A Perspective on LLM Data Generation with Few-shot Examples:
from Intent to Kubernetes Manifest

Antonino Angi'?, Liubov Nedoshivina?, Alessio Sacco’,
Stefano Braghin?, Mark Purcell?

! Department of Control and Computer Engineering, Politecnico di Torino, Italy
2 IBM Research, Dublin, Ireland

Correspondence: antonino.angi @polito.it

Abstract

The advent of Large Language Models (LLMs)
has transformed how complex tasks across var-
ious domains can be automated. One of the in-
dustry trends today is Agentic Al, which lever-
ages LLMs to operate multiple tools and pro-
vide automatic configuration. In the domain of
cloud computing, Agentic Al might be used,
for example, with the generation of Kubernetes
manifests — structured configuration files that
define containerized environments. However,
effectively applying LLMs to domain-specific
tasks often reveals knowledge gaps that impact
the accuracy and reliability of the generated
output.

To address these challenges, we propose KGen,
a pipeline for generating K8s manifests di-
rectly from user-described intents expressed
in natural language using LL.Ms. Our ap-
proach leverages an extensive n-shot learning
analysis to choose the appropriate number of
examples that can better guide the adopted
models in generating the manuscripts while
also looking at the computational cost. Our
results validate the use of LLM in this task
and show that (as expected) increasing the
number of n-shot examples can improve the
quality of the generated configurations when
adopting more specialized models, such as
Mixtral-8x7B (which uses the Mixture of Ex-
perts approach) and Prometheus-8x7B-v2.9,
but (surprisingly) for more general-purpose
models like L1ama3-8B and Llama3-7@B, it
can lead to smaller number of valid K8s mani-
fests. These results underscore the complex-
ities of adapting LLMs for domain-specific
structured generation and emphasize the need
for an in-depth analysis to determine the most
effective setup, also suggesting that smaller
models sometimes outperform their larger
counterparts for each domain-specific task.

1 Introduction

Traditional cloud computing operations often in-
volve complex manual configurations, particularly

in service deployment of containerized environ-
ments (e.g., Kubernetes, microservices), where
tasks like defining network policies and services
require significant expertise and can be challeng-
ing for less-experienced users. In response, intent-
based networking (IBN), often powered by large
language models (LLMs), has emerged as a promis-
ing approach (Kratzke and Drews, 2024; Xu et al.,
2024). By translating high-level intents expressed
in natural language into Kubernetes (K8s) mani-
fests (structured configuration files as exemplified
in Figure 1), this approach has the potential to sim-
plify configuration tasks, make them more accessi-
ble, and speed up the deployment of network and
application configurations.

apiVersion: apps/vl

kind: Pod

metadata:

name: nginx
spec:
containers:
- name: nginx
image: nginx:latest

Figure 1: Example of a minimal Kubernetes manifest
for an nginx image Pod deployment.

Recent examples demonstrated the advance of
applying LLM-based Al Agents for AIOps (Artifi-
cial Intelligence for IT operations) in general (Vi-
tui and Chen, 2025; Chen et al., 2025) and for
Kubernetes tasks in particular (Kubiya.ai, 2025;
Logz, 2025; kagent, 2025) serving LLMs as core
components capable of reasoning. While LLMs
have shown versatility across different domains (Ge
et al., 2024; Ling et al., 2023), there are techniques,
such as few-shot prompting or fine-tuning, that
can make LLMs domain-specific and improve their
generation accuracy. The first technique leverages
customized prompts to guide the model toward
more accurate outputs without requiring additional
training, making it significantly more computation-
ally efficient and requiring no specialized hardware.

345

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 345-354
July 28-30, 2025 ©2025 Association for Computational Linguistics

mailto:antonino.angi@polito.it

Although it may involve prompt refinement and hu-
man intervention (Kratzke and Drews, 2024), it
remains a faster, more scalable, and automated al-
ternative compared to fine-tuning, which demands
extensive GPU resources and training epochs.

In this paper, we introduce KGen (Kubernetes
Manifest Generation), a pipeline that fine-tunes
LLMs to more accurately generate K8s manifests
directly from natural language intents, coming, for
example, from an end-user or another LLM if in an
Al Agent setting. We performed an in-depth n-shot
learning analysis across multiple LLMs, critically
evaluating their effectiveness when dealing with
production-like files.

In KGen, we start by generating a dataset
of K8s manifests, which were fed into differ-
ent LLMs (i.e., Mixtral-8x7B (MixtralAl, 2025),
Prometheus-8x7B-v2.0 (Prometheus, 2024; Kim
etal., 2023), L1ama3-8B (Meta/Llama, 2025b), and
Llama3-7@B (Meta/Llama, 2025a)) to produce cor-
responding descriptions (or intents from now on)
using an increasing number n of few-shot examples.
To evaluate the quality of generated intents, we then
asked the same adopted LLMs to re-generate the
manifests from the intents using the same number
of contextual examples. This process resulted in a
dataset of reconstructed manifests, which we were
able to first validate for structural validness (YAML
syntax) and then compare against the original man-
ifests to assess the accuracy of human language
translation (intent semantic).

