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Abstract

Large Language Models (LLMs) can enhance
the performance of Named Entity Recognition
(NER) tasks by leveraging external knowledge
through in-context learning. When it comes
to entity-type-related external knowledge, ex-
isting methods mainly provide LLMs with se-
mantic information such as the definition and
annotation guidelines of an entity type, leav-
ing the effect of orthographic or morpholog-
ical information on LLM-based NER unex-
plored. Besides, it is non-trivial to obtain literal
patterns written in natural language to serve
LLMs. In this work, we propose LiP-NER,
an LLM-based NER framework that utilizes
Literal Patterns (LiP), the entity-type-related
knowledge that directly describes the ortho-
graphic and morphological features of entities.
We also propose an LLM-based method to au-
tomatically acquire literal patterns, which re-
quires only several sample entities rather than
any annotation example, thus further reducing
human labor. Our extensive experiments sug-
gest that literal patterns can enhance the per-
formance of LLMs in NER tasks. In further
analysis, we found that entity types with rel-
atively standardized naming conventions but
limited world knowledge in LLMs, as well as
entity types with broad and ambiguous names
or definitions yet low internal variation among
entities, benefit most from our approach. We
found that the most effective written literal pat-
terns are (1) detailed in classification, (2) fo-
cused on majority cases rather than minorities,
and (3) explicit about obvious literal features.

1 Introduction

Named Entity Recognition (NER) seeks to recog-
nize and classify named entities in unstructured
text, and is an essential component in numerous
natural language processing (NLP) applications

*Corresponding author.

Figure 1: An illustration of the concept of LiP-NER.
Literal Patterns (LiP) provide direct description about
the appearance of the entities in a certain type, reducing
the dependence on world knowledge of LLMs.

such as question-answering (Molla et al., 2006), in-
formation retrieval (Weston et al., 2019) and so on.
Initially, NER systems were built with traditional
approaches like rule-based (Borkowski and Wat-
son, 1967) and feature-engineering-based (Zhou
and Su, 2002). With the release of transformer-
based (Vaswani et al., 2017) pre-trained language
models, a new paradigm of NER has been estab-
lished with BERT (Devlin et al., 2019) and models
alike (Wu et al., 2021), which eliminates the burden
of training a model from scratch.

Recently, generative large language models
(LLMs) such as ChatGPT (OpenAI, 2023) have
shown outstanding performance among various
fields of NLP (Min et al., 2023; Zhao et al., 2023).
Prompt engineering, including careful prompt de-
sign and extra information provision, has emerged
as an economical way to make further improve-
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ment of LLMs over downstream tasks at test-time
(Peng et al., 2023).

When it comes to NER, the initial capabilities
of LLMs are not as promising (Jimenez Gutierrez
et al., 2022). One reason is that LLMs rely on
their world knowledge, which is learned during
pre-training stage, to process tasks. Thus, in do-
mains that have less textual resources about the
entities and the types available for pre-training, the
vanilla performance of LLMs will be less impres-
sive. Injecting external knowledge related to the
type of entities could help, as the models know
more details about the type they are annotating
(Seyler et al., 2018). Recent works mainly utilize
the definition and the annotation guidelines of an
entity type (Sainz et al., 2024; Zamai et al., 2024).
As is depicted in Figure 1, a definition is a semantic
description of an entity type, whereas annotation
guidelines mainly contain edge case clarification,
and are offered in a way that is reminiscent of hu-
man annotators. Both types of information offer
more semantic details about the concept of an entity
type, but still rely on the world knowledge of the
connection between the entity and these semantic
information.

Historically, literal feature information has
played an essential role in NER task (McDonald,
1993), for its direct description on orthographic
and morphological patterns of an entity type, and
does not depend on semantic knowledge. However,
to utilize such information in LLM-based NER
systems, it shall be described in natural language,
which is not trivial as it involves expert labor. Be-
sides, documents of literal features are scarce on
Internet, making it difficult to utilize such infor-
mation via retrieval-augmented generation (RAG)
strategies(Gao et al., 2023).

In this paper, we introduce LiP-NER, a method
of LLM-based NER utilizing Literal Patterns (LiP)
written in natural language. Literal patterns are
external knowledge that directly describe the literal
features of an entity type, which can be expected
that have less requirement on world knowledge
than semantic external knowledge. We also pro-
pose an LLM-based method to automatically ac-
quire literal patterns of an entity type. Instead of the
requirement of several annotation examples (Zamai
et al., 2024), our method needs only a list of sam-
ple entities. It gets rid of human annotation, thus
further reducing labor requirements. Our experi-
ments demonstrate the effectiveness of LiP-NER
across different LLMs. Furthermore, our analysis

provides preliminary insights into the entity types
that benefit from our method and the key charac-
teristics of suitable literal patterns for LLM-based
NER tasks.

In summary, our contributions are threefold:

1. We proposed LiP-NER, an LLM-based NER
framework that utilizes literal patterns as
entity-type-related external knowledge, with
less dependency on world knowledge within
LLMs.

2. We also proposed an LLM-based method to
automate the acquisition of the literal patterns
of an entity type. It requires only a list of sam-
ple entities rather than any annotation exam-
ple, thus further reducing labor requirement
without a sacrifice in performance.

3. Through extensive experiments, we demon-
strated the effectiveness of LiP-NER in LLM-
based NER. Our analysis provides preliminary
insights into the entity types that benefit from
our method and the key characteristics of suit-
able literal patterns for LLM-based NER.

