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Abstract

The rapid advancement of large language mod-
els (LLMs) has revolutionized natural language
processing, yet a significant challenge persists:
the under representation of low-resource lan-
guages. This paper introduces SABIYARN, a
novel 125M parameter decoder-only language
model specifically designed to address this gap
for Nigerian languages. Our research demon-
strates that a relatively small language model
can achieve remarkable performance across
multiple languages even in a low-resource set-
ting when trained on carefully curated task-
specific datasets. We introduce a multitask
learning framework designed for computational
efficiency, leveraging techniques such as se-
quence packing to maximize token throughput
per batch. This allows SABIYARN to make the
most of a limited compute budget while achiev-
ing strong performance across multiple NLP
tasks.

This paper not only highlights the effectiveness
of our approach but also challenges the notion
that only massive models can achieve high per-
formance in diverse linguistic contexts, outper-
forming models over 100 times its parameter
size on specific tasks such as translation (in
both directions), Named Entity Recognition,
Text Diacritization, and Sentiment Analysis in
the low-resource languages it was trained on.
SabiYarn-125M represents a significant step
towards democratizing NLP technologies for
low-resource languages, offering a blueprint for
developing efficient, high-performing models
tailored to specific linguistic regions. Our work
paves the way for more inclusive and cultur-
ally sensitive Al systems, potentially transform-
ing how language technologies are developed
and deployed in linguistically diverse areas like
Nigeria and beyond.

1 Introduction

The field of natural language processing (NLP)
has witnessed remarkable advancements in recent
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years, driven by the development of large-scale,
pre-trained language models. These powerful mod-
els have demonstrated impressive capabilities in
handling a variety of language-related tasks, from
text generation to language understanding, and
emergent reasoning abilities as they scale to ever-
increasing model sizes (Wei et al., 2022). Despite
the remarkable progress in NLP, the performance
of large language models (LLM) in African lan-
guages remains suboptimal. Recent studies, such
as the analysis by (Ojo et al., 2023), highlight the
significant performance gap between African lan-
guages and high-resource languages such as En-
glish in the state-of-the-art large language models,
including LLLaMa 2 (Touvron et al., 2023), and
GPT-4 (Achiam et al., 2023). Their findings reveal
that while GPT-4 achieves average or impressive
results on classification tasks, it performs poorly
on generative tasks like machine translation, while
LLaMa 2 recorded the worst performance due to
its English-centric pretraining and limited multi-
lingual capabilities. These results underscore the
urgent need to address the under representation
of African languages in LLMs, ensuring they are
not left behind as these technologies continue to
evolve.

To address this gap, we present SABIYARN-
125M, a decoder-only foundational (pre-trained)
language model specifically designed to support
the major languages spoken in Nigeria. Our model
tackles two main challenges in developing NLP
solutions for Nigerian languages: limited computa-
tional resources and a scarcity of high-quality data
sources. Using a diverse training dataset and a mul-
titask learning approach, this model aims to provide
versatile and inclusive language technology that
can empower Nigerian communities and contribute
to the global NLP landscape. Our model is pre-
trained on a diverse dataset covering nine Nigerian
languages: Yoruba, Igbo, Hausa, Pidgin English,
Fulani, Fulah, Fulfulde, Uhrobo, and Efik. Previ-
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ous models have predominantly focused on the four
major Nigerian Languages, Yoruba, Igbo, Pidgin,
and Hausa. Our work builds on this foundation by
extending further language coverage beyond the
four major Nigerian Languages, to include several
underrepresented languages, increasing language
diversity and enabling our model SABIYARN to
perform various NLP tasks while preserving cul-
tural and linguistic nuances.

We adopt a mixture of training strategies, includ-
ing a technique called Sequence Packing (Krell
et al., 2022)) for the efficient processing of se-
quences to speed up pretraining and minimize
wasted attention computation, task-conditioning
prompts inspired by (Raffel et al., 2020), a multi-
task learning objective (Zhang and Yang, 2021)
and a custom loss computation strategy that lever-
ages sequence packing, ensuring the model learns
precisely from the task-relevant information. This
hybrid approach allows us to maximize the poten-
tial of each parameter given the limited resources,
achieving impressive results across a range of NLP
tasks, including Named Entity Recognition, Topic
classification, Translation, Diacritization, and Sen-
timent Analysis, even in zero-shot settings.