Our experiments validated the accuracy of the
process but also revealed that the number of exam-
ples provided for n-shot learning has a significant
and complex impact on the quality of the generated
manifests. On the one hand, a few examples for
Mixtral-8x7B or Prometheus-8x7B-v2.0 led to
under-performance, as both models lacked suffi-
cient context to generate accurate structured out-
put. On the other hand, for L1ama3 models, a high
number of examples can mislead the model and
result in worse accuracy while also introducing
additional computational overhead and increasing
input tokens usage — critical factors in real-world
deployment scenarios. This outcome is likely due
to the heterogeneity and non-trivial aspects of the
structured files as the K8s manifests (Xu et al.,
2024) and highlights the necessity of careful model
evaluation to determine the optimal number of ex-
amples that balances computational efficiency and
accuracy while maintaining reliable performance
in production-scale applications.

2 Related Work

In the era of Generative Al and Large Language
Models (LLMs), many studies have explored the
integration of these advanced models to generate
network configurations (Zhou et al., 2024a). One
of the implementations (Dzeparoska et al., 2023)
involves an LLM-based architecture composed of
pipelines to translate intents into network policies
using a progressive intent decomposition process.
Similar work (Fuad et al., 2024) demonstrates a
framework to translate intents, specified in natural
language, to network configurations adapted for a
Border Gateway Protocol (BGP) routing protocol
using different LLMs. However, the authors do not
investigate the hallucination problem that is com-
mon when working with LL.Ms and could impact
the overall model’s performance.

While LLMs are powerful and versatile, their
adaptability across domains can result in decreased
performance when applied to specific tasks (Xiao
et al., 2024; Zhang et al., 2024; Huang et al., 2024).
For this reason, researchers have begun to integrate
techniques, known as prompting, into their solu-
tions to better guide the model and produce more
adapted responses. An example (Lin et al., 2023)
presents Appleseed, an intent-based system to train
an LLM using few-shot examples with the goal of
generating a set of executable Python programs that
can be adapted to different use cases. Similarly, an
intent extraction solution focused on 5G networks
employs a customized LLM with prompting tech-
niques (Manias et al., 2024).

Moving towards an intersection of LLMs with
Intent-based Networking for cloud-native scenar-
ios, researchers have also focused on generating
structured cloud configurations (e.g., in YAML
and JSON) used to automate service deployment
across distributed infrastructures. The adoption of
these configurations has shown flawless integra-
tion in containerized environments, microservices,
and Kubernetes-based clusters or Ansible-based
automation tools (Pujar et al., 2023). An example
of this integration presents a benchmark (Xu et al.,
2024) that was tested on a hand-crafted dataset us-
ing different LLMs. In another work (Mekrache
et al., 2024) the authors propose an architecture for
decomposing the intents into their Cloud/Edge and
RAN elements. A competing approach for gener-
ating Kubernetes manifests (Kratzke and Drews,
2024) employs custom prompts and various LLMs.
However, this work shows that manual interven-

346

tion might be needed for some LLMs to refine
the generated manifests, which in the long term
could slow the generation process, especially in
long-structured manifests.

3 KGen Overview and Components

In this section, we explore the steps that compose
KGen (see Figure 2 for an overview). As men-
tioned previously, the primary goal of KGen is
to adapt the few-shot learning strategy to enable
an LLM, either standalone or as a core of an
Al Agent, to generate Kubernetes manifest from
natural language intent. As the first step to per-
form the few-shot (or n-shot), we begin by de-
scribing the process of collecting the Kubernetes
Manifests Dataset from a subset of industry exam-
ples (see Section 3.1). This dataset is then used
by different LLMs (i.e., L1ama3-70B, L1ama3-8B,
Prometheus-8x7B-v2.0, and Mixtral-8x7B) as
source of examples for n-shot to generate descrip-
tive summaries of the manifests, i.e., intents (Sec-
tion 3.2). Then, the LLMs are tasked with re-
generating the original manifests based on the de-
scriptions (Section 3.3).

To evaluate whether the generated intents are suf-
ficiently descriptive to provide adequate context for
generating valid manifests, the generated manifests
are compared with the initial manifests. As part
of the extensive evaluation of KGen’s consistency,
we also conducted a cross-check: for each LLM
from the list above, we applied few-shot learning to
one model to generate manifest-to-intent pairs and
prompted another model to re-generate the mani-
fest from the intent.

n-shot

validation

Figure 2: Overview of KGen'’s principle: manifests will
be fed into LLMs to generate intents, which will then
be reintroduced into the same LLMs to regenerate the
manifests. The recreated manifests will be compared to
the originals to evaluate their similarity.

3.1 Kubernetes Manifests Dataset

To build the Kubernetes Manifests Dataset, we pro-
pose a pipeline (see Figure 3) to extract values
from a sample of workload manifests (i.e., Pod,

Deployment, Job, and CronJob), which have been
collected from a set of production clusters, and
group them into relevant categories (e.g., authenti-
cation, certification).