2 Related Work

2.1 Named Entity Recognition

Initially, NER systems were built with rule-based
(Borkowski and Watson, 1967) approaches. Start-
ing from the era of feature-engineering-based
(Zhou and Su, 2002) approaches, NER is framed
as a sequence labeling task, which aims to assign
an entity label in BIO format to each token in a
given sentence (Tjong Kim Sang and De Meul-
der, 2003). Recent well-established approaches in-
clude BiLSTM-CRF methods (Lample et al., 2016)
and fine-tuning BERT-based models (Devlin et al.,
2019). These supervised models have shown excel-
lent performance, but they are difficult to generalize
to other domains (Gururangan et al., 2020). In ad-
dition, in specific domains, the scarcity of labeled
data has been a long-lasting challenge, making it
difficult to train models on these domains (Hed-
derich et al., 2021).

2.2 LLM-Based NER

In recent years, generative LLMs have demon-
strated impressive generalization capabilities
across various challenging tasks (Hegselmann et al.,
2023; Robinson and Wingate, 2023; Hendy et al.,
2023), inspiring a series of studies that attempt
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to reframe NER tasks into a generative format.
For instance, Wang et al. (2023) proposed GPT-
NER, which effectively transforms the NER task
from sequence-labeling to text-generation with
some special tokens involved. Li et al. (2023) pro-
posed CodeIE, which utilizes code generator LLMs
and formulates the NER task into a code genera-
tion task. However, efforts of applying generative
LLMs to NER have been less promising, lagging
far behind supervised methods (Jimenez Gutierrez
et al., 2022; Hu et al., 2024).

2.3 External Knowledge for LLM-Based NER

Seyler et al. (2018) have demonstrated that the pro-
vision of external knowledge benefits in NER. Re-
cent methods take full advantage of external knowl-
edge via prompt-based augmentation of LLMs.

When it comes to entity-type-related knowledge,
an intuitive idea is the definition of a type. Prompt-
NER (Ashok and Lipton, 2023) utilizes definitions
and annotated examples as external knowledge,
with a prompt that instruct LLM to perform self-
correction via justifying the entries in its potential
entity list. Zhou et al. (2024) proposed Universal-
NER and tried to replace the type name with a short
description of the type but with no gain. Mimic
human annotators, GoLLIE (Sainz et al., 2024)
and SLIMER (Zamai et al., 2024) applied anno-
tation guidelines in code- and natural-language-
LLM-based NER, respectively. Hu et al. (2024)
applied annotation guidelines with additional in-
structions based on error analysis in LLM-based
clinical NER tasks and observed constant improve-
ment over vanilla performance.

Both definition and annotation guidelines pro-
vide more semantic details about an entity type,
but still rely on world knowledge of the connection
between the entity and the knowledge, which is
learned by LLMs during the pretraining stage.

3 LiP-NER

3.1 Literal Patterns

The motivation of this work is to provide LLMs
with type-related knowledge that is less seman-
tic and directly describes the superficial traits of
potential entity names, so that the LLMs can pro-
cess NER tasks with less dependence on the world
knowledge within the models.

In rule-based and feature-engineering–based
NER systems, researchers often exploit character-
istics inherent to the entity names, such as mor-

phological characteristics, including affixes and
keywords, and orthographic characteristics, includ-
ing initial capitalization or all-caps, alphanumeric
sequence structures, the use of punctuations (e.g.,
hyphens and delimiters) and so on. These features
are either hand-crafted by experts or automatically
extracted from large-scale gazetteers, and the re-
sulting patterns are employed in NER systems as
decision rules, regular expressions, or dimensions
of feature vectors.

For LLMs, external knowledge is injected by
writing it directly into prompts in natural language.
In this paper, we define Literal Patterns (LiP) as a
list of literal features written in natural language.
This list typically includes the orthographic and
morphological properties of a given entity type:
common affixes, keywords, capitalization conven-
tions, alphanumeric patterns, punctuation usage,
and so on. In our method, these features are discov-
ered from a relatively small list of sample entities
by LLMs. Hence, we refer to them as “patterns”.

Figure 2: The prompt template used to query LLMs
for the generation of literal patterns, which includes a
list of sample entities and a generation instruction. The
term "nomenclature" was used in experiments but is
deprecated in this paper, due to its inaccuracy-while
nomenclature refers to a system of naming, the resource
generated in this way is more like a list of patterns.
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3.2 Acquire Literal Patterns via LLMs
Although literal patterns are useful resources, it is
not trivial to obtain them. To write literal patterns
in natural language, expert labor is required. Es-
pecially for the entity types with more diversity in
entity names, it’s nearly impossible to exhaust the
nuances.

To overcome this limitation, we exploited Chat-
GPT (OpenAI, 2023) to generate literal patterns.
Being different from the method of generating an-
notation guidelines (Zamai et al., 2024), which
utilizes manually labeled annotation examples, gen-
erating literal patterns requires only a small list of
sample entities. In particular, we designed a zero-
shot prompt template shown in Figure 2 to query
LLMs. In this template, we provide a small list
of sample entities to prompt the LLM to generate
literal patterns in a list.

3.3 Case Study

Figure 3: Case study example. The golden and green
entities are correct labels, while the red one is wrong.
The underline in the text labels a nested long entity,
which is missed in all configurations.

Figure 3 shows an case study example. This is
an example from GENIA dataset, labeling protein
entities, tested on LLAMA-3-8B-INSTRUCT with 4
configurations: vanilla, with definition, with anno-
tation guidelines, and with literal patterns. The full
texts of external knowledge used in this example
are listed in Appendix B.

The vanilla model labels 2 correct entities, both
are abbreviations. The model may have some world

knowledge about these two mentions, or the model
learned that proteins often appear in text as abbrevi-
ations or code names, so it labels all abbreviations
in this text, which are two correct labels.

