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Abstract

We present MegaBeam-Mistral-7B1, a lan-
guage model that supports 512K-token con-
text length. Our work addresses practical lim-
itations in long-context training, supporting
real-world tasks such as compliance monitor-
ing and verification. Evaluated on three long-
context benchmarks, our 7B-parameter model
demonstrates superior in-context learning per-
formance on HELMET and robust retrieval and
tracing capability on RULER. It is currently the
only open model to achieve competitive long-
range reasoning on BABILong at 512K context
length without RAG or targeted fine-tuning. Re-
leased as fully open source under the Apache
2.0 license, the model has been downloaded
over 100,000 times on Hugging Face.

1 Introduction

MegaBeam-Mistral-7B is a compact 7B-parameter
language model capable of processing sequences
with half-a-million tokens. Developed with cus-
tomer engagements in mind, we thoroughly eval-
uated its long-context capabilities across multiple
benchmarks.

MegaBeam delivers strong performance across
three key long-context benchmarks. On RULER
at 128K context length, it outperforms both GPT-
4-1106 and larger open-source models like Llama-
3.1-70B. On BABILong at 64K context, it achieves
48.2% accuracy—comparable to models with 8x
more parameters. On HELMET, it attains a lead-
ing 85% in-context learning score at 128K tokens.
Significantly, MegaBeam achieves a competitive
35% score on 512K-token BABILong tasks with-
out RAG or task-specific tuning, making it the only
open model to effectively utilise such extreme con-
text lengths for solving novel reasoning tasks.

MegaBeam’s development was shaped primarily
by our engagements with customers across diverse

1https://huggingface.co/aws-prototyping/
MegaBeam-Mistral-7B-512k

sectors, including digital design, banking, life sci-
ences, and GenAI native startups.

For example, large enterprises face daily chal-
lenges in verifying compliance across their cus-
tomer interactions, which often involve process-
ing lengthy conversation transcripts and transac-
tion logs. To tackle this challenge, we deployed
MegaBeam as a prototype compliance verification
solution, performing three key functions: First, it
identifies and matches specific sections of customer
interactions with relevant Standard Operating Pro-
cedures guidelines. It then classifies these matched
segments for compliance adherence, examining el-
ements such as required disclosures, proper doc-
umentation, and procedural steps. Finally, it pro-
vides detailed reasoning for each compliance as-
sessment by comparing the actual interaction pat-
terns against mandated procedures. The ability to
digest customer interaction logs alongside SOPs
within its context eliminates the need to chunk con-
versations. MegaBeam enables efficient compli-
ance monitoring by maintaining the complete con-
text of customer interactions alongside regulatory
requirements.

The following sections detail our technical ap-
proach to achieving these capabilities, addressing
challenges in training methodology and system-
level optimisations required for robust performance
in production environments.

2 Related Work

Recent advances in LLM context length extension
have emerged through improved training method-
ologies. MiniCPM (Hu et al., 2024) and Yi (Young
et al., 2024) demonstrated that even smaller mod-
els could handle 200K+ contexts through targeted
training approaches. Fu et al. (2024) established
that modest amounts of long-sequence text (1-2B
tokens) can effectively extend context capabilities
without full retraining. To address computational
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challenges, sequence parallel techniques such as
Ring Attention (Liu et al., 2023a) and DeepSpeed-
Ulysses (Jacobs et al., 2023) have made training
with extremely long sequences more feasible.

Several long-context benchmarks have emerged
to systematically evaluate long-context capabili-
ties. RULER (Hsieh et al., 2024) focuses on re-
trieval and multi-hop reasoning, BABILong (Ku-
ratov et al., 2024) tests reasoning over extremely
long documents, and HELMET (Yen et al., 2024)
provides application-centric metrics across diverse
downstream tasks.

Adjusting the theta base parameter in Rotary
Position Encoding (RoPE) (Su et al., 2024) has
emerged as the dominant approach for extending
context length. Recent theoretical work by Xu et al.
(2024) has established lower bounds for effective
theta values based on target sequence lengths. Lon-
gRoPE (Ding et al., 2024) introduced innovative
position encoding modifications, enabling models
to handle substantially longer sequences with mini-
mal additional training.

