competitive.

Comparing the two BK selection methods, text
similarity-based retrieval (BKTSim) performs bet-
ter than frame similarity-based retrieval (BKKernel).
This suggests that text-based embeddings provide
a more robust signal for retrieving relevant knowl-
edge, while frame-based retrieval is more sensitive
to parsing errors and the specificity of extracted
structures. Compared to the classical few-shot ap-
proach, BACKGEN requires an additional step to
generate background knowledge (BK); however,
this process is performed only once as a prepro-
cessing step. At inference time, the computational
cost of retrieving BK entries for prompting is equiv-
alent to that of selecting examples in a standard
few-shot setting, when using the same retrieval
strategy. Therefore, BACKGEN offers a practical
advantage, achieving superior performance with re-
spect to few-shot prompting while maintaining the
same inference-time computational requirements.
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Shot
Mistral-7B

Negative Positive Weighted
F1

Absolute
Error

Relative Error
Reduction

to 0-shot

Relative Error
Reduction

to 2-shotRand
Precision Recall F1 Precision Recall F1

0-shot 0.966 0.923 0.944 0.886 0.911 0.898 0.928 0.072 - -10.29%
1-shotRand 0.957 0.944 0.950 0.917 0.876 0.896 0.931 0.069 4.46% -5.38%
2-shotRand 0.969 0.931 0.949 0.895 0.919 0.907 0.935 0.065 9.33% -
1-shotTSim 0.957 0.955 0.956 0.931 0.877 0.903 0.938 0.062 13.09% 4.15%
2-shotTSim 0.969 0.939 0.953 0.910 0.918 0.914 0.940 0.060 16.30% 7.68%
1-BKKernel 0.964 0.947 0.955 0.909 0.925 0.917 0.942 0.058 19.50% 11.21%
2-BKKernel 0.963 0.949 0.956 0.913 0.922 0.919 0.943 0.057 20.89% 12.75%
1-BKTSim 0.965 0.952 0.959 0.917 0.927 0.922 0.946 0.054 24.79% 17.05%
2-BKTSim 0.968 0.956 0.962 0.922 0.930 0.926 0.950 0.050 29.94% 22.73%

Table 2: Results of 5-fold cross-validation for the Sentiment Phrase Classification (SPC) task using Mistral-7B. For
each prompting strategy, we report Precision, Recall, and F1 score for both negative and positive classes, as well
as the overall weighted F1 and Absolute Error. Relative error reduction is shown with respect to both the 0-shot
and 2-shotRand baselines. Prompting methods compared include: zero-shot (no additional context), few-shot with
randomly selected (Rand) or Sentence-BERT text similarity-selected (TSim) examples, and background knowledge
(BK)-based prompting, where BK entries are retrieved either by frame-semantic kernel similarity (Kernel) or text
similarity (TSim). Best overall scores are highlighted in bold.

Shot
Llama3-8B

Negative Positive Weighted
F1

Absolute
Error

Relative Error
Reduction

to 0-shot

Relative Error
Reduction

to 2-shotRand
Precision Recall F1 Precision Recall F1

0-shot 0.894 0.922 0.908 0.854 0.731 0.787 0.867 0.133 - -9.79%
1-shotRand 0.866 0.954 0.908 0.888 0.706 0.786 0.866 0.134 -0.15% -9.96%
2-shotRand 0.881 0.949 0.914 0.884 0.749 0.810 0.879 0.122 8.92% -
1-shotTSim 0.867 0.958 0.910 0.901 0.707 0.792 0.870 0.130 2.40% -7.16%
2-shotTSim 0.882 0.955 0.917 0.900 0.751 0.819 0.884 0.116 12.89% 4.36%
1-BKKernel 0.890 0.942 0.915 0.873 0.767 0.816 0.881 0.119 10.87% 2.14%
2-BKKernel 0.887 0.951 0.919 0.893 0.759 0.820 0.885 0.115 13.87% 5.43%
1-BKTSim 0.882 0.948 0.914 0.882 0.748 0.809 0.878 0.122 8.62% -0.33%
2-BKTSim 0.900 0.962 0.930 0.915 0.791 0.848 0.902 0.098 26.76% 19.59%

Table 3: 5-fold cross-validation results using Llama3-8B, following the same setup as in Table 2.

