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Abstract

Electronic Discovery (eDiscovery) requires
identifying relevant documents from vast col-
lections for legal production requests. While
artificial intelligence (AI) and natural language
processing (NLP) have improved document re-
view efficiency, current methods still struggle
with legal entities, citations, and complex legal
artifacts. To address these challenges, we intro-
duce DISCOvery Graph (DISCOG), an emerg-
ing system that integrates knowledge graphs
for enhanced document ranking and classifi-
cation, augmented by LLM-driven reasoning.
DISCOG outperforms strong baselines in F1-
score, precision, and recall across both bal-
anced and imbalanced datasets. In real-world
deployments, it has reduced litigation-related
document review costs by approximately 98%,
demonstrating significant business impact.

1 Introduction

During legal proceedings, such as investigations,
regulatory reviews, and litigation, parties engage in
a legal process called discovery, formally request-
ing relevant documents from opposing parties. Tra-
ditionally, this involves manually sifting through
vast document repositories, a slow and costly pro-
cess prone to human error. Electronic discovery
(eDiscovery) encompasses the collection, review,
and organization of digital documents, such as
emails, contracts, and articles, to identify those rele-
vant to discovery requests. Technology-assisted re-
view (TAR) typically involves iterative workflows
in which skilled professionals annotate documents
for relevance guiding supervised learning models in
prioritizing documents for review. Early TAR work-
flows relied on Boolean text queries but have since
evolved to incorporate ranked retrieval, relevance
feedback, and active learning techniques (Sansone
and Sperli, 2022). Recently, predictive coding,
which trains binary text classifiers to determine
whether a document is relevant to a production re-
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quest, has gained widespread use (Brown, 2015).
Large Language Models (LLMs) have also been
explored for document relevance classification in
eDiscovery (Pai et al., 2023). However, these text-
only models struggle to effectively capture entities,
citations, and other complex legal information fre-
quently found in legal production requests, limit-
ing their adoption. To address these challenges,
we introduce DISCOvery Graph (DISCOG), a
novel emerging approach that constructs a knowl-
edge graph from the complex structural informa-
tion within document corpus and leverages it to
enhance document classification and ranking.

DISCOG frames the eDiscovery problem as a
link prediction task within a knowledge graph, aug-
mented by a Large Language Model (LLM) for
reasoning. The graph consists of documents (e.g.,
email subjects and bodies from the EDRM cor-
pus), topic statements, senders, and receivers. Key-
words and keyphrases extracted from documents
serve as additional nodes, with semantically sim-
ilar keywords linked to enhance structural rich-
ness. Document relevance is determined through
link prediction between document and topic nodes,
where a document is classified as relevant if a link
exists between them. To model the knowledge
graph, DISCOG employs representation learning
techniques, including Knowledge Graph Embed-
ding (KGE) methods such as TransE (Bordes et al.,
2013) and ComplEx (Trouillon et al., 2016), as
well as Graph Neural Networks (GNNs) like Graph-
SAGE (Hamilton et al., 2018). The trained model
ranks documents by prediction probability, select-
ing the top K documents (determined by a pre-
defined recall threshold, typically 80% (Halskov
and Takeda, 2013)) for further reasoning via LLMs.
Fig. 1 provides an overview of the DISCOG frame-
work.

Due to the confidentiality of legal discovery pro-
cesses, direct experimentation on real-world litiga-
tion is not feasible. Instead, we evaluate DISCOG
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Figure 1: DISCOG: A heterogeneous graph-based approach for predictive coding and ranking in eDiscovery

using the publicly available Electronic Discovery
Reference Model (EDRM) Enron Emails Dataset,
previously used in the Text Retrieval Conference
(TREC) Legal Track (2009-2011)" (Hedin et al.,
2009; Grossman et al., 2011). This dataset, which
includes production requests and human-labeled
relevance judgments, remains a benchmark for
NLP research on LLM applications (Li et al., 2024;
Chen et al., 2024; Huang et al., 2024) and graph-
based methods (Shakiba, 2023; Nouranizadeh et al.,
2024). By demonstrating DISCOG’s effectiveness
on this established benchmark, we showcase its
potential for real-world eDiscovery tasks.

2 Related Work

Prior research on the EDRM Enron dataset has pri-
marily employed traditional information retrieval
(IR) techniques (Grossman et al., 2011; Robertson
and Zaragoza, 2009), where queries are executed
against a document index to generate ranked lists
of relevant documents.

