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Abstract

High-quality Text-to-Speech (TTS) model
training requires extensive and diverse text and
speech data. It is challenging to procure such
data from real sources due to issues of domain
specificity, licensing, and scalability. Large
language models (LLMs) can certainly gen-
erate textual data, but they create repetitive
text with insufficient variation in the prompt
during the generation process. Another impor-
tant aspect in TTS training data is text normal-
ization. Tools for normalization might occa-
sionally introduce anomalies or overlook valu-
able patterns, and thus impact data quality.
Furthermore, it is also impractical to rely on
voice artists for large scale speech recording
in commercial TTS systems with standardized
voices. To address these challenges, we pro-
pose SpeechWeave, a synthetic speech data
generation pipeline that is capable of automat-
ing the generation of multilingual, domain-
specific datasets for training TTS models. Our
experiments reveal that our pipeline generates
data that is 10–48% more diverse than the base-
line across various linguistic and phonetic met-
rics, along with speaker-standardized speech
audio while generating approximately 97% cor-
rectly normalized text. Our approach enables
scalable, high-quality data generation for TTS
training, improving diversity, normalization,
and voice consistency in the generated datasets.

1 Introduction

Text-to-Speech (TTS) systems convert written text
to spoken audio and are used in applications such as
virtual assistants, accessibility software, navigation
systems, and customer service to enable easier and
accessible user interaction. TTS systems require
massive amounts of training data consisting of text
and speech pairs. Most publicly available TTS
datasets include book readings or generic passages
(Ito and Johnson, 2017), (Panayotov et al., 2015)„
(Ardila et al., 2020). However, for domain-specific

business data (e.g., Automobile, Healthcare, Re-
tail), one needs to either scrape it from the web or
purchase it from data curation companies, which
could introduce cost and licensing issues. Addition-
ally, the multilingual nature of such systems com-
plicates the process of obtaining domain-specific
data.

Figure 1: High-level depiction of a TTS system incor-
porating normalization

1.1 Text Scripts
Text scripts serve as inputs to TTS systems and are
essential for adapting these systems to specific busi-
ness domains. While obtaining domain-specific
data from public sources is difficult, it may seem
that LLMs can easily generate the necessary data
using a simple prompt with the domain as input.
However, our experiments with Mistral-7b-Instruct
(Jiang et al., 2023) show that for short sentences,
the generated text remains similar even with high
temperature and top_p values, especially if the in-
put prompt stays unchanged. As shown in Table 1,
an LLM, even high temperature values produce al-
most identical results. Very high values still limit
the sub-domain to Personal Finance but may also
generate unstable, low-quality output. Our analysis
in the Diversity Analysis section shows that LLMs,
without prompt variation, result in low-diversity
datasets, thus making this approach impractical for
generating large datasets for training downstream
models.

1.2 Normalization
The written and spoken forms of text often differ,
primarily in specific entities like addresses, dates,
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Temperature top_p Output (Generated 3 times with the same settings)
0.7 0.95 1. Maintaining a budget surplus is essential for reducing debt and securing financial stability.

2. Maintaining a budget surplus can help reduce debt and ensure financial stability.
3. Maintaining a balanced budget is crucial for achieving financial stability.

1.2 0.95 1. Managing expenses effectively is crucial for maintaining a healthy financial situation.
2. Making regular investments in a diversified portfolio can help grow your wealth over time.
3. Maintaining a balanced budget is key to achieving long-term financial stability.

1.2 0.51 1. Maintaining a budget surplus is crucial for reducing debt and ensuring financial stability.
2. Maintaining a budget helps control your expenses and save for future financial goals.

2.5 0.95 1. A wiser investment would have made twice your savings in a safer market stance.
(Implying the reader missed an opportunity for increased returns by prioritizing safeguarded
funds)
2. Exporting Savings: Despite decreased expenses, investments yield higher returns, bolster-
ing my financial security.
3. A sound financial plan includes creating a budget, building an emergency reserves, saving
for retirement, and consistently reducing unnecessary debts. But if you intend a single short
sentence it would be- Investing as early and aggressively thanYou Can can enhance long-term
returns significantly due toCompainddffects.

Table 1: Generated outputs for different temperature and top-p settings by prompting an LLM directly. Prompt used
was "Construct one short sentence in the finance domain".

times, and salutations, known as semiotic classes
(Zhang et al., 2019). Table 2 presents examples
of text scripts with their normalized forms across
languages. A TTS system processes text through a

Language Text Script Normalized Form
English The best waffles in

Delhi are found in
the 10th St., Hauz
Khas Vil. in South
Delhi.

The best waffles
in Delhi are found
in the tenth street,
Hauz Khas Village
in South Delhi.

Spanish El Dr. Johnson
se especializa
en el manejo de
enfermedades
relacionadas con el
estilo de vida.

El Doctor Johnson
se especializa
en el manejo de
enfermedades
relacionadas con el
estilo de vida.

French Emily est née le
03/08/1995.

Emily est née le
trois août mil neuf
cent quatre-vingt-
quinze.

Table 2: Examples of text scripts along with their nor-
malized forms across semiotic classes and languages.