Overall, these results highlight the potential of
structured background knowledge to enhance sen-
timent phrase classification. By capturing concep-
tual generalizations rather than relying on specific
examples, BACKGEN mitigates the performance
variability associated with example selection and
provides a more stable and effective alternative to
few-shot learning.

5 Error Analysis

To better understand the impact of BK on model
predictions, we analyze cases where BK improves
classification as well as those where it introduces
errors. The goal is to identify patterns in both
helpful and harmful BK selections. Given that
Mistral-7B outperforms Llama3-8B, we conduct
this analysis using Mistral-7B with the 2-shot BK
selection based on text similarity.

BK is particularly useful when the sentiment po-
larity of a phrase depends on contextual understand-
ing. For example, in the instance “big problems

may arise if your ductwork system is not installed
correctly homeowners will encounter discomfort
poor indoor air quality inflated electricity bills
periodic repairs and in some cases complete re-
placement”, the 0-shot model incorrectly classifies
the target phrase “big problems may arise” as posi-
tive. However, a retrieved negative BK statement,
i.e., “The constant increase in expenses for vari-
ous reasons, such as pollution and gentrification,
is a major issue that negatively impacts our lives.”,
helps the model correctly reclassify the phrase as
negative by reinforcing the association between
financial burdens and negative sentiment.

Errors in BK selection primarily arise when (i)
the retrieved BK is not sufficiently similar to the
test instance, (ii) the BK is too generic, or (iii)
the BK is overly specific. In cases where the re-
trieved BK does not align closely with the input,
the model struggles to integrate it into the classi-
fication decision. Although the BK may contain
relevant commonsense knowledge, it fails to pro-
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vide meaningful guidance due to its semantic dis-
tance from the test instance. This can lead to the
model overriding a previously correct classification,
sometimes defaulting to a neutral response such as
“. . . The background knowledge does not provide
enough information to determine the polarity of
the target phrase.” This suggests that, beyond BK
retrieval, there is potential value in using model un-
certainty as a signal, if no sufficiently relevant BK
is found, the test instance itself may be an outlier
relative to the training data. Another failure mode
occurs when the retrieved BK is too generic. This
typically results from poor clustering, where mul-
tiple frames that are not semantically aligned are
grouped together, leading to vague or uninforma-
tive statements. For example, a BK entry such as
“Changes in policies can have a significant impact
on society” lacks specificity, making it difficult for
the model to determine sentiment in a meaning-
ful way. Overly specific BK can also introduce
bias, particularly when the generated knowledge re-
peatedly mentions the same entity across multiple
instances. Consider the instance “you do realize
bill gates is heavily invested in animal agriculture
right he has enormous feed crop landholdings for
animal ag supplying factory farms amp feedlots he
also he invests in gmo cow research”, where the
0-shot model correctly classifies the target phrase
“heavily invested” as positive. However, one re-
trieved BK statement, i.e., “The fact that Bill Gates
is involved in funding and promoting synthetic
meat, despite Jeremy’s disdain for him, is a dis-
appointing turn of events.”, introduces a negative
stereotype, leading the model to misclassify the
phrase as negative. This suggests that the model is
overfitting to entity-level associations rather than
recognizing general sentiment cues. A potential
solution is to refine the BK generation prompt to
avoid explicit mentions of named entities, ensuring
the generated knowledge remains applicable.

6 Conclusions and Future Works

We presented BACKGEN, a framework that lever-
ages Frame Semantics to generate structured Back-
ground Knowledge (BK) as a principled alternative
to example-based prompting. By clustering seman-
tically related instances and synthesizing general-
ized knowledge via LLMs, BACKGEN enables ab-
stract and robust reasoning. Applied to Sentiment
Phrase Classification (SPC), where polarity often
depends on implicit context, BK-based prompt-

ing significantly improves performance, achieving
up to 29.94% error reduction over zero-shot and
22.73% over few-shot baselines.

While our main focus is on evaluating whether
background knowledge (BK) improves SPC perfor-
mance over few-shot prompting, we do not directly
assess the quality of the generated BK. A system-
atic evaluation of its fluency and generalizability
could inform prompt refinement and strengthen our
approach, which we leave for future work.

