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Abstract

A key ethical challenge in Automated Essay
Scoring (AES) is ensuring that scores are only
released when they meet high reliability stan-
dards. Confidence modelling addresses this
by assigning a reliability estimate measure, in
the form of a confidence score, to each auto-
mated score. In this study, we frame confi-
dence estimation as a classification task: pre-
dicting whether an AES-generated score cor-
rectly places a candidate in the appropriate
CEFR level. While this is a binary decision,
we leverage the inherent granularity of the scor-
ing domain in two ways. First, we reformulate
the task as an n-ary classification problem us-
ing score binning. Second, we introduce a set
of novel Kernel Weighted Ordinal Categori-
cal Cross Entropy (KWOCCE) loss functions
that incorporate the ordinal structure of CEFR
labels. Our best-performing model achieves
an F1 score of 0.97, and enables the system
to release 47% of scores with 100% CEFR
agreement and 99% with at least 95% CEFR
agreement—compared to ~ 92% CEFR agree-
ment from the standalone AES model where
we release all AM predicted scores.

1 Introduction

Automated Essay Scoring (AES) systems aim to
evaluate the quality of candidate writing using com-
putational methods. These systems are increas-
ingly adopted in large-scale assessments due to
their speed, consistency, and scalability (Xu et al.,
2020; Lottridge et al., 2023; Shermis and Wilson,
2024; Xu et al., 2024). A common goal is to assign
a proficiency level based on frameworks such as
the Common European Framework of Reference
(CEFR) (CoE, 2001), which defines levels from
Al (beginner) to C2 (advanced). Unlike traditional
classification tasks, these levels are ordinal—with
the levels ranked in terms of increasing levels of
proficiency.

To enhance accuracy in high-stakes settings,
many AES systems adopt a hybrid marking sys-
tem, where a separate confidence model evaluates
the automarker score for a response and only re-
leases a score when it meets a minimum confi-
dence threshold (Xu et al., 2021; Singla et al., 2022;
Del Vecchio et al., 2018). However, confidence
modelling in AES remains underexplored. Most
current methods rely on standard regression or clas-
sification approaches (Johan Berggren et al., 2019),
and while some work has considered the ordinal na-
ture of AES (Johan Berggren et al., 2019; Mathias
and Bhattacharyya, 2020), very few have applied
ordinal techniques to confidence estimation (Ma-
linin et al., 2017; Del Vecchio et al., 2018; Loukina
and Yoon, 2019; Funayama et al., 2020; Gao et al.,
2024; Orwat et al., 2024).

In this paper, we show how redefining the classi-
fication approach and adopting innovative ordinal
loss functions can optimise confidence model per-
formance. We begin by framing the task as a binary
classification problem: predicting whether the AES
system score places candidates in the correct CEFR
grade. We introduce an increase in granularity,
which allows us to explore how fine-grained infor-
mation impacts confidence estimation and score
release decisions, through two extensions: (1) an
N-ary CEFR classification that estimates the full
probability distribution over CEFR levels, and (2)
a score-binning approach with N-ary classification
at the score level, which groups continuous scores
into interpretable bins aligned with human marking
tolerances. Finally, we introduce a novel loss func-
tion—KERNEL WEIGHTED ORDINAL CATEGOR-
ICAL CROSS-ENTROPY (KWOCCE)—which pe-
nalises misclassifications based on the distance be-
tween predicted and examiner CEFR levels, build-
ing on foundational work by Frank and Hall (2001),
and more recent studies that incorporate class dis-
tances into loss functions to yield better-calibrated
and more robust models (de la Torre et al., 2018;
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Castagnos et al., 2022; Polat et al., 2025).
KWOCCE generalises prior approaches such
as Class Distance Weighted Cross-Entropy (Polat
et al., 2025) and log-based ordinal losses (Castag-
nos et al., 2022), enabling exploration of linear,
logarithmic, exponential, and Gaussian penalty
schemes. The goal is to penalise large misclassifica-
tions more heavily while tolerating minor disagree-
ments, aligning with real-world marking practice.
We evaluate our approach in a human-in-the-
loop Hybrid Marking System (HMS), where an
LLM-based AES engine generates scores and a
downstream confidence model determines whether
scores are released or escalated for review. To as-
sess real-world utility, we report the percentage
of AES scores that can be released at different
thresholds of minimum CEFR agreement. Our re-
sults show that the proposed KWOCCE loss sig-
nificantly improves control over score release deci-
sions: up to ~ 47% of AES scores can be released
with 100% CEFR agreement, and up to ~ 99%
with at least 95% CEFR agreement, compared to
~ 92% CEFR agreement from the unaided AES
system, where all predicted scores are released.