Text Normalization System, such as NeMo’s text
normalizer (Zhang et al., 2021), before generating
speech audio, as depicted in Figure 1. However,
normalization systems may have limitations, fail-
ing to recognize all semiotic class variations. For
example, a date could appear as 03/01/2005, 01-
Mar-2005, or March 01, 2005, and some formats
may be overlooked. For inference, a pre-processing
text normalizer is essential. However, for training
data generation, our work demonstrates that nor-
malizing semiotic classes at the time of generation

achieves higher accuracy, eliminating the need for
a separate text normalizer.

1.3 Audio Data
Commercial TTS systems require speaker stan-
dardization to allow customers to choose a specific
speaker based on their usecase. To achieve this,
TTS systems need training data tailored to these
specific speakers. Utilizing human voice artists to
record speech audio for curating such training data
is expensive and therefore not scalable.

To address these challenges, we introduce
SpeechWeave—a comprehensive synthetic speech
data generation pipeline. Our key contributions
through SpeechWeave include:

• An end-to-end automated pipeline for gener-
ating high-quality synthetic data to train Text-
to-Speech models.

• Highly diverse text generation—both linguis-
tically and phonetically—with thousands of
unique combinations of semiotic classes, nor-
malized at the source with high accuracy.

• High-quality speech audio generation with
speaker standardization to ensure consistency
in speech characteristics for commercial TTS
systems.

2 Related Work

(Holtzman et al., 2020) introduced nucleus sam-
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Figure 2: High-level description of our synthetic text and audio generation pipeline

pling to stabilize text diversity in language mod-
els. Studies like (Naik et al., 2024) and (Li et al.,
2023a) explored prompt engineering techniques
to improve LLM performance. (Meincke et al.,
2024) highlighted LLM limitations in generating
diverse ideas, showing how strategies like Chain-of-
Thought prompting can help. (Hayati et al., 2024)
focused on step-by-step recall prompting for diver-
sity.

(Cornell et al., 2024) proposed a pipeline com-
bining LLM-generated text and TTS for ASR data,
while Gunduz et al. (Gunduz et al., 2024) intro-
duced an open-source TTS data generation tool
that lacked text script generation and normaliza-
tion, relying on public datasets like the Opus corpus
(Tiedemann, 2009) and voice artists for recordings.
(chun Hsu et al., 2024) presented a low-resource,
self-supervised method for training TTS using un-
labeled audio.

Works like (Eldan and Li, 2023) and (Cox et al.,
2023) showed how keyphrases can increase text di-
versity in LLMs. In TTS, (Byambadorj et al., 2021)
trained a multi-speaker model for low-resource lan-
guages, while (Qin et al., 2024) developed a cross-

lingual tone converter for vocal characteristics.
Other studies, like (Zhang et al., 2021), (Mans-

field et al., 2019), and (Ro et al., 2022), focused on
text normalization systems.

Despite these advancements, no prior work has
proposed an integrated pipeline for generating di-
verse text scripts and their normalized forms and
speaker standardized speech audio for TTS train-
ing.

3 Our Pipeline and Components

SpeechWeave consists of a keyphrase sampler,
an entity sampler with at-source normalizer, a
postprocessor and an audio generation module.

The pipeline is depicted at a high level in Fig-
ure 2. A more detailed representation is available
in Figure 6 in Appendix.

3.1 Keyphrase Sampling
As noticed above, if there isn’t enough diversity in
the inputs to an LLM, the model tends to generate
repetitive text. One way to improve the diversity
of generated text is through keyphrase infusion in
prompts as demonstrated by (Eldan and Li, 2023).
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For e.g. instead of prompting the model "Gener-
ate a sentence in finance domain", we can prompt,
"Generate a sentence in finance domain contain-
ing the following keyphrases: Mortgage, Asset
Finance". We can prompt the model to generate
text with multiple such keyphrase combinations to
ensure higher diversity in the generated text.

3.1.1 Multi-Step Prompting
For domain-specific keyphrases, we may prompt an
LLM to generate them, but this can lead to repeti-
tion. To address this, we use a multi-step prompting
approach. As shown by (Hayati et al., 2024), itera-
tive multi-step prompting enhances idea diversity.
We begin by generating a list of subdomains within
a business domain, such as healthcare. Then we ran-
domly select one from the generated list. The LLM
is then prompted to generate a creative paragraph
for the chosen subdomain, and then we prompt
the LLM to extract relevant keyphrases. To ensure
structured output, we use lm-format-enforcer (Gat,
2023) to convert results into a parseable JSON for-
mat at each step.

3.1.2 Keyphrase Store and De-Duplication
We utilize an in-memory keyphrase store to
store domain and language specific keyphrases.
We also utilize fuzzy search based on token
sort ratio and Levenshtein distance to ensure
that we do not store keyphrases that are very
similar to each other. This can also be replaced
with a keyphrase embeddings model such as
PhraseBERT (Wang et al., 2021), where we find
the similarity between the keyphrases by first
extracting the keyphrase embeddings, then com-
puting similarity with existing keyphrases in the
keyphrase store, and finally deciding whether the
keyphrase should be stored. However, we observe
that using fuzzy search in the pipeline produces
more diverse keyphrases compared to PhraseBERT.