Providing a definition of protein, the perfor-
mance stays still. Although the definition enriches
the meaning of protein, offers more semantic in-
formation to the context, it fails to provide more
clue for the LLM to label. Providing annotation
guidelines, the performance does not change. An-
notation guidelines offer several regulations and
notices, which may help refining the borders of la-
bels or filtering out potential false labels, but in this
case, there is no false label to be refined or filtered
out.

Providing literal patterns, two additional entities
are correctly labeled, while one incorrect label is
introduced. With literal patterns, the model learns
what entities of a certain type may look like, and
follows the provided patterns to label. In this case,
the model learned that protein entities may appear
as functional descriptions and abbreviations, so it
labeled 3 more mentions that involve functional
descriptions, which were 2 correct labels and 1
wrong label.

4 Experiments

In the experiments, we comprehensively investi-
gated the effect of literal patterns on low resource
LLM-based NER tasks. All experiments were con-
ducted on original models without any fine-tuning.
Our research questions include:

• RQ1: Can LiP-NER help LLMs to process NER?

• RQ2: What kinds of entity types are more likely
to benefit from LiP-NER?

• RQ3: What is a helpful list of literal patterns?

4.1 Datasets & Metrics

We conducted experiments on six publicly accessi-
ble datasets, including:

MIT dataset series (Liu et al., 2013) is a widely-
used benchmark for zero-shot NER, which consists
of three datasets: restaurant, movie, and movie-
trivia. MIT-restaurant contains queries about
restaurants with 8 entity types. MIT-movie are
those about movies and MIT-movie-trivia con-
tains more complex queries, each of them has 12
entity types.
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CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003) is a famous dataset in news domain, which
has 4 entity types including person, organization,
location and miscellaneous.

GENIA (Kim et al., 2003) is a dataset in biomed-
ical domain. We follow Collier et al. (2004) to
simplify GENIA into 5 entity types including DNA,
RNA, cell_line, cell_type and protein.

BC5CDR (Li et al., 2016) is another dataset in
biomedical domain, including 2 entity types: chem-
ical and disease.

We followed the official splits of training, devel-
opment and test sets of these datasets. We merged
training and development sets for the extraction
of annotation examples or sample entities for the
generation of the definitions, guidelines and literal
patterns, and test these knowledge on the test sets.

During evaluation, we processed deduplication
on both the model predictions and the ground truth.
We filtered out the pure hallucination predictions
(i.e. predicted entities that were not in the target
text) before evaluation, as these predictions would
not introduce false annotation in the text. We per-
formed strict matching in evaluation, where a pre-
dicted entity was considered correct only if both its
boundaries and type exactly matched those of the
corresponding ground-truth entity.

We report micro-precision (P), recall (R) and
F1 scores in our results, where all entity types are
treated equally.

4.2 Models

We conducted our experiments on two open-
source LLMs, META-LLAMA-3-8B-INSTRUCT

(Grattafiori et al., 2024) and QWEN2.5-7B-
INSTRUCT (Yang et al., 2024). These instruct-
tuned models could follow natural language in-
structs and provide outputs in JSON format, which
helped post-processing. We ran these models lo-
cally without fine-tuning. Greedy decoding (i.e.,
do_sample = false) was applied and the seeds were
fixed for reproducible generation. Our inference
template is listed in Appendix A.

4.3 Baselines

We compare our method with aforementioned com-
monly used entity-type-related external knowledge,
including definition and annotation guidelines.

To generate definition and guidelines, following
SLIMER (Zamai et al., 2024), for each entity type

of each dataset, we extracted 3 annotation exam-
ples from the train&dev set and utilized the 1-shot
prompt template reported in the original paper to
prompt OpenAI’s GPT-4O-MINI. To Briefly intro-
duce the template, it contains a fixed demonstra-
tion, including 3 annotation examples and a pair
of manually written definition and guidelines of a
type, an instruction saying Now do the same for the
Named Entity: type_name. Examples:, and the 3
annotation examples extracted from the train&dev
set.

We examined LLMs’ capabilities under the cir-
cumstances of without any external knowledge
(vanilla), with the definition (marked as w/ Defi-
nition) and annotation guidelines (w/ Guidelines)
respectively, and with the combination of these two
kinds of information (w/ Def&Guide).

4.4 LiP-NER

We utilized the proposed zero-shot prompt template
to acquire literal patterns. For each entity type, we
extracted 10 sample entities from the train&dev
set to prompt OpenAI’s GPT-4O-MINI to generate
literal patterns. We added generated literal patterns
into aforementioned four baseline circumstances
and compared the results (marked as + LiP) with
the baselines.

5 Results

5.1 Effectiveness of LiP-NER (RQ1)

From the results in Table 1, we have the following
observations:

(1) Comparison with vanilla abilities Compar-
ing the vanilla capability of each model (row 1
of each model) with the augmentation of literal
patterns (row 2), on both models, injecting literal
patterns yields better F1-scores. On LLAMA-3-8B-
INSTRUCT, precision rates consistently increase,
and recall rates improve on every dataset except
a small decrease on CoNLL-2003, as a trade-off
for precision rates. On QWEN-2.5-7B-INSTRUCT,
all precision scores rise, and recall improves on all
datasets except MIT-movie-trivia and GENIA, as a
trade-off for precision rates.