In the following sections, we detail our method-
ology, present our results, and discuss the impli-
cations of our findings for the future of NLP in
Nigeria and potentially other linguistically diverse
regions. Our work contributes to the democratiza-
tion of NLP technologies but also paves the way
for more inclusive Al solutions that respect and
preserve linguistic diversity.

2 Related Work

The rapid advancement of large language models
(LLMs) has revolutionized natural language pro-
cessing (NLP), with models like GPT (Radford
and Narasimhan, 2018) demonstrating the power
of scaling decoder-only architectures. These mod-
els, pre-trained with multi-task instructions, have
achieved human-level performance in zero-shot
and few-shot settings (Brown et al., 2020), set-
ting a new standard for NLP. However, a critical
limitation persists: the underrepresentation of low-
resource languages, particularly African languages,
in these advancements. This gap has motivated
research into developing specialized models that
address the unique challenges of low-resource lin-
guistic contexts.

Early efforts to address this gap, such as AFRIB-
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ERTA (Ogueji et al., 2021), marked a signifi-
cant step forward. AfriBERTa, a 126M-parameter
encoder-only model, was pre-trained on 11 African
languages and outperformed larger multilingual
models like XLLM-R (Conneau et al., 2020) and
MBert (Devlin et al., 2019) on African language
benchmarks. This success highlighted the potential
of smaller, high-quality models tailored to low-
resource languages, challenging the assumption
that larger models are always superior. However,
AfriBERTa’s encoder-only architecture limited its
applicability to generative tasks, leaving a gap
for decoder-based models that could better handle
tasks like text generation and diacritization.

Further advancements by (Hedderich et al.,
2020) and (Alabi et al., 2022) explored fine-tuning
and adaptation techniques for African languages.
While (Hedderich et al., 2020) focused on single-
language adaptation, (Alabi et al., 2022) intro-
duced Multi-Language Adaptation Fine-Tuning
(MAFT), which extended adaptation to multiple
languages. Their work resulted in Afro-XLM-R!,
a model that outperformed AfriBERTa by lever-
aging techniques like non-African language token
removal. Despite these improvements, these mod-
els remained encoder-based and relied on large-
scale multilingual pretraining, which often dilutes
the representation of low-resource languages. Re-
cent successes in Large Language Models (LLMs)
have highlighted the superiority of decoder-only
architectures in various NLP tasks, necessitating
re-evaluating approaches to modeling Nigerian lan-
guages. Efforts such as (Buzaaba* et al., 2024) and
(Mwongela et al., 2024) have explored the decoder-
only architectures for low-resourced African lan-
guages. However these models were fine-tuned
or adapted from pretrained base models. Our ap-
proach considers pretraining the model entirely
from scratch.

We argue that decoder-only models offer unique
advantages, such as multi-task learning and emer-
gent abilities that arise with scaling, (Wei et al.,
2022). These capabilities are reflected in our model,
SABIYARN, which excels at tasks it was not neces-
sarily pre-trained on, such as inter-language transla-
tion between Nigerian languages. This underscores
the potential of decoder-only architectures to better
capture the linguistic intricacies and practical util-
ity of these languages. The trend of scaling LLMs

1https://huggingface.co/Davlan/
afro-x1lmr-large
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to larger parameter sizes has dominated NLP re-
search, with larger models demonstrating improved
reasoning and zero-shot capabilities. However,
(Hoffmann et al., 2022) revealed that many models
are under-trained relative to their compute budgets,
emphasizing the need for efficient training strate-
gies. This finding is particularly relevant for low-
resource languages, where data scarcity and com-
putational constraints make large-scale training im-
practical. Recent work has also shown that smaller
models, when trained on carefully curated datasets,
can achieve competitive performance (Abdin et al.,
2024), challenging the necessity of massive models
for low-resource settings. Notable data collection
efforts like WURA (Oladipo et al., 2023), a pub-
licly available high-quality dataset for African lan-
guages, that builds on mC4? and amounts to 19GB
of African texts on various tasks, aim to tackle the
problem of high-quality African data.