Our keyphrase sampling pipeline is described in
Figure 3 and Figure 4 in Appendix.

3.2 Entity Sampler

To address the problem of text normalization, we
create an entity generator that not only gener-
ates the semiotic classes but also their normalized
forms. Our entity sampler can generate complex,
real-world variations and combinations of semiotic
classes. Since the rules for generating the entities
are encoded in the entity sampler, normalization

occurs simultaneously with generation. This ap-
proach ensures deterministic generation with guar-
anteed accuracy in normalization, as the entities do
not yet exist in the text. For example, we might
generate an email address composed of a first name,
a last name separated by an underscore, and ran-
dom characters. This allows us to normalize the
email address while these components are being
concatenated. Our entity sampler is capable of gen-
erating thousands of unique combinations across
9 different entities: Addresses, Phone Numbers,
Email Addresses, URLs, Dates, Times, Percentages,
Person Names with Salutations. Our entity sam-
pler is also locale-sensitive and multilingual. In
Appendix, Figure 5 describes the recipes for entity
generation and normalization for different semiotic
classes, while Table 8 and Table 9 contain differ-
ent examples of such classes with their normalized
forms.

3.3 Text Script Generator

We combine the generated keyphrases with the
semiotic classes in a prompt to generate domain-
specific text. We use lm-format-enforcer to force
the model to generate the text in JSON format,
ensuring that only the required text scripts are gen-
erated. We also replace the semiotic classes in the
text with their normalized forms to generate the
normalized script. Using different prompts, we can
generate various sentence types for our text scripts.
Table 10 in Appendix shows different prompts used
for generating text scripts for different sentence
types.

3.4 Normalization Post Processing

LLM-generated text may occasionally introduce
new semiotic classes. Therefore, we use a ba-
sic post-processing algorithm to normalize the
text. The algorithm expands the acronyms, con-
verts numbers to their cardinal forms, and removes
any hyphens, underscores, and brackets from the
normalized script. Our analysis reveals that post-
processing steps, such as changing numbers non-
contextually to their cardinal forms, may intro-
duce normalization errors. However, given that
the scripts we generate are small (upto 50 words)
the occurrence of such errors is quite rare, and our
overall process still achieves high normalization
accuracy (Section 4.2.1).
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Language Dataset

Mean
Similarity
Score
(Grouped)

Max
Similarity
Score
(Grouped)

Mean
Similarity
Score
(Ungrouped)

TTR MATTR
Diphone
Coverage

English
Direct Prompting (Baseline) 0.48 0.70 0.22 0.118 0.761 1442
English LibriSpeech - - 0.36 0.123 0.758 1792
Ours 0.26 0.36 0.15 0.167 0.803 1694

Spanish
Direct Prompting (Baseline) 0.54 0.77 0.31 0.297 0.966 516
Spanish LibriSpeech - - 0.28 0.395 0.962 651
Ours 0.30 0.41 0.25 0.370 0.979 565

Table 3: Comparison of similarity scores, lexical diversity (TTR, MATTR), and phoneme coverage (Diphone
Coverage) between our method, direct prompting baseline, and public datasets.

3.5 Speech Audio Generation And Cross
Lingual Voice Cloning

Once the text and its normalized forms are gener-
ated, we feed the normalized text to the Speech
Audio Generation Module. The audio generation
module takes in the input text, and a reference au-
dio, and generates speech audio with voice cloned
as per the reference audio. We first generate a base
speech audio using a pretrained TTS model (Zhao
et al., 2023). Then, for speaker standardization, we
use OpenVoiceV2’s (Qin et al., 2024) tone color
converter with reference voices taken from pro-
prietary voice artists. The tone color converter is
language agnostic i.e. we can use reference audio
in English to standardize voices in other languages.
This allows us to use standard voice artists across
languages for our downstream TTS system.

Data samples generated using SpeechWeave are
available in Table 7.

4 Evaluation

To evaluate our pipeline, we generate a dataset
with 3000 datapoints across 16 business domains,
5 sentence types, 9 semiotic classes, and 2 refer-
ence speakers (male and female), each in English
and Spanish. Sentences with fewer than 5 or more
than 50 words are excluded and regenerated us-
ing a different seed. For the baseline (wherever
applicable), we prompt a large language model to
generate text in the required business domain, as
detailed in Table 10 in Appendix. For diversity
evaluation, we also compare our results to public
datasets — English Librispeech (Panayotov et al.,
2015) and Spanish LibriSpeech (Pratap et al., 2020)
- sampling 3000 datapoints from each, applying the
same filtering criteria. For evaluating the quality
of a downstream model trained on our dataset, we

use the test splits from the same public datasets.
Experiment settings are detailed in Appendix Ex-
perimentation Settings.

4.1 Diversity Analysis
For diversity analysis, we examine the variation in
both the generated text and speech across different
samples produced by the pipeline.