(2) Comparison with other knowledge Com-
paring literal patterns (row 2 of each model) with
definition (row 3) and annotation guidelines (row
5) under the circumstances where only one kind of
knowledge is injected, literal patterns reach more
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Prompt

Dataset (Metrics: Micro-P, R, F1 percentages)

MIT CoNLL-2003 GENIA BC5CDRrestaurant movie movie-trivia

META-LLAMA-3-8B-INSTRUCT

Vanilla 26.1 55.4 35.5 24.6 68.9 36.2 18.5 56.0 27.8 23.6 84.3 36.9 25.6 56.0 35.1 60.0 66.8 63.2
+ LiP 28.0 59.3 38.0 26.2 72.4 38.4 23.9 56.8 33.7 36.8 82.8 51.0 28.1 57.7 37.8 73.5 68.1 70.7
(∆ F1) ↑ 2.5 ↑ 2.2 ↑ 5.9 ↑ 14.1 ↑ 2.7 ↑ 7.5

w/ Definition 25.7 59.9 36.0 26.2 71.9 38.4 19.5 58.1 29.2 26.3 85.2 40.2 32.6 54.4 40.8 64.2 71.5 67.6
+ LiP 29.6 60.1 39.6 26.6 72.1 38.9 22.7 59.1 32.8 33.6 85.3 48.3 32.1 58.1 41.3 70.2 70.5 70.4
(∆ F1) ↑ 3.6 ↑ 0.5 ↑ 3.6 ↑ 8.1 ↑ 0.5 ↑ 2.8

w/ Guidelines 29.5 51.7 37.5 30.2 67.1 41.7 22.7 59.4 32.9 31.5 87.6 46.3 31.5 51.1 39.0 67.9 65.4 66.6
+ LiP 31.1 53.1 39.2 30.5 70.6 42.6 25.3 59.9 35.6 34.0 85.9 48.7 29.1 55.8 38.3 72.7 62.6 67.3
(∆ F1) ↑ 1.7 ↑ 0.9 ↑ 2.7 ↑ 2.4 ↓ 0.7 ↑ 0.7

w/ Def&guide 29.6 55.6 38.7 28.1 68.5 39.9 20.5 58.9 30.4 30.0 87.2 44.6 38.3 52.0 44.1 69.1 66.5 67.8
+ LiP 30.5 58.3 40.0 28.7 70.5 40.7 21.7 60.0 31.9 30.8 87.1 45.5 34.2 58.2 43.1 69.2 66.0 67.6
(∆ F1) ↑ 1.3 ↑ 0.8 ↑ 1.5 ↑ 0.9 ↓ 1.0 ↓ 0.2

QWEN2.5-7B-INSTRUCT

Vanilla 33.0 37.2 35.0 36.9 58.6 45.3 24.2 53.4 33.3 41.7 66.4 51.2 46.2 30.7 36.9 77.6 52.1 62.4
+ LiP 38.6 44.0 41.1 44.1 62.9 51.8 29.0 52.3 37.3 42.0 72.1 53.1 52.8 29.3 37.7 77.8 52.9 63.0
(∆ F1) ↑ 6.1 ↑ 6.5 ↑ 4.0 ↑ 1.9 ↑ 0.8 ↑ 0.6

w/ Definition 33.4 46.4 38.8 43.0 63.9 51.4 23.0 53.6 32.2 47.9 66.9 55.9 45.9 24.7 32.1 81.7 53.5 64.7
+ LiP 37.7 46.3 41.5 48.1 60.9 53.7 34.1 54.7 42.0 45.3 71.9 55.6 53.2 23.6 32.7 81.6 46.7 59.4
(∆ F1) ↑ 2.7 ↑ 2.3 ↑ 9.8 ↓ 0.3 ↑ 0.6 ↓ 5.3

w/ Guidelines 36.2 43.1 39.4 37.8 62.5 47.1 23.0 50.7 31.7 43.8 71.4 54.3 47.5 29.2 36.2 81.1 48.8 61.0
+ LiP 41.0 39.5 40.2 43.5 59.2 50.1 30.1 48.6 37.2 46.4 69.6 55.6 51.0 27.4 35.7 77.6 44.8 56.8
(∆ F1) ↑ 0.8 ↑ 3.0 ↑ 5.5 ↑ 1.3 ↓ 0.5 ↓ 4.2

w/ Def&Guide 38.8 43.0 40.8 40.8 62.8 49.4 24.8 51.3 33.5 47.5 67.8 55.9 48.0 25.0 32.9 83.4 48.3 61.2
+ LiP 41.0 43.1 42.0 44.2 59.9 50.9 33.2 49.2 39.6 47.3 71.0 56.8 51.8 25.3 34.0 80.5 46.1 58.7
(∆ F1) ↑ 1.2 ↑ 1.5 ↑ 6.1 ↑ 0.9 ↑ 1.1 ↓ 2.5

Table 1: Main experiment results.

top F1-scores than other knowledge, with a require-
ment of only a small list of sample entities to gener-
ate, rather than annotated examples. On LLAMA-3,
literal patterns reach 4 out of 6 top F1-scores, where
definition and annotation guidelines reach 1 respec-
tively. On QWEN-2.5, literal patterns reach 4 out
of 6 top F1-scores, where definition reaches 2 and
none for annotation guidelines.

(3) Literal patterns as add-on Considering lit-
eral patterns as an add-on over other knowledge
(row 4 to 3, 6 to 5, 8 to 7), for LLAMA-3, injecting
literal patterns often yields simultaneous improve-
ments in precision and recall over the baselines;
although trade-offs occasionally occur, higher F1-
scores are frequently attained. In 18 comparisons
on LLAMA-3, 10 demonstrate concurrent gains in
precision and recall, 8 exhibit trade-offs (of which
5 yield F1-score improvements and 3 declines).

For QWEN-2.5, trade-offs are more prevalent:
among 18 comparisons, 3 achieve simultaneous
precision and recall enhancements, 12 involve
trade-offs (with 10 F1-score increases and 2 de-

creases), and 3 result in reductions in both precision
and recall.

(4) Comparison between LLMs Generally,
LLAMA-3 achieves higher recall, while QWEN-
2.5 yields higher precision, which indicates that
LLAMA-3 tends to include more potential entities
in its prediction, leading to an increment in both
true and false labels. Moreover, literal patterns that
are effective on one model may fail to improve the
performance on another (see BC5CDR). This indi-
cates that model-specific characteristics are also es-
sential in the efficiency of external knowledge injec-
tion, highlighting the necessity of model-specific
prompt engineering when applying LiP-NER.