Despite these advancements, Nigerian languages
remain severely underrepresented in NLP research.
Existing models often fail to capture the linguistic
and cultural nuances of these languages, limiting
their practical applicability. This gap underscores
the need for a targeted, resource-efficient approach
that prioritizes high-quality data curation and ef-
ficient parameter utilization. Our work, SABI-
YARN, addresses this need by introducing a 125M-
parameter decoder-only model specifically trained
for Nigerian languages. By leveraging a multi-task
learning framework (Zhang and Yang, 2021) and
adhering to Chinchilla scaling laws, SABTYARN
demonstrates that smaller, meticulously trained
models can achieve remarkable performance in
low-resource settings, offering a viable alternative
to the prevailing trend of massive, indiscriminate
scaling.

3 Methodology

This section details the development of SABIYARN-
125M, including the dataset collation, processing,
model architecture, and training.

3.1 Dataset Curation and Cleaning

The preparation of our datasets involved a metic-
ulous process of collation, deduplication, task-
specific tagging, and tokenization. This section
outlines our methodology for ensuring the datasets
were optimally structured for our multi-task learn-
ing approach.

Zurlhttps://paperswithcode.com/dataset/mc4
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The training dataset for SabiYarn was curated
through a comprehensive effort that involved man-
ually aggregating relevant data sets from sources
such as Hugging face and the BBC Africa news
website. The resulting dataset comprised approx-
imately 114.7 million samples, representing 10.1
billion tokens (see Table 7 and Table 8 for data
distribution), encompassing a diverse range of text
data in various Nigerian languages, including the
bible, news articles, social media posts, literary
works, and educational resources for different NLP
tasks. These tasks include: text generation, trans-
lation, sentiment and topic classification, text sum-
marization, headline generation, text diacritization,
text cleaning, instruction following and reasoning.

The text diacritization and cleaning datasets
were generated by introducing random noise into a
portion of the already collated data. For each char-
acter in the original data, there was a 15% prob-
ability of applying a random modification. This
modification involved either inserting a random
character or deleting the original character.

To ensure dataset quality and relevance, a rigor-
ous cleaning and filtering process was applied to
all collected datasets. This involved the following
techniques:

* Manual Scrutiny: Duplicates, unwanted sam-
ples, and unreadable characters were manually
identified and removed.

Normalization: Text formats were standard-
ized for consistency, including the conversion
of Unicode characters to their language equiv-
alents.

Quality Refinement: Data integrity issues
were addressed. This included removing data
exhibiting social, gender, and sexual biases
(identified during manual selection), filtering
out repeated nonsensical characters using reg-
ular expressions, and excluding poor-quality
samples. All sentence lengths and single-word
translations were considered, while empty
strings were discarded. This was a time-
intensive but crucial step.

The resulting dataset is a rich and diverse corpus
that captures linguistic nuances and incorporates
cultural contexts specific to the target (9) Nige-
rian languages including English. However, the
complete dataset has not yet been made publicly
available.



3.2 Dataset Task Assignment

For each dataset described in the previous section,
we undertook a manual review process to deter-
mine its suitability for specific NLP tasks. This
critical step ensured that each dataset was appro-
priately matched to tasks such as translation, senti-
ment classification, named entity recognition, topic
classification, instruction-following and so on.

3.2.1 Task-Specific Tagging

Upon establishing the task relevance of each
dataset, we implemented a unique tagging system.
This system involves the use of task-specific tag
pairs, designed to clearly demarcate the input and
output segments of each data sample. The tagging
process follows this structure:

* A unique start tag is prepended to the input
text segment.

* A corresponding end tag is appended after the
input text, followed by the output text.

For instance, in a sentiment classification task:
<classify>I love rice!<sentiment> positive

Here, <classify> and <sentiment> are the
task-specific tags, "I love rice!" is the input text,
and "positive" is the output text. Other tags can be
seen in Table 9

3.2.2 Rationale for Tagging

This tagging approach serves several crucial pur-
poses.

1. Task Identification: It allows the model to
identify the specific NLP task associated with
each input during training and inference.

2. Input-Output Demarcation: It clearly sep-
arates the input text from the expected out-
put, facilitating more effective learning of the
input-output relationship through focused loss
computation.

3. Multi-Task Learning: Using consistent tag-
ging for different tasks, we enable the model
to learn multiple tasks within a unified frame-
work.