Further directions include exploring the applica-
tion of background knowledge (BK) in other tasks
that require commonsense, analogical, and context-
sensitive reasoning, such as question answering
or stance detection. We will also test the cross-
domain generalization of BACKGEN by evaluating
its scalability and robustness when BK is gener-
ated from domains different from the target task.
Another line of investigation will focus on identi-
fying and mitigating potential biases in both the
generated knowledge and the underlying dataset,
with the goal of increasing fairness and control in
BK construction. Additionally, we plan to com-
pare BACKGEN directly with existing knowledge
prompting methods, to assess whether it can serve
as a viable alternative beyond the classical few-
shot baseline explored in this paper. Finally, we
see promising opportunities in connecting BK with
explainability: by anchoring model predictions to
frame-based abstractions, BACKGEN could sup-
port more interpretable and cognitively grounded
language understanding.

Limitations

The applicability of the BK database produced in
this study is currently limited to the environmen-
tal sustainability domain, and its effectiveness in
other sentiment analysis tasks remains to be ex-
plored. Additionally, as BACKGEN relies on a
frame parser, the quality of the generated BK is
inherently dependent on the accuracy of the parser.

Another limitation is the lack of automatic analy-
sis of the collected BK statements, which may unin-
tentionally introduce biases. Since BK is generated
from clustered instances, certain perspectives may
be overrepresented, reinforcing pre-existing biases
in the data. Future work should focus on devel-
oping methods for detecting and mitigating such
biases, ensuring that the generated BK remains
neutral and representative across different domains.
Moreover, investigating how BK influences model
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reasoning, i.e., particularly in tasks requiring ex-
plainability, could provide insights into its broader
applicability beyond sentiment analysis.

Ethical Reflections

It is important to consider the potential risks of NLP
tools like BACKGEN, particularly the possibility of
generating biased or misleading background knowl-
edge (BK). Without proper safeguards, BACK-
GEN could produce inaccurate, overly generalized,
or even harmful statements that misrepresent real-
world contexts, especially in sensitive areas like
environmental sustainability. To mitigate this risk,
prompt design should be carefully refined to en-
courage neutral and well-grounded knowledge gen-
eration. Additionally, a verification step should be
implemented to detect and filter out problematic
BK, ensuring that the generated content remains
accurate, unbiased, and contextually appropriate.

References
Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.

Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
In Proceedings of the First Workshop on Matching
From Unstructured and Structured Data (MATCH-
ING 2023), pages 70–98, Toronto, ON, Canada. As-
sociation for Computational Linguistics.

Valerio Basile, Roque Lopez Condori, and Elena Cabrio.
2018. Measuring frame instance relatedness. In Pro-
ceedings of the Seventh Joint Conference on Lexical
and Computational Semantics, pages 245–254, New
Orleans, Louisiana. Association for Computational
Linguistics.

Cristina Bosco, Muhammad Okky Ibrohim, Valerio
Basile, and Indra Budi. 2023. How green is senti-
ment analysis? environmental topics in corpora at the
university of turin. In The 9th Italian Conference on
Computational Linguistics (CLiC-it), volume 3596.
CEUR-WS.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings of the
2011 Conference on Empirical Methods in Natural

Language Processing, pages 1034–1046, Edinburgh,
Scotland, UK. Association for Computational Lin-
guistics.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis.
2004. Kernel k-means: spectral clustering and nor-
malized cuts. In KDD, pages 551–556. ACM.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A survey on in-context learning. Preprint,
arXiv:2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 516
others. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Simone Filice, Giuseppe Castellucci, Giovanni Da San
Martino, Alessandro Moschitti, Danilo Croce, and
Roberto Basili. 2018. Kelp: a kernel-based learning
platform. Journal of Machine Learning Research,
18(191):1–5.

Charles J. Fillmore. 1985. Frames and the semantics of
understanding. Quaderni di semantica, 6:222–254.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML’20. JMLR.org.

Abdullatif Köksal, Timo Schick, and Hinrich Schuetze.
2023. MEAL: Stable and active learning for few-shot
prompting. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pages 506–517,
Singapore. Association for Computational Linguis-
tics.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1401–
1422, Toronto, Canada. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS ’20, Red Hook, NY, USA. Curran
Associates Inc.