4.1.1 Diphone Coverage
Diphones are adjacent phonemes representing tran-
sitions in speech, and diphone coverage indicates
how well a corpus captures phoneme combinations.
Our results show that relatively, our pipeline’s data
covers 17.4% more diphones in English and 9.7%
more in Spanish compared to the baseline. How-
ever, the public LibriSpeech datasets cover 5.7%
more in English and 15.2% more in Spanish than
our pipeline’s data. The superior coverage in Lib-
riSpeech can largely be attributed to high mean
word count compared to our dataset. Experimen-
tation settings and diphone coverage comparisons
are provided in Appendix E.2.1 and Figure 7 re-
spectively.

4.1.2 Mean Pairwise Similarity
We evaluated the semantic mean pairwise similar-
ity within sentence groups categorized by business
domain and type. Compared to direct prompting,
our pipeline generates more diverse text, showing
relatively 45.8% and 44.4% lower grouped simi-
larity scores for English and Spanish, respectively.
Even in the most homogeneous group, our data’s
similarity scores were relatively 48.5% and 46.7%
lower for English and Spanish compared to the
baseline. Since public speech datasets aren’t cate-
gorized by business domain, we calculated mean
pairwise similarity without grouping for compar-
ison. Our dataset shows greater diversity, with
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Language Technique
Normalization
Accuracy

English
NeMo 0.67
Ours 0.97

Spanish
NeMo 0.54
Ours 0.94

Table 4: Comparison of our at-source text normalization
accuracy with Nemo’s Text Normalizer.

relative mean similarity scores lower by 58.8% for
English and 10.7% for Spanish. Experimentation
settings and some additional analysis are described
in Appendix E.2.2

4.1.3 Token Diversity
Token diversity, measured by Type-Token Ratio
(TTR) and Moving Average Type-Token Ratio
(MATTR), reflects lexical richness. Our results
show both TTR and MATTR are higher in our syn-
thesized dataset compared to LLM-generated text
and both public datasets - LibriSpeech English and
LibriSpeech Spanish.

Table 3 contains a comparison of the datasets on
these diversity indicators.

4.2 Quality Analysis
The quality of the data generated by our pipeline
is assessed across three key dimensions: Normal-
ization Accuracy, Speech Audio Clarity and Down-
stream Model Training.

4.2.1 Normalization Accuracy
We evaluate our at-source normalization technique
against Nvidia NeMo’s text normalizer (Zhang
et al., 2021). Normalization accuracy is the ra-
tio of correctly normalized sentences to the total
evaluated. Our pipeline achieves 0.97 and 0.94
for English and Spanish, while NeMo scores 0.67
and 0.54, showing superior performance of at-
source text normalization for training data genera-
tion. NeMo’s errors involve mishandling variations
of semiotic classes, such as breaking up names, im-
properly normalizing phone numbers, or missing
alternate currencies. Experimentation settings are
detailed in Appendix Section E.2.4.

4.2.2 Speech Audio Clarity
We evaluate the acoustic quality of the gener-
ated speech to assess the effectiveness of the pre-
trained model in synthesizing speech from our
pipeline’s text scripts. Performance is quantified us-
ing Mean Signal-to-Noise Ratio (SNR), Automated

Mean Opinion Score (MOS), and Word Error Rate
(WER).

Language SNR
(dB)

MOS WER
(%)

English 59.82 4.95 9.32
Spanish 53.01 4.87 15.21

Table 5: Speech audio clarity indicators for the data
generated by SpeechWeave

Table 5 shows that the synthesized speech
achieves high MOS and SNR scores with low WER,
demonstrating superior audio quality and strong
textual and phonetic accuracy. Experimentation
settings available in Appendix E.2.5.

4.2.3 Downstream Model Training
We fine-tuned a StyleTTS 2 model (Li et al., 2023c)
using a LibriTTS-trained checkpoint on data gener-
ated by our pipeline and evaluated its quality using
WER. As a baseline, we measured WER on the
LibriSpeech test dataset (Panayotov et al., 2015;
Pratap et al., 2020) before fine-tuning. Our results
show significant WER reductions: 40% for En-
glish and 27% for Spanish relatively, compared to
the baseline, demonstrating the effectiveness of our
pipeline in generating high-quality training data for
improved speech synthesis.

Model LibriSpeech
English
WER (%)

LibriSpeech
Spanish
WER (%)

LibriTTS Checkpoint
(Baseline)

15.37 85.05

Baseline fine-tuned on
our data

9.36 48.44

Table 6: WER before and after fine-tuning StyleTTS 2
with SpeechWeave-generated data

Table 6 summarizes the experimental results
with experimentation settings described in Ap-
pendix Section E.2.6. It’s worth noting that
StyleTTS 2 does not have a Spanish-trained check-
point, which explains the higher overall WER for
Spanish. In this context, training on our Spanish
data effectively adapts the model to the Spanish
language.

5 Conclusion

We introduce SpeechWeave, a simple yet effective
pipeline for generating diverse, normalized text and
speaker standarized speech audio data for training
text to speech systems. Our analysis reveals that
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the data generated by our pipeline is much more di-
verse than the data generated by directly prompting
an LLM, and carries higher normalization accu-
racy compared to post processing normalizers like
NeMo while being speaker-standardized to allow
scaling training data. The data is also on par with
publicly available speech datasets, while adhering
to the required business domains. Given that the
data is highly precise in terms of normalization, it
can also be used to train text normalization models.