5.2 Type-wise Analysis (RQ2)

By looking into the results, we have some obser-
vations about the characteristics of the entity types
that benefit from literal patterns and those does
not. Table 2 shows the results of the entity types
mentioned in this section.

The first kind of entity types that may benefit
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Prompt

Dataset & Entity Type (Metrics: Micro-P, R, F1 percentages)

MIT-restaurant movie-trivia GENIA

Dish Price Relationship DNA RNA cell_line

META-LLAMA-3-8B-INSTRUCT

Vanilla 24.8 85.7 38.5 28.0 45.6 34.7 1.3 20.5 2.4 23.9 46.8 31.6 4.5 66.4 8.4 15.2 49.4 23.3
+ LiP 27.8 84.0 41.7 33.9 49.1 40.1 9.9 50.9 16.5 20.7 52.0 29.6 4.5 76.0 8.5 17.1 43.3 24.5

w/ Definition 26.0 85.4 39.9 21.3 43.3 28.5 1.6 32.8 3.1 32.2 42.4 36.6 9.1 50.0 15.4 18.5 49.9 27.0
+ LiP 28.9 83.6 43.0 32.2 48.5 38.7 4.9 48.0 9.0 24.8 49.5 33.0 8.4 74.0 15.1 18.6 45.1 26.4

w/ Guidelines 25.5 83.6 39.1 27.4 39.2 32.2 1.6 26.9 2.9 26.9 35.9 30.8 5.5 52.9 10.0 19.4 38.5 25.8
+ LiP 26.7 82.9 40.4 36.9 40.4 38.6 4.0 50.9 7.3 24.2 50.9 32.8 5.7 76.9 10.7 17.2 40.3 24.1

w/ Def&guide 25.8 84.7 39.5 27.9 33.3 30.4 1.2 20.5 2.2 36.1 36.5 36.3 11.4 53.9 18.8 23.5 45.1 30.9
+ LiP 27.8 83.6 41.7 37.7 43.9 40.5 3.1 44.4 5.8 29.8 51.3 37.7 9.6 77.9 17.1 24.5 42.8 31.1

QWEN2.5-7B-INSTRUCT

Text-first 57.0 67.9 62.0 39.6 40.9 40.2 0.6 5.9 1.0 36.3 13.0 19.1 31.4 42.3 36.1 29.8 23.9 26.6
+ LiP 62.3 62.7 62.5 49.7 54.4 52.0 8.2 33.9 13.2 57.0 17.5 26.8 62.1 51.9 56.5 27.0 21.2 23.8

w/ Definition 59.8 69.0 64.1 40.3 36.3 38.2 2.7 43.3 5.1 38.0 4.2 7.6 42.2 26.0 32.1 32.1 21.6 25.9
+ LiP 63.0 59.9 61.4 47.9 53.8 50.7 9.6 36.3 15.2 52.2 10.8 17.9 57.1 30.8 40.0 29.8 18.5 22.8

w/ Guidelines 47.9 74.6 58.3 12.5 4.1 6.2 2.0 28.7 3.7 34.3 5.8 9.9 39.3 31.7 35.1 30.1 26.2 28.0
+ LiP 59.3 59.9 59.6 44.8 42.7 43.7 6.7 37.4 11.4 49.3 8.7 14.7 56.1 35.6 43.5 29.7 21.4 24.9

w/ Def&Guide 57.9 69.0 63.0 20.4 6.4 9.8 2.1 32.2 4.0 37.6 4.1 7.3 51.4 36.5 42.7 30.9 23.2 26.5
+ LiP 61.4 63.1 62.2 38.1 40.4 39.2 12.6 39.2 19.0 50.2 8.5 14.5 57.1 30.8 40.0 26.9 19.8 22.8

Table 2: The results of the entity types mentioned in Section 5.2.

from literal patterns is the entity types with rela-
tively standardized naming conventions but lim-
ited world knowledge in LLMs. For these entity
types, LLMs may fail to gather sufficient world
knowledge about entities and their types during
the pre-training stage, leading to an underperfor-
mance of both their vanilla ability and the capacity
to leverage semantic knowledge that relies on such
knowledge. These entity types are often from spe-
cialized domains, where naming conventions are
commonly standardized, allowing LLMs to summa-
rize them coherently through few sample entities.
This kind of entity types highlight the motivation
of this work: provide literal features to alleviate the
requirement of world knowledge within the LLMs.

For instance, for the GENIA dataset on QWEN-
2.5, literal patterns have a significant impact on
both precision and recall of the DNA and RNA
types, leading to a leap on F1-scores (DNA: 19.1
to 26.8; RNA: 36.1 to 56.5). On LLAMA-3, the
same literal patterns lead to a drastic boost in recall
at the cost of precision. This is consistent with the
feature of LLAMA-3: it tends to include more po-
tential entities, and literal patterns further amplify
this tendency. This indicates that the capability of
utilizing literal patterns is model-specific.

Another kind of entity types that may benefit
from literal patterns is the entity types with broad

and ambiguous name or definition, while the actual
entities within these types exhibit limited variation.
For such types, the type names and definitions may
fail to accurately describe the target type and could
even mislead LLMs. However, the limited vari-
ation in the entity names allows effective literal
patterns to be formulated, which may mitigate the
deficiencies in type names and definitions in rep-
resenting entity distributions, thereby improving
performance. This kind of entity types highlights
the importance of precisely describing target entity
types when applying LLMs to NER tasks.