Hongfu Liu and Ye Wang. 2023. Towards informative
few-shot prompt with maximum information gain for
in-context learning. In Findings of the Association

31

https://doi.org/10.18653/v1/2023.matching-1.7
https://doi.org/10.18653/v1/2023.matching-1.7
https://doi.org/10.18653/v1/S18-2029
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/D11-1096/
https://aclanthology.org/D11-1096/
http://dblp.uni-trier.de/db/conf/kdd/kdd2004.html#DhillonGK04
http://dblp.uni-trier.de/db/conf/kdd/kdd2004.html#DhillonGK04
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
http://jmlr.org/papers/v18/16-087.html
http://jmlr.org/papers/v18/16-087.html
https://doi.org/10.18653/v1/2023.findings-emnlp.36
https://doi.org/10.18653/v1/2023.findings-emnlp.36
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.acl-long.78
https://doi.org/10.18653/v1/2023.findings-emnlp.1060
https://doi.org/10.18653/v1/2023.findings-emnlp.1060
https://doi.org/10.18653/v1/2023.findings-emnlp.1060


for Computational Linguistics: EMNLP 2023, pages
15825–15838, Singapore. Association for Computa-
tional Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022a. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022b. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3154–3169, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye,
Alexander R. Fabbri, Pengfei Liu, Dragomir Radev,
and Arman Cohan. 2024. On learning to summarize
with large language models as references. Preprint,
arXiv:2305.14239.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In Machine Learning: ECML 2006, pages 318–329,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Branislav Pecher, Ivan Srba, and Maria Bielikova.
2024a. A survey on stability of learning with lim-
ited labelled data and its sensitivity to the effects of
randomness. ACM Comput. Surv. Just Accepted.

Branislav Pecher, Ivan Srba, Maria Bielikova, and
Joaquin Vanschoren. 2024b. Automatic combination
of sample selection strategies for few-shot learning.
Preprint, arXiv:2402.03038.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Filipe Rodrigues, Francisco Pereira, and Bernardete
Ribeiro. 2014. Sequence labeling with multiple an-
notators. Machine Learning, 95(2):165–181.

Avijit Shah, Valerio Basile, Elena Cabrio, and
Sowmya Kamath S. 2017. Frame instance extrac-
tion and clustering for default knowledge building.
In CEUR Workshop Proceedings, volume 10, pages
1–10.

Chengyu Song, Fei Cai, Mengru Wang, Jianming
Zheng, and Taihua Shao. 2023. Taxonprompt:
Taxonomy-aware curriculum prompt learning for
few-shot event classification. Knowledge-Based Sys-
tems, 264:110290.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1423–1436, Toronto, Canada. Association for
Computational Linguistics.

Patrick Xia, Guanghui Qin, Siddharth Vashishtha,
Yunmo Chen, Tongfei Chen, Chandler May, Craig
Harman, Kyle Rawlins, Aaron Steven White, and
Benjamin Van Durme. 2021. LOME: Large ontology
multilingual extraction. In Proceedings of the 16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 149–159, Online. Association for
Computational Linguistics.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

32

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://arxiv.org/abs/2305.14239
https://arxiv.org/abs/2305.14239
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.1145/3691339
https://doi.org/10.1145/3691339
https://doi.org/10.1145/3691339
https://arxiv.org/abs/2402.03038
https://arxiv.org/abs/2402.03038
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1007/s10994-013-5411-2
https://doi.org/10.1007/s10994-013-5411-2
https://doi.org/10.1016/j.knosys.2023.110290
https://doi.org/10.1016/j.knosys.2023.110290
https://doi.org/10.1016/j.knosys.2023.110290
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622


A Prompts for Background Knowledge Generation

The BACKGEN framework employs two prompts to generate Background Knowledge (BK) from clusters
of semantically similar instances. These clusters are formed by grouping examples that evoke the same
semantic frames and share a common sentiment polarity, either positive or negative. Each cluster is then
processed using the appropriate prompt:

• Clusters of positive instances use the Positive Sentiment Knowledge Prompt (Figure A).

• Clusters of negative instances use the Negative Sentiment Knowledge Prompt (Figure B).

Each prompt follows a standardized structure to ensure consistency in BK generation:

1. Task Definition: The prompt begins with an explicit instruction, guiding the model to generate a
single sentence that captures general background knowledge from the clustered examples. This
instruction specifies that the output should reflect a stereotypical generalization, either positively or
negatively framed, depending on the sentiment of the cluster.