Contributions:

* We demonstrate the importance of granularity
in confidence modelling.

¢ We frame AES confidence estimation as an
ordinal classification problem, leveraging the
structure of CEFR labels.

* We propose the KWOCCE loss, incorporating
kernel-based distance penalties into the cross-
entropy objective.

* We show that KWOCCE improves confidence
calibration and score release reliability over
standard approaches, supporting safer and
more robust AES deployment.

This work connects AES to broader advances in
ordinal classification and NLP, responding to calls
for better alignment between machine predictions
and human assessment standards (Amigo et al.,
2020; Castagnos et al., 2022), integrating methods
from uncertainty estimation, ordinal classification,
and kernel-based loss design to improve scoring
reliability and trustworthiness.

2 Background

Despite growing interest in AES, few studies ex-
plicitly address both scoring and confidence estima-

tion. AES is often framed as a standard regression
or classification task (Johan Berggren et al., 2019;
Mathias and Bhattacharyya, 2020), where confi-
dence is assumed to be reflected by outputs like
softmax probabilities or prediction intervals. How-
ever, these are not always well-calibrated and may
fail to capture real-world reliability—particularly
in high-stakes educational contexts.

One reason for this gap may be the focus on ac-
curacy as the key metric in Al benchmarks, often
at the expense of prediction confidence and cal-
ibration (Banachewicz and Massaron, 2022). In
response to fairness and out-of-domain concerns,
some commercial systems prioritise aberrancy de-
tection over intrinsic confidence modelling (Louk-
ina and Yoon, 2019; Gao et al., 2024). Earlier
solutions combined automated and human mark-
ing (Burstein et al., 2013), but this adds cost and
sidesteps the core issue of model uncertainty.

Recent work has explored confidence estimation
in deep neural networks, especially when no natural
confidence score is available. Malinin et al. (2017)
and Del Vecchio et al. (2018) used ensembles and
synthetic data to model uncertainty and detect out-
of-distribution inputs. Singla et al. (2022) showed
that confidence modelling can help decide when
to escalate AES responses, highlighting that some
low-confidence errors are more critical due to their
impact on final candidate results.

This issue becomes particularly salient in sce-
narios where scores are not only assigned but also
banded into levels depending on which band of
scores the AES score lies in, such as the CEFR
framework used in second language assessments
(CoE, 2001). In such settings, errors near band
boundaries (e.g., predicting B1 instead of B2) may
have a disproportionate effect on outcomes, and
thus merit different treatment from errors within a
band. Confidence modelling, in this context, must
therefore consider not only the likelihood of error
but also the potential impact of that error (Orwat
et al., 2024).

Beyond the assessment community, the NLP
field has begun exploring ordinal classification and
distance-aware loss functions as tools for improv-
ing confidence calibration. Castagnos et al. (2022)
introduced a log-based loss that penalises distant
misclassifications more heavily, enhancing both
accuracy and interpretability. Polat et al. (2025)
proposed a class-distance-weighted cross-entropy
for medical severity classification, while de la Torre
et al. (2018) adapted the weighted Kappa metric
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into a loss for ordinal deep learning. These works
show the benefits of aligning model objectives with
ordinal label structure—especially when near-miss
predictions carry partial credit. However, such ap-
proaches remain rare in AES.