Our work builds upon these foundations, focus-
ing specifically on efficient training techniques that
allow smaller models (7B parameters) to handle
extremely long contexts (512K tokens), previously
thought to require substantially larger models or
computational resources.

3 Training

The training methodology for MegaBeam builds
upon key insights from several previous studies.
Drawing from (Young et al., 2024) and (Fu et al.,
2024), we implemented lightweight continual pre-
training with long-context data, confirming that
≤ 2B tokens are sufficient for extending context
length capabilities. We also incorporated findings
from the MiniCPM model (Hu et al., 2024) regard-
ing the optimal balance between short and long
training examples—specifically their discovery that
mixing ratios are crucial for maintaining perfor-
mance across different context lengths.

The training process consists of four phases (Fig
1) with varying token counts and sequence lengths.
Using Mistral-7B-Instruct-v0.2 (Mistral-AI, 2023)
as the base model, the first phase involved pro-
gressive long-context training on 1.2B tokens of
organically long documents from diverse sources:
source code (70%), research papers (10%), open
web content (15%), and public domain books (5%).
This initial phase processed 0.64B tokens as 300K-

token sequences and 0.56B tokens as 600K-token
sequences. Although we trained with sequence
lengths up to 600K tokens, our evaluation using the
Needle-in-a-Haystack (NIAH) benchmark (Arize-
AI, 2024) revealed significant performance degra-
dation when processing sequences longer than
300K tokens. We named this intermediate check-
point MegaBeam-Mistral-7B-300K to reflect its
effective context length.

To address the performance degradation beyond
300K tokens, we increased the RoPE theta base
from 25_000_000 to 75_000_000 and trained on
an additional 0.18B tokens using 600K-token se-
quences. This improved overall long-context per-
formance but led to poor NIAH scores at sequence
endpoints (depth 0 and 100). We attributed this to
insufficient training on shorter sequences with the
new RoPE configuration – a hypothesis confirmed
when additional training on 0.26B tokens of shorter
sequences (32K-80K) resolved the endpoint issues
while maintaining long-sequence performance.

After addressing a critical numerical precision
issue in the bfloat16 RoPE implementation, we
conducted a third round of long-context continual
pretraining using 0.2B tokens. The training data
was distributed across different sequence lengths:
1,200 sequences of 80K tokens (96M total), 300
sequences of 256K tokens (77M total), and 30 se-
quences of 512K tokens (15M total). This balanced
distribution ensured robust performance across all
context windows.

The final phase involved long-context supervised
fine-tuning (SFT) on a small 22M-token data set,
producing MegaBeam-Mistral-7B-512K. Follow-
ing insights from (Hu et al., 2024) and (Young et al.,
2024), we created synthetic documents (64K-512K
tokens) by restructuring real question-answer pairs
to specifically challenge long-range information
retrieval.

This phased approach combines planned length
progression with solutions to unexpected chal-
lenges discovered during development, enabling
effective scaling to longer contexts while maintain-
ing performance stability.

4 Solving Practical Issues

4.1 RoPE theta base

As discussed in Section 3, we tuned the RoPE
theta base through progressive pretraining to im-
prove NIAH benchmark performance. Our experi-
mentally determined values—25_000_000 for se-
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Figure 1: Overview of MegaBeam’s training methodology: four sequential phases

quences of 256K tokens and 75_000_000 for se-
quences of 512K tokens—closely match the theo-
retical lower bounds derived by (Xu et al., 2024):
β = 0.0424L1.628, which yields 28_000_000 and
86_000_000 respectively.

Our experiments also revealed additional
insights. Specifically, setting the base to
100_000_000 systematically degraded perfor-
mance at the sequence endpoints (depth 0 and 100)
for long sequences. This observation seems to align
with (Liu et al., 2023b). When the base value sub-
stantially exceeds the lower bound, it creates po-
sitional embeddings with wavelengths longer than
the training context length. This means some di-
mensions cannot complete a full 2π rotation during
training, potentially leading to hallucinations dur-
ing inference.