Limitations and Future Work

The accuracy of the normalized text generated by
our pipeline is limited by the number of semiotic
classes supported by the the entity sampler. More-
over, although our pipeline incorporates Mistral-
7b-Instruct-0.3 and OpenVoice V2 Stack for data
generation, the results may vary depending upon
the models chosen for generating the dataset. Our
evaluation is also limited to English and Spanish
languages and the extent of improvement may vary
based on the language for which the data is gener-
ated. In the future, we plan to extend the framework
to include other morphologically rich languages,
with a particular focus on those that are currently
underrepresented. Moreover, while, it is fairly
straightforward to support a new semiotic class,
the post processor may result in occasional normal-
ization errors for unsupported entities. We wish to
continue this work by generalizing the framework
for semiotic class generation and entity normaliza-
tion at source. We would also like to extend this
work to support styled speech audio generation and
speech style standardization.

Ethical Considerations

Our work uses entirely synthetic text and audio data
generated through a controlled pipeline, without
the involvement of real-world user data or human
participants, apart from publicly available speech
datasets used solely for evaluation purposes. This
design inherently avoids privacy violations and en-
sures that no personally identifiable information is
processed or exposed. As such, our data generation
process does not pose significant ethical risks typ-
ically associated with data collection, consent, or
user harm. By relying on synthetic data, we uphold
best practices in privacy-preserving and ethically
responsible research.
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Appendices

A Generated Samples

Table 7 contains examples of text scripts generated
by our pipeline along with their normalized forms.

B Keyphrase Sampling Pipeline

To generate keyphrases to increase diversity in the
generated text scripts, we prompt the LLM in multi-
ple steps. We begin by prompting the LLM to gen-
erate subdomains in the required business domain.

Then we prompt the LLM to pick one subdomain
randomly. Then the LLM is required to write a cre-
ative paragraph about the subdomain in the target
language. Finally, we prompt the LLM to extract
keyphrases from the generated paragraph. Out-
put formats are enforced using lm-format-enforcer
(Gat, 2023) and set at different steps in the prompt
chain. For each of the generated keyphrases, we
determine the similarity score with the rest of the
keyphrases generated by the pipeline (grouped by
domain and language) using Token Sort Ratio. Any
keyphrase that has a token sort ratio of less than 0.8
is then stored in the keyphrase store. The process is
repeated unless the required number of keyphrases
is available in the store. For the conducted evalua-
tion experiments, we use two keyphrases per text
script. Figure 3 describes the keyphrase sampling
pipeline, while Figure 4 depicts an example at each
step of the prompt chain.

C Entity Sampling

Our entity sampler consists of recipes to generate
several forms of semiotic classes along with their
normalized forms. The sampler consists of recipes
for each language and is extensible to support more
languages. In most of the scenarios, the base enti-
ties are generated using the Faker library (Faraglia,
2014). For example, for generating an email, per-
son names are generated using Faker library (Panda
et al., 2025; Agarwal et al., 2025, 2024). The exact
recipes for different entity and their forms are de-
scribed in Figure 5 and some example of generated
entities and their normalized forms are present in
Table 8 and Table 9.

D Text Script Generation Pipeline

Entire text script generation pipeline is described
in Figure 6.

E Experimentation Settings

E.1 Keyphrases and Text Scripts Generation

The keyphrases and text scripts are generated using
Mistral-7b-Instruct-0.3 (Jiang et al., 2023) model
with a temperature setting of 1.2, a top_p value of
0.9. The data generated by the baseline technique
shares characteristics with the data produced by
our pipeline, including the use of the same LLM,
dataset size, business domains, sentence types, sam-
pling parameters, and length filtering criteria.
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E.2 Evaluation

E.2.1 Diphone Coverage
To estimate the diphone coverage in our dataset
and compare it with baseline corpora, we begin by
extracting all unique phonemes from the text scripts
using a phonemizer (Park, 2019; Patel et al., 2025;
Bernard and Titeux, 2021). After identifying the
phonemes, we compute the diphones by examining
each pair of adjacent phonemes. Figure 7 depicts
the diphone coverage for different dataset sizes for
the three datasets we compared.

E.2.2 Pairwise Similarity
Since the generated text data is domain-specific,
we compute mean pairwise similarity (Gong et al.,
2019; Thomas et al., 2025) within sentence groups
categorized by business domain and sentence type.
Specifically, the dataset is first segmented based
on these categories, and the mean pairwise sim-
ilarity is then calculated within each group. A
global similarity score (1) is obtained by averaging
these group-level similarity scores. The embed-
dings for calculating this metric are obtained using
the LaBSE model (Feng et al., 2022).

Grouped Similarity =
1

|G|
∑

g∈G




1

|Sg|(|Sg| − 1)

|Sg|∑

i=1

|Sg|∑

j=i+1

cos(s
g
i , s

g
j )




(1)

where |G| is the total number of groups, |Sg| is the
number of sentences in group g, and sgi and sgj are
LaBSE embeddings for sentences at indices i and
j in group g.