In this work, we extend the literature by de-
veloping a hybrid marking system (HMS) that
incorporates kernel-weighted ordinal classifica-
tion for confidence modelling in AES. Our ap-
proach builds on insights from assessment, un-
certainty estimation, and NLP tasks of an ordinal
nature to propose a principled, loss-driven strat-
egy for score release: only high-confidence pre-
dictions—determined by both prediction certainty
and ordinal agreement—can be released without
human review (unless also separately flagged by
ancillary aberrant detection systems). This strikes
a balance between automation and rigour.

3 Data

This study uses a proprietary dataset from a high-
stakes second-language English exam. Candidates
write two extended responses, each analytically
scored by a certified examiner on a 0-20 scale.
The scores for both parts are summed to produce a
component-level score out of 40 and then mapped
using proprietary cut scores to one of three possible
CEFR levels for the target proficiency band of the
exam (CoE, 2001).

Examiner scores and CEFR levels represent a
qualitative assessment of learner’s second language
proficiency relative to the CEFR, providing an over-
all judgement of writing quality.

Training and evaluation sets were selected using
stratified random sampling to reflect the empiri-
cal score distribution and candidate demographics
(AERA et al., 2014; Lottridge et al., 2020; McCaf-
frey et al., 2022; Xu et al., 2024). As a result of the
empirical distribution, both raw scores and CEFR
levels follow an approximately normal distribution

The confidence modelling approaches explored
in this paper are model agnostic, in that they can
be trained and applied to any automarker model.
To provide a baseline for assessing the perfor-
mance of the reported confidence models, we ad-
ditionally trained a bespoke automarker. This is a
transformer-based encoder model with a regression
head, trained on 100,000 test-specific responses,
with a validation set of 25,000 responses. The con-
fidence model used a disjoint, larger training set of
231,603 responses, with a validation set of 57,901

responses, capturing variance in the automarker
while avoiding task overlap. The final evaluation
set consists of 644 responses from 322 candidates,
in line with prior commercial AES sample sizes
(Bennett and Zhang, 2015; Shermis, 2022; Firoozi
et al., 2023). A gold-standard reference score was
created via a multi-marking exercise: 15 certified
examiners rated all responses, and a fair average
(FA) score was derived using Multi-Faceted Rasch
Measurement to account for rater effects (Wolfe,
2004; Xu et al., 2024).

For evaluation purposes, we report two directly
interpretable, domain specific agreement metrics,
both computed at the component level (sum of the
two part level scores), where candidate outcomes
are determined. The first metric, RMSE, is reported
on a 0—40 scale and reflects raw score agreement
based on the sum of scores across both of the can-
didates’ two test responses. The second metric, %
CEFR Agreement, is an accuracy-based measure of
categorical agreement, capturing the percentage of
cases where the automarker assigns the same CEFR
level as the FA reference score. This metric focuses
on agreement in the final outcome for the examinee,
which is critical for high-stakes decision-making.
We use CEFR agreement over any other metrics
such as QWK, because it has better interpretabilitiy
for operational use (Di Eugenio and Glass, 2004;
Jr and and, 2011; Yannakoudakis and Cummins,
2015; Xu et al., 2021).

3.1 Baseline Automarker Performance

Table 1 shows baseline automarker (AM) perfor-
mance, assuming 100% of predicted scores are
released (i.e., no confidence model is applied to fil-
ter outputs). The AM predicts scores for part-level
responses. At the component level (summing up
the scores from the two parts), it performs well,
achieving an RMSE of 1.09 and CEFR agreement
of 91.61% with the fair-average reference scores.
That is, the AM’s predicted scores already closely
align with the ground-truth CEFR levels. However,
despite the high agreement, there remains room for
improvement—particularly in controlling which
scores are released, which is critical for high-stakes
applications.