Template generation. First, we generate a tem-
plate for each Kubernetes manifest category. These
templates have the structure of actual Kubernetes
manifests (e.g., apiVersion, kind, specs), but in-
stead of real values, we insert placeholders format-
ted in HELM (HELM, 2025). We chose HELM
due to its structured notation, which simplifies the
representation of complex Kubernetes configura-
tions (Zerouali et al., 2023).

Next, KGen recursively traverses each manifest
using a Depth-First Search (DFS) approach. It
explores each object’s structure as deeply as pos-
sible before filling in values based on their hier-
archical position following the HELM notation
(e.g., {{spec.containers.image}}). In the final step,
we remove unnecessary elements, such as status
and annotations, which typically store system-
specific details or metadata not needed for defining
cluster resources.

Value extrapolation. For each category in the ex-
ample dataset, once the corresponding template
was generated, we focused on extracting the dis-
tinct values associated with each object. To achieve
this, we applied a recursive traversal method us-
ing the DFS strategy, ensuring that each object’s
structure was systematically explored. At every
step of the recursion, we appended the parent ob-
ject’s name to the current field name. For instance,
when going through the spec object, the traversal
continues into containers, forming the identifier
spec.containers, and then proceeds to name, ulti-
mately constructing spec.containers.name. This
hierarchical labeling approach ensures seamless
alignment between the extracted values and the
previously generated HELM-formatted template.
Once the traversal reaches a terminal node in the
structure, the algorithm records the corresponding
value in a dictionary before resuming exploration
along alternative paths.

Manifest generation. Once the templates were cre-
ated and the distinct values for each manifest cate-
gory were extracted, the next step was generating
the final Kubernetes manifests. For each category,
we began with its corresponding template and sys-
tematically replaced each placeholder with a ran-
domly selected value from its associated list. For in-
stance, the placeholder {{ spec.containers.image }}
was substituted with a random entry from the

347

Template Generation

|_,|

|—>| Manifest Generation

Value extrapolation

manifest1l.yaml pod <-> [manifest1l.yaml, ...]

A 4

manifestN.yaml node <-> [manifest22.yaml|, ...]

{{ kind }} <-> [Pod, Node, ...]
{{ api }} <> [apps, app, ...]
{{ spec.containers.image }} <-> [nginx, ...]

api:app
kind: Pod
spec:

h 4

api: valuel api: {{ api }}
kind: Pod kind: {{ kind }}
spec: —» spec:

containers:
'+ -image: nginx

A

DFS

containers:
- image: value2

containers:
- image: {{ spec.containers.image }}

Figure 3: Pipeline for generation of Kubernetes Manifest Dataset from a subset of industry examples.

spec.containers.image list. Instead of performing
a one-to-one substitution, we handled each place-
holder individually to ensure diversity within the
generated manifests, preventing excessive repeti-
tion of the same values. To further maintain unique-
ness, each generated manifest was hashed, and any
duplicates identified by matching hash values were
removed from the output folder. As a final step, we
assigned a unique metadata name to each manifest
using a Universally Unique Identifier (UUID), en-
suring that every generated file remained distinct.

3.2 Few-shot Learning for Intent Generation

After building the Kubernetes Manifest Dataset,
the next step was to generate the descriptive intents.
Although LLMs have demonstrated exceptional
accuracy in various fields, their effectiveness heav-
ily relies on well-structured prompting techniques,
which can significantly enhance both the relevance
and quality of their outputs, especially when ap-
plied to specialized domains (Zamfirescu-Pereira
et al., 2023). To address this, in KGen we provided
each selected LLM with two strategies to enhance
the intent generation process: a structured context
template utilizing the role field (e.g., assistant, user)
and a set of few-shot examples, ranging from 0 to
10, which helps the model understand the expected
input-output pattern and improve response accu-
racy.

When the total input length, including the con-
text template and examples, exceeds the model’s
token limit, we implemented a chunking method
to divide the input into smaller segments. After
processing, these segments were merged to ensure
logical consistency and preserve YAML format-
ting. This structured approach improved coher-
ence and accuracy while preventing errors in longer
prompts (Zhou et al., 2024b).

Initially, since no descriptions or intents were
available, we extracted a few samples from the Ku-

bernetes Manifest Dataset and asked the LLMs to
describe and create intent for them. This allowed us
to take advantage of the models’ few-shot learning
ability, using their own outputs as a basis for follow-
ing generations. Next, we manually reviewed the
responses to ensure they met our expectations and
began compiling a database of few-shot examples.
Given the possibility of LLMs to produce halluci-
nated outputs (Ji et al., 2023; Yao et al., 2023), we
made sure that the intents had different structures,
some being more concise or schematic, others more
elaborate, which helps the model generalize better
and minimizes the risk of overfitting to a specific
structure.