4.2 bf16 and RoPE

We encountered recall failures in NIAH bench-
mark. Specifically, when processing longer con-
texts, the model consistently dropped the last
one digit when recalling numbers (e.g., recalling
7418118 as 741811). The root cause was traced to
numerical precision limitations of bfloat16 when
handling large position indices in RoPE calcula-
tions. While float32 maintains sufficient precision
across all position indices, bfloat16’s reduced man-
tissa bits lead to significant precision loss when
representing large positions, despite having com-
parable range to float32. This precision loss di-
rectly impacts RoPE’s ability to accurately encode
positional information for tokens far into a long
sequence.

The solution involves disabling autocast and
forcing float32 precision specifically for the criti-
cal RoPE calculations while maintaining bfloat16
for the rest of the model operations. This targeted

precision management ensures accurate positional
encoding while retaining the memory and compu-
tational benefits of bfloat16 for other operations.
This fix was crucial for enabling reliable long-
context processing in MegaBeam. After we have
released MegaBeam, a comprehensive analysis of
this precision-related issue was later discussed in
(Wang et al., 2024).

4.3 Ring Attention

Ring Attention (Liu et al., 2023a) is an effective
Sequence Parallel (SP) mechanism for distributed
long sequence training. It organises accelerators in
a ring topology where attention keys and values ro-
tate in a peer-to-peer fashion between devices while
queries remain fixed on their assigned devices.

There are alternative approaches to SP besides
Ring Attention, such as DeepSpeed-Ulysses (Ja-
cobs et al., 2023). However, DeepSpeed-Ulysses re-
quires all-to-all collective communication to trans-
pose partitions from sequence to head dimensions,
and each device must store a complete KV head
for the entire sequence length. As a result, its de-
gree of sequence parallelism (DoSP) is constrained
by the number of KV heads. Ring Attention, in
contrast, allows DoSP to scale linearly with the to-
tal number of available devices. These advantages
led us to adopt the JAX-based (Liu et al., 2024)
Ring Attention implementation for our sequence
parallelism.

Although the JAX codebase (Liu et al., 2024)
supports interleaving Tensor Parallelism (TP) with
SP, we disable TP (setting it to 1) for sequences
longer than 64K tokens. This prioritisation of
SP over TP allocates more VRAM to sequence
parallelism, which becomes crucial as sequence
lengths are growing. For larger models like
70B parameters, the optimal parallel mesh con-
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Figure 2: Accumulated memory pre-allocation by XLA compiler under two chunk size configurations. The orange
line (larger chunks) demonstrates reduced memory footprint compared to the blue line (smaller chunks) throughout
the HLO graph, with peak memory reduction of 186GB.

figuration between SP and TP would need to
be re-established through similar experimentation.
This parallelism strategy is necessary because,
as demonstrated in the Megatron context paral-
lelism example (NVIDIA, 2024), SP and TP share
a fixed pool of GPUs. Additionally, interleav-
ing TP and SP incurs communication overhead
through extra operations such as All-Gathers and
Reduce-Scatters.

4.4 XLA compiler
Liu et al. (2023a) documented resource demands
of long-context training. For sequences of 512K to-
kens, they had to use 16×A100 (80GB VRAM) to
train a 7B model. We verified this limitation using
their JAX codebase (Liu et al., 2024) — attempting
to train 512K-token sequences on 8×A100 GPUs
resulted in compilation-time OOM exceptions.

To overcome this limitation, we examined
the compilation process in detail. The XLA
compiler transforms JAX operations to High-
Level Operations (HLO) IR, from which we
identified some operation that pre-allocates 32
GB memory during compilation. Namely, the
dynamic_update_slice HLO operation (shown
in Appendix A) uses int32 type for both input and
output tensors, with the output tensor size reach-
ing 32 GB. For our 524,288-token sequences, 8-
way partitioning assigns 65, 536 tokens per GPU
device. Each device’s partition is then processed
using 64 query chunks (65, 536/1, 024 tokens per
chunk) and 32 key-value chunks (65, 536/2, 048
tokens per chunk). Based on these dimensions and
the int32 type, we hypothesise that this structure
serves as a lookup table mapping QKV chunks to
segment_ids for intra-document attention mask

generation (Zhao et al., 2024).

