Interpretable Company Similarity with Sparse Autoencoders”

Marco Molinari”! and Victor Shao™! and Luca Imeneo?
and Mateusz Mikolajczak' and Vladimir Tregubiak!

and Abhimanyu Pandey' and Sebastiio Kuznetsov Ryder Torres Pereira

1

I'LSE.AI, London School of Economics
2 Tower Research Capital

Correspondence: m.molinaril @lse.ac.uk”
" Equal contribution

Abstract

Determining company similarity is a vital task
in finance, underpinning risk management,
hedging, and portfolio diversification. Practi-
tioners often rely on sector and industry classi-
fications such as SIC and GICS codes to gauge
similarity, the former is used by the U.S. Securi-
ties and Exchange Commission (SEC), and the
latter widely used by the investment commu-
nity. Since these classifications lack granularity
and need regular updating, using clusters of
embeddings of company descriptions has been
proposed as a potential alternative, but the lack
of interpretability in token embeddings poses
a significant barrier to adoption in high-stakes
contexts. Sparse Autoencoders (SAEs) have
shown promise in enhancing the interpretabil-
ity of Large Language Models (LLMs) by de-
composing Large Language Model (LLM) ac-
tivations into interpretable features. Moreover,
SAEs capture an LLM’s internal representa-
tion of a company description, as opposed to
semantic similarity alone, as is the case with
embeddings. We apply SAEs to company de-
scriptions, and obtain meaningful clusters of
equities. We benchmark SAE features against
SIC-codes, Industry codes, and Embeddings.
Our results demonstrate that SAE features sur-
pass sector classifications and embeddings in
capturing fundamental company characteristics.
This is evidenced by their superior performance
in correlating logged monthly returns — a proxy
for similarity — and generating higher Sharpe ra-
tios in co-integration trading strategies, which
underscores deeper fundamental similarities
among companies. Finally, we verify the inter-
pretability of our clusters, and demonstrate that
sparse features form simple and interpretable
explanations for our clusters.

“This work appeared as a preprint on arXiv:
https://arxiv.org/abs/2412.02605.

Code and data are available at: https://github.com/

FlexCode29/company_similarity_sae.
Alternative email: marcomolinari4 @ gmail.com

1 Introduction

Accurately assessing the similarity of companies is
an integral task in finance, key to risk management,
portfolio diversification and more (Delphini et al.,
2019; Katselas et al., 2017). Hedging, a practice
that relies on converse investments in related assets,
is a prominent example of a financial strategy that
requires a detailed understanding of the similarity
between two companies.

Traditionally, company comparisons rely on (1)
relative returns and (2) discrete classifications, or a
combination of both!. For the former, relying on
relative return spreads can be effective but is not
foolproof, as market volatility, economic changes,
fundamental changes in business, and temporal fac-
tors can alter them (Loretan and English, 2000).
For the latter, discrete classification systems such
as GICS! are limited, as the restricted granularity
of a discrete classification system limits dynamic
interpretations of companies’ operations, in that
they fail to account for the duality of certain com-
panies 2 (Winton, 2018).

This is particularly important for pairs trading,
a market-neutral strategy based on mean-reverting
return spreads (Ehrman, 2012). Employing a pair-
trading strategy with fundamentally similar com-
panies whose returns are co-integrated’ could re-
duce the risk of deviation from historical trends
(Raghava and Bharadwaj, 2014).

Clustering embeddings of company descriptions
has been proposed as a measure of similarity
(Vamvourellis et al., 2023; Buchner et al., 2024),
but token embeddings are not interpretable, and

'E.g. SIC-codes (U.S. Occupational Safety and Health
Administration, 2001), and the Global Industry Classification
System (GICS), which categorizes companies into 11 sectors
and 163 sub-industries (MSCI, 2020).

“Emerging industries disproportionally exhibit this.

3Co-integration refers to a statistical property where two or
more non-stationary time series variables, despite individual
trends, exhibit a stationary linear combination, indicating a
long-term equilibrium relationship (Engle and Granger, 1987).
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this leads to uncertainty, which is undesirable in
the financial sector.

SAEs have the potential to provide an efficient
measure of company similarity by decomposing
large amounts of financial data into interpretable
features (Chen et al., 2020). SAEs have recently
been applied to LLMs resulting in interpretable de-
compositions of neural activations (Huben et al.,
2024). Furthermore, SAEs can be applied at a
Language Model (LM)’s deeper layers, and hence
decompose a LM’s internal representation of a
company description, which means Sparse Autoen-
coder (SAE) features capture more abstract and
cross-token concepts than raw embeddings (Tem-
pleton et al., 2024). This motivates their application
to textual company descriptions.

To the best of our knowledge, we are the first to
compute company similarity using SAEs on SEC*
filings, and to show that SAEs can surpass existing
alternatives on identifying similar companies de-
spite the sparsity (interpretability) constraint. This
is relevant since the competitiveness of SAEs has
been called into question (Kantamneni et al., 2025)
when compared with existing benchmarks of down-
stream performances.

Our contributions can be summarized as follows:

* We apply an open source SAE (EleutherAl,
2024) to Llama 3.1 8B (Grattafiori et al.,
2024), and release a dataset containing com-
pany descriptions, extracted features, and re-
turns, to support further research.”

* We demonstrate that clustering using sparse
features outperforms embeddings and
SIC/GISC codes (MSCI, 2020) in terms of
intra-cluster pairwise correlations.

* We confirm the interpretability of our clusters
by verifying that our explanations use a small
number of highly interpretable features.

2 Related Works

2.1 Sparse autoencoders

The Linear Representation Hypothesis posits that
LLMs linearly represent concepts in neuron acti-
vations (Park et al., 2024). However, as neuron
activations are notoriously superpositioned (Elhage
et al., 2022), SAEs enhance the interpretability
of LLMs by writing neuron activations as a lin-
ear combination of sparse features (Bricken et al.,

*Securities and Exchange Commission

2023). This reduces superposition and restores
interpretability (Huben et al., 2024). SAEs have
recently been applied both in the mechanistic in-
terpretability of LLMs (Nanda et al., 2023; Conmy
et al., 2023; Marks et al., 2024), and in deep learn-
ing more broadly (Chen and Guo, 2023). SAEs
have been scaled to medium and large Language
Models (LMs), such as GPT4 (Templeton et al.,
2024; Gao et al., 2024).

SAE:s learn a reconstruction X as a sparse linear
combination of features y; € R% for a given input
activation x € R% where d,,, is the LLM’s hidden
size and:

ds =kdn, withke {2"|neNi} (1)
The decoder element of the SAE is given as:
(ko f)(x) =bi+ Wi(x) (@

where b; € R% is the bias term of the decoder,
W, is the decoder matrix with columns v; € R%,
and f(x) denotes the feature activations, which are
described by:

f(x) = TopK(We(x —bg) +be) (3
where b, € R% is the bias term of the encoder,
W, is the encoder matrix with columns w; € R%,
and the TopK activation function enforces sparsity
following Gao et al. (2024).The loss function is the
output’s mean-squared error (MSE):

X3

£=x-

| 4)

2.1.1 Embedders

As a baseline, we replicate the embedding method-
ology of Vamvourellis et al. (2023), and obtain
embeddings for company descriptions. In particu-
lar, we use their three best performing embedders
for our evaluations and downstream tasks:

1. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding
(Devlin et al., 2019).

2. Sentence-BERT (SBERT): Building on
BERT, SBERT improves latency substantially
(Reimers and Gurevych, 2019) and encodes
meaning on the more abstract sentence level.

3. PaLM-gecko: Pathways Language Model
(PaLM) (Chowdhery, 2022).
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3 Methodology

3.1 Dataset

Publicly listed companies in the US submit annual
reports to the SEC, which include information on
a company’s operations, such as product specifica-
tions, subsidiaries, competition, and other financial
details (SEC, 2023). Due to the closed-source na-
ture of GICS classifications, we use SIC-codes and
the industry/major division categorization’ (BISC).
Next, we tokenize company descriptions and pre-
process them (Appendix A), resulting in a final
dataset of 27,888 reports from 1996 to 2020.

3.2 Feature summing

In this work, we face the challenge of comparing
sparse feature sequences of arbitrary lengths, where
best practices are not well-established, though max-
pooling has been proposed as a baseline for feature
aggregation (Bricken et al., 2024). However, moti-
vated by the specific demands of financial sequence
modeling, we propose an alternative, employing
sparse feature summing across tokens. This method
provides a magnitude-scaled count of the frequency
with which a feature appears within a sequence,
reflecting both the number of tokens on which a
feature is active and its intensity (Lan et al., 2024).

Our approach is inspired by analogous method-
ologies in literature. For example, Loughran et al.
(2009) highlight the value of summing word counts
in financial text analysis to derive domain insights.

We sum sparse features, across tokens, from an
SAE (EleutherAl, 2024) applied to layer 30 (oc-
curring at 90% of model depth). At this layer, we
capture relevant features from preceding layers via
the skip connection (Vaswani et al., 2017), but not
the logit-related features that tend to occur at the
very last layers (Ghilardi et al., 2024).

The skip connection ensures that a single SAE
captures the entire residual stream (Longon, 2024),
inherently including information from all preced-
ing layers, thus ensuring that the summed sparse
features represent a comprehensive aggregation of
the model’s internal representation of a company
description. We analyze summed sparse features,
and observe an interesting exponential decay pat-
tern in feature activation frequencies (Figure 1).

Figure 1 highlights the sparsity of LLM latent

5The first 3 digits of the SIC code splits companies into
12 industry/major-divisions, referred to hereafter as BISC
(Broader Industry Sector Code) (U.S. Occupational Safety
and Health Administration, 2001).

Proportion

Proportion > 7.5: 0.12

0.10

| —
0.00 0 1

2 3 4 5 6 7
Feature Value

Figure 1: Distribution of summed feature activations.

features — even when these are summed across thou-
sands of tokens — motivating feature summing as
an approach. In this context, a single active feature
has, on average, before summing, a value of ~ 0.7
(the first bulge).

This method also addresses a limitation in us-
ing embeddings (Vamvourellis et al., 2023), which
require equal-length sequences for comparison.
By focusing on cumulative feature occurrences,
summed sparse features enable comparisons be-
tween sequences of arbitrary lengths, offering
greater flexibility for analyzing variable-length fi-
nancial datasets.

3.3 Clustering

We benchmark our sparse features against embed-
dings and SIC/BISC-codes, where each SIC/BISC-
code is its own cluster.

Each clustering method group G, represents a
distinct grouping methodology (i.e. G¢p uses the
cosine distance metric in our Sparse Features, while
GBERT is based on the BERT embedders).

Within each model group G, clusters are gen-
erated independently for each year from 1996 to
2020. Thus, G, is formally structured as a set of
yearly clustering outcomes:

G = {G,(j’) |y € {1996,1997, ... 72020}} :

where G,(fy) is the set of clusters formed in year y:

G}(Cy) _ {ny),Céy), o 707(1y)}’

(y

where CY) C {Companies in year y}. Each clus-

(2
ter C’Z-(y) contains a unique subset of companies
active in year y, ensuring that clusters are indepen-
dent across different years.

To evaluate each clustering model, we compute

the mean intra-cluster correlation MC(GSJ)):
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MC(GY)

>

(a,b)GCE?/)

1 1
- |Gl(§y)| Z |C(y)| pla;b),

CEJ/)GGEJ/)

where p(a,b) denotes the Pearson correlation of
the logged monthly returns for companies a and b
for the given year y. This metric quantifies the co-
herence of stock returns within clusters, providing
a measure of how meaningful the cluster is.

We define the overall mean correlation (our
main evaluation metric) of cluster groups G, across
years as:

MC(Gr) = b ¥yey MC(GLY), where Y =
{1996, .. .,2020}..

3.3.1 Clustering sparse features

Sparse features lack the locality and smoothness
of embeddings (Kiros et al., 2015; Bischke et al.,
2019) to define reliable similarity metrics. For in-
stance, the TopK activation function (Gao et al.,
2024) introduces sparsity, but with a strong discon-
tinuity (truncates all features not in the top 128).

To overcome these limitations, we apply Prin-
cipal Component Analysis (PCA) to the raw fea-
tures®. PCA mitigates the impact of non-activating
features by reducing dimensionality, and retains
only the most informative feature directions. Fur-
thermore, PCA expedites our computations.

To cluster the PCA-transformed sparse features,
we adopt the graph-theoretic framework of Bo-
nanno et al. (2004), employing Minimum Span-
ning Trees (MSTs) to extract hierarchical struc-
tures from financial data. A fully connected graph
is constructed with edge weights representing a
particular distance metric. The MST encodes a
subdominant ultrametric, with ultrametric distance
defined by the maximum edge weight on the unique
path between two nodes’. We remove edges above
a specified weight level, defining this as the "cut-
off threshold" (@), generating clusters directly from
the MST. This eliminates the need for additional
clustering steps, ensuring stable and interpretable
results consistent with Bonanno et al. (2004).

Cosine Distance: We define the normalized co-
sine distance between our PCA-transformed sparse
features as C'D, which we use for clustering. The

We fit PCA globally across 1996-2020 for consistent
eigenvectors, Ncomponents = 4000 captures 89.92% variance.

"To enforce the ultrametric property, we employ single-
linkage hierarchical clustering, which groups nodes by itera-
tively merging the pair of clusters with the smallest maximum

distance between any two points. This process satisfies the ul-
trametric inequality (d;; < max(d;x,dk;)) by construction.

resulting clusters are denoted as G¢p. This metric
measures dissimilarity, which captures angular sep-
aration rather than absolute magnitude differences
(Zafarani-Moattar et al., 2021). For each pair of
companies ¢ and j such that both companies belong
to the same year®, the cosine similarity is computed

as:
g 8j

gillll&;]l
where g; and g; are the PCA-transformed feature
vectors, g; - g; denotes the dot product, and ||g; ||
represents the Euclidean norm (L?-norm).

The cosine distance is then given by:

dCOS<i7j) =1- Sz‘,j

We then normalize the cosine distance’, defining
the normalized distance function as CD. CD is
used to determine the edge weights of the Mini-
mum Spanning Tree (MST), and we apply a cut-off
threshold 6 to prune high-weight edges. The re-
sulting connected components define the clusters
GCDlo.

Cut-off 0 calibration: To determine the MST
cut-off threshold # for Gcp, we initially apply a
two-fold temporal cross-validation scheme: 6 is
chosen to maximize the average intra-cluster corre-
lation across two time periods covering 25% and
50% of our dataset. We define this as Gcp .

We ablate this choice by introducing a rolling
variant. A separate 6 is chosen for each year y,
based only on a five-year rolling lookback window:

Sij =

1

e
0f = - MC®) (g

VT M 5 2 MO0
We rebuild G(Cyl)) with 6%, and report MC®) (6;) as

the yearly mean correlation statistic for each year
y = 2001, ...,2020; earlier years serve only as the
look-back window. We define this rolling setup as
Gpr, for results see Appendix D, which confirms
the robustness of our sparse-feature clusters under
strict out-of-sample evaluation.

3.3.2 Clustering embeddings

Following Vamvourellis et al. (2023), each of the
embedders discussed above is employed to de-
fine a unique clustering method group: (a) GBgrr;

8Note that we define pairs (i,j), ensuring that company i
and company j are only compared within the same year.

Normalizing cosine-based distances can enhance the per-
formance of clustering algorithms (Uykan, 2021).

1OWe also refer to Gep as G'sparse_Features 1N OUT paper.

"See Appendix C for the optimization of Gep’s cutoff.
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(b) Gsgerr; and (¢) GpaLM-gecko' > (details in Ap-
pendix B).

The SIC/BISC families are clusters by definition,
and hence don’t require further calibration.

3.4 Pairs trading

Our downstream task is pairs trading — a type
of statistical arbitrage strategy that typically as-
sumes a long-run equilibrium relationship between
two stocks (Fallahpour et al., 2016). We begin
by splitting the dataset into an in-sample period
(Jan 2002-Dec 2013) and an out-of-sample period
(Jan 2014—Dec 2020), with clusters G, such that
k € {Embedders, Sparse_Features, SIC, BISC}.
The pairs trading strategy consists of:

1. Pre-selection: For each cluster C; € G,
stock pairs are filtered if the Pearson corre-
lation of their monthly logged returns exceeds
0.95 during the in-sample period.

2. Co-integration Testing: An Engle-Granger
co-integration test is conducted on stock
prices (Jan 2002—-Dec 2013) of pre-selected
pairs using the Augmented Dickey-Fuller
(ADF) statistic to assess the stationarity of the
residual spread. Pairs with a p-value below
0.01 are considered co-integrated.

3. Trading: The identified co-integrated pairs
for each GG}, are evaluated out-of-sample13 (Ta-
ble 1). We assess co-integration effectiveness
within each method group G, via the entire
portfolio’s Sharpe ratio'*.

3.5 Interpretability

We show interpretability over a sample of 1000
features across 300 clusters. Clusters are formed
using cosine distance, which can be interpreted
as parallelism between the feature vectors (feature
proportionality). There is no linear mapping be-
tween features and cosine distance (Appendix H),
hence, we adopt an activation patching framework
(Zhang and Nanda, 2024) with respect to cosine
distance. This means that we obtain an interpre-
tation of a cluster using the features that have the
largest impact on cosine distance across the cluster
when they are zeroed out (set to 0).

2We collectively refer to Gserr, G'sBert, and GpaM-gecko
as GEmbedders for simplicity and to streamline discussion.

13See Appendix E for trading logic details

“The Sharpe Ratio quantifies risk-adjusted returns, mea-
suring excess return per unit of risk (Guasoni and Mayerhofer,
2018; Peters, 2011).

We define the importance of feature 7 as the to-
tal absolute variation in cosine distance across the
cluster when feature 7 is zeroed out. Let g;, g; be
PCA-transformed feature vectors i, j. Moreover,
let g7, g; be the same vectors with feature z set to
0 before applying the PCA. We define the absolute
impact on the cosine distance of feature z:

cluster

imp(z) = > _ | CD(gi,9;) — CD(g7,95) | -

0,7

There are 2 necessary conditions for an interpre-
tation of a cluster to be valid:

1. Sparsity There are n = 131,072 features, and
we need to interpret a cluster using only a
small subset of k << n important features.

2. Interpretability: The sparse features that we
use need to be interpretable on our dataset.

To obtain the set of important sparse features that
constitutes the interpretation of a cluster, let F' be
the full set of n characteristics and define impact
of a subset of features S C F' as follows:

IMP(S) = Z imp(z).

z€S

Then the set of important features, S*, is given by

S* = argmin|S| subjectto IMP(S) > IMP(F\ S).
ScF

S* is the smallest subset of features whose total
impact on cosine distance in the cluster equals or
exceeds that of the remaining features. We populate
S* by adding the most important feature in £\ S
to S until IMP(S) > IMP(F' \ S).

We interpret our important features using an
auto-interpretability pipeline. First, the Gemini 2
Flash language model is prompted to explain a fea-
ture given examples of when the feature activates
and when it does not. Then, the model predicts la-
tent activations for new sentences based on its prior
explanations (fuzzing). Interpretability is measured
as the success rate in fuzzing.

While there is no benchmark for the interpretabil-
ity of Llama 3.1 8B sparse features, we com-
pare with the closest benchmark in the literature:
Gemma 2 9B on the "Red Pajama" and "The Pile"
datasets (Paulo et al., 2024).
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Figure 2: Overall Mean Correlation (MC(GY,)) of Gep (Normalized Cosine Distance Cluster Group) vs PaLM vs
SIC Benchmarks between 1996-2020. Note that we use PaLM and SIC-codes for comparison, as they have the

highest MC(G},) among the embedding-based and traditional benchmark groups, respectively.

4 Results

4.1 Clustering results

For each clustering method group Gy, we evalu-
ate their MC(GY,), and Sharpe Ratios (see Table 1
and Figure 2). The results demonstrate that clus-
ters derived from our Sparse Features significantly
outperform Embeddings, SIC-codes and BISC in
terms of clustering similar companies.

4.2 Pairs trading results

Sharpe ratios (risk-adjusted profits) were recorded
for evaluation in backtesting. Within pairs trading,
Hong and Hwang (2023) find pairs with higher fun-
damental similarity outperform those with weaker
economic ties by reducing non-convergence risk.
In line with these findings, our clustering approach
can outperform Embedders and Traditional Classifi-
cations in Sharpe Ratio (Table 1), suggesting it may
capture more fundamental company similarities.

Clustering Group (Gx) MC(Gk) Sharpe Ratio 43 Interpretability results
Our Contribution
Gop 0.359 12.18 —
Geor 0.385 9.69 Interpretability
Embedding Benchmark Our Contribution
Top 1% Features (Gcp) ' 80%
GBERT 0.198 7.58 Top 1% Features (Gcpr) 77 %
GsBrr 0.219 7.69 Average Feature 62%
GPaLMfgecko 0.219 10.57
Interpretability Benchmarks (Gemma 2 9B)
Traditional Benchmark Cluster Groups The Pile 76%
GSIC 0.231 9.70 Red Pajama 76%
Gisc s 0.187 7.58 Random Interpretation Baseline
Population 0.161 - Fuzzing Score 51%

Table 1: Performance comparison between different
clustering groups (averaged across 1996-2020).

SPopulation group represents MC(G',) on the full dataset.

Table 2: Interpretability of SAE Features.

With regards to our first interpretability require-
ment, sparsity, we measure what percentage of fea-
tures are important per cluster (Appendix G), and
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find that the median cluster is very sparse with only
5% of important features.

In terms of interpretability, we observe that most
features are interpretable (Table 2). Moreover, fea-
tures that are important across multiple clusters,
those we most want to interpret, also tend to be
more interpretable (Figure 3). In particular, top
1% features (features in the first percentile for the
amount of clusters they are important for) are 80%
interpretable.

~Interpretability (%) =Features (%)

80.00 100.00
80.00
75.00
60.00

70.00
40.00

Features (%)

65.00 20.00

Interpretability of Features (%)

0.00

Clusters where Features are Important (%)

Figure 3: Interpretability Score of Features by Percent-
age of Clusters (Gcp) where Features are Important.
Data selected between 100% (all features) and 1%.

Finally, we run the same experiments on the clus-
ters constructed using the rolling cutoff (i.e. G¢cpr),
and our experiments yield similar results: rop 1%
features are 77% interpretable. In terms of sparsity,
the median cluster is very sparse with only 1% of
important features (Appendix G). The trend where
more important features are more interpretable also
holds (see Figure 4).

~Interpretability (%) = Features (%)

100.00
76.00

74.00 80.00

72.00

60.00
70.00

68.00 40.00

Features (%)

66.00

20.00
64.00

Interpretability of Features (%)

62.00
Clusters where Features are Important (%)

Figure 4: Interpretability Score of Features by Percent-
age of Clusters (Gcpr) where Features are Important.

4.4 Limitations
‘We do not fine tune embedders, SAEs, or LLMs.

These could be exciting directions for future work.

1$Top 1% features are important for more clusters than the
remaining 99%, they are not the top 1% for interpretability.

Reported Sharpe ratios should be interpreted cau-
tiously as they may be sensitive to the choice of 0,
slippage, regime shifts, and finite-sample bias (Lo,
2003; Bailey and Lépez de Prado, 2012).

5 Conclusions

We find that using SAE features is an effective
and interpretable method for computing company
similarity. Future work might explore applications
in portfolio diversification and hedging strategies;
optimizing trading strategies through fine-tuning
# and modeling shifts in economic regimes; ex-
tending the framework to other domains such as
healthcare; or ablation studies such as replacing
MST clustering with K-means.
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by related meta-data on Company Name, Year, SIC-
code, and CIK number (a unique SEC corporation
identifier) (U.S. Securities and Exchange Commis-
sion, n.d.). CIK numbers are mapped to their cor-
responding publicly traded ticker symbol, from
which the monthly logged returns are retrieved via
Yahoo Finance (2024). We remove entries with
missing or very short: company descriptions, ticker
information, or monthly returns. This leaves us
with 27,888 reports. We tokenize using Meta’s
Llama 3 8B Tokenizer (Grattafiori et al., 2024). We
only retain companies that are consistently avail-
able for at least five years. In our analysis, we ig-
nore pre-1996 data as the sample size is too small.
To refine the dataset further, we retain only annual
reports with token counts within the context win-
dow.

B Clustering Embeddings

For BERT, we used bert-base-uncased
from the transformers library. For SBERT,
we used all-MinilM-L6-v2 from the
sentence_transformers library. For PalLM-

gecko, we used textembedding-gecko@@3 from
the vertexai library.

Chunking: In our methodology, for both BERT
and SBERT, we followed Vamvourellis et al. (2023)
and implemented a chunking mechanism to accom-
modate the models’ maximum token limit of 512.
Specifically, company descriptions exceeding this
limit were split into overlapping chunks of 512 to-
kens. The [CLS] embeddings of these chunks were
averaged to generate a single document embedding
of 1536 tokens. For PaLM-Gecko, we leveraged
its extended context window of 3072 tokens and
directly processed the descriptions without chunk-
ing.

The pipeline below is optimised through Op-
tuna’s Tree-structured Parzen Estimator (TPE) sam-
pler for Bayesian hyperparameter optimization.
The objective function maximizes MC(GYy,). This
search is constrained to 150 trials and a maximum
timeout of 9 hours to balance thoroughness and
resource usage:

Dimensionality Reduction with UMAP: Given
the high dimensionality of the input embeddings
(768-dimensional vectors derived from a BERT
model), we first employ Uniform Manifold Approx-
imation and Projection (UMAP) (Mclnnes et al.,
2020) to reduce these high-dimensional textual em-
beddings to a lower-dimensional space, preserving

both local and global data structures. We optimize
three UMAP parameters to improve the quality
of the downstream clustering: (a) n_components
(target dimensionality); (b) n_neighbors; and (c)
min_dist. All embeddings are standardized and
casted to float32 to ensure computational effi-
ciency.

Clustering with Spectral Clustering: After
reducing dimensionality, we perform clustering us-
ing Spectral Clustering, which is capable of han-
dling noise and complex cluster shapes, following
Vamvourellis et al. (2023). We first construct an
affinity matrix from a k-nearest neighbors (KNN)
graph of the UMAP outputs. Spectral Clustering
then operates on this graph’s eigenstructure to form
clusters. The number of clusters (n_clusters) is
tuned via Optuna, while the neighborhood size (k)
is set to a constant of 5, following Vamvourellis
et al. (2023).

Temporal Cross-Validation: To evaluate the
stability and temporal generalization of the result-
ing clusters, we employ temporal cross-validation.
The dataset is split into chronological folds. This
setup reduces temporal bias and assesses whether
the identified cluster structure remains consistent
over time. We used parallel processing to evaluate
each fold.

Embedder Cluster Group (Gembeader) UMAP ncomponents  UMAP 7uneighbors  UMAP min_dist

Glerr 7
G'sBERT 7

119
79
40

0.109
0.012

Gpal M-gecko 6 0.120

Table 3: Optimized UMAP Thresholds for Embedders

Embedder Cluster Group (Gempedader)  Spectral nusters  Spectral npcighbors
GBERT 10 5
GsBERT 49 5
GPaLM-gecko 27 5

Table 4: Optimized Spectral Clustering Thresholds for Em-
bedders
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C Clustering Sparse Features

Histogram of Threshold vs Value (i.e. mean corr)

Value (i.e. mean corr)

-1

-3 -2
Threshold

Figure 5: Optuna Study — Histogram of Sparse Fea-
tures’ MST cutoff thresholds. Maximizing Threshold =
-3.130.

Figure 5 plots the distribution of candidate MST
cut-off values 6 (x-axis) against their corresponding
mean intra-cluster correlations (y-axis). The long
right tail approaches the overall population mean
correlation (=~ 0.161) as 8 loosens, while bulk of
high MeanCorr values sits to the left (lower 6),
reflecting tighter distance threshold groups similar
firms.

D Clustering Sparse Features OOS with
Rolling Frame

In terms of results, the forward rolling variant
achieves a higher overall mean correlation of
MC(Gcpr) = 0.391, compared to the temporal
fold result of MC(G¢p) = 0.359. As shown in
Figure 6, the optimal cut-off ¢} evolves smoothly
over time, while the out-of-sample mean intra-
cluster correlation remains between 0.30 and 0.46
in most years—peaking in 2020 when market-wide
correlations surged during the COVID-19 crisis.

Theta and MeanCorr over Years

BNIEYAYZN

o

Theta (cut-off)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Figure 6: Walk-forward tuning results for the sparse-
feature (Gcpr). Blue (left axis): optimal MST edge-
weight cut-off ¢ obtained from the preceding five-year
rolling window. Red (right axis): resulting out-of-
sample per-year mean intra-cluster correlation MCSOS.

These findings confirm the robustness of our sparse-
feature clusters under forward-looking evaluation.

E Trading Details

For each clustering-based strategy Gy, we sim-
ulate pair trades over the out-of-sample period
2014-2020 and record, for each business day t,
the total portfolio value V}, ;. This series acts as the
portfolio trajectory and is constructed as follows:
(1) On each business day ¢, add realized PnL from
any closed trades to cash. (2) Mark open positions
to market and compute unrealized P&L. (3) Set
Vit = cash; + unrealized_PnL; and append it to
the portfolio trajectory series, which was subse-
quently used for Sharpe ratio calculations.

Following Miao (2014), we assumed zero trans-
action costs, opening positions when the residual
spread deviated beyond +1¢ its mean, and closing
when the spread reverted to the mean. A stop-loss
mechanism is triggered if the spread exceeds +20.
We obtained stock price data via finance.

F Feature Sparsity Analysis

—— Median: 0.05
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Figure 7: Distribution of the proportion of important
features over clusters (Gcp).

G Feature Sparsity Analysis

—— Median: 0.01
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Figure 8: Distribution of the proportion of important
features over clusters (Gcpgr).
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H Why a Linear Distance Must Be Trivial

Claim. If a function d(-,-) on a vector space is
both a distance function (metric) and linear in its
arguments (plus symmetry), then d(z,y) = 0 for
all x,y.

Proof. By the metric property, d(z, z) = 0 for any
z. Pick arbitrary vectors x and y, and let 2 = x + .
Then

0=d(z2) = da+y, z+1).

Assume d is linear in the first argument and sym-
metric. By linearity on the first argument,

dx+y, z+y) = dz, v+y) + dly, v +y).

By symmetry, d(x, 4+ y) = d(x + y, =). Apply-
ing linearity in the first argument again,

dlx+y, ) =d(z, z)+d(y, ) =0+d(y, z),

because d(x,z) = 0 from the metric property.
Symmetry again gives d(y, x) = d(z,y). Hence

d(z, z+y) =d(z,y).
Similarly, d(y, « 4+ y) = d(x,y). Therefore,
d(z+y, z+y) =2d(z,y).

Butd(z +y, z+y) =0,s02d(z,y) =0 =
d(x,y) = 0 for all z,y. Thus, if a distance
were to be linear, it would be zero for all el-
ements X,y, contradicting the usual requirement
d(x,y) =0 <= x = y unless the entire space is
collapsed. 0
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