When using advanced prompting methods like
few-shot examples, the goal is to have the model
generate responses that closely align with the pro-
vided patterns and structures. To achieve this in
KGen, we fine-tuned key hyperparameters that in-
fluence text generation. One of the most critical
parameters we adjusted was temperature, which
determines the randomness of the model’s output.
Research has shown that temperature settings sig-
nificantly impact response accuracy and consis-
tency (Renze and Guven, 2024; Saha et al., 2024;
Shen et al., 2024). Lower values (e.g., 0.2-0.5)
make the model more deterministic, ensuring it
follows the given structure more strictly, whereas
higher values (e.g., above 0.6) introduce more
variability and creativity. Since studies indicate
that lower temperatures tend to yield higher accu-
racy (Saha et al., 2024; Shen et al., 2024; Ifland
et al., 2024), in KGen we set the temperature to
0.3. Additionally, we fine-tuned two other key pa-
rameters: fop_k and top_p. The top_k parameter
restricts the model to select from only the &£ most
probable next tokens, while fop_p ensures that the
model only chooses tokens whose cumulative prob-
ability exceeds a specified threshold. In KGen, we
configured top_k to 20 and fop_p to 0.8 to strike

348

a balance between controlled generation and re-
sponse diversity.

3.3 Few-shot Learning for Manifests
Generation

For each intent, obtained with the KGen pipeline,
we instructed the same LLMs to generate Kuber-
netes manifests using n-shot examples ranging n
from O to 10, which allowed us to test all combina-
tions of LLMs and examples. Before saving, each
manifest was processed using YAML's safe_load
function in Python to check for syntax errors or
invalid formatting. Valid manifests were stored
with a “.yaml” extension, while those failing vali-
dation were saved as “_error.yaml”, allowing us to
distinguish between correct and faulty outputs.

After generation, we checked whether the
manifests were valid Kubernetes configurations.
This was done using the kubectl command-line
tool, enhanced by GNU Parallel to speed up execu-
tion (Tange, 2025). By ensuring that the generated
Kubernetes manifests are correct and valid for
both YAML and Kubernetes standards, we can
significantly improve the quality of LLM outputs:
fewer errors and more accurate automation in
future applications. The results shown in Figure 4
indicate that all tested LLMs (i.e., L1ama3-70B,
Llama3-8B, Prometheus-8x7B-v2.0, and
Mixtral-8x7B) performed well in generating
accurate manifests. Notably, Mixtral-8x7B and
Prometheus-8x7B-v2.0 showed increased valid-
ity as more examples were provided, suggesting
that additional examples improve its accuracy.
Opposite considerations can be reached with the
Llama3 family. These models showed higher
accuracy with fewer examples, which implies that
adding more examples might reduce precision.

Interestingly, some manifests were Kubernetes-
valid, but not YAML-valid, possibly due to Kuber-
netes’ more flexible structure compared to strict
YAML formatting.

4 Evaluation

In this section, we present the results obtained from
prototyping KGen, which played a key role in shap-
ing our conclusions. First, we begin by analyzing
the settings in which the experiment was conducted.
Next, we discuss the evaluation process and show
the similarity score achieved during manifest re-
generation. This strategy allowed us to solve any
possible issue with the intent generation (e.g., hy-

perparameters’ settings, model prompts, and tem-
plate). Finally, we consider the economic aspect of
employing each model.

4.1 Experimental Settings

Our analysis was performed in a production data-
center supported by computing clusters running
four chosen LLMs: Llama3-70B, Llama3-8B,
Prometheus-8x7B-v2.0 and Mixtral-8x7B, and
providing an increasing number of few-shot learn-
ing examples from 0 to 10. The cluster consists of
174 computing nodes running Intel and AMD pro-
cessors with a range of 56 to 128 cores, between
768 and 2048 GB RAM, and each equipped with
the 8 to 16 GPUs, mostly NVIDIA A100 and V100.

4.2 Similarity Check

After the initial validation at the Manifest Genera-
tion stage, we compared the generated manifests
with the original ones used to create the intents.
While it is still considered challenging to evalu-
ate LLMs and there is no unique way of evaluat-
ing each model’s responses, in KGen, we adopted
four main evaluation metrics already known in the
state of the art for tokens similarity (Hu and Zhou,
2024; Chen et al., 2024; Banerjee et al., 2023):
(1) edit-distance (Levenshtein) score, that measures
the minimum number of edits (e.g., insertions, dele-
tions, substitutions) needed to transform one string
into another; (ii) Cosine similarity, which assesses
semantic closeness by comparing word embedding
vectors; (iii) BLEU (Bilingual Evaluation Under-
study) algorithm, which calculates precision based
on the ratio of matching token sequences; (iv) ME-
TEOR (Metric for Evaluation of Translation with
Explicit Ordering), which uses a weighted average
of various factors (e.g., unigram precision, bigram
overlap) to compare generated and reference text.
It is important to note that we normalized similar-
ity scores between 0 (completely different) and 1
(identical).