For instance, MIT-restaurant’s Price type in-
cludes adjectives (e.g. cheap, high) and price
ranges (e.g. below 10 dollars) beyond numeral
prices, which are not likely to be covered by the
type name and are not detailed in the generated
definition and annotation guidelines. Hence, lit-
eral patterns which address these nuances could
improve both precision and recall scores on both
models.

Another example is MIT-movie-trivia’s Relation-
ship type. This type focuses on the relationships
between a movie and the series it belongs to, and be-
tween a role and the movie, etc., where the entities
are often multi-word phrases like "third film in a
series". This specialized annotation scope requires
detailed information to enable proper alignment.
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Figure 4: Few-shot experiments on MIT-restaurant dataset. We tested the literal patterns generated with different
amount of sample entities from 5 to 50. The results show that the performance of LiP-NER does not necessarily
grow with the increment in the amount of sample entities.

On the contrary, for the types that is diverse
in names, applying literal patterns may lead to a
focus on a subset of the type. An example is MIT-
restaurant’s Dish type, which includes the main
ingredients and the forms of dishes, the methods to
prepare, etc., and literal patterns with high coverage
are hard to form. Thus, the results demonstrate an
increment in precision and a decrease in recall.

Another example is GENIA’s cell_line type.
This type is almost identical to another cell_type
type, the biggest literal difference is the "line" word
at the end, which doesn’t always appear. The lit-
eral patterns may mislead the models to include
cell_type entities into predictions, or focus on the
"line" word, leading to a decrease in both precision
and recall.

5.3 Quality Analysis of Literal Patterns (RQ3)

To investigate the effect of the amount of sample
entities, we generated literal patterns using various
amounts of sample entities (from 5 to 50) across six
datasets, with results presented in Figure 4. We ob-
serve that increasing the number of sample entities
does not necessarily yield performance gains, and
the trends of performance differ on different mod-
els. These findings suggest that the performance of
LiP-NER is more driven by the quality of the literal
patterns and the characteristics of the models than
by the sheer quantity of sample entities.

In MIT-movie’s RATINGS_AVERAGE type,
MIT-restaurant’s Hours type, CoNLL-03’s MISC
type, GENIA’s cell_line type, and BC5CDR’s Dis-
ease type, we found the literal patterns that con-
sistently perform well across different models and
whether other knowledge are provided or not, as

well as those that perform poorly in any condition.
By comparing the well-performing literal patterns
with those that underperform, we offer preliminary
insights about the quality of literal patterns. We list
these literal patterns in appendix C.

For types with certain spelling patterns, it is nec-
essary to explicitly indicate their main spelling fea-
tures (such as keywords and affixes) in a dedicated
entry. Including several example entities that con-
tain these keywords or roots in an implicit way
does not substitute for directly specifying these key
spelling features.

For entity types that have numerous branches
featuring different patterns, listing patterns of dif-
ferent branches in detail could lead to a broader po-
tential coverage. The descriptions of the branches
should reflect genuine regularities, rather than stiff
explanations based on a single example.

For miscellaneous types like MISC in CoNLL-
03, which consist of a mix of different subtypes,
the literal patterns should cover the subtype that
constitutes the majority rather than the minori-
ties. This way, the annotation pattern aligns more
closely with the target type, thereby improving per-
formance.

6 Conclusion

In this paper, we presented LiP-NER, an LLM-
based NER framework that leveraged literal pat-
terns written in natural language to inject ortho-
graphic and morphological knowledge of target en-
tity types into LLMs. In addition, we introduced a
method to acquire literal patterns via LLMs, which
required only a small list of sample entities rather
than any annotation example. Through extensive
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experiments, we demonstrated the effectiveness of
our framework over baselines. We analyzed per-
formance across various entity types and observed
that types with relatively standardized naming con-
ventions but limited world knowledge in LLMs, as
well as those with broad or ambiguous names or
definitions yet low internal variation among entities,
benefited most from our approach. We conducted
few-shot experiments and found that it was the
quality of literal patterns and the intrinsic charac-
teristics of the models that affect the performance.
We conducted a quality analysis of literal patterns
and concluded that the most effective literal pat-
terns were (1) detailed in classification, (2) focused
on majority cases rather than minorities, and (3)
explicit about obvious literal features. Consider-
ing the feasibility of LiP-NER as a model-agnostic
approach and its demonstrated generalization capa-
bilities, we expect our work to enhance the perfor-
mance in LLM-based NER.

Limitations

Our prompt templates require a separate inference
for each entity type. While this allows the LLM
to focus on recognizing one entity type at a time,
it ties the computational cost for processing each
input to the number of entity types. In addition,
literal patterns are relatively lengthy form of ex-
ternal knowledge, which incurs a high inference
cost. How to compress the literal patterns with-
out sacrificing its effectiveness, or how to repre-
sent it in a more efficient form, is left for future
work. Besides, providing several kinds of external
knowledge in one-round conversation causes inter-
play between them in a black-box way. Offering
these knowledge in a CoT way may have different
result, which is left for future work. Finally, for
most types, literal patterns can cover a large portion
but not all entities. Even for domains and entity
types with naming conventions approved by expert
committees—for example, the human gene naming
conventions ratified by the HUGO Gene Nomen-
clature Committee (HGNC)—it is impossible to
retrospectively cover every gene name. Therefore,
one should not expect to find a perfect set of literal
patterns that encompasses all potential entities.
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A Prompt Template for Inference

See Figure 5.

B External Knowledge of Case Study

Definition. ’protein’ refers to any molecule com-
posed of one or more chains of amino acids, which
serve various biological functions including struc-
tural support, catalysis, signaling, and immune
response.