Objectively, our pipeline produces significantly
better results than the direct prompting baseline.
A quick manual review also reveals that the di-
rect prompting pipeline tends to generate sentences
excessively centered around certain phrases. For
example: (1) 23% of sentences generated in the
Banking domain contain the phrase "savings ac-
count," compared to just 1.8% in our pipeline. (2)
14% of all sentences generated in the Finance do-
main contain the phrase "stock market," compared
to just 0.5% in our pipeline.

Non Grouped mean pairwise similarity is calcu-
lated as per Equation 2.

Non Group Similarity =
1

M(M − 1)

M∑

j=1

M∑

k=j+1

cos(sj , sk)

(2)

where M is the total number of sentences, sj
and sk are embeddings for sentences at index j and
k in the group.

E.2.3 Token Diversity
To compute TTR, MATTR, we first tokenize the
text using NLTK’s Punkt tokenizer (Bird et al.,
2009) and SpaCy’s es_core_news_sm model (Hon-
nibal and Montani, 2017; Pattnayak et al., 2025)
for Spanish text processing.

• TTR (Type-Token Ratio): Calculated as the
ratio of the number of unique tokens to the
total number of tokens in the text.

• MATTR (Moving Average Type-Token Ratio):
Calculated as TTR over a sliding window of
size 100, and then averaging the values.

E.2.4 Normalization Accuracy
While our pipeline performs at-source text nor-
malization along with some basic post-processing
steps, we observe that certain semiotic classes gen-
erated by the large language model (which we
didn’t use in our prompt) may not be correctly
normalized. These normalization errors stem from
either the absence or incorrect application of nor-
malization to these new semiotic classes. To estab-
lish a ground truth for assessing normalization ac-
curacy, we manually evaluate 500 (each for English
and Spanish) sentences generated by our pipeline.
For any incorrectly normalized sentence, the cor-
rect normalization is documented and used as the
ground truth.

To further assess the performance of our tech-
nique, we apply Nvidia NeMo’s WFST text nor-
malizer to the generated sentences. We note that
NeMo’s text normalizer fails to perform certain fun-
damental normalization tasks, such as removing hy-
phens or expanding acronyms, which are handled
by our pipeline’s postprocessor. To mitigate errors
arising from these discrepancies, we apply the same
postprocessor to NeMo’s output. Additionally, we
observe that NeMo follows a different strategy for
normalizing phone numbers, specifically regard-
ing the placement of commas, compared to our
pipeline. As such, we exclude comma placement
from penalties. A sentence is considered penalized
if its output does not match the ground truth. We
also recognize that NeMo may produce outputs
that differ from our normalization process but are
still acceptable. To avoid penalizing these differ-
ences, we manually review all penalized instances
and classify those with acceptable normalization
as correct. A couple of examples of such accept-
able errors are: (1) Incorrect deduction of locale
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for normalizing dates. For example, normalizing
02-01-2005 as "February one, twenty twenty five"
instead of "January two twenty twenty five" as done
by our pipeline. (2) Normalizing large amounts
with "and" separator. For example, normalizing
$301,000 as "three hundred one thousand" instead
of "three hundred and one thousand" as done by
our pipeline.

E.2.5 Speech Audio Clarity
• Mean Opinion Score (MOS): We estimated

MOS using the NISQA (Neural Speech Qual-
ity Assessment) model (Mittag et al., 2021),
which predicts speech quality based on per-
ceptual metrics without requiring human eval-
uation.

• Signal-to-Noise Ratio (SNR): measures the
level of speech signal relative to background
noise. It is calculated as:

SNR = 10 log10

(
Psignal

Pnoise

)
(3)

where Psignal represents the power of the
speech signal, and Pnoise represents the power
of background noise. A higher SNR indi-
cates cleaner audio with less noise interfer-
ence. Since we lack a reference clean audio,
we estimated the noise power from the qui-
etest segments of the audio, assuming that
these portions (where no speaker is present)
primarily contain background noise.

• Word Error Rate (WER): We utilized WER
as a metric to measure how accurately the
synthesized audio samples reflect the origi-
nal normalized text, effectively evaluating the
performance of the pipeline generating audio
from the normalized text . This is achieved
by leveraging an ASR model (NVIDIA, 2025;
Harper et al., 2021) to transcribe the synthe-
sized audio samples. We then compute the
WER by comparing the transcribed text to the
source normalized text.
It is calculated as:

WER =
S +D + I

N
× 100 (4)

where:

– S is the number of substitutions (incor-
rect words),

– D is the number of deletions (missing
words),

– I is the number of insertions (extra
words), and

– N is the total number of words in the
reference text.

A lower WER indicates that the synthesized
audio samples accurately reflect the input nor-
malized source text.

E.2.6 Downstream Model Training
To evaluate the effectiveness of the synthetic
dataset generated by our pipeline for real-world
Text-to-Speech synthesis, we conducted down-
stream model training using the StyleTTS 2 model.
We began by using a StyleTTS’ LibriTTS check-
point as our base model.

For the baseline setup, we performed inference
on the LibriSpeech test datasets, which are out-of-
distribution (OOD) with respect to both our gener-
ated dataset and the LibriTTS training data. Test
set contains 2618 samples for English and 2385
samples for Spanish. These text inputs were passed
through the baseline model to synthesize speech
audios.