Each LLM received the previously generated
manifest’s descriptions (intents) with the request
of generating the manifest back with an increas-
ing number of few-shot examples (from 0 to
10). As shown in Figure 5, Mixtral-8x7B and
Prometheus-8x7B-v2.0 achieved better accuracy
as more examples were provided, aligning with
the increase in valid manifests seen in Figure 4a.
The same coherency appeared in the L1ama3 mod-
els (L1ama3-8B and L1ama3-70B), where similarity
scores peaked with only a few examples (0-3). A

349

981 —~ 981 YAML Valid 98] _ A~ 96 ——
2 96 | 2o S e | 29617 TN =901
© — T T © Q4
> 941== YAML Valid | = 941 N\ A = 947 YAML Valid > 8 / YAML Valid
S 921 — = KS8s Valid S 921 NN 927 == Kes Valid | 278/ == K8s Valid

9 o) [90— L

0 1 3 5 7 9 0 1 3 5 7 9 0 1 3 5 7 9 0 1 3 5 7 9
Examples # Examples # Examples # Examples
(a) (b (© ()]

Figure 4: Number of valid K8s manifests in (a) Mixtral-8x7B, (b) Llama3-8B, (c) Llama3-70B and (d)

Prometheus-8x7B-v2.0.

Levenshtein - Cosine BLEU Meteor
2 2 = Py = Py
= 0.8{F-"Fo_ _—i’—i——-I = 0.84F-—F—~ _-§§‘i~- = O'SAP—-I' “—§§§{~§ .E 0.9‘1___}__1___{___{__{
E 1 TE| R ET FE el R TS| E 08
5 MO E T 01 il B . | @ foedre el
6 0.41 6 0.41 6 0.41 gbo'ﬁj--'-
< < , < H <UL
0 1 3 5 7 9 0 1 3 5 7 9 0 1 3 5 7 9 01 3 5 7 9
Examples # Examples # Examples # Examples
(a) (b) (© (d)
Figure 5: Similarity scores for (a) Mixtral-8x7B, (b) L1ama3-8B, (c) Llama3-70B and (d) Prometheus-8x7B-v2.0.
more detailed analysis of the few-shot examples Input Output Dataset
experiment is provided in Appendix 6, reporting Model Price Price Cost
the similarity scores between the initial manifest Mixtral-8x7B 0.70 0.70 1400
: Llama3-8B 0.07 0.20 270
and the one generated from the LLLM-based intent. Llama3.70B 0.80 0.88 1680
Prometheus-8x7B-v2.0 | 0.70 0.70 1400

4.3 Economic considerations

Based on these evaluations, we also examined the
cost implications of using different LLMs using
publicly available information in (Artificial Analy-
sis, 2025) and reporting results in Table 1.

First, we can point out that Mixtral-8x7B
and Prometheus-8x7B-v2.0 are associated with
the same costs, since Prometheus-8x7B-v2.0
is trained using Mixtral-instruct as a base
model (Prometheus, 2024). Our analysis highlights
that this class of models tends to be more expen-
sive due to their need for more examples, whereas
L1lama3-8B keeps costs lower while maintaining
strong performance. A similar trend is observed
with L1ama3-70B, which achieves high similarity
scores without requiring additional examples. De-
spite a slightly lower percentage of valid mani-
fests (96.68% vs. 98%), L1lama3-8B remains a
more cost-effective option, as both L1ama3 mod-
els achieved similar similarity scores. For large-
scale applications, such as building datasets for
LLM fine-tuning, L 1ama3-8B is preferred due to its
price. However, when precision is the top priority,
L1lama3-7@B might be the better choice despite its
higher cost. As Table 1 illustrates, fewer provided
examples result in fewer tokens, directly reducing
overall costs.

Table 1: Cost analysis of the tested LLMs: average
input and output prices in $ per 1M tokens (or approx.
500 manifests of 1000 tokens length) and total cost of
generation of 500k samples dataset similar to large scale
cluster industry examples (Verma et al., 2015; Cortez
et al., 2017).

5 Conclusion

In this paper, we presented KGen, a pipeline that
translates natural language descriptions (intents)
into Kubernetes (K8s) manifests for automatic
cloud-native deployments. By analyzing different
LLMs, our method strategically selects the opti-
mal number of examples through a n-shot learn-
ing evaluation, balancing accuracy and computa-
tional efficiency. Our findings reveal that while
increasing n-shot examples can enhance output
quality for specialized models like Mixtral-8x7B
and Prometheus-8x7B-v2.0, it may degrade the
validity of K8s manifests for more general models
such as L1ama3-8B and L1ama3-70B. This perfor-
mance underscores the importance of tailored LLM
selection for structured data generation, where
smaller models can sometimes outperform larger
ones. These insights emphasize the necessity of
performing an in-depth LLM analysis to identify
the most effective configurations to achieve higher
generation accuracy at lower costs for DevOps
pipelines.

350

Acknowledgements

This work has received funding from the EU Hori-
zon Europe R&I Programme under Grant Agree-
ment no. 101070473 (FLUIDOS).

References

Artificial Analysis. 2025. Artificial analysis. Accessed:
27-02-2025.