3.3 Tokenization

SabiYarn-125M utilizes the Bloom tokenizer, a
BPE tokenizer pretrained on a curated dataset to
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effectively handle the linguistic nuances and dia-
critics of 9 Nigerian languages. Informed by the vo-
cabulary sizes of GPT-2 and Mistral v3 tokenizers,
and considering the training corpus’s linguistic di-
versity, we established a vocabulary size of 52,050
tokens. A vocabulary size of 52k was chosen to
achieve a compromise between adequate coverage
across 9 languages and practical compute/mem-
ory limitations. This decision is supported by the
findings of (Dagan et al., 2024), who suggest that
increasing vocabulary size, and consequently de-
creasing sequence length, may lead to diminished
performance as a result of reduced FLOPS effi-
ciency during training. Task-specific tags were in-
corporated as special tokens during tokenizer train-
ing.

The trained tokenizer was subsequently used to
tokenize the cleaned training data into a stream of
token ID sequences, which were stored in a binary
file in uint8 format. During this process, a valida-
tion set comprising approximately 6 million tokens
was generated by random sampling and stored in a
separate binary file.

3.4 Model Architecture

SabiYarn-125M is a 125-million-parameter lan-
guage model based on the Generative Pre-trained
Transformer J (GPT-J) architecture. To enhance
generalization, particularly in low-resource set-
tings, we extend the attention module’s output vec-
tors with additional information via a feedforward
network in each transformer block following the
design used in GPT-J? (see comparison in Fig 1).
However, we employed a trainable positional em-
bedding layer unlike the rotary embedding layer
seen in GPT-I’s architecture. This choice was
motivated by the hypothesis that trainable embed-
dings could offer greater flexibility in learning po-
sitional relationships within a smaller parameter
space, potentially leading to faster convergence
and improved performance compared to fixed ro-
tary embeddings at this scale. We believe that this
design enables the model to handle a wide range
of NLP tasks with limited data. See Table 1 for
specific details.

The model features 12 layers, 12 attention heads,
an embedding size of 768, and a context length of
1024, and employs learned positional embeddings,
optimizing its learning capacity. These specifica-
tions align with the GPT-2 medium model.

Shttps://www.eleuther.ai/artifacts/gpt-j
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Model Name

Tparams  Tlayers dmodel

Theads

dnead  Context Length Learning Rate

SabiYarn-125M  125M 12 768

12

64 1024 6.0 x 107°

Table 1: SabiYarn Model Specifications

GPT
architecture

uuuuu
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embedding X
embedding

embedding

Figure 1: GPT-J architecture

3.5 Pretraining

SabiYarn-125M was pre-trained using causal lan-
guage modeling with a multitask objective on a
diverse, multilingual Nigerian corpus. This joint
training enriches shared linguistic representations,
improving next-word prediction and generalizing
across tasks and languages. By increasing ef-
fective training data size and diversity (crucial
for underrepresented languages), the model devel-
ops stronger token representations, enhancing lan-
guage understanding and prediction. This multitask
framework yields transferable and effective repre-
sentations for various NLP applications, boosting
performance and versatility. Table 8 presents the
token distribution per language and task.

During model pretraining, we implemented a
comprehensive masking strategy to prevent infor-
mation leakage and ensure robust learning. Our
approach consisted of two key components:

1. Task dependent, token-level masking: Dur-
ing training, when processing packed token
sequences, a custom mask is applied for next-
token prediction. If a sequence includes task-
specific tags (e.g., for translation or NER, de-
tailed in table 9), all tokens between these
paired tags (representing the typical input)
are masked out when calculating the cross-
entropy loss on the shifted target sequence.
This strategy trains the model to predict not
only subsequent tokens generally but also to
generate the correct output sequence condi-
tioned on the presence of a downstream task
and its corresponding input. This masking
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mechanism is illustrated in Fig 2).

. Sequence Packing: We isolated attention cal-
culations to prevent information leakage be-
tween different data samples in a batch, ensur-
ing that each sample’s processing remained
independent.

As visualized in Figure 2, this dual masking
approach created a more challenging learning en-
vironment that encourages the model to develop a
genuine understanding of linguistic patterns rather
than relying on shortcuts or memorization. Us-
ing this technique, we significantly improved the
model’s ability to learn task-specific features and
generalize to unseen data.

<translate> I love rice <yor> Mo féraniresi |end_of_text| <classify> This ..

| -
0.48

Figure 2: Masking during loss computation

The model was trained on a single 24GB GPU,
token ID sequences of length 1,024 (block size)
were randomly sampled from the binary file to form
batches of size 12. A gradient accumulation step of
40 was used, resulting in an effective token batch
size of 406000 tokens, in conjunction with a cosine
learning rate scheduler with a maximum learning
rate of 6 x 104 and a minimum learning rate of
6 x 10~°. Training was carried out with precision
bfloat16 to optimize memory usage and accelerate
training without compromising quality.