Annotation Guidelines. Do not label general
biological terms or unrelated uses of the word ’pro-
tein.’ Be cautious of phrases that use ’protein’ as
part of a larger name (e.g., ’protein kinase A’ refers
to a specific protein, not a general reference to a
protein). Avoid labeling entities such as ’protein’
in non-scientific contexts or when referring to food,
like in ’protein-rich diet,’ unless specifically refer-
ring to the biological molecule.

Figure 5: The prompt template for inference of LiP-
NER. The term "nomenclature" was used in our ex-
periments but is deprecated in this paper, due to its
inaccuracy.

Literal Patterns. Protein names may include ab-
breviations (e.g., SAPK, ERP, NGF-R) that repre-
sent functional categories, molecular families, or
receptor types. Hyphenated forms (e.g., gp39-CD8
fusion protein, Gal4-Eed fusion protein) indicate
fusion proteins or chimeric molecules, where two
distinct proteins are combined. Functional descrip-
tions are often used to specify the activity or role
of the protein (e.g., active death effector proteases).
Acronyms or abbreviations derived from full names
(e.g., mitogen-activated kinase, CCACC/Sp1) may
be used to simplify naming. Some protein names re-
flect specific sequences or motifs (e.g., CCACC/Sp1,
which may indicate a DNA-binding motif for Sp1).
Use of “anti-” prefix (e.g., anti-Ig) suggests the
protein is an antibody or related to immune recog-
nition. Names often include detailed structural or
domain information (e.g., Gal4-Eed fusion protein),
highlighting the origin or interaction of specific do-
mains.

C Literal Patterns for Comparison

• (a) MIT-restaurant: Hours
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Good: Use of specific time-related phrases
such as "open," "close," and "dinner," often com-
bined with times of day (e.g., "open until mid-
night," "dinner until 10 pm"). Occasional men-
tion of days of the week or specific dates (e.g.,
"open on sunday," "friday at 6 pm"). Reference
to time intervals and specific periods like "all
night," "before noon," or "in the evening." Indi-
cation of time precision (e.g., "2 am," "around
6 pm," "until 11 pm"). Terms like "24/7," "open
late," "late hours," and "open at this hour" are
common. Informal phrases that refer to being
open for an extended time or continuously (e.g.,
"still open," "stay open," "open all night"). Men-
tion of meal times or specific events (e.g., "for
lunch," "breakfast before 5 am," "dine in af-
ter 10"). Use of "right now" to indicate cur-
rent availability or operational status. Casual
time expressions like "soonest available," "in an
hour," or "this late at night." Usage of "open af-
ter" or "close after" in specific time references
(e.g., "open after 12," "close after 4 pm"). Refer-
ences to business operation, often using "open"
or "open hours" (e.g., "business hours," "opera-
tion," "clock"). Daypart terms like "afternoon,"
"evening," and "midnight" to describe times of
day. Some references to specific time intervals
(e.g., "in 45 minutes," "two weeks").

Bad: The term "Hours" encompasses specific
time indications, either precise (e.g., "5 pm") or
approximate (e.g., "late"). Time references can
include both exact and relative phrasing (e.g.,
"open after 10 pm"). Phrasing may indicate fre-
quency or availability (e.g., "open every day").
Contextual indicators like "today" can specify
the relevance of the time mentioned (e.g., "5 pm
today").

• (b) MIT-movie: RATINGS_AVERAGE

Good: Use of adjectives to describe the quality
of films (e.g., "good," "very good," "mediocre").
Specific numeric ratings are commonly included
(e.g., "five stars," "two stars," "eight stars and
above"). Phrases indicating popularity or criti-
cal acclaim (e.g., "critically acclaimed," "liked
by many," "blockbuster film"). Terms related
to viewer opinions (e.g., "viewers rating," "au-
dience," "reviews"). Reference to awards and
recognition (e.g., "oscar," "best picture," "high-
est rated"). Descriptors that indicate comparison
or ranking (e.g., "top 10," "lowest rated," "higest

rated"). Use of superlative or comparative forms
to emphasize quality (e.g., "best work," "higher
viewers rating"). Informal or conversational lan-
guage indicating recommendations (e.g., "must
see," "should consider seeing"). Inclusion of cat-
egorical terms related to the context (e.g., "newly
released comedy," "sequelsprequels").

Bad: The naming routine for type ’RAT-
INGS_AVERAGE’ includes specific requests for
film ratings and reviews. It often mentions
awards or accolades associated with the films,
such as "Oscar winning" or specific award cate-
gories like "Best Picture." The requests typically
specify a year or other criteria for the ratings,
such as "four stars or higher." Language used
in queries can include references to audiences,
viewer ratings, and quality indicators (e.g., "best
viewer rating").

• (c) CoNLL2003: MISC

Good: The examples include a variety of terms
referring to specific countries, regions, or groups
(e.g., "Zimbabwean," "Syrians," "Dutch"). There
are several references to sporting events or com-
petitions (e.g., "Davis Cup," "Ryder Cup," "Bel-
gian Grand Prix"). Terms may reference politi-
cal affiliations or ideologies (e.g., "Democrat,"
"Communist-led"). Some examples point to orga-
nizations or institutions (e.g., "CPI," "Australian
Rules-AFL"). Names can refer to specific ethnic,
cultural, or national identifiers (e.g., "Zionists,"
"Arab," "Turkish Kurd"). Some terms are related
to specific product names or models (e.g., "VW
Passat," "GT2 Konrad Porsche 911"). There are
references to time periods, holidays, or specific
events (e.g., "Labour Day," "Second Empire").
The use of capital letters is prominent for place
names, events, and titles (e.g., "Windows NT,"
"MOROCCAN"). There are occasional abbre-
viations or acronyms (e.g., "SBF-120," "C$").
Some examples represent specific locations (e.g.,
"Vancouver-based," "Palestinian-ruled"). Terms
may be linked to specific nationalities or identi-
ties (e.g., "New Zealander," "Belgian").