Debarag Banerjee, Pooja Singh, Arjun Avadhanam, and
Saksham Srivastava. 2023. Benchmarking 1lm pow-

ered chatbots: methods and metrics. arXiv preprint
arXiv:2308.04624.

Lekai Chen, Ashutosh Trivedi, and Alvaro Velasquez.
2024. Llms as probabilistic minimally ade-
quate teachers for dfa learning. arXiv preprint
arXiv:2408.02999.

Yinfang Chen, Manish Shetty, Gagan Somashekar,
Minghua Ma, Yogesh Simmhan, Jonathan Mace,
Chetan Bansal, Rujia Wang, and Saravan Rajmohan.
2025. Aiopslab: A holistic framework to evaluate
ai agents for enabling autonomous clouds. arXiv
preprint arXiv:2501.06706.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bian-
chini. 2017. Resource central: Understanding and
predicting workloads for improved resource manage-
ment in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles,
pages 153-167.

Kristina Dzeparoska, Jieyu Lin, Ali Tizghadam, and
Alberto Leon-Garcia. 2023. Llm-based policy gen-
eration for intent-based management of applications.
In 2023 19th International Conference on Network
and Service Management (CNSM), pages 1-7. IEEE.

Ahlam Fuad, Azza H Ahmed, Michael A Riegler, and
Tarik Ci¢ié. 2024. An intent-based networks frame-
work based on large language models. In 2024
IEEE 10th International Conference on Network Soft-
warization (NetSoft), pages 7-12. IEEE.

Yinggiang Ge, Wenyue Hua, Kai Mei, Juntao Tan,
Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al. 2024.
Openagi: When Ilm meets domain experts. Advances
in Neural Information Processing Systems, 36.

HELM. 2025. HELM format. Accessed: 19-03-2025.

Taojun Hu and Xiao-Hua Zhou. 2024. Unveiling llm
evaluation focused on metrics: Challenges and solu-
tions. arXiv preprint arXiv:2404.09135.

Yudong Huang, Hongyang Du, Xinyuan Zhang, Dusit
Niyato, Jiawen Kang, Zehui Xiong, Shuo Wang,
and Tao Huang. 2024. Large language models for
networking: Applications, enabling techniques, and
challenges. IEEE Network.

351

Beni Ifland, Elad Duani, Rubin Krief, Miro Ohana,
Aviram Zilberman, Andres Murillo, Ofir Manor, Or-
tal Lavi, Hikichi Kenji, Asaf Shabtai, et al. 2024.
Genet: A multimodal llm-based co-pilot for net-

work topology and configuration. arXiv preprint
arXiv:2407.08249.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
Ilm hallucination via self reflection. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1827-1843.

kagent. 2025. kagent.dev. Accessed: 19-03-2025.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2023. Prometheus: Inducing fine-
grained evaluation capability in language models.
Preprint, arXiv:2310.08491.

Nane Kratzke and André Drews. 2024. Don'’t train, just
prompt: Towards a prompt engineering approach for
a more generative container orchestration manage-
ment. In CLOSER, pages 248-256.

Kubiya.ai. 2025. AI Agents for Kubernetes. Accessed:
2025-03-14.

Jieyu Lin, Kristina Dzeparoska, Ali Tizghadam, and
Alberto Leon-Garcia. 2023. Appleseed: Intent-based
multi-domain infrastructure management via few-
shot learning. In 2023 IEEE 9th International Con-
ference on Network Softwarization (NetSoft), pages
539-544. IEEE.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, Xuchao Zhang, et al. 2023. Do-
main specialization as the key to make large language
models disruptive: A comprehensive survey. arXiv
preprint arXiv:2305.18703.

Logz. 2025. Demystifying K8S observability with Gen-
erative Al and LLMs. Accessed: 2025-03-14.

Dimitrios Michael Manias, Ali Chouman, and Abdallah
Shami. 2024. Towards intent-based network manage-
ment: Large language models for intent extraction in
5g core networks. In 2024 20th International Con-
ference on the Design of Reliable Communication
Networks (DRCN), pages 1-6. IEEE.

Abdelkader Mekrache, Adlen Ksentini, and Christos
Verikoukis. 2024. Intent-based management of next-
generation networks: an llm-centric approach. IEEE
Network.

Meta/Llama. 2025a. Llama3-70B. Accessed: 25-02-
2025.

Meta/Llama. 2025b. Llama3-8B.
2025.

Accessed: 25-02-

MixtralAl. 2025. Mixtral-8x7b. Accessed:
2025.

13-01-

artificialanalysis.ai
https://helm.sh/docs/chart_template_guide/
https://kagent.dev/
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2310.08491
https://www.kubiya.ai/resource-post/ai-agents-for-kubernetes
https://logz.io/blog/demystifying-kubernetes-observability-gen-ai-llm/
https://logz.io/blog/demystifying-kubernetes-observability-gen-ai-llm/
https://ollama.com/library/llama3:70b
https://ollama.com/library/llama3:8b
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

Prometheus. 2024. Prometheus-8x7B-v2.0. Accessed:
27-02-2025.