4 Evaluation and Results

4.1 Evaluation Methodology

The performance of SabiYarn-125M was evaluated
across a spectrum of NLP tasks relevant to the
Nigerian linguistic landscape. To ensure a compre-
hensive and reproducible assessment, we adopted
the benchmark datasets and tasks used by (Ojo
et al., 2023), including Translation, News Classi-
fication, Named Entity Recognition (NER), Senti-
ment Analysis, Text Diacritization, and Text Clean-
ing. These datasets, MASAKHANEWS (Adelani
et al., 2023) for news classification, AFRISENTI
(Muhammad et al., 2023) for sentiment analysis,



and MASAKHANER(Adelani et al., 2021) for
named entity recognition, provide a robust frame-
work for assessing the model’s capabilities across
diverse African languages. By adhering to these
established benchmarks, we facilitate a fair and
meaningful comparison between SabiYarn-125M
and existing state-of-the-art language models.

4.2 Fine-tuning

In addition to evaluating the base pre-trained model,
we fine-tuned SabiYarn-125M on the training sets
of the benchmark datasets mentioned above. This
process yielded several specialized models, each
designed to excel in specific NLP tasks:

* SabiYarn-finetune: Fine-tuned on the aggre-
gated training sets of all benchmark datasets,
encompassing all four Nigerian languages
(Yoruba, Igbo, Hausa, and Pidgin) and includ-
ing back-translation data.

* SabiYarn-translate: Optimized for transla-
tion tasks, fine-tuned on the benchmark trans-
lation dataset and its corresponding back-
translations across all languages.

* SabiYarn-topic: Optimized for topic classi-
fication, fine-tuned on the combined multilin-
gual topic classification dataset.

* SabiYarn-sentiment: Optimized for senti-
ment analysis, fine-tuned on the aggregated
sentiment classification dataset across all lan-
guages.

* SabiYarn-NER: Optimized for Named Entity
Recognition, fine-tuned on the combined NER
dataset spanning all languages.

» SabiYarn-diacritics-cleaner: Optimized for
text diacritization and cleaning across all lan-
guages.

It should be noted that our approach diverges
from that of M2M-100, which employed separate
fine-tuning processes for each language and trans-
lation direction. We adopted a unified fine-tuning
strategy across languages, a method employed in
various multilingual models. To create the dataset
for text diacritization and cleaning fine tuning tasks,
we utilized pre-existing datasets and applied cus-
tom transformations. For diacritization, we selec-
tively removed diacritical marks with a 50% - 100%

probability, creating pairs of original and diacritic-
free text. For text cleaning, we introduced con-
trolled noise to the text, simulating common errors
and inconsistencies found in real-world data. The
resulting datasets were split into train, validation,
and test sets, with 15,000, 1,000, and 5,000 samples
respectively for each language and task.

5 Results and Discussion

The subsequent sections provide a detailed analysis
of the performance of SabiYarn-125M across the
evaluated tasks. We present comparative results
against existing models and discuss the implica-
tions of our findings for low-resource language
processing in the African context.

5.1 Task-specific Performance

Translation: SabiYarn, despite its significantly
smaller size (125M parameters), demonstrates
competitive performance in machine translation
tasks, particularly excelling in forward translation
for Igbo and pidgin and backward translation for
Yoruba. While larger models like mTO-MT (13B)
and M2M-100 (418M) achieve higher scores in
several categories, SabiYarn’s performance is re-
markable considering its parameter efficiency. The
model’s strong performance in Nigerian Pidgin
(Pcm) translation, outperforming many larger mod-
els, highlights its effectiveness in handling this
unique linguistic context. However, the reliability
of the evaluation is somewhat constrained by the
benchmark dataset’s use of only a single reference
translation per source sentence. This is particularly
limiting for Nigerian languages such as Yoruba,
where multiple valid translations are often possi-
ble, potentially underestimating the models’ true
capabilities. Additionally, SabiYarn’s tendency to
avoid verbosity and its occasional struggle with co-
herence during translation present areas for future
improvement, suggesting that refining the model’s
ability to balance conciseness with contextual un-
derstanding could further enhance its performance.