Bad: Many entries are related to organizations,
tournaments, or events, often with geographic or
descriptive modifiers (e.g., "PGA Tour", "21st
African Cup of Nations"). Some entries refer to
specific currencies, regions, or historical terms
(e.g., "US$", "East Java", "Gulf War"). Abbre-
viations or acronyms are common, sometimes
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indicating military, organizational, or political
groups (e.g., "NATO-led", "IMF-hosted"). Com-
mon use of hyphenated terms, often combining
locations or political entities (e.g., "Burundi-
Central Africa", "Serb-held"). Some entries refer
to awards, recognitions, or titles (e.g., "Bharat
Ratna", "Most Valuable Player"). Titles and
names of products or specific items also appear
(e.g., "AK-47", "F-14"). Entries may involve
sports and entertainment, referencing leagues,
players, or events (e.g., "Davis Cup", "All-Star").
Geographic references may specify regions or
areas linked with political or historical signifi-
cance (e.g., "Nablus-based", "Gaza-based"). Oc-
casionally, cultural or historical references are
used without modification (e.g., "Nazism", "Civil
War").

• (d) GENIA: cell_line

Good: The nomenclature often includes the
type of cell or organism followed by the descrip-
tor "cell line" or a specific cell line identifier.
Common terms include "cells" or "cell line" after
the name (e.g., "Daudi cells", "H9 T-cell line").
Specific terms often refer to the function, ori-
gin, or stimulation type of the cells (e.g., "IL-5-
stimulated cells", "PHA-activated cells"). Ab-
breviations for specific cell lines or organisms
are frequently used (e.g., "CV-1 cells", "CHO
cells"). Cell lines are sometimes referred to by
their species of origin (e.g., "murine B-cell lym-
phoma cell line"). The use of prefixes or mark-
ers, such as "CD68+" or "Nef-expressing", pro-
vides further classification or description. Some
entries include the specific context or condi-
tion under which the cells are used (e.g., "IL-
2-dependent cell lines", "monoblast-like U937
cells"). The cell line name may also include addi-
tional specific features, such as mutations, expres-
sion markers, or environmental conditions (e.g.,
"BFU-E-derived cells", "promonocytic THP-1
cells").

Bad: Cell line names often reflect the species,
cell type, or functional characteristics. Specific
terminology like "T-cell line," "B-cell line," or
"myeloid precursor" indicates the origin or dif-
ferentiation pathway of the cells. Abbreviations
and acronyms (e.g., "CTLL-2," "U937") are com-
monly used for well-established cell lines. Mod-
ifiers such as "estrogen-dependent," "peptide-
specific," or "serum-activated" provide addi-

tional functional or behavioral details about the
cell lines. Numeric designations in names (e.g.,
"CTLL-2") are typically unique identifiers for
specific subtypes or variations of cell lines. Cell
type description (e.g., "monocytoid," "myeloid,"
"lymphoblastoid") is frequently used to clas-
sify the cells based on their morphology or lin-
eage. Species indicators may be included (e.g.,
"murine," "human") to specify the origin of the
cell line. No uniform standard for combining
terms: cell lines may sometimes include hybrid
terms like "myeloid precursor" or "hemopoietic
cells."

• (e) BC5CDR: Disease

Good: - Many disease names consist of med-
ical terms combined with suffixes indicating a
condition (e.g., "hypoxaemia," "myocarditis"). -
A variety of diseases are named based on their
affected organs or body systems (e.g., "cardiac
disease," "renal damage"). - Conditions with
a genetic or clinical origin often feature terms
like "dysfunction," "disorder," or "syndrome"
(e.g., "attention-deficit/hyperactivity disorder,"
"nephrotic syndrome"). - Some diseases are
named after the type of abnormality they involve,
such as "dysphoric reaction" or "tremor" (e.g.,
"dyskinesia"). - Certain terms describe the cause
or mechanism of the disease (e.g., "poisoning,"
"viremia"). - Malignant and benign tumor types
often include descriptors of tissue or cell type
(e.g., "squamous cell carcinoma," "mesenchymal
tumors"). - Diseases may be named after specific
symptoms or affected features (e.g., "amnesia,"
"impaired renal function"). - Specific acronyms
or shortened terms may be used for more complex
or widely recognized conditions (e.g., "TDFS,"
"RPN"). - A few names use the combination of a
region or function with a clinical suffix indicating
the condition (e.g., "cerebral infarction," "putam-
inal hemorrhage"). - Some diseases include the
word “disorder” or “syndrome” to denote an
abnormal condition or disease state (e.g., "gas-
trointestinal disorder," "major depression").

Bad: - The naming of diseases often involves
the use of specific medical terms that describe
the condition or its effects. - Many names re-
flect a combination of anatomical locations (e.g.,
"liver mass," "renal failure") and physiological
processes or symptoms (e.g., "sepsis," "apnea"). -
Conditions may also be named after specific char-
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acteristics or pathological features (e.g., "inter-
mittent claudication," "Ehrlich ascites tumor"). -
Some names may include a combination of organ
systems or multiple conditions (e.g., "renal and
hepatic dysfunction," "acute renal failure and
hepatic failure"). - The nomenclature can also
involve abbreviations or shorthand for more com-
plex conditions (e.g., "TD," "TAA"). - Certain
terms may refer to a specific disease entity or syn-
drome (e.g., "Angiosarcoma," "L1210 leukemia,"
"Ebstein’s anomaly"). - Descriptions may involve
a process or complication caused by a disease,
such as "adverse effect," "disruptive behaviors,"
or "Q-T prolongation." - Several conditions are
defined by their clinical manifestations or out-
comes, such as "deaths" or "respiratory distress."
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