2. Example Cluster: The prompt includes an example cluster of semantically related instances, where
each input sentence is annotated with its corresponding frame-semantic structure. This includes:

• The Lexical Unit (LU) evoking the frame.
• The Frame Elements (roles) present in the sentence.
• The Frame Definitions to provide contextual understanding.

3. Example BK Statement: A correctly structured BK statement is provided as a reference, demonstrat-
ing the level of abstraction and generalization expected from the model. This serves as a guideline to
ensure that the output captures high-level conceptual knowledge rather than instance-specific details.

4. Target Cluster for BK Generation (“Your Turn”): The final section of the prompt presents a
new set of sentences from a different cluster (all sharing the same sentiment polarity and evoking
similar frames). This part of the prompt contains placeholders (e.g., {frame_n}, {text_n}, {LU},
{arguments_of_frame}) that are dynamically populated based on the actual instances and frame
annotations of the current cluster. The model is then instructed to generate a single BK statement
that generalizes the semantic properties of these instances, mirroring the structure of the provided
example.

Both prompts are designed to ensure that the model generates reliable, structured commonsense knowledge
that can be effectively injected into prompts for downstream NLP tasks. Additionally, the framework
supports variations of these prompts where the instruction is modified to generate a short paragraph instead
of a single sentence, allowing for more detailed knowledge synthesis.

B Prompts for Sentiment Phrase Classification (SPC)

To evaluate different prompting strategies in Sentiment Phrase Classification (SPC), we employed three
approaches:

• Zero-shot (Figure C): The model classifies the sentiment polarity (positive or negative) of a target
phrase within a given text without additional context. The prompt explicitly instructs the model to
provide a classification and a brief explanation.

• Few-shot (Figure D): The model is given one or two labeled examples (1-shot or 2-shot) before
classifying the target phrase. The examples are either selected randomly (Rand) or based on text
similarity (TSim) with the input instance. The model cannot explicitly reference these examples in its
explanation.
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Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a positive sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Cause_change_of_position_on_a_scale: This frame consists of words that indicate that an Agent or

a Cause affects the position of an Item on some scale (the Attribute) to change it from an initial value
(Value_1) to an end value (Value_2).

Here are the input texts:
1. if the tourism sector is serious about reducing its footprint they should choose real emission reductions and

biodiversity protection even airlines are starting to move away from offsets fornature 4
- Cause_change_of_position_on_a_scale:

- Lexical Unit (LU): reducing
- Roles: Attribute(its footprint)

2. moving away from capitalism green washing is not easy under the current systems political allegiances we
live within so i commend for being bold enough to try but let us not forget that redistributing wealth and
reducing consumerism must remain 1 priorities

- Cause_change_of_position_on_a_scale:
- Lexical Unit (LU): reducing
- Roles: Attribute(consumerism)

3. india reduced emission intensity of its gdp by 24 per cent in 11 yrs through 2016 un via official pollution
- Cause_change_of_position_on_a_scale:

- Lexical Unit (LU): reduced
- Roles: Agent(India),Attribute(emission intensity of its GDP),Difference(by 24 per cent),

Speed(in 11 yrs),Time(through 2016),Means(un via official pollution)

Answer: Reducing material that is bad for the environment is a positive act.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.
· · ·

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}

- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

· · ·
n. {text_n}

- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure A: Prompt for generating positive sentiment background knowledge. The input sentences are clustered based
on shared semantic frames, and the model is instructed to generate a generalized knowledge statement that reflects a
positive sentiment.

• BK-shot (Figure E): Instead of example-based prompting, the model receives background knowledge
(BK) statements generated by BACKGEN. These statements, selected using either frame similarity
(Kernel) or text similarity (TSim), provide generalizable knowledge to guide sentiment classification.

Each prompt follows a structured format, including:

• Task Definition: the goal is to classify the sentiment polarity of a given target phrase.

• Instructions: Constraints are provided, including the requirement for a polarity label and an
explanation, without explicit reference to examples or BK.

• Input Information: The given text and target phrase are explicitly stated.
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Write one sentence expressing general background knowledge that reflects stereotypical information, based on
the input sentences provided. These sentences are grouped by shared situations (or frames) modeled according
to Frame Semantics Theory. Each input sentence explicitly indicates the Lexical Unit (evoking the frames) and
the corresponding role. Definitions of the frames will also be provided to guide the generation. Ensure that the
generated text conveys a negative sentiment and the reason for the sentiment should be made explicit.