Transformer-based architectures (Vaswani et al.,
2017) have transformed NLP by enabling cross-
domain knowledge transfer with limited training
data (Raffel et al., 2020). Models such as Contex-
tualized Late Interaction over BERT (ColBERT)
(Khattab and Zaharia, 2020) and its improved vari-
ant, ColBERT v2 (Santhanam et al., 2022), lever-
age contextualized embeddings and late interac-
tion mechanisms to enhance document ranking.
For adaptation to the legal domain, (Yang et al.,
2021) pre-trained BERT on legal data and fine-
tuning based on human review for active learn-
ing. Recently, large lanuage models (LLMs) have

"https://trec-legal.umiacs.umd.edu/

been used in several use-cases for identify rele-
vancy based on semantic relations and generating
responses along with appropriate reasoning. (Pai
et al., 2023) experimented with out of the box and
fine-tuned LLMs for classification of documents
relevant to a topic. (Bron et al., 2024) additionally
proposed active learning methods to rank the clas-
sifications obtained from LLMs. However, despite
their strength in text processing, these models often
overlook relational dependencies crucial in legal
contexts.

To address this limitation, legal data can be struc-
tured as graphs, where documents, topics, and en-
tities form nodes, and relationships define edges.
Graph-based methods have been widely applied
in areas such as social networks and biomedi-
cal research, offering structured representations
of interconnected data (Cimiano and Paulheim,
2017). Graph representation learning captures la-
tent semantic relationships by embedding nodes
and edges into low-dimensional spaces, optimizing
them for classification and link prediction tasks.
(Tang et al., 2024b) proposed a text-attributed case
graph (TACG) with downstream applications using
graph attention trained with contrastive learning
methods. (Tang et al., 2024a) builds on top of (Tang
et al., 2024b) with updated attention layer to deal
with both nodes and edges and graph augmentation
technique for better learning. (Tang et al., 2024c)
creates a Global Case Graph and employs inductive
graph learning for various use-cases. (T.y.s.s et al.,
2025) and (Louis et al., 2023) provides similar ap-
proaches for Statutory Articles.

Two main approaches dominate graph represen-
tation learning: (1) Knowledge Graph Embedding
(KGE) models and (2) Graph Neural Networks
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(GNNs). KGE models, including TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016), Ro-
tatE (Sun et al., 2019), and DistMult (Yang et al.,
2015), generate embeddings through lookup ta-
bles and optimize them using scoring functions.
GNNS, in contrast, aggregate node features from
their neighborhoods over multiple hops (n-hops),
enabling more expressive representations (Zhou
etal., 2021).

Among GNNs, GraphSAGE (Hamilton et al.,
2018) constructs node embeddings by aggregating
sampled neighbor information, while Graph At-
tention Networks (GAT) (Velickovi¢ et al., 2018)
enhance this by assigning attention scores to dif-
ferent neighbors. Relation Graph Convolutional
Networks (RGCNSs) (Schlichtkrull et al., 2017) fur-
ther extend GCNs by incorporating different edge
types, making them well-suited for heterogeneous
legal data. These graph-based approaches provide
a structured way to model complex dependencies
in legal discovery, addressing limitations of purely
text-based methods.

3 Methodology

This study tackles predictive coding in eDiscov-
ery by constructing a heterogeneous knowledge
graph from documents, emails, topic statements,
and metadata (e.g., email IDs). Semantic relation-
ships are derived from keywords and keyphrases,
and link prediction techniques classify document
relevance by predicting links between document
and topic nodes. We employ both Knowledge
Graph Embedding (KGE) methods (e.g., TransE,
ComplEx) and Graph Neural Networks (GNNs)
(e.g., GraphSAGE). While KGE methods learn low-
dimensional node and edge embeddings, GNNs

aggregate features from neighboring nodes to en-
hance link prediction accuracy. The trained models
rank documents by relevance, with an LLM pro-
viding reasoning for predictions—addressing both
classification and interpretability in legal document
review.

3.1 Dataset

The EDRM Enron Emails dataset, used in the
TREC Legal Track (2009-2011), contains 455,449
emails and 230,143 attachments (Grossman et al.,
2011). As a case study, we focus on production
requests from the 2009 and 2011 tracks, cover-
ing seven topics in 2009 and three in 2011. Each
topic includes a seed document set for training
and grels, which provide human-assessed relevance
judgments for evaluation. The full topic details and
data distribution are provided in Appendix A.1.