Comparison Type RMSE CEFR Agreement

1.095 91.61

Raw! Automarker

Table 1: Raw performance of Auto-marker
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4 Experiments

As described in Section 1, we frame the problem as
a binary classification task: determining whether
an automarked score is confident or not in predict-
ing the expected CEFR level for a candidate. Our
approach progressively refines the confidence mod-
elling by leveraging the granularity of scoring data.

Hybrid Marking System (HMS) Framework

The proposed HMS features an AM and a down-
stream confidence model. The AM outputs the
score for a candidate response and also generates
LLM embeddings. The confidence model subse-
quently uses these embeddings, AM scores, and
the CEFR cut scores to predict confidence on a 0—1
scale, with 1 indicating full confidence that the pre-
dicted score for a particular response agrees with
the expected CEFR level.

By integrating the AM with a confidence model,
the HMS enables nuanced human scoring where
confidence is low, helping underpin assessment
accuracy and reliability. The confidence model de-
termines whether the generated automarker score is
released or the response instead flagged for human
review based on a predefined confidence threshold.
Designed for diverse assessment contexts, includ-
ing high-stakes testing and formative evaluation,
HMS ensures both precision and adaptability.

4.1 Experiment 1: Core Architecture

The confidence model was developed through iter-
ative refinements aimed at improving confidence
score assignment for AM predictions. Initial mod-
els used simple correctness-based measures, while
later versions incorporated statistical insights into
model behaviour and score distributions.

The following subsections describe each stage
of this progression.

4.1.1 Binary Classification

The first approach framed confidence estimation as
a binary classification task, labelling each predic-
tion as correct (1) or incorrect (0) based on align-
ment between the AM score and the true CEFR
level. Using Cross-Entropy (CE) loss, the final
probability output was interpreted as the confidence
score. While simple and interpretable, this baseline
lacked granularity in uncertainty estimation.

! Raw refers to scores assigned without additional QA fil-
tering.

4.1.2 CEFR-Level N-ary Classification

Further analysis showed that AM performance var-
ied across the score range, with greater reliability
in data-rich regions. We therefore moved to an V-
ary classification model, where N is the number
of CEFR levels. Using Categorical Cross-Entropy
(CCE) loss, the model produced a probability dis-
tribution over CEFR levels. Confidence was taken
as the probability assigned to the CEFR predicted
by the AM. This formulation offered more nuanced
uncertainty estimates, particularly in cases with
competing CEFR probabilities.

4.1.3 Score-Level Binned N-ary Classification

To further increase granularity, we extended the
N-ary classification by treating individual score
points as separate classes. We then applied binning
based on CEFR cut scores, summing probabilities
of score points within each CEFR band to com-
pute cumulative confidence. The confidence score
was derived similarly to the CEFR-level model but
benefited from finer resolution, better capturing
subtle variations in AM reliability across the score
spectrum.

4.1.4 Core Architecture Results

Classifier Type Accuracy Precision Recall Fl1

Binary 0.578 0.579 0.997 0.733
CEFR N-ary 0.642 0.693 0.869 0.772
Score Binned N-ary 0.913 0.913 1.000 0.954

Table 2: Comparison of classifier performance across
architectures

We performed a threshold analysis on the confi-
dence scores generated by each architecture, using
a thousand increments. Here, a true-positive would
be when a confidence score is above threshold and
the predicted score corresponds to the expected
CEFR level. A true-negative would be when both
the confidence is below threshold and there is a
mismatch with respect to the fair average CEFR
level. Metrics reported in Table 2 correspond to the
threshold yielding the best F1 score. Results show
consistent improvement with increasing classifica-
tion granularity, likely due to richer input informa-
tion and greater tolerance for near-miss predictions.
Consequently, the cumulative CEFR probability ap-
proach offers a more robust basis for downstream
confidence estimation. We adopt the Score Binned
N-ary classifier as the standard for subsequent ex-
periments.
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4.2 Experiment 2: Ordinal Category
Classification (OCC)

Given the ordinal nature of the problem, we incor-
porated ordinal relationships into our classification
framework. Our OCC benchmark was established
using Keras’ OCC loss (Hart, 2017). Addition-
ally, we developed the Kernel Weighted Ordinal
CCE (KWOCCE) loss function to enforce ordinal
constraints, better capturing the inherent ordering
information.