To address this challenge, we increased both
Q and K/V chunk sizes. This solution appears
counter-intuitive since larger attention chunks tradi-
tionally consume more GPU HBM, as evidenced in
both Block-wise Attention (Liu and Abbeel, 2023)
(with larger blocks) and Flash Attention (Dao et al.,
2022) (with larger tiles). However, increasing
chunk sizes actually reduces the number of chunks
needed, thereby decreasing the dimension extent
of the lookup table tensor. This leads to reduced
memory usage, contrary to conventional wisdom
about chunk size and memory footprint.

We experimented with increasing query chunks
from 1024 to 2048 tokens, and key/value chunks
from 2048 to 4096 tokens. Fig 2 compares the
memory pre-allocated by the XLA compiler under
these two configurations. The larger chunk sizes
(orange line) consistently require less pre-allocated
memory than smaller chunks (blue line) across all
HLO graph nodes. This difference becomes es-
pecially significant in the later stages of the HLO
graph (nodes 4000-6000).

Most importantly, this method doubles the train-
ing context length on a single p4de.24x node (8x
A100 with 80GB VRAM) from 256K to 512K to-
kens. However, while effective, this solution serves
as an interim workaround. Specifically, the root is-
sue stems from the XLA compiler materialising the
massive chunk-to-segment mapping table statically.
A proper solution would improve the compiler to
generate dynamic mapping code, aligning with the
chunked attention design.
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Figure 3: Model performance comparison on RULER benchmark: top shows 128K context length results, bottom
shows average performance across context lengths from 8K to 128K.

5 Evaluation

The RULER benchmark (Hsieh et al., 2024) specif-
ically assesses long context capabilities in retrieval,
multi-hop tracing, aggregation, and long-form ques-
tion and answering. Fig. 3 shows that MegaBeam
performs better than GPT-4-1106 on the RULER
benchmark when the context length is 128K. For
the average performance across all lengths (8K
to 128K), MegaBeam as a 7B model performs
nearly on par with Llama-3.1-70B, and is ranked
higher than larger models such as Llama-3.1-8B,
Command-R-104B, and Qwen-2-72B. For exam-
ple, MegaBeam achieves near-perfect performance
on retrieval tasks (97% on 7 out of 8 tasks at 128K),
strong results on multi-hop tracing (89% at 128K),
and competitive QA performance (77.4% on QA_1
at 128K).

The RULER benchmark (Hsieh et al., 2024)
demonstrates that MegaBeam maintains the base
model’s strong performance on short contexts of
4K-16K tokens (92-94% accuracy) while signifi-
cantly outperforming Mistral-7B-Instruct-v0.2 on
longer contexts (84% vs 14% at 128K tokens). This
confirms our training approach effectively extends
context length without compromising short-context
capabilities.

Additionally, as shown in Figure 3, Llama-3.1-

8B outperforms its 70B counterpart, suggesting
that model size alone does not guarantee superior
long-context processing. In contrast, the relation-
ship differs on BABILong, where Qwen-2.5-72B
exceeds its 7B version by 13 percentage points.
These varied outcomes across benchmarks sup-
port the motivation of this paper - specialised pre-
training and post-training for longer contexts can
enable compact models to achieve competitive per-
formance on many long-context tasks.

The BABILong benchmark (Kuratov et al.,
2024) evaluates the ability of LLM to perform rea-
soning tasks across facts distributed in extremely
long documents. We conducted MegaBeam’s evalu-
ation using the official BABILong benchmark code-
base2. Fig 4 shows that MegaBeam achieves 48.2%
accuracy at 64K context length and 40.2% at 128K
context length, outperforming several larger mod-
els including GPT-4-0125-preview (43% at 64K,
36% at 128K) and matching the performance of
Llama-3.1-8B and Phi-3-MoE-61B (49% at 64K,
39% at 128K) despite having only 7B parameters.
MegaBeam demonstrates particularly strong per-
formance on tasks requiring single-fact retrieval
and relational reasoning, maintaining consistent
performance as context length increases. Notably,
MegaBeam is currently the only open model that

2https://github.com/booydar/babilong
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Figure 4: Performance comparison on BABILong benchmark at 64K and 128K context lengths

Figure 5: In-Context Learning performance comparison on HELMET, showing MegaBeam’s leading performance
across multiple context lengths

has achieved a competitive score (35% as shown
in Fig 6) on the 512K context BABILong tasks
without RAG or task-specific fine-tuning.