Example:

Here are the definitions of the involved frame(s):
- Causation: A Cause causes an Effect.
- Destroying: A Destroyer (a conscious entity) or Cause (an event, or an entity involved in such an event)

affects the Patient negatively so that the Patient no longer exists.
- Cause_to_end: An Agent or Cause causes a Process or State to end.
- Cause_to_amalgamate: These words refer to an Agent joining Parts to form a Whole.

Here are the input texts:
1. water pollution is putting our health at risk unsafe water kills more people each year than war and all other

forms of violence combined here are six causes of water pollution as well as what we can do to reduce it
- Causation:

- Lexical Unit (LU): putting
- Roles: Cause(water pollution),Effect(our health),Cause(at risk unsafe water kills more people

each year than war and all other forms of violence combined)
2. i hope izzy one day understands that we can be against pollution in all it s forms which truly is destroying

our environment and health but also be smart enough to see through the carbon emissions global warming
shenanigans

- Destroying:
- Lexical Unit (LU): destroying
- Roles: Cause(pollution in all it s forms),Cause(which),Patient(our environment and health)

3. extinction is forever amp for all we know we have lost what we will need to fix things when it becomes
obvious we have to do something technology will not end pollution of the air water soil or the contamination
of our food earth cycles themselves will be the only way out of it

- Cause_to_end:
- Lexical Unit (LU): end
- Roles: Cause(technology),State(pollution of the air water soil)

4. water pollution is putting our health at risk unsafe water kills more people each year than war and all other
forms of violence combined here are six causes of water pollution as well as what we can do to reduce it

- Cause_to_amalgamate:
- Lexical Unit (LU): combined
- Roles: Parts(all other forms of violence)

Answer: The existence of pollution and other materials that cause damage and destroy our environment is very
negative.

Your Turn:

Here are the definitions of the involved frame(s):
- {frame_1} : {definition_of_frame_1}.
· · ·

- {frame_n} : {definition_of_frame_n}

Here are the input texts:
1. {text_1}

- {frame_label_of_text_1}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_1}
- Roles: {arguments_of_frame_label_of_text_1}

· · ·
n. {text_n}

- {frame_label_of_text_n}:
- Lexical Unit (LU): {LU_span_of_frame_label_of_text_n}
- Roles: {arguments_of_frame_label_of_text_n}

Answer:

Figure B: Prompt for generating negative sentiment background knowledge. The model generates a background
knowledge statement that reflects the negative sentiment conveyed by the clustered examples.

• Additional Context: In few-shot prompting, examples are included; in BK-shot prompting, relevant
background knowledge statements are injected instead.
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• Expected Output: The model generates a classification followed by a justification.

Figures C, D, and E illustrate the complete templates for the zero-shot, few-shot, and BK-shot prompts.

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. The explanation should be clear and helpful for the user to
understand the choice.

Instructions:
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Answer:

Figure C: Prompt zero-shot for SPC.

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with some examples. The explanation
should be clear and helpful for the user to understand the choice.

Instructions:
- Use the examples to help determine the polarity.
- Note the sentiment of each example as it may assist in your reasoning.
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the examples, so you cannot refer to them explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {example_text_1}. Target Phrase: {example_target_phrase_1}. Sentiment: {example_polarity_1}

· · ·
n. {example_text_n}. Target Phrase: {example_target_phrase_n}. Sentiment: {example_polarity_n}

Answer:

Figure D: Prompt few-shot for SPC.

Task: Determine the polarity (either ’positive’ or ’negative’) of the target phrase from the provided text. Then,
provide a short explanation for your classification. You are also provided with potentially useful sentences
reflecting background knowledge. The explanation should be clear and helpful for the user to understand the
choice.

Instructions:
- Use the background knowledge to help determine the polarity.
- Note the sentiment of each background sentence as it may assist in your reasoning.
- The polarity output can only be ’positive’ or ’negative’.
- The first word of your answer should be your final polarity classification, then followed by your explanation.
- The user is not aware of the background knowledge, so you cannot refer to it explicitly in your explanation.

Input:
- Text: {text}
- Target Phrase: {target_phrase}

Examples:
1. {bk_text_1}. {bk_polarity_1}

· · ·
n. {bk_text_n}. {bk_polarity_n}

Answer:

Figure E: Prompt BK injection shot (bk-shot) for SPC.
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