4.2.1 Keras OCC Loss

This loss function extends the standard Categorical
Cross-Entropy by introducing a weighting mecha-
nism that penalises predictions based on their dis-
tance from the true class. The mathematical formu-
lation of the OCC loss is as follows:

loss(y,y) = (w(y,y) +1) - CE(y,y) (1)

.\ |argmax; y — argmax; y|
Here, K represents the total number of classes, y
is the one-hot encoded true class vector, y denotes
the predicted probability vector and CE(y,y) is
the standard cross-entropy loss. The weighting fac-
tor w scales the loss proportionally to the absolute
difference between the predicted and true class in-
dices, normalised by K — 1. This approach ensures
that misclassifications closer to the true class incur
a lower penalty than those further away, effectively
capturing the ordinal nature of the categories.

4.2.2 KWOCCE

Keras’ OCC loss penalises misclassifications based
on distance from the true class using linear scaling,
assuming that all ordinal gaps carry equal sever-
ity. However, in practice, not all errors are equally
consequential; e.g., misclassifying CEFR level 1
as level 2 is less severe than as level 5. To bet-
ter reflect such distinctions, we propose KERNEL
WEIGHTED ORDINAL CATEGORICAL CROSS-
ENTROPY (KWOCCE): a family of loss functions
that apply nonlinear, distance-aware penalties via
kernel functions. These refinements improve or-
dinal classification, enhance robustness, and yield
more interpretable confidence estimates.

2

4.2.2.1 Kernel Functions

Each kernel function determines how severely a
misclassification is penalised based on its distance
from the true class. Unlike fixed linear weights,

kernel-based schemes allow more nuanced penal-
isation that aligns with the ordinal structure of
CEFR scores. We define z = ¢ — y, where g
is the predicted class and y is the true class, and
N is the number of classes, and o and 3, where
applicable, are tuned hyperparameters.

Linear

Kiinear(z, N) = max (O, 1-— |$N|) 3)
The linear kernel provides a straightforward exten-
sion of the Keras OCC loss by scaling penalties
proportionally to the absolute classification error.
It maintains consistency with ordinal relationships,
it does not distinguish between large and small
misclassifications beyond the direct ordinal gap.

Logarithmic
Kiog(z, N; o) = max (0, 1 — fiog(x, N; a)) @)

alog(1l + |z|)

flog(xaN; a) = log(N)

)
The logarithmic kernel introduces a progressively
decreasing penalisation for larger errors. This func-
tion better reflects real-world grading practices,
where extreme misclassifications are rare but pos-
sible, and minor deviations should not be overly
penalised. This approach is particularly useful in
settings where small deviations (e.g., 1 to 2) are
common and tolerable, whereas larger deviations
(e.g., 1 to 5) should still be significantly penalised.

Exponential

Kexp(x§a75) = max (vaexp(tr; 5)) (6)

1

feees) =0 (1= o y) @

The exponential kernel provides a sharper dis-
tinction between minor and severe errors. This
function assigns minimal penalties to near-correct
predictions, while exponentially increasing penal-
ties for larger misclassifications. This is partic-
ularly useful in high-stakes assessment settings,
where confidence in high-accuracy predictions is
crucial.
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Gaussian

Kgaussian (l'; Oé) = max (0, fexp (l'; a)) (8)
fexp(w;a) = €xp <_ <Z>2> )

The Gaussian kernel applies a bell-shaped
penalty, ensuring that small classification errors
are barely penalised, while large errors receive
exponentially higher penalties. This model best
aligns with human grading behaviour, where mi-
nor misjudgements are tolerated, but gross errors
significantly impact the assigned CEFR.