3.2 Baselines for Predictive Coding

We evaluate DISCOG against two widely used pre-
dictive coding baselines in eDiscovery:

BM25L: A standard IR model that ranks doc-
uments based on query relevance (Lv and Zhai,
2011). In our setup, the topic statement serves
as the query, and BM25L computes a relevance
score for each document based on term frequency,
document length, and other factors.

ColBERT v2: A Transformer-based retrieval
model optimized for passage ranking. We use a
pretrained ColBERT v2 model with frozen weights
and a downstream classifier to refine relevance pre-
dictions, leveraging ColBERT’s contextualized em-
beddings for improved predictive coding.

3.3 DISCOvery Graph (DISCOG)

DISCOG employs a graph-based predictive coding
approach in three stages: (1) it constructs a het-
erogeneous knowledge graph from extracted key-
words, documents, topics, senders, and receivers;
(2) it applies predictive coding using KGE meth-
ods (TransE, ComplEx) and GNN models (Graph-
SAGE, GAT, RGCN) to learn relationships and im-
prove classification accuracy; (3) the trained model
ranks documents by predicted relevance to topic
statements, capturing complex relational dependen-
cies to enhance predictive performance.

3.3.1 Graph Construction

To harness relational structures in text data,
we construct a heterogeneous knowledge
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Figure 3: Predictive coding performance of baselines and graph-based models. Grouped bars represent Topics
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graph consisting of four node types: docu-
ments/emails, senders/recipients, topics, and
keywords/keyphrases. = Keywords/keyphrases
are a combination of unigrams, bigrams and
trigrams and extracted from documents using
the subject and body and from topic statements
using KeyBERT (Grootendorst, 2020) and used
as distinct nodes. To reduce noise, we retain only
keywords appearing in at least five documents.
These are connected to one another based on
semantic similarity obtained by a cosine similarity
score of 0.75 and above.

Most knowledge graph embedding methods are
transductive, making inference on unseen nodes
challenging (Costabello et al., 2023). To address
this, we introduce two master nodes: DOCU-
MENT and TOPIC, linking all documents and
topics to their respective master nodes. The mas-
ter node DOCUMENT is connected to all nodes
obtained from documents and ensures that no iso-
lated nodes are present during inference. Similar
connections are followed for topic nodes. These
master nodes are only used during transductive em-
bedding generation and are unnecessary for graph
neural networks, which are inductive and handle
unseen nodes inherently. A schematic diagram of
the graph is shown in Figure 2

The graph incorporates links from the seed and
grels sets. For knowledge graph embedding, only
positive links—indicating document relevance—
are included to align with the open-world assump-
tion (Costabello et al., 2023). In contrast, graph
neural networks leverage both positive and negative
links, improving their ability to distinguish relevant
from non-relevant documents.

3.3.2 Predictive Coding

DISCOG formulates predictive coding as a link
prediction task within a knowledge graph. Two
modeling approaches are employed: Knowledge
Graph Embeddings (KGE) and Graph Neural Net-
works (GNNs).

For KGE-based prediction, TransE and
ComplEx learn low-dimensional node embed-
dings by minimizing triplet loss with multi-
class negative log-likelihood (Costabello et al.,
2019). Training considers only relevant links
from the seed set, represented as triples
(Document;, relevant_to, T'opic;). During in-
ference, confidence scores for predicted links are
calibrated using ground-truth labels, with a clas-
sification threshold optimized for F1-score on the
validation set.

For GNN-based prediction, node embeddings
are initialized using Sentence Transformers and
refined via GraphSAGE, GAT, and RGCN, inte-
grated with TransE. Unlike KGE, GNN training
incorporates both relevant and non-relevant links,
assigning edge values of 1 (relevant) and O (non-
relevant). A classification head predicts edge labels,
and edge scores are thresholded to optimize macro
average F1-score during inference.

Both approaches enable DISCOG to classify
documents as relevant or non-relevant, leveraging
graph structure to enhance predictive coding in
eDiscovery.

3.3.3 Ranking and LLM Prediction

Documents are ranked based on edge scores, nor-
malized via min-max scaling for KGE methods,
while GNNs use classification probabilities directly.
Performance is evaluated using Recall @k, and re-
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sults are benchmarked against BM25L and BERT
with a classifier.

Finally, building on Pai et al. (2023), we ap-
ply LLMs to explain predictions. The top K
ranked documents are selected, and GPT-3.5-turbo
is queried Out-Of-Box (OOB) with a prompt de-
signed to validate graph model predictions and gen-
erate reasoning. The prompt is upgraded from the
work in Pai et al. (2023), to incorporate the predic-
tion results from the GNN or KGE based method,
along with the keywords identified from the doc-
ument, and the overall LLLM task is modified to
validate the model’s prediction along with a reason
to support its decision.

4 Results

We evaluate DISCOG using emails from the
EDRM Enron Dataset, excluding attachments. This
section details the graph construction, predictive
coding and ranking outcomes, and an analysis of
cost savings and business impact.

4.1 Heterogeneous Information Network

The final graph consists of 455,449 email nodes,
ten topic nodes, and 34,134 keyword nodes ex-
tracted from emails and topic statements. Ad-
ditionally, 103,926 distinct sender/receiver IDs
are included. Edges are formed based on email-
to-keyword associations, with similar keywords
linked. The number of Emails relevant to Topic
edges varies per topic, determined by the seed and
grels sets used for model training and evaluation.

4.2 Predictive Coding Results

We evaluate classification and ranking performance
using grels. Since BM25L. is a ranking algorithm, it
is excluded from classification evaluation. The clas-
sification results, summarized in Fig. 3, show that
the GNN-based GraphSAGE model consistently
outperforms others, including RGCN and GAT.

Most topics exhibit highly skewed distributions
of relevant and non-relevant cases, leading to
lower performance for baseline and KGE-based
approaches. Despite this, GraphSAGE maintains
strong performance across topics, with the excep-
tion of a single topic (#206), which has the fewest
relevant seed cases.

4.3 Ranking Results

Following the TREC 2009 and 2011 Legal Track
evaluation scheme, we assess ranking performance

Recall

Recall

Recall

Recall

Recall

k k
—o— BM25L ColBERT TransE
—a—  ComplEx —e— GAT RGCN (TransE)
—4—  GraphSAGE

Figure 4: Recall @k plots for topics at different values of
k ranging from O to total count of emails in the dataset.

using F1-score, precision, and recall at various cut-
off values of k, where k represents the number of
reviewed documents. BM25L generates a natu-
ral ranking, while graph-based methods first clas-
sify documents before ranking them by confidence
scores. Metrics are evaluated at thresholds: 2000
through 200000, as shown in Figs. 4 and 5.

GraphSAGE consistently outperforms other
methods in ranking, achieving high recall across
most topics. While knowledge graph models like
RGCN and TransE show higher recall at lower &
values, overall, GraphSAGE demonstrates superior
performance across both balanced and imbalanced
datasets.

4.4 LLM Reasoning Results

We use GPT-3.5 Turbo out-of-the-box (OOB) with-
out instruction tuning to generate reasoning for
predictions. Keywords extracted from documents
guide the LLM, improving interpretability. Sample
outputs are shown in Table 1.
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Table 1: Reasoning results sample - Two examples have been shown for topic statements Online Trading and
Derivative Trading (The predictions are taken from the Graph Model)

Topic Statement Document \ Pred. \ LLM Answer & Reason
All documents or subject: re: Aquila EOL | Relevant | Yes, the Al model is correct. The email dis-
communications that describe, | trade assignments cusses the use of a form for trade assign-
discuss, refer to, report on, or | The EOL trade assignment let- ments, which is related to the trading of
relate to the design, ters are prepared off the same financial instruments and products, includ-
development, operation, or form we do our regular assign- ing derivatives and futures, on EnronOnline
marketing of enrononline, or | ments. there is no special lan- or other online services offered by Enron.
any other online service guage in the assignment form Therefore, it is relevant to the topic identi-
offered, provided, or used by | about online issues. fied by the keywords.
the Company (or any of its
subsidiaries, predecessors, or subject: online trading Non- Yes, the Al model is correct in its prediction
successors-in-interest), for the | per mark’s conversation, you | Relevant | that the email is not relevant to the given
purchase, sale, trading, or were going to get back to us topic. The email is about a conversation
exchange of financial or other | On the scoop on France and regarding France and utility counterparties,
instruments or products, utility counterparties. any up- and there is no mention of any online ser-
including but not limited to, date? vice offered, provided, or used by Enron for
derivative instruments, the purchase, sale, trading, or exchange of
commodities, futures, and financial or other instruments or products.
swaps. Therefore, it does not fall under the scope of
the given topic.
All documents or subject: Credit Susie finan- | Non- Yes, the AI model is correct in identifying
communications that describe, cial products (""cstb"") Relevant the email as not relevant to the given topic.
discuss, refer to, report on, or | susan: csfb had a name The email is a simple request to change a
relate to whether the change earlier this year. can file related to a name change in Credit Su-
purchase, sale, trading, or you please see that the blue isse Financial Products and does not discuss
exchange of over-the-counter | file is changed? also, please or describe any purchase, sale, trading, or ex-
derivatives, or any other let the other paralegals know change of financial instruments or products,
actual or contemplated what to do in an instance such nor does it mention any legal or regulatory
financial instruments or as this. thanks. sara issues related to them. Therefore, it is not
products, is, was, would be, or relevant to the given topic.
will be legal or illegal, or
permitted or prohibited, subject: re: ECT Nymex | Relevant | No, the Al model is not correct. The email
under any existing or hedge exemption applications is not relevant to the given topic. The email
proposed rule(s), ECT has a policy that pro- only discusses the company policy on trad-
regulation(s), law(s), hibits employees from trading ing commodities and does not provide any
standard(s), or other in any commodities information or discussion on the legality
proscription(s), whether that ECT trades. please make or permissibility of financial instruments or
domestic or foreign. sure any future trading you products. The keywords identified in the
may do complies with this email are not directly related to the topic.
policy. thank you.

Due to the augmentation of the Graph model’s
prediction result and the keywords identified from
the documents, the LLM is better able to justify
the reasoning behind the graph model’s prediction.
In most cases, the LLM agrees with the prediction
and formulates a reason based on the observed key-
words and its similarity with the topic statement.
However, in instances where graph model misclas-
sifies documents, the LLM can correct errors, as
seen in the fourth example. This provides a second
level of check to correct misclassifications by the
graph model. By combining the Graph model with
LLM-based reasoning, DISCOG enhances analysis
accuracy, with the LLM acting as a validation and
correction mechanism.

S Deployment and Business Impact

DISCOG seamlessly integrates with existing eDis-
covery solutions, significantly reducing the manual
review workload. The heterogeneous graph can be
constructed from similar databases on any system
and stored on prem or in dedicated databases. The
models used for prediction are light-weight and
can be run on any infrastructure, with or without
GPUs, while the LLM can be used from cloud ser-
vices or open-source depending on the use-case
and cost availability. Experiments on the ENRON
dataset show that DISCOG achieves 80% recall
while requiring review of less than 10% of the
dataset. The approach scales efficiently to large
eDiscovery datasets with minimal modifications,
reducing false positives while maintaining low false
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Figure 5: Ranking performance with prediction metrics
as a function of k.

negative rates.

According to market reviews in 2023, the doc-
ument review process constitutes approximately
66% of the total expenditure in the eDiscovery busi-
ness?, with the cost per document review ranging
between $0.50 to $1.00, varying depending on the
experience level of the reviewer and even higher for
onsite reviews 3. Leveraging DISCOG, deployable
on-premise or on a low-cost cloud instance, signif-
icantly reduces costs by reducing the number of
documents requiring manual review bringing down
the overall cost to 10%-20% of the traditional pro-
cess. For a database with millions of documents,

*https://complexdiscovery.com/a-2022-look-at-
ediscovery-processing-task-spend-and-cost-data-points/

3https://edrm.net/2023/12/shaping-ediscovery-strategies-
winter-2024-pricing-report/

k=200000

DISCOG eliminates majority of the documents,
thereby reducing the database size from millions to
approximately to 10,000 - 20,000 documents, be-
cause of its high recall rate. This in turn reduces the
overall review cost of the entire corpus to 1%-2%
of its original cost, achieving approximately 98%
cost reduct. Further explanation and calculations
of the cost saving is added in Appendix A.4.

6 Conclusions

We introduce DISCOG, a graph-based approach
for predictive coding in eDiscovery, outperforming
existing solutions in both classification and ranking
tasks. Our analysis demonstrates its high accuracy,
recall, and substantial cost savings compared to
industry-standard methods.

Future work will focus on benchmarking the sys-
tem’s interpretability against manual reasoning and
improving further scalabitility with open source
LLMs for on-prem deployments. This hybrid ap-
proach aims to provide clear, interpretable justifi-
cations for the graph model’s predictions, further
improving the review process and fostering greater
trust in automated document review systems.
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A Appendix

A.1 Dataset

We primarily concentrate on production requests
from the TREC Legal Tracks of 2009 and 2011,
which include seven distinct topics for 2009, Pre-
pay Transactions (201), FAS 140 (202), Financial
Forecasts (203), Disposal of Documents (204),
Energy Loads (205), Company’s Financial Con-
dition (206), and Football Activities (207) and
three distinct topics for 2011, Online Trading
(401), Derivative Trading (402) , and Environ-
mental Impact (403). The distribution of the seed
and grels sets for each topic is shown in Fig. 6.

A.2 Hyper-parameter Tuning

Hyper-parameter tuning was performed for all mod-
els, with a focus on optimizing epochs, learn-
ing rate, and batch size. For the KGE methods,
the number of epochs ranged from 300 to 600
to achieve reasonable validation loss results. For
GNN models, the number of epochs varied from 50
to 150 for GraphSAGE, and from 1000 to 2000 for
GAT and RGCNs. Lower learning rates were ap-
plied for imbalanced data distributions, with fewer
epochs for balanced datasets. The learning rate was
adjusted within the range of 0.001 to 0.0001, while
batch sizes varied from 128 to 1024 for GNN meth-
ods and around 100,000 for KGE methods. The
hidden layer vector dimensions for GNNs were
also tuned, with values ranging from 32 to 256.

A.3 Ablation Study

To assess the impact of different graph attributes,
we conduct an ablation study that systematically
evaluates the necessity of various node types within
the graph. Given space constraints, this study fo-
cuses on three representative topics (401, 402, and
403, which are described as Online Trading, Deriva-
tive Trading, and Environmental Trading respec-
tively). These topics capture a range of relevant and
non-relevant distributions. However, the DISCOG
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Figure 6: Distribution of relevant and non-relevant emails across the seed dataset and qrels for various topics.
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Figure 7: Ablation study of attributes added to the graph in the form of nodes.

methodology can be extended to other topics dis-
cussed in this paper.

In this ablation study, the base graph structure
consists of two core node types: Emails and Top-
ics, which remain constant across all experiments.
To explore the effect of additional features, we in-
crementally add different combinations of nodes—
specifically, keyword nodes and sender/receiver
nodes. The influence of these additions is assessed
by analyzing their impact on the predictive coding
results, measured against the grels set. Importantly,
the model architecture and training hyperparam-
eters are held constant across all experiments to
ensure that observed differences are solely due to
the variations in the graph structure.

The results, as shown in Fig. 7, reveal that incor-
porating keyword nodes and sender/receiver nodes,
along with establishing similarity links between
them, leads to a marked improvement in the overall
performance metrics of the models. These improve-
ments are consistent across several models, with the
exception of the RGCN model, which shows little

to no performance gain from the additional graph
attributes. This suggests that the effectiveness of
graph augmentation may depend on the underlying
model architecture, with some models being more
sensitive to additional structural information than
others.

A.4 Business Impact Calculations

Assuming review cost per document is $0.5 - $1.0,
depending on the type of review, the cost of re-
viewing a million documents for any eDiscovery
use case ranges between $500,000 to $1,000,000.
With the use of DISCOG, the number of documents
tagged for review is reduced to 10% -20% of the
original corpus, which is approximately 10,000 -
20,000 documents from the entire corpus (assum-
ing a cutoff of 20,000 documents requiring manual
review). This cutoff is determined based on the Re-
call@k metrics, where the DISCOG method with
GraphSAGE algorithm achieves over 80% recall.
By analyzing the cost of $0.50 to $1.00 per doc-
ument for 20,000 documents instead of the entire
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corpus, the cost for the entire corpus is reduced to
$10,000 - $20,000, which translates to a per doc-
ument cost of $0.01 to $0.02 on average for the
entire corpus. Consequently, our method requires
only 1% to 2% of the manual review cost.
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