Sentiment Analysis: SabiYarn, with only 125M
parameters, demonstrates impressive performance
in sentiment analysis across Nigerian languages,
achieving average accuracies of 66.0% (SabiYarn-
Sentiment) and 65.3% (SabiYarn-Finetune). While
AfroXLMR-Large (550M parameters) leads in
most categories as seen in Table 4, SabiYarn con-
sistently outperforms larger models like GPT4 and

100



Task avg

Yor

Hau Ibo Pcm

Text Diacritization 96.9 100.0
713 7783 5467 81.54 71.17

Text Cleaning

93.7

Table 2: Text Diacritization and Cleaning Results. We show the BLEU score of SabiYarn-diacritics-cleaner.

Model Name Size avg Yor Hau Ibo Pcm
XX-en

SabiYarn-Translate 125M 409 31.2 323 464 549
SabiYarn-Finetune 125M 41.1 29.1 344 46.0 549
M2M-100 418M 383 35.1 351 46.1 367
mTO 13B 360 357 32.0 312 449
mTO-MT 13B 457 40.8 38.1 46.8 569
GPT4 - 272 13.6 147 21.8 58.8
Llama2 13B 29.0 20.8 174 23.1 5438
en-xx

SabiYarn-Translate 125M 413 34.8 31.6 433 554
SabiYarn-Finetune 125M 41.4 344 30.72 423 58.0
M2M-100 418M 483 359 433 50.0 64.0
mTO 13B 199 63 154 235 342
mTO-MT 13B 313 152 23.11 385 483
GPT4 - 358 18.1 36.1 357 534
Llama2 13B 157 104 147 163 214

Table 3: Machine Translation Results: Comparison
of ChrF score of SABIYARN and results obtained from
Jessica et al. (2023)

Llama2 (13B parameters) across all languages. No-
tably, SabiYarn-Finetune surpasses AfroXLMR-
Large in Nigerian Pidgin (Pcm), highlighting its
effectiveness in low-resource languages. The con-
sistent performance of the model in various Nige-
rian languages (63.6% to 66.8%) emphasizes its
robustness and efficiency in handling multilingual
sentiment analysis tasks with significantly fewer
parameters.

News Classification: In news classification (Ta-
ble 5), SabiYarn-Topic showcases remarkable per-
formance with an average F1 score of 87. 03%.
This is particularly impressive when compared to
much larger models like mTO (41.6%) and GPT4
(55.45%). SabiYarn even outperforms the larger
AfroXLMR-Large model in Nigerian Pidgin (pcm)
with a score of 96.3%. This demonstrates Sabi-
Yarn’s strong capability in understanding and cat-
egorizing news content in Nigerian languages, de-
spite its smaller size.

Named Entity Recognition: SabiYarn-Finetune
achieves the highest F1 score of 93.4, outper-
forming all other models, including the larger
AfroXLMR-Large (550M) and prompting-based
LLMs like GPT-4 and Llama2 (Table 6). In con-
trast, larger models like mTO and mTO-MT fail to
perform well in this task, scoring 0.0, while GPT-
4 and Llama?2 achieve modest results of 55.6 and
17.8, respectively. This may underscore the limita-
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tions of prompting-based methods for NER tasks
compared to specialized fine-tuned models such as
SabiYarn.

Text Diacritization: The results for text dia-
critization, as shown in Table 2, demonstrate the
model’s strong performance in this task. SabiYarn-
diacritics-cleaner model achieved a perfect BLEU
score of 100.0 for Yoruba and a high score of 93.7
for Igbo. These results indicate the model’s ex-
ceptional ability to accurately restore diacritical
marks, particularly in Yoruba text, and its strong
performance in Igbo, suggesting its potential for
improving text processing in these languages.

Text Cleaning: As seen in Table 2, The model
achieves the highest BLEU score of 77.83 for
Yoruba, indicating strong performance in this lan-
guage. However, performance varies significantly
between languages, with Hausa scoring the lowest
at 54.67, probably due to the lack of diacritics in
this language, suggesting room for improvement in
handling linguistic diversity and complexity.

6 Conclusion

Although originally trained in Nigerian languages,
SabiYarn-125M represents a significant advance-
ment in the field of natural language processing
(NLP) for languages with limited data. By encom-
passing a diverse range of languages and offering
a comprehensive suite of NLP functionalities, this
model establishes a robust foundation for the po-
tential transformation of language technology not
only in Nigeria but across the African continent,
thus making a substantial contribution to the global
NLP community.