4.2.2.2 Kernel-Weighted Cross-Entropy Loss

To integrate the kernel weighting into our classifi-
cation framework, we modify the standard cross-
entropy loss function to account for ordinal mis-
classification penalties. This ensures that correct
or near-correct predictions incur lower penalties,
while distant misclassifications are progressively
penalised according to the chosen kernel.

N
Ly.9) =~ wilogh,  (10)
i=1
Here, y is the true one-hot label, y is the pre-
dicted probability vector, c; is the true class index,
and w; is the kernel-derived penalty based on the
distance between predicted and true classes.

4.2.2.3 Reduction Method

The final loss value is calculated using a mean
reduction approach. This computes the average
loss across all samples, ensuring that the gradients
remain stable and are not dominated by a small
subset of extreme misclassifications.

1 N
Emean = Nzﬁz (ID)
=1
4.2.3 OCC Results
Loss function 100% CEFR Agree  95% CEFR Agree

RMSE % Release RMSE % Release

Benchmark 0.912 29.80 1.143 91.83
Keras OCC 0.854 36.31  1.049 91.97
KWOCCE Linear 1.006 4735 1.068 98.16
KWOCCE Log,—3 0.854 19.86  1.057 98.89
KWOCCE Exp(q—1,3-3) 0.964 41.01  1.062 99.12
KWOCCE Gaussian,—g5  0.940 3573  1.057 98.75

Table 3: Comparison of OCC Loss Performance at 100%
and 95% CEFR Agreement Thresholds

All OCC models were evaluated using standard
NLP metrics as well as domain-specific validation
metrics to better assess real-world impact. Our pri-
mary validation metric is the percentage of AM
scores that can be released under each model for
a particular threshold of CEFR agreement. We op-
erationalise this as the percentage of exact CEFR
agreement achieved with our gold-standard fair av-
erage (FA) reference. More specifically, at each
confidence threshold, we identify the particular set
of automarker scores that are “high confidence” (i.e.
those that are at or above the confidence threshold).
These high confidence automarker scores are then
swapped in over the corresponding FA scores and
used to determine a revised set of CEFR levels. Fi-
nally, the resulting level of agreement is calculated
by comparing the overlap between this revised set
of CEFR levels and the CEFR level achieved if
no automarker scores had been released and candi-
dates received only Fair Average scores.

Table 3 compares the performance of different
confidence models at two thresholds: a maximum
of 100% agreement and a minimum of 95%. Both
represent meaningful improvements over the AM’s
unaided agreement level of =~ 92%.

At 100% CEFR agreement, the best RMSE
values are achieved by Keras OCC (0.8544) for
36.31% released and KWOCCE Log (o« = 3)
(0.8537) for 19.86% released, indicating that these
methods produce the most reliable confidence
scores. RMSE remains relatively stable across mod-
els, and always lower than the unaided AM RMSE
(1.095), suggesting that the confidence mechanism
helps reduce grading variance when the system is
more certain.

KWOCKCE Linear achieves the highest percent-
age of AM scores released (47.35%), indicating its
ability to more confidently identify and correctly
classify high-certainty responses. This suggests
stronger alignment between the model’s confidence
scores and the ground-truth CEFR labels.

At 95% CEFR agreement, all KWOCCE vari-
ants outperform both Keras and Benchmark base-
lines in every metric except RMSE. However, in
this setting, RMSE is considered a secondary met-
ric—our primary concern is accurate CEFR assign-
ment. Small RMSE variations are tolerable as long
as they remain substantively low and better than the
unaided AM RMSE. Performance for intermediate
thresholds between 99% and 96% CEFR agreement
is reported in Appendix A.