We then evaluated the synthesized audio using
NVIDIA NeMo’s automatic speech recognition
(ASR) models: stt_en_conformer_ctc_large for En-
glish and stt_es_conformer_ctc_large for Spanish
(NVIDIA, 2025). These ASR models transcribed
the generated audio into text, which was then com-
pared to the reference input using Word Error Rate
(WER) as the evaluation metric. To ensure fair and
robust evaluation, we used a reference speaker au-
dio that was not present in the training set for both
the baseline and fine-tuned models.

For fine-tuning, we trained StyleTTS 2 models
using the pipeline-generated datasets for English
and Spanish, initializing from the same LibriTTS
checkpoint and training for 50 epochs. The training
uses PLBERT (Li et al., 2023b) for English and a
multilingual variant of the same for Spanish for
grapheme predictions.

F Text Script Generation Prompts

Prompts use for generating text scripts using direct
prompting and through our pipeline are available
in Table 10

G A note on secondary seeds

• Reproducibility is an essential component in
any machine learning pipeline. For text gen-
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eration, we need to ensure that the generated
dataset is reproducible.

• We have stochastic components in our
pipeline, such as Random Entity Generator,
which can cause the entire pipeline to generate
different text if not controlled.

• Large Language Models also have stochastic
components that cause them to generate dif-
ferent text even when the inputs remain the
same.

• One common way to control the stochasticity
of both these components is by fixing the ran-
dom seed. This ensures a component follows
the same path when run again and again.

• However, fixing this seed is a limitation for
us. There may be situations where we need to
generate something in a loop. For example:

– We may need to generate 5 email ad-
dresses. If we fix the seed, we will get
the same value repeatedly.

– When filtering a sentence based on some
criteria (e.g., it is too long), generating
the sentence using the same seed will
keep producing the same sentence.

• To eliminate this, we use a process called sec-
ondary seeding.

• We first generate a primary seed and fix it.
With the primary seed fixed, we generate a
secondary seed anytime we need to run a ran-
dom generation.

– For example, if we encounter a generated
sentence that is too long and needs to be
filtered, we generate a new secondary
seed. This generates a new sentence dif-
ferent from the last one.

• Secondary Seeding also ensures reproducibil-
ity. Since the secondary seed is generated
using the primary seed, the sequence of sec-
ondary seed generation remains the same.

• Therefore, if you run the pipeline using the
same primary seed again, you will generate
the same data.

Secondary seeding is described in Figure 8
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Figure 3: Multistep Keyphrase Sampling Pipeline with De-duplication and Keyphrase Store
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Figure 4: Example output from keyphrase sampling pipeline at each step of the prompt chain
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Figure 5: Recipes for generating different semiotic classes and their normalized forms
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Text Script Normalized Form
Mrs. Julie Young was blown away by the sheer size of the
aircraft and the luxurious amenities offered by the airline!

Missis Julie Young was blown away by the sheer size of the
aircraft and the luxurious amenities offered by the airline!

I’ll be reaching out to Abigail Walker at 5.abi-
gail.walker@yandex.com to discuss this further.

I’ll be reaching out to Abigail Walker at five dot abigail dot
walker at yandex dot com to discuss this further.

With 87% of repair manuals available online in step-by-step
instructions, maintenance and repairs on automobiles have
become more accessible and efficient.

With eighty seven percent of repair manuals available online
in step by step instructions, maintenance and repairs on
automobiles have become more accessible and efficient.

Dr. Angel Roberts has made it easier for customers to make
major purchases by simplifying the process and reducing the
necessary steps.

Doctor Angel Roberts has made it easier for customers to
make major purchases by simplifying the process and reduc-
ing the necessary steps.

The city council is working on delivering a new £273 million
scheme to improve the built environment for its residents.

The city council is working on delivering a new two hundred
and seventy three million pounds scheme to improve the
built environment for its residents.

El 02-01-1997 fue la fecha en la que Desmarca abrió su
tienda, con un fuerte énfasis en la personalización de los
productos.

El dos de enero de mil novecientos noventa y siete fue la
fecha en la que Desmarca abrió su tienda, con un fuerte
énfasis en la personalización de los productos.

El sistema de control de vuelo utiliza una señal de posición
con un 93,45% de precisión para determinar la ubicación de
la aeronave sobre la Tierra.

El sistema de control de vuelo utiliza una señal de posición
con un noventa y tres coma cuarenta y cinco por ciento de
precisión para determinar la ubicación de la aeronave sobre
la Tierra.

¿Has realizado un análisis financiero de los instrumentos
financieros que están disponibles para invertir CA$572?

¿Has realizado un análisis financiero de los instrumentos
financieros que están disponibles para invertir quinientos
setenta y dos dólares canadienses?

El informe sobre la corrupción en el gobierno se puede
consultar en 86corrupti.net.

El informe sobre la corrupción en el gobierno se puede
consultar en ocho seis corrupti punto net.

Table 7: Examples of generated text scripts and their normalized forms.