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas
Dupuis, Burn Lewis, Sahil Suneja, Atin Sood,
Ganesh Nalawade, Matt Jones, Alessandro Morari,
et al. 2023. Automated code generation for informa-
tion technology tasks in yaml through large language
models. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pages 1-4. IEEE.

Matthew Renze and Erhan Guven. 2024. The effect of
sampling temperature on problem solving in large
language models. arXiv preprint arXiv:2402.05201.

Dipayan Saha, Shams Tarek, Katayoon Yahyaei, Su-
jan Kumar Saha, Jingbo Zhou, Mark Tehranipoor,
and Farimah Farahmandi. 2024. Llm for soc security:
A paradigm shift. IEEE Access.

Maohao Shen, Subhro Das, Kristjan Greenewald,
Prasanna Sattigeri, Gregory Wornell, and Soumya
Ghosh. 2024. Thermometer: Towards universal cal-
ibration for large language models. arXiv preprint
arXiv:2403.08819.

Ole Tange. 2025. GNU parallel 20240822 (’southport’).
Accessed: 19-03-2025.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes.
2015. Large-scale cluster management at Google
with Borg. In Proceedings of the European Con-
ference on Computer Systems (EuroSys), Bordeaux,
France.

Arthur Vitui and Tse-Hsun Chen. 2025. Empow-
ering aiops: Leveraging large language models
for it operations management. arXiv preprint
arXiv:2501.12461.

Bin Xiao, Burak Kantarci, Jiawen Kang, Dusit Niy-
ato, and Mohsen Guizani. 2024. Efficient prompting
for llm-based generative internet of things. arXiv
preprint arXiv:2406.10382.

Yifei Xu, Yuning Chen, Xumiao Zhang, Xianshang Lin,
Pan Hu, Yunfei Ma, Songwu Lu, Wan Du, Zhuoqing
Mao, Ennan Zhai, et al. 2024. Cloudeval-yaml: A
practical benchmark for cloud configuration genera-
tion. Proceedings of Machine Learning and Systems,
6:173-195.

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan
Ning, and Li Yuan. 2023. Llm lies: Hallucinations
are not bugs, but features as adversarial examples.
arXiv preprint arXiv:2310.01469.

JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern
Hartmann, and Qian Yang. 2023. Why johnny can’t
prompt: how non-ai experts try (and fail) to design
Ilm prompts. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems,
pages 1-21.

Ahmed Zerouali, Ruben Opdebeeck, and Coen
De Roover. 2023. Helm charts for kubernetes appli-
cations: Evolution, outdatedness and security risks.
In 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR), pages 523-533.
IEEE.

Yuechen Zhang, Shengju Qian, Bohao Peng, Shu Liu,
and Jiaya Jia. 2024. Prompt highlighter: Interac-
tive control for multi-modal 1lms. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13215-13224.

Hao Zhou, Chengming Hu, Ye Yuan, Yufei Cui, Yili
Jin, Can Chen, Haolun Wu, Dun Yuan, Li Jiang,
Di Wu, et al. 2024a. Large language model (1lm)
for telecommunications: A comprehensive survey on
principles, key techniques, and opportunities. arXiv
preprint arXiv:2405.10825.

Zihan Zhou, Chong Li, Xinyi Chen, Shuo Wang,
Yu Chao, Zhili Li, Haoyu Wang, Rongqgiao An,
Qi Shi, Zhixing Tan, et al. 2024b. Llm x mapreduce:
Simplified long-sequence processing using large lan-
guage models. arXiv preprint arXiv:2410.09342.

6 Appendix

We report here the detailed analysis of the n-shot
examples experiments that demonstrate the impact
of different numbers of example n and also high-
light the difference between the performance of
studied LLMs (see Figure 6 for Mixtral-8x7B,
Figure 7 for L1ama3-8B, Figure 8 for L1ama3-70B
and Figure 9 for Prometheus-8x7B). The analysis
shows similarity scores between the initial manifest
and the one generated from the LLM-based intent,
plotted on the X-axis. For instance, Figure 6a il-
lustrates the average similarity scores between the
initial manifests and the generated ones, based on
the intents produced by the LLLM (shown on the
X-axis).

352

https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0
https://doi.org/10.5281/zenodo.13357237

0.9

o

©
o
©

Avg. Similarity
(= (=] o
o ~ @
e
o
e
—
Avg. Similarity
° o o
o ~N @
e
e
—e—
—e—i
——
Avg. Similarity
)) o
@ 3 ®
e o
e
——i i

o f

05 { 0.5 0.5 { }
$ Levenshtein $ Levenshtein $ Levenshtein }
044 & Cosine 0.4{ % Cosine 0471 @ Cosine
@ BLEU @ BLEU 9 BLEU
Meteor Meteor Meteor
0.3 0.3 0.3
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(a) Mixtral-8x7B 0-shot learning (b) Mixtral-8x7B 1-shot learning (c) Mixtral-8x7B 3-shot learning

o
©
[

i { 1T 7 I 1|1 1 &]
{_:I T el b f } H

)
N
e
——
—e—

= 7 {
] { }
500 I 6 6
05 0.5 05
$ Levenshtein $ Levenshtein $ Levenshtein
041 @ Cosine 0.4{ ® Cosine 044 ® Cosine
@ BLEU $ BLEU @ BLEU
Meteor Meteor 03 Meteor
0.3 .
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(d) Mixtral-8x7B 5-shot learning (e) Mixtral-8x7B 7-shot learning (f) Mixtral-8x7B 9-shot learning