Table 4 presents results for the final downstream
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Model Precision Recall F1-Score F0.5-Score Accuracy AUC-ROC
Benchmark 0.913  1.000 0.954 0.929 0.913 0.848
Keras OCC 0.935 1.000 0.966 0.947 0.935 0.793
KWOCCE Linear 0.935 1.000 0.966 0.947 0.935 0.557
KWOCCE Log,—3 0.936  1.000 0.967 0.948 0.936 0.755
KWOCCE Exp(q—1,5=3) 0.938  0.998 0.967 0.949 0.936 0.738
KWOCCE Gaussian,—q 5 0.936  1.000 0.967 0.948 0.936 0.806

Table 4: Model Binary Classification Metrics

binary classification task: determining whether the
model is confident in the CEFR agreement of AM
scores. While the benchmark model using standard
CCE loss achieves high AUC-ROC and perfect re-
call, these metrics alone are insufficient. Precision,
F1, F0.5, and Accuracy suggest that explicitly mod-
elling ordinal structure leads to better convergence
and more reliable decision-making. Performance
on the original CEFR-level classification task can
be found in Appendix B.

5 Conclusion

Our experiments show that the most granular ar-
chitecture—the Score-level Binned N-ary Classi-
fier—consistently performs best. A clear trend
emerges: increasing granularity improves confi-
dence modelling. These gains are evident across
standard NLP metrics (Precision, Recall, F1, F0.5,
AUC-ROC, and Accuracy) and domain-specific val-
idation metrics, such as the % AM released at dif-
ferent CEFR agreement thresholds.

Our findings show that a candidate’s likelihood
of receiving the appropriate outcome is best deter-
mined by models that respect the domain’s ordi-
nal structure—leveraging raw score information,
the inherent order of CEFR labels, and KWOCCE
loss functions that penalise large misclassifica-
tions more heavily. Our best-performing model
(KWOCCE Linear) enabled the release of up to
~ 47% of scores with 100% CEFR agreement,
and up to &~ 99% with at least 95% CEFR agree-
ment—compared to &~ 92% CEFR agreement from
the unaided AM system, which released 100%
of scores with no confidence control. Thus, we
achieve our goal of greater control over score
release, leading to higher operational reliability,
while still enabling greater volumes of automarker
scores to be released in principle—resulting in a
more favourable trade-off between coverage and
reliability. The refined control enabled by fine-

grained confidence modelling offers a promising
step towards more ethical and effective automated
test scoring.

Limitations

The model used in this preliminary study was
trained and evaluated on data from a single exam
with a particular proficiency distribution. Although
the evaluation dataset is multi-marked, representa-
tive, and comparable in size to other commercial
AES datasets, it remains relatively small compared
to test sets in other domains. Future work will
assess the efficacy of the novel functions on mod-
els trained using a wider range of simulated and
operational data, as well as evaluated using larger
datasets as well as including data from other exams.
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A CEFR Agreement threshold metrics

Loss function RMSE % Released

Benchmark 1.022 61.65
Keras OCC 1.025 69.46
KWOCCE Linear 1.046 68.24
KWOCCE Log,—3 1.031 65.10
KWOCCE Exp(o—1,3-3) 1.025 69.36
KWOCCE Gaussian,—p5 1.034 64.35

Table 5: Loss Performance at 99% CEFR Agreement

Loss function RMSE % Released

Benchmark 1.031 66.04
Keras OCC 1.028 79.28
KWOCCE Linear 1.020 74.27
KWOCCE Log,—3 1.022 74.55
KWOCCE Exp(o—1,3-3) 1.035 75.03
KWOCCE Gaussiang,—p 5 1.021 74.61