Type Generated Entity Normalized Form
Amount 863k Canadian Dollars Eight Hundred and Sixty Three Thousand Canadian Dol-

lars
29 USD Twenty Nine U S Dollars
£723m Seven Hundred and Twenty Three Million Pounds

Date 10-04-2023 October fourth twenty twent three
10/21/1997 October twenty first ninet seven
06/Jan/10 January sixth ten

Person Dr. Yvette Nelson Doctor Yvette Nelson
Mr. Cameron Carter Mister Cameron Carter
Mrs. Julia Thomas Missis Julia Thomas

Email cbrwthomaswalker29@hotmail.com c b r w thomas walker two nine at hot mail dot com
l51sonyasanders@mail.com l five one sonya sanders at mail dot com

Phone Number 7854017402 seven eight five, four zero one, seven four zero two
+1-47859964121 plus one, four seven eight five, nine nine six, four one

two one
Percentage 39.29% thirty nine point two nine percent
URL http://though15.eu h t t p colon slash slash though one five dot e u
Address Johnson Trail Plz KY 45287 Johnson Trail Plaza Kentucky four five two eight seven

Chen Inlet North Dakota 34101 Chen Inlet North Dakota three four one zero one
Time 13:59 Thirteen fifty nine

17:00 Seventeen hundred hours
02:34 PM Two thirty four P M
11 o’clock Eleven o clock

Table 8: Examples of generated entities and their normalized forms across various semiotic classes in English.
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Type Generated Entity Normalized Form
Amount CA$572 quinientos setenta y dos dólares canadienses

A$485,986,561.71 cuatrocientos ochenta y cinco millones novecientos
ochenta y seis mil quinientos sesenta y uno con setenta
y un centavos dólares australianos

£723m setecientos veintitrés millones de libras
Date 05/22/93 veintidós de mayo de mil novecientos noventa y tres

02-Oct-1988 dos de octubre de mil novecientos ochenta y ocho
08-04-2000 ocho de abril de dos mil

Person Prof. Edgardo Aragón Trujillo El Profesor Edgardo Aragón Trujillo
Dr. Bernabé Quintanilla Cerezo El Doctor Bernabé Quintanilla Cerezo
Sr. Rodolfo del Cid El Señor Rodolfo del Cid

Email 16rosaliaquesada@outlook.com uno seis rosalia quesada en outlook punto com
ferreraclara36@outlook.com ferrera clara tres seis en outlook punto com

Phone Number 4 835600765 cuatro ocho tres, cinco seis cero, cero siete seis cinco
4807 14 77 34 cuatro ocho cero, siete uno cuatro, siete siete tres cuatro

Percentage 69.76% sesenta y nueve punto setenta y seis por ciento
76% setenta y seis por ciento

URL 73corporis.gov siete tres corporis punto gov
Address 79 Pasaje de Claudio Jimenez Vlg Tarrag-

ona Colorado 11282
siete nueve Pasaje de Claudio Jiménez Aldea Tarragona
Colorado uno uno dos ocho dos

Pasadizo Julián Bosch Louisiana 32198 Pasadizo Julián Bosch Louisiana tres dos uno nueve
ocho

Time 09:20 nueve veinte
07:59 pm siete cincuenta y nueve p m
las 2 en punto las dos en punto

Table 9: Examples of generated entities and their normalized forms across various semiotic classes in Spanish.

Figure 6: Detailed description of text script generation pipeline
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Dataset Sentence Type Prompt

Direct Prompting (Baseline)

Statement Construct one sentence in {language} language
in {domain} domain. I am well aware of {lan-
guage} language, so do not translate it.

Exclamation Construct one sentence in {language} language
in {domain} domain. The generated sentence
should be exclamatory and have a surprising
tone. I am well aware of {language} language,
so do not translate it.

Question Construct one sentence in {language} language
in {domain} domain. The generated sentence
should be a question. I am well aware of {lan-
guage} language, so do not translate it.

Phrase Construct a short phrase in {language} language
in {domain} domain. The phrase should con-
tain about 5 to 7 words. It should be strictly a
phrase and not a sentence. I am well aware of
{language} language, so do not translate it.

Utterance Construct a short arbitrary conversation between
two people in {language} language in {domain}
domain. I am well aware of {language} lan-
guage, so do not translate it.

Ours

Statement Construct one sentence in {language} language
in {domain} domain with the following words:
{words}. The following entities should also be
present in the text: {entities}.

Exclamation Construct one sentence in {language} language
in {domain} domain with the following words:
{words}. The following entities should also be
present in the text: {entities}. The generated
sentence should be exclamatory and have a sur-
prising tone.

Question Construct one sentence in {language} language
in {domain} domain with the following words:
{words}. The following entities should also be
present in the text: {entities}. The generated
sentence should be a question.

Phrase Construct a short phrase in {language} language
in {domain} domain with the following words:
{words}. The phrase should contain about 5 to 7
words. The phrase should not have any numbers
or dates. It should be strictly a phrase and not a
sentence.

Utterance Construct a short arbitrary conversation between
two people in {language} language in {do-
main} domain containing the following words:
{words}. The following entities should also be
present in the text: {entities}.

Table 10: Prompts used for Text Generation through direct prompting (baseline) and our pipeline.
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Figure 7: Diphone coverage for different dataset sizes for Baseline, Librispeech and Our Pipeline for English and
Spanish text scripts
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Figure 8: Detailed description of text script generation pipeline
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