Figure 6: Deep analysis for Mixtral-8x7B at increasing number of provided examples when the intents were
generated from the LLMs on the x-axis.

o
©
—e—i
i
—y
——
: 4
©
e
2]
—e—i
——

S O B S

0.8 { 0.8 { I
207 { 207 I 207 I
8 { 8 8
£ { : } :
0.6 © 0.6 ©»06
k3
05 05 05
$ Levenshtein ® Levenshtein $ Levenshtein
041 @ Cosine 0.4{ @ Cosine 04{ @ Cosine
¥ BLEU @ BLEU ¥ BLEU
Meteor Meteor Meteor
03 03 03
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(a) L1ama3-8B 0-shot learning (b) L1ama3-8B 1-shot learning (c) L1ama3-8B 3-shot learning
09

f ¥

Avg. Similarity
o o o o
o ~ (=] ©
—e—
—eo—
o
— B
—
Avg. Similarity
<) o) o
o ~ @ ©
e
e
—e—
T le
B
Avg. Similarity
o o
o ®
° —o—
B

=)
o
——
e

o

o
o
o

$ Levenshtein

@ Levenshtein ® Levenshtein 04
041 @ Cosine 0.41 & Cosine $® Cosine
@ BLEU $ BLEU @ BLEU
Meteor Meteor 03 Meteor
0.3 0.3
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(d) L1ama3-8B 5-shot learning (e) L1lama3-8B 7-shot learning (f) Llama3-8B 9-shot learning

Figure 7: Deep analysis for L1ama3-8B at increasing number of provided examples when the intents were generated
from the LLMs on the x-axis.

353

09 09 09 { 3 }
oy s f
08 { 08 I I 08 { { }
zo7 { f 207 { zo7 { t
S 8 Kl
E E } E
@06 } ©0.6 ® 0.6
H H g
05 0.5 05
$ Levenshtein ® Levenshtein % Levenshtein
0.4{ & Cosine 0.4{ & Cosine 0.4{ ® Cosine
@ BLEU @ BLEU 9 BLEU
Meteor Meteor Meteor
0.3 0.3 0.3
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(a) L1ama3-7@B 0-shot learning (b) L1ama3-70B 1-shot learning (c) L1ama3-7@B 3-shot learning
0.9

ST _°ff } . o } !

[
N
—o—ri

Avg. Similarity
o K
)
—eo—
—

0.5
$ Levenshtein $ Levenshtein 0.4{ ¥ Levenshtein
0.41 % Cosine 0.4{ ® Cosine | % Cosine }
$ BLEU $ BLEU @ BLEU
Meteor 03 Meteor 03 Meteor
Mixtral Prometheus Llama3-70B Llama3-8B ’ Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B
(d) L1ama3-70B 5-shot learning (e) L1lama3-7@B 7-shot learning (f) L1ama3-70B 9-shot learning

Figure 8: Deep analysis for L1ama3-70B at increasing number of provided examples when the intents were generated
from the LLMs on the x-axis.

o
©
—e—
—e—
54
®
—e—ri

Avg. Similarity
(=]
N
—e—
e
Avg. Similarity
o o
N d
.
—e—
Avg. Similarity
°
o
—e—
—eo—if

0.7
06 065
$ Levenshtein $ Levenshtein o06s] & Levenshtein
$ Cosine 061 @ Cosine $ Cosine
® BLEU @ BLEU @ BLEU
05 Meteor 055 Meteor 0.6 Meteor
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B

(a) Prometheus-8x7B 0-shot learning (b) Prometheus-8x7B 1-shot learning (c) Prometheus-8x7B 3-shot learning

T R TIEEEEE

0.85
0.85

°
®
&

Avg. Similarity
o o
3 o
—e—
—e—
—e—{
Avg. Similarity
o
®
—e—i
—e—
—e—
Avg. Similarity
o
®
—o—
e
—e—{

075 075
07
0.7 07
0851 & Levenshtein $ Levenshtein $ Levenshtein
$ Cosine o0es|{ & Cosine 085 $ Cosine
0.6 @ BLEU @ BLEU @ BLEU
Meteor o Meteor Meteor
Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B Mixtral Prometheus Llama3-70B Llama3-8B

(d) Prometheus-8x7B 5-shot learning (e) Prometheus-8x7B 7-shot learning (f) Prometheus-8x7B 9-shot learning

Figure 9: Deep analysis for Prometheus-8x7B-v2.9 at increasing number of provided examples when the intents
were generated from the LLMs on the x-axis.

354