Table 6: Loss Performance at 98% CEFR Agreement

Loss function RMSE % Released

Benchmark 1.099 74.23
Keras OCC 1.016 83.58
KWOCCE Linear 1.021 79.91
KWOCCE Log,=3 1.011 81.31
KWOCCE Exp(o—1,3-3) 1.021 77.67
KWOCCE Gaussiany—g 5 1.031 77.96

Table 7: Loss Performance at 97% CEFR Agreement

Loss function RMSE % Released

Benchmark 1.105 83.40
Keras OCC 1.039 90.59
KWOCCE Linear 1.051 96.51
KWOCCE Log,=3 1.034 83.95
KWOCCE Exp(4—1,3=3) 1.030 87.02
KWOCCE Gaussiany,—g 5 1.022 87.20

Table 8: Loss Performance at 96% CEFR Agreement

In Tables 5, 6, and 7, we see that Keras OCC
performs reliably well, between 99% and 97%
CEFR agreements, followed by models trained
using KWOCCE losses. In Table 8, we see that
KWOCCE linear outperforms all models by a gap
of almost 6% in the % AM-released metric. We
also see that the OCC functions maintain a stabler
lower RMSE than the benchmark, which goes to-
wards the argument of better reliability.

B NLP Metrics

In Table 9, the F1 scores (0.9071 for all OCC mod-
els) indicate strong correctness when averaged over
all classifications. The OCC model scores are con-
sistently higher than the standard benchmark model
with CCE loss.

Loss function Precision Recall F-1 F-05

Benchmark 0.9057 0.9057 0.9057 0.9057
Keras OCC 0.9071 0.9071 0.9071 0.9071
KWOCCE Linear 0.9071 0.9071 0.9071 0.9071

0.9071 0.9071 0.9071 0.9071
0.9071 0.9071 0.9071 0.9071
0.9071 0.9071 0.9071 0.9071

KWOCCE Log,—3
KWOCCE Exp(q—1,5-3)
KWOCCE Gaussiang—o 5

Table 9: Loss Performance: NLP Metrics (Micro)

In Table 10, the benchmark model (0.7538
Macro F1) performs best, indicating balanced per-
formance across all class distributions. KWOCCE
Linear and KWOCCE Log degrade significantly (=
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0.57-0.59 Macro F1), suggesting that these meth-
ods struggle with minority classes. Keras OCC
maintains moderate performance (0.6209 Macro
F1), demonstrating a reasonable trade-off.

Loss function Precision Recall F-1 F-0.5
Benchmark 0.7538 0.6568 0.6897 0.7226
Keras OCC 0.6062 0.6486 0.6209 0.6109
KWOCCE Linear 0.5785 0.5324 0.5386 0.5548
KWOCCE Log,—3 0.5706 0.6186 0.5807 0.5726

KWOCCE Exp(q=1,5=3) 0.5951 0.6356 0.6085 0.5993
KWOCCE Gaussian,—p.5  0.5786 0.5621 0.5685 0.5741

Table 10: Loss Performance: NLP Metrics (Macro)

In Table 11, the benchmark model retains high
precision (0.89), ensuring stable overall classi-
fication. KWOCCE Log and Gaussian models
maintain moderate generalisation, balancing perfor-
mance across different CEFR distributions. Keras
OCC performs better than KWOCCE and worse
than benchmark, keeping the trend consistent, as
seen in Table 10.

Loss function Precision Recall F-1 F-0.5
Benchmark 0.8919 0.9010 0.8956 0.8932
Keras OCC 0.8749 0.8460 0.8588 0.8681
KWOCCE Linear 0.8507 0.8887 0.8659 0.8552
KWOCCE Log,—3 0.8550 0.8604 0.8576 0.8560

KWOCCE Exp(q=1,5=3) 0.8669 0.8539 0.8601 0.8641
KWOCCE Gaussiana—g.5  0.8553 0.8697 0.8621 0.8579

Table 11: Loss Performance: NLP Metrics (Weighted)
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