The HELMET benchmark (Yen et al., 2024) rep-
resents the latest evaluation framework for long-
context capabilities through realistic downstream
tasks. It contains seven diverse, application-centric
categories with model-based evaluation metrics,
and few-shot prompting capabilities. Fig. 5 shows
model performance comparison in the many-shot
In-Context Learning (ICL) category, using perfor-
mance data reported in (Yen et al., 2024) — At
128K context length, MegaBeam achieves an ICL

score of 85%, outperforming larger models such as
Mistral-Nemo (12B), Llama-3.1 8B and 70B.

6 Reasoning on BABILong

We evaluate MegaBeam’s performance on the BA-
BILong benchmark (Kuratov et al., 2024), which
evaluates reasoning tasks across facts distributed in
extremely long documents. As MegaBeam is fine-
tuned on Mistral-7B-Instruct-v0.2 which natively
supports 32K context, our analysis focuses partic-
ularly on the model’s capability to extend beyond
this length while maintaining performance.

MegaBeam demonstrates varying degrees of con-

66



Figure 6: Performance heatmap of MegaBeam on BABILong tasks across different context lengths (0K to 512K
tokens). The model shows strong context extension capabilities on single-fact (QA1) and relational reasoning tasks
(QA4, QA5), while challenges in multi-fact reasoning (QA2, QA3)

text extension capability across different tasks. For
Single Supporting Fact tasks (QA1), the model
maintains robust performance at 64K with 73%
accuracy, and continues to function at longer con-
texts with 51% at 128K, 37% at 256K, and 29% at
512K. While this represents 57% drop from 32K,
the degradation is gradual and sub-linear. In Two
Argument Relations tasks (QA4), MegaBeam ex-
hibits strong stability, with performance actually
improving from 47% at 32K to 52% at 64K, and
maintaining consistent performance even at 512K
(44%), showing a high “retention ratio" of 89%
from 32K to 512K. Similarly promising results are
seen in Three Argument Relations tasks (QA5),
where the model shows strong performance reten-
tion from 32K to 64K (71% to 66%), and maintains
an even higher score at 512K (75%), achieving an
impressive 92% retention ratio from 0K to 512K.

However, MegaBeam still faces significant chal-
lenges with multi-fact reasoning at extended con-
texts. In Two Supporting Facts tasks (QA2), we
observe a steep performance decline from 33% at
32K to just 3% at 512K - a retention ratio of only
9%. The sharp linear degradation rate suggests that
our context extension approach struggles particu-
larly with maintaining multi-fact reasoning capa-
bilities. Similarly, Three Supporting Facts tasks

(QA3) show both base model limitations (35-41%
at shorter contexts) and context extension chal-
lenges, with performance dropping to 18% at 512K
(51% retention ratio).

The weaker QA2/3 performance stems from mul-
tiple challenges: tracking object locations/posses-
sions, understanding temporal order, integrating
distributed information, and comprehending action-
state causal relationships.

7 Conclusion

We presented MegaBeam-Mistral-7B and demon-
strated its competitive long-context capabilities as a
smaller model trained using limited computational
resources. Our work addresses key technical chal-
lenges through progressive training methods, RoPE
theta tuning, position precision, and memory op-
timization. MegaBeam shows consistently strong
performance on real-world tasks like retrieval, rela-
tion processing, and in-context learning across long
contexts up to 512K tokens, while maintaining a
compact model size. Its limitation in multi-hop
reasoning tasks suggests areas for future improve-
ment in both base model capabilities and context
extension.
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