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Abstract

The key-value (KV) cache in transformer mod-
els is a critical component for efficient de-
coding or inference, yet its memory demands
scale poorly with sequence length, posing a
major challenge for scalable deployment of
large language models. Among several ap-
proaches to KV cache compression, quanti-
zation of key and value activations has been
widely explored. Most KV cache quantiza-
tion methods still need to manage sparse and
noncontiguous outliers separately. To address
this, we introduce TaDA, a training-free recipe
for KV cache compression with quantization
precision that adapts to error sensitivity across
layers and a mean centering to eliminate sep-
arate outlier handling. Our approach yields
substantial accuracy improvements for multi-
ple models supporting various context lengths.
Moreover, our approach does not need to sep-
arately manage outlier elements—a persistent
hurdle in most traditional quantization methods.
Experiments on standard benchmarks demon-
strate that our technique reduces KV cache
memory footprint to 27% of the original 16-bit
baseline while achieving comparable accuracy.
Our method paves the way for scalable and
high-performance reasoning in language mod-
els by potentially enabling inference for longer
context length models, reasoning models, and
longer chain of thoughts.

1 Introduction

The proliferation of large language models (LLMs)
has led to remarkable advancements in natural lan-
guage processing tasks. However, deploying these
models in real-world applications presents signif-
icant challenges, particularly concerning memory
consumption during inference. A critical compo-
nent contributing to this issue is the key-value (KV)
cache, which stores intermediate representations to
expedite autoregressive generation. As sequence
length or number of attention layers increase, the

KV cache’s memory footprint expands linearly, of-
ten comprising a substantial portion of the total
memory usage Zhang et al. (2023). The issue is
even more pronounced by the advent of large rea-
soning models and longer inference time thinking
where KV cache memory can grow significantly.
This poses major challenges on efficient deploy-
ment of such LLMs under given hardware con-
straints.

To mitigate these challenges, early efforts such
as multi-query attention (MQA) Shazeer (2019)
and grouped-query attention (GQA) Ainslie et al.
(2023) were proposed. MQA reduces the num-
ber of key-value heads by sharing a single set of
keys and values across all attention heads, thereby
decreasing the KV cache size and enhancing in-
ference speed Touvron et al. (2023). Despite their
benefits, these methods can lead to accuracy degra-
dation and often require compute intensive full
retraining efforts to recover accuracy Joshi et al.
(2024); Yu et al. (2024).

KV cache compression has been approached via
different directions, namely 1) token eviction meth-
ods that remove non-important tokens Zhang et al.
(2023); Liu et al. (2023), 2) quantization of key
and value activations Liu et al. (2024); Kang et al.
(2024); Hooper et al. (2024), and 3) low rank ap-
proximation of key and value projections matