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Abstract

Advertisement (Ad) video violation detection
is critical for ensuring platform compliance, but
existing methods struggle with precise tempo-
ral grounding, noisy annotations, and limited
generalization. We propose RAVEN, a novel
framework that integrates curriculum reinforce-
ment learning with multimodal large language
models (MLLMs) to enhance reasoning and
cognitive capabilities for violation detection.
RAVEN employs a progressive training strat-
egy, combining precisely and coarsely anno-
tated data, and leverages Group Relative Policy
Optimization (GRPO) to develop emergent rea-
soning abilities without explicit reasoning an-
notations. Multiple hierarchical sophisticated
reward mechanism ensures precise temporal
grounding and consistent category prediction.
Experiments on industrial datasets and public
benchmarks show that RAVEN achieves supe-
rior performances in violation category accu-
racy and temporal interval localization. We
also design a pipeline to deploy the RAVEN
on the online Ad services, and online A/B test-
ing further validates its practical applicability,
with significant improvements in precision and
recall. RAVEN also demonstrates strong gener-
alization, mitigating the catastrophic forgetting
issue associated with supervised fine-tuning.

1 Introduction

In the modern digital landscape, advertisements
play a pivotal role in sustaining the growth of in-
ternet platforms. To ensure compliance with local
laws and regulations, promote sustainable develop-
ment, and foster a user-friendly environment, plat-
forms establish stringent guidelines to regulate the
content uploaded by advertisers. Despite these ef-
forts, violations of platform policies persist. Early
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approaches relied on small-scale models (Dosovit-
skiy, 2020; He et al., 2016) to analyze and identify
such violations, but these methods suffered from
limited generalization capabilities. With the ad-
vent of large language models (LLMs) (Liu et al.,
2023; Bai et al., 2023a), more advanced techniques
have been increasingly adopted in practice to detect
non-compliant content.

Among the various types of content, video adver-
tisements present the most significant challenge for
violation detection. In practice, it is not only neces-
sary to predict the violation categories of a video
but also to localize the specific sub-scenes corre-
sponding to each category. A single video may con-
tain multiple violation categories, each potentially
associated with multiple temporal intervals. Exist-
ing methods typically follow a two-step process:
(1) annotating each video with its violation cate-
gories and their corresponding temporal intervals,
and (2) fine-tuning multimodal large language mod-
els (MLLMs) using supervised fine-tuning (SFT)
techniques.

However, due to constraints in data volume, an-
notation costs, and the inherent difficulty of precise
labeling, the annotated sub-scene intervals often
contain natural errors or ambiguities. These in-
accuracies can lead to unstable training or even
misguided learning when using conventional SFT
methods. As discussed in (Shao et al., 2024; Liu
et al., 2025), SFT faces several limitations: its ef-
fectiveness notably diminishes in out-of-domain
settings despite strong in-domain performance, it
inherently causes catastrophic forgetting of general
capabilities, and the absence of an explicit reason-
ing process limits its efficacy in complex scenar-
ios. Recent research shows that pure reinforcement
learning (RL) (Guo et al., 2025) fosters emergent
reasoning during testing, underscoring the power
of reward-driven optimization in boosting model
reasoning. This method also tends to improve gen-
eralization, avoiding overfitting to specific datasets.

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 22-31
July 28-30, 2025 ©2025 Association for Computational Linguistics



Input
Ad Video

Violation
Temporal
Grounded Clip

(Marketing
Exaggerate &
Requiring
Credential Review)

User

Based on the given advertising violation labels and rules (omitted here), does this advertisement video
contain any violations? If violations exist, please output the specific violation types and the
corresponding time intervals of the sub-scenarios where violations occur, in the json format:
{"violation typel": [(start_frame, end_frame),...], ...}

Assistant
<think>
1. Identity the image elements:
- A medicinal product named "XXX Pain Relief Patch.”
- A woman wearing a white top and blue pants.
- Text displayed on the video: "...”
- A depiction of a lump on the back of the woman's neck gradually disappearing.

2. Identify the violation labels: The video involves two violation labels:
“Requires Medical Qualification Review”.
3. Evaluate "Marketing Exaggeration":

- Check for exaggerated claims or misleading information in the content.

- Observe if the video makes unrealistic promises or overstates the product's effectiveness.

“Marketing Exaggeration” and

- Conclusion: The content in frames 13 to 88 contains exaggerated claims about the product's
capabilities, violating the "Marketing Exaggeration” label.
4. Evaluate "Requires Medical Qualification Review":

- Determine if the video involves medical or health-related content.

- Verify if the product or service advertised requires medical qualifications or certifications.

- C The video p a health-related product without displaying the necessary medical
qualifications, violating lhc "Requires Medical Qualification Review" label.
5. Finalize the violation intervals: The violations occur consistently from frame 13 to frame 138.
</think>

<answer>
[{“Marketing Exaggeration”: [(13,88)], “Requires Medical Qualification Review": [(13,138)]}]
</answer>

Figure 1: The example of RAVEN reasoning.

Building on these insights, we introduce
RAVEN, a novel framework aimed at advancing
reasoning and cognitive skills for detecting viola-
tion scenes in videos. The name RAVEN, sym-
bolizing “keen insight”, reflects our aspiration for
the system to detect violations with the sharpness
of a raven. RAVEN is a structured reasoning
MLLM that combines curriculum learning with
hierarchical, multi-granular reinforcement. It em-
ploys GRPO (Group Relative Policy Optimization)
(Shao et al., 2024; Guo et al., 2025) and structured
thinking, eliminating the need for explicitly an-
notated reasoning process data. Instead, it lever-
ages the self-evolution potential of MLLM:s to de-
velop reasoning capabilities from scratch. A sig-
nificant advantage of RAVEN is its ability to ro-
bustly train on large-scale, noisy, coarsely anno-
tated industrial data, achieving superior violation
detection performance while preserving the strong
generalization capabilities of MLLMs. To achieve
this, we develop hierarchical sophisticated rewards
mechanism comprising multiple types of rewards:
format rewards, which enforce constraints on the
structure of the reasoning process and violation
sub-scene outputs, and accuracy rewards, which
include primary rewards (e.g., loU Reward), auxil-
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iary rewards (e.g., Boundary Alignment Reward),
and regularization rewards (e.g., Category Consis-
tency Reward). As illustrated in Figure 1, RAVEN
exhibits emergent test-time reasoning abilities, en-
abling it to handle complex instructions by break-
ing them down into sequential analytical steps, thus
achieving precise localization of violation intervals.
RAVEN demonstrates exceptional performance on
both in-domain and out-of-domain data, signifi-
cantly outperforming models trained via SFT.

To validate RAVEN, we conduct extensive ex-
periments from both offline and online testing per-
spectives, using both publicly available datasets
and proprietary industrial data. The results show
that the RAVEN-7B model exhibits strong test-time
reasoning capabilities and achieves superior gener-
alization performance compared to models of the
same scale. Our contributions are threefold: (1) We
propose RAVEN, the novel architecture specifically
designed for localizing violation scenes in adver-
tisement content. Through its innovative design,
RAVEN exhibits emergent reasoning abilities. (2)
RAVEN is a practical system tailored for real-world
industrial applications. It demonstrates remark-
able robustness when trained on large-scale, noisy,
coarsely annotated data, while retaining strong gen-
eralization capabilities. (3) Extensive experiments
on both offline and online testing, using public
datasets and proprietary industrial data, demon-
strate that the RAVEN-7B model achieves supe-
rior reasoning and generalization performance com-
pared to models of the same scale.

2 Related Work

2.1 Temporal Grounding in Videos

Temporal grounding aims to localize specific events
or actions within a video. Prior work has focused
on supervised learning with precise annotations
(Gao et al., 2017). However, these methods strug-
gle with noisy, coarsely annotated data, which is
prevalent in industrial settings. Recent approaches
like VSLNet (Zhang et al., 2020a) and 2D-TAN
(Zhang et al., 2020b) have improved localization
accuracy but lack robust reasoning capabilities for
complex tasks like violation detection.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs)
(Yin et al., 2023; Xu et al., 2024a; Maity et al.,
2024), such as CLIP (Radford et al., 2021),
Flamingo (Alayrac et al., 2022), and BLIP (Li et al.,



2022), have demonstrated remarkable capabilities
in understanding and reasoning across modalities
on various tasks (Wei et al., 2022a,b; Kojima et al.,
2022; Ji et al., 2024b, 2023, 2024a, 2022, 2025;
Liu et al., 2024; Zhu et al., 2024b). These models
excel in tasks like image-text retrieval and video
captioning but are often limited by their reliance
on supervised fine-tuning (SFT), which can lead
to catastrophic forgetting and poor generalization.
Recent efforts like LLaVA (Liu et al., 2023; Xu
etal., 2024b), Qwen (Bai et al., 2023a,b) and Video-
ChatGPT (Maaz et al., 2024) have explored inte-
grating reasoning into MLLMs, but they remain
underutilized in temporal grounding tasks.

2.3 Reinforcement Learning for Video
Understanding

Reinforcement learning (RL) (Guo et al., 2025;
Kaelbling et al., 1996; Christiano et al., 2017; Zhu
et al., 2024a; Rafailov et al., 2024; Song et al.,
2024; Liu et al.) has been applied to video under-
standing tasks, such as action segmentation and
event detection. Methods like SM-RL (Wang et al.,
2019a,b) and RLPP (Li et al., 2018) use RL to
optimize temporal localization but are limited by
their inability to handle multimodal inputs or per-
form complex reasoning. Curriculum reinforce-
ment learning (Narvekar et al., 2020; Bengio et al.,
2009) has shown promise in improving RL’s ro-
bustness and generalization, but its application to
temporal grounding remains unexplored.

2.4 Advertisement Video Violation Detection

Existing methods for advertisement video violation
detection rely heavily on rule-based systems or su-
pervised learning with precise annotations. These
approaches are effective in controlled environments
but fail to generalize to large-scale, noisy indus-
trial datasets. Recent works (Wang et al., 2024b;
Lu et al., 2024) have explored using MLLMs for
content moderation, but these methods lack the
temporal grounding and reasoning capabilities re-
quired for precise violation detection. Our work
bridges these gaps by introducing RAVEN, a cur-
riculum reinforcement learning framework that in-
tegrates MLLMs with sophisticated reward mecha-
nisms and structured reasoning for robust and pre-
cise advertisement video violation detection. By
leveraging both precisely and coarsely annotated
data, RAVEN addresses the limitations of existing
methods and sets a new benchmark for temporal
grounding in industrial applications.
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3 Methodology

3.1 Problem Overview

Given an input video V/, a predefined list of viola-
tion labels T', and a prompt P, the Advertisement
Video Violation Temporal Grounding task aims to
output: (1) The violation labels associated with the
video. (2) The temporal intervals of the sub-scenes
corresponding to each violation label. Note that a
single video may contain multiple violation labels,
and each label may correspond to multiple sub-
scenes. This requires the model to perform reason-
ing to accurately identify the most relevant frame
fragments. Inspired by recent advancements in the
reasoning capabilities of large models, we lever-
age this ability to develop a pipeline for reasoning-
based violative sub-scene temporal grounding.

We first employ reinforcement learning (RL) on
a Multimodal Large Language Model (MLLM) to
activate its reasoning ability, enabling it to generate
a reasoning process and predict all violation cate-
gories C = {c1, ¢, ..., c,} and their correspond-
ing accurate sub-scene locations X, = (¢.,¢") for
each category c. Here, t\ and ¢/, denote the start
and end times of the sub-scene, respectively.

However, the manually annotated results ),
(y%,y") often deviate from the ground truth Z, =
(2L, 27) due to annotation errors or ambiguities. To
prevent supervised fine-tuning (SFT) from forcing
the model to fit )., which could lead to significant
deviations from Z., we instead use RL for train-
ing. Additionally, to enhance the accuracy of the
reasoning process, we follow DeepSeek (Dai et al.,
2024) and employ explicit structured thinking tags
‘<think>’" for chained reasoning.

3.2 Data Construction

In real-world scenarios, for each advertisement
video V, when a violation is found, we annotate
the precise violation category c and the correspond-
ing temporal sub-interval ). = (y’,3%) where
the violation occurs. However, due to limitations
in annotation resources, cost constraints, and in-
herent ambiguity in many videos, we can only
maintain relatively accurate violation categories,
while the annotated temporal intervals ). often ex-
hibit some degree of deviation from the ground
truth Z. = (2., 27). To address this, we organize
the data based on a curriculum learning approach.
Specifically, we select a subset of data with pre-
cisely annotated temporal intervals for the early
stages of curriculum learning, while the remaining



coarsely annotated data is used in the later stages.
Additionally, it is important to note that for the rea-
soning training of RAVEN, we do NOT need to
generate any offline reasoning data, meaning that
RAVEN’s reasoning does not require a cold-start
training process.

3.3 RAVEN Model

We use Qwen2.5-VL (Bai et al., 2023b) as the
reasoning model Fleason in RAVEN. Although
Qwen2.5-VL demonstrates some temporal ground-
ing capabilities on public video understanding
datasets, it struggles with accurate localization in
real-world industrial applications. A straightfor-
ward approach would be to use precisely anno-
tated temporal grounding data for SFT. However,
acquiring large-scale, precisely annotated data is
challenging and costly, especially for frame-level
localization, which requires significant effort from
annotators.

Instead, we opt for coarse-grained annotations,
which are faster and more cost-effective to produce.
During the reinforcement learning stage, format re-
wards are employed to ensure the model generates
structured outputs. This process can be formulated
as:

C,X = Eeason(V7 Ta P)a (1)

where C represents the predicted violation cate-
gories, and X’ denotes the corresponding temporal
intervals.

Reasoning is a critical component in temporal
grounding tasks. Inspired by DeepSeek-R1-Zero
(Dai et al., 2024), we intentionally avoid using
any explicit Chain-of-Thought (CoT) (Wei et al.,
2022a) data to teach RAVEN reasoning skills. In-
stead, we aim to activate its reasoning capabilities
from scratch, enabling the model to autonomously
generate a logical CoT before producing the final
answer. To achieve this, we design a structured
user prompt and hierarchical sophisticated rewards
that guides the reasoning model to follow specific
instructions. As shown in Figure 1, the user prompt
instructs RAVEN to analyze and compare objects
in the video, beginning by generating a reasoning
process within ‘<think>’ tags, followed by the final
answer in a predefined format enclosed in ‘<an-
swer>’ tags.

3.4 Reward Functions Design

Reward functions play a pivotal role in RL, as they
determine the optimization direction of the model.
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We manually design the following reward functions
for RL:

3.4.1 Thinking Format Reward

The reward mechanism is designed to facilitate
a structured cognitive process within the model
(Shao et al., 2024; Guo et al., 2025). Specifically,
it directs the model to articulate its reasoning steps
within the designated <think> and </think> tags,
while the final output is to be presented between
the <answer> and </answer> tags.

3.4.2 Grounding Format Reward

Our framework incorporates two levels of temporal
grounding format rewards: soft and strict (Shao
et al., 2024; Guo et al., 2025). The soft approach
validates the format if temporal coordinates are
included in the answer, regardless of their organiza-
tion. The strict approach, however, mandates that
the model follows the predefined structure exactly,
utilizing specific keywords like "temporal start"
and "temporal end" to achieve correctness.

3.4.3 Temporal IoU Reward

As the primary reward, the Temporal IoU Reward
evaluates the overlap between the predicted sub-
scene intervals X, and the annotated intervals ..
To maintain robustness against annotation noise,
we binarize the IoU value using a threshold:

RIOU = {

3.4.4 Temporal Boundary Alignment Reward

1 ifToU(X,).) > 0.5,
0 otherwise.

2

Building on the IoU Reward, the Temporal Bound-
ary Alignment Reward encourages the predicted
interval boundaries (t.,7) to align closely with
the annotated boundaries (3%, y"). This reward is
continuous and serves as an auxiliary reward with

a smaller weight:

RBoundary = €exp <_02 [(tlc - yé)Z + (tz - yZ)Q})

where o is a scaling factor.

3.4.5 Violation Category Consistency Reward

The Violation Category Consistency Reward en-
sures the predicted violation category ¢, matches
the annotated category c,. This reward is binary:

1
0 otherwise.

if ¢, = cg,

RCategory = { (4)



where ¢, and ¢, indicates the prediction and
groundtruth respectively.

3.5 Curriculum Reasoning with Hierarchical
Rewards

RAVEN does not require a cold-start reasoning
training process. We initiate training directly from
the pre-trained Qwen2.5-VL model, utilizing the
aforementioned rewards and applying the GRPO
(Shao et al., 2024) algorithm in the subsequent
curriculum reinforcement training process.

We utilize the Curriculum GRPO with hierar-
chical rewards, which leverages a combination of
precisely annotated and coarsely annotated data,
progressively refining the model’s ability to predict
both the temporal intervals and the associated vio-
lation categories. The training process is divided
into three stages, each designed to optimize specific
aspects of the model’s performance.

3.5.1 Stage 1: Training on Precisely
Annotated Data

In the initial stage, the model is trained on a subset
of data where the temporal intervals ). = (3, y%)
are precisely annotated. The reward function for
this stage is designed to ensure the model learns the
overall position of the interval while also improving
boundary precision and category consistency. The
total reward R, is defined as:

Rrotar = Riou + 1 - RBoundary + RCategorya &)

where Rj,uy measures the overlap between the pre-
dicted interval X. and the annotated interval ..,
binarized to ensure robustness against annotation
noise. RBoundary €ncourages precise alignment of
the predicted boundaries (.., ") with the annotated
boundaries (yé, yr). Rcategory €nsures the predicted
violation category c, matches the annotated cate-
gory cg. o is the reward weight. This stage fo-
cuses on establishing a strong foundation for inter-
val prediction by prioritizing overall position (via
Rjou) while gradually refining boundary precision
(via Rpoundary) and ensuring category consistency

(via RCategory)-

3.5.2 Stage 2: Training on the Large-Scale
Coarsely Annotated Data

In the second stage, the model is trained on data
where the temporal intervals are coarsely annotated.
Here, the reward function is simplified to focus on
overall position and boundary alignment, as the

Advertisers Appeal the Violative Ad Videos

| 1

p
Online
) Produce Ad Accept Random Manual
[ Advertisers H Videos H RAVEN A‘? Sample |  Review
Service
L

Reject

Reject
Ad Videos
Pool

Return the Violative Ad Videos to the Corresponding Advertisers,

including the Violation Types, and the Corresponding Violation Sub-Scenarios

Figure 2: The deployment of RAVEN.

imprecise nature of the annotations makes category
consistency less reliable. The total reward Rty 1S
defined as:

Rrota = Riou + 2 - RBoundary- (6)

where s is the reward weight. By retaining R,y
and Rpoundary, the model learns to predict approx-
imately correct intervals even with noisy annota-
tions, while still improving boundary precision.

3.5.3 Stage 3: Fine-Tuning on Full Dataset

In the final stage, the model is fine-tuned on the
full dataset, combining both precisely and coarsely
annotated data. The reward function is adjusted to
balance overall position, boundary precision, and
category consistency:

Rrotal = a3 Riou + a4 - RBoundary +aos- RCategorya

(N
where a3, oy, and o are the reward weights. This
stage ensures the model achieves a robust balance
between interval prediction and category identifi-
cation, leveraging the strengths of both precise and
coarse annotations.

4 Deployment

We design a pipeline to deploy the RAVEN on the
online Ad services in Figure 2, which include 3
parts: (1) RAVEN Review: It is the core of the
entire pipeline, handling the primary review func-
tions. (2) Advertisers Appeal: It provides a channel
for advertisers to appeal is they believe their ad is
not violative. (3) Manual Review: It is primarily
applied in two scenarios. (a) Random Sampling Re-
view: For Ads already published on the platform,
random samples are reviewed to identify potential
violations. This helps to: (i) address cases missed
by the review model, and (ii) quickly detect new
types of violations, providing decision-making ref-
erences for subsequent model optimization. (b)



Marketing Discomforting Vulgar Requiring Prohibited Average

Method Exaggerate Content Content Credential Review Goods/Services g

| Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro.
l\iomdfllq 0.681/0.532 - | 0.707/0.679 - | 0.667/0.654 - | 0.711/0.687 - | 0.721/0.734 - | 0.697/0.657 -
LLaVA
v1s.SET | 0-796/0.756 0398 | 0.798/0.772 0385 | 0.771/0.799  0.400 | 0.754/0.701 0.432 | 0.789/0.761 0.567 | 0.782/0.758  0.436
Qwen2.5-VL
JB.SFT | 0-832/0.787 0424 | 0.821/0.798 0.402 | 0.800/0.810 0411 | 0.773/0.702 0461 | 0.797/0.771 0.580 | 0.805/0.774  0.456
RAVEN | 0.851/0.801 0.521 | 0.843/0.812 0.477 | 0.810/0.831 0.565 | 0.802/0.713 0.541 | 0.825/0.784 0.669 | 0.826/0.788 0.555

Table 1: Performance of Violation Category (Precision/Recall) and Violation Temporal Grounding (mloU) on
Industrial Dataset. “Cate." indicates “Category”, and “Gro." indicates “Grounding”.

‘ Average
| Cate. (P/R)  Gro.
LLaVA-v1.5-SFT | 0.509/0.501 0.370
Qwen2.5-VL-7B-SFT | 0.537/0.517 0.384
RAVEN | 0.551/0.530 0.435

Method

Table 2: Performance of Violation Category (Preci-
sion/Recall) and Violation Temporal Grounding (mIoU)
on Public MultiHateClip Dataset.

Appeal Review: For cases that are appealed by
advertisers, manual review provides the final deci-
sion. (3) Model Iteration: Based on the continu-
ously increasing volume and variety of online viola-
tion data, including (a) new types of violations, (b)
more violation data, (c) difficult negative samples
misidentified by the model, and (d) difficult posi-
tive samples missed by the model, we continuously
iterate and optimize the RAVEN.

5 Experiments and Results

To comprehensively evaluate the performance of
RAVEN, we conduct extensive experiments from
both offline testing and online testing perspectives,
utilizing both public dataset and practical industrial
dataset.

5.1 Datasets

To validate RAVEN’s performance in real-world
industrial scenarios, we construct a dataset compris-
ing approximately 38,000 training videos, which
include both precisely annotated and coarsely an-
notated data, and 5,000 precisely annotated test
videos. The use of a precisely annotated test set
ensures reliability in evaluation. The annotations
cover six major violation categories ( “Discomfort-
ing Content", “Marketing Exaggeration", “Requir-
ing Credential Review", “Vulgar Content", “Pro-
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| Online Sample Average

Model
| Cate.(P/R) Gro.
Small Models | 0.711/0.668 -
Qwen2.5-VL-7B-SFT | 0.800/0.787  0.478
RAVEN | 0.821/0.803  0.563

Table 3: A/B Test on the Online Serving.

hibited Goods/Services", and “Normal") and the
corresponding temporal intervals. The definitions
of these major categories are inspired by both ex-
isting works (Wang et al., 2024b,a; Lu et al., 2023)
and the actual platform management rules. These
major classes are further divided into multiple sub-
categories, forming a hierarchical and structured
labeling system. In all experiments, we primar-
ily focus on the major class labels to evaluate the
model’s performance and robustness in high-level
violation classification tasks.

MultiHateClip (Wang et al., 2024a) is a publicly
available dataset for hateful and offensive content
detection on platforms like YouTube and Bilibili,
featuring annotations for “hateful”, “offensive",
and “normal” content. Due to the unavailability of
some videos, we conduct experiments on a down-
loadable subset of Bilibili, and manually annotate
the temporal intervals.

5.2 Offline Testing

We compare RAVEN against several baseline mod-
els, including LLaVA-v1.5 (Liu et al.,, 2023),
Qwen2-VL-7B (Bai et al., 2023b), and Qwen2.5-
VL-7B (Bai et al., 2023b), as well as their fine-
tuned versions (SFT). The results in Table 1 and Ta-
ble 2 demonstrate that RAVEN significantly outper-
forms both the base pretrained models and the SFT
models in “violation category accuracy" and “tem-
poral grounding precision". Specifically, RAVEN



‘ Average
| Cate.(P/R)  Gro.
Qwen2.5-VL-7B-SFT | 0.805/0.774  0.456
RAVEN(w/o Structured Thinking) | 0.810/0.779 0.537
RAVEN | 0.826/0.788  0.555

Model

Table 4: Study on the Structured Thinking.

achieves superior accuracy in sub-scene interval
localization, highlighting the effectiveness of its
curriculum reinforcement learning approach in en-
hancing the robustness of MLLMs.

5.3 Online A/B Testing

We conduct day-long online A/B testing on a prac-
tical business platform, allocating 20% of the over-
all traffic for evaluation. RAVEN is compared
against a small legacy model and Qwen2.5-VL-
7B-SFT. The results in Table 3 show that RAVEN
significantly improves violative video identifica-
tion, achieving both higher precision and recall in
category detection compared to the legacy model.
Additionally, RAVEN outperforms the Qwen2.5-
VL-7B-SFT model by 8.5% in temporal interval
localization accuracy.

5.4 Study on Generalization Capabilities

As discussed in Section 1, SFT often leads to catas-
trophic forgetting of general capabilities, while RL
enhances the generalization of MLLMs. To val-
idate this claim, we conduct experiments on the
Industrial dataset. Specifically, we train RAVEN
on three in-domain categories (Discomforting Con-
tent, Marketing Exaggeration, Requiring Creden-
tial Review) and test it on the remaining two out-
of-domain categories (Vulgar Content, Prohibited
Goods/Services). The results in Table 5 demon-
strate that RAVEN, trained with RL, achieves
higher accuracy and better generalization compared
to the Qwen2.5-VL SFT model.

5.5 Study on Structured Thinking

We further investigate the impact of reasoning train-
ing of structured thinking in RAVEN. Table 4
shows that both w/o and w/ structured thinking
outperform the SFT baseline, indicating that RL
effectively boosts the model’s capabilities. How-
ever, RAVEN with structured thinking demon-
strates even better performance, highlighting the
importance of the reasoning process in handling
complex video samples.
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In-Domain Out-of-Domain

Method ‘ (Average Gro.) | (Average Gro.)
Qwen25-VL-7B-SFT | 0433 | 0246
RAVEN | 0546 | 0.408

Table 5: Study on Generalization Capabilities.

Temporal Boundary | Grounding Format | Curriculum Reinforcemant

Gro.

Alignment Reward Reward Learning
X | strict | v | 0.540
v | soft | v | 0.547
v | strict | X | 0.508
v | strict | v | 0.555

Table 6: Study on Reward Functions and Curriculum
Reinforcement Learning.

5.6 Study on Reward Functions

To validate the effectiveness of our reward function
design, we conduct ablation studies on the format
reward and temporal boundary alignment reward
the on the Industrial dataset. The results in Table
6 demonstrate the effectiveness of the two reward
functions.

5.7 Study on Curriculum Reinforcement
Learning

To evaluate the effectiveness of the curriculum re-
inforcement learning strategy in RAVEN, we also
conduct an ablation study on the Industrial dataset.
As shown in Table 6, when remove the progressive
curriculum learning, the results shown in a signifi-
cant drop in performance, with temporal interval lo-
calization (mloU) dropping by 4.7%, highlighting
the importance of leveraging multi-stage training
for robust learning.

6 Conclusion

RAVEN is a novel framework for advertisement
video violation detection, integrating curriculum
reinforcement learning with multimodal large lan-
guage models (MLLMs) to address challenges in
temporal grounding and noisy annotations. Its pro-
gressive training strategy and hierarchical reward
mechanism ensure precise localization and con-
sistent category prediction. Experiments and on-
line A/B testing demonstrate superior performance
in accuracy, precision, and recall, while mitigat-
ing catastrophic forgetting. RAVEN establishes a
promising methodological approach for practical
violation detection, offering significant potential
for advancing the field and addressing real-world
challenges.



7 Ethical Statement

Our research adheres to ethical principles and pri-
oritizes user rights. The dataset samples are for
scientific analysis only and do not reflect the au-
thors’ views. All resources are intended for sci-
entific research purposes only, contributing to the
development of more secure and reliable digital
platforms.
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