The development of SabiYarn-125M is driven
by several key objectives:

1. Empowering Researchers: This model
serves as a versatile foundation for future re-
search and development, facilitating the cre-
ation of more culturally relevant and impactful
language technologies.

2. Addressing Linguistic Diversity: By
supporting multiple Nigerian languages,
SabiYarn-125M tackles the unique challenges
posed by Africa’s rich linguistic landscape.



Model Name Size avg Yor Hau Ibo Pcm
SabiYarn-Sentiment 125M  66.0 650 66.1 66.0 66.0
SabiYarn-Finetune  125M 653 64.8 66.0 63.6 66.8
AfroXLMR-Large  550M 75.0 74.1 80.7 79.5 68.7
Prompting of LLMs

mTO0 13B 41.6 35.6 405 267 63.6
mTO0-MT 13B 344 237 361 272 50.7
GPT4 - 550 556 418 66.7 577
Llama2 13B 27.8 24.0 255 351 243

Table 4: Sentiment Analysis Results: Comparison of Accuracy score of SABIYARN and results obtained from
(Ojo et al., 2023)

Model Name Size avg Yor Hau 1Ibo Pcm
SabiYarn-Topic 125M 909 89.0 90.2 87.7 96.7
SabiYarn-Finetune 125M 87.03 84.4 82.1 853 67.8
AfroXLMR-Large 550M 9295 94.0 922 934 92.1
AfriTeVa-V2 428M 912 923 894 86.1 96.8
Prompting of LLMs

mTO 13B 41.6 356 405 267 63.6
mTO-MT 13B 344 237 36.1 272 507
GPT4 - 5545 556 418 667 577
Llama2 13B 2722 240 255 351 243

Table 5: News Classification Results We compare the F1-score of SabiYarn with that of the current SOTA models.

Model Name Size avg
SabiYarn-NER 125M  93.2
SabiYarn-Finetune 125M 93.4
AfroXLMR-Large 550M 84.6
Prompting of LLMs

mTO 13B 0.0
mTO-MT 13B 0.0
GPT4 - 55.6
Llama?2 13B 17.8

Table 6: Named Entity Recognition Results: We com-
pare the F1 score of SABIYARN with results obtained
from (Ojo et al., 2023).

3. Enhancing NLP Capabilities: The model’s
wide array of functionalities paves the way for
advanced applications in machine translation,
sentiment analysis, named entity recognition,
and beyond.

Looking ahead, SabiYarn-125M opens up nu-
merous avenues for future research:

* Expansion to Additional Languages: Fu-
ture iterations could incorporate more African
languages, further enhancing the model’s ver-
satility and impact.

* Domain-Specific Adaptations: Researchers
could fine-tune newer versions of the model

for specific domains such as healthcare, ed-
ucation, or legal applications, tailoring it to
address sector-specific challenges.

* Cross-Lingual Transfer Learning: Investi-
gating the model’s capacity for cross-language
fine-tuning across related African languages
could yield valuable insights for low-resource
language processing.

In conclusion, SabiYarn-125M represents a sig-
nificant step towards bridging the gap in NLP re-
search and technology for underrepresented lan-
guages. By showcasing the model’s capabilities
and potential applications, we hope to inspire and
encourage further advancements in this field, ul-
timately contributing to the preservation and em-
powerment of Africa’s rich linguistic heritage in
this digital age and a more inclusive and equitable
global language technology ecosystem.

Limitations

The scope of our evaluation was necessarily limited
to the aforementioned Nigerian languages due to
two critical constraints: the acute scarcity of high-
quality, diverse datasets for African languages, and
the limited availability of substantial computational
resources. These limitations not only underscore
the challenges inherent in low-resource language
research but also highlight a systemic issue in the
field of artificial intelligence as it pertains to lin-
guistically diverse regions. The paucity of com-
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prehensive datasets and the computational divide
present significant barriers to advancing NLP ca-
pabilities across the African continent. This situ-
ation urgently calls for a multi-faceted approach:
increased investment in data collection and cura-
tion for African languages, enhanced allocation of
computational resources for research in these areas,
and a concerted effort to build local Al research
capacity. Addressing these challenges is crucial
not only for advancing NLP technologies in the
region but also for ensuring that the benefits of Al
are equitably distributed across diverse linguistic
communities. Future research must prioritize these
areas to foster a more inclusive and representative
landscape in global NLP development.
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Table 7: Detailed breakdown of number of samples per language per task

Language Trans Class Sum Headline Instruct Monolingual Diac Clean Total
English 0 32,536 0 53 2,243,235 11,097,016 0 6,869,858 20,242,698
Yoruba 729,878 21,572 15,572 56,564 5,016,319 11,673,886 3,602,690 381,418 21,497,899
Hausa 2,619,081 29,171 17,721 320,945 3,435,696 11,797,952 0 2,579,220 20,799,786
Igbo 6,377,666 30,265 41,303 162,148 4,967,183 14,376,298 3,393,839 4,056,681 33,405,383
Pidgin 8,988,159 12,087 145,815 289,865 512,816 4,564,139 0 3,650,887 18,163,768
Urhobo 129,668 0 162,970 0 198 32,711 0 0 325,547
Fulfulde 0 0 0 0 0 126,000 0 0 126,000
Fulah 4,018 0 751 0 2,526 134,968 0 0 142,263
Efik 0 0 0 0 0 9,567 0 0 9,567
Total 18,848,470 125,631 384,132 829,575 16,177,973 53,812,537 6,996,529 17,538,064 114,712,911
Table 8: Detailed breakdown of number of tokens per language per task

Language Trans Class Sum Headline Instruct  Monolingual Diac Clean Total
English - 295542 - 100,612 290,387,169 493,068,409 - 650222243 1434073975
Yoruba 115,188,816 603945 9,030,269 14,666,102  646467,834 834,162,538 242229.137 135,178,107  1,997,526,748
Hausa 250,989,822 617,583 8761900 63429798 386,761,152 1,186,571,221 - 483250,638  2,380,382,114
Igbo 609,811,051 530,117 18,338,768 24977727 646,811,000 751,549,672 161485201 533371421  2,746,874,957
Pidgin 298,282,535 276,284  95768,701 52,113,111 112,421,167 308,031,286 - 580,618,346 1,447,511,430
Urhobo 6,451,518 - 97,198,864 - 56,358 893,162 - - 104,599,902
Fulfulde - - - - - 3,677,103 - - 3,677,103
Fulah 286,795 - 436,133 - 1,069,200 9,953,441 - - 11,745,569
Efik - - - - - 139,740 - - 139,740
Total 1,281,010,537 2323471 229,534,635 155,287,350 2,083,973,880 3,588,046,572 403,714,338 2,382,640,755 10,126,531,538

* mc4 * google/fleurs

* cyanic-selkie/wikianc * google/xtreme_s

» HausaNLP/afrisenti-lid-data * masakhane/masakhanews

* HausaNLP/NaijaSenti-Twitter * masakhane/afriqa_wiki_en_fr_100

* HausaNLP/Naija-Lex * bigscience/xP3all

« wikimedia/wikipedia * CohereForAl/aya_collection_language_split

e udhr

* gsarti/flores_101

« opus100 * mtek2000/yoruba_newsclass_topic

e castorini/africlirmatrix * mxronga/cultura-x-deduped-yoruba

« severo/flores 101 * mxronga/yoruba-proverbs-parallel-corpora

e graelo/wikipedia » ayymen/Weblate-Translations

* igbo_english_machine_translation article booktabs caption

* iamwille/igbo-translation B Previous Section

Some text before the tables. This is to demonstrate

e castorini/wura .
the spacing.

* csebuetnlp/xlsum
* cis-lmu/GlotStoryBook
* wili_2018

e cis-lmu/Glot500
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Table 9: Task-specific tags used for multi-task training

Task Start Tag End Tag
Translation <translate> <lang>:
Sentiment Classification <classify> <sentiment>:
Topic Classification <classify> <topic>:
Instruction Following <prompt> <response>:
Headline Generation <title> <headline>:
Text Diacritization <diacritize> <lang>:
Question Generation <prompt> <response>:
Question-Answering <prompt> <response>:
Text Summarization <summarize>  <summary>:
Text Cleaning <clean> <lang>:

Table 10: Language tags used for multi-lingual training

Language Tag

Yoruba <yor>
Hausa <hau>
Igbo <ibo>
English <eng>
Urhobo <urh>
Fulah <ful>
Efik <efi>
Nigerian Pidgin  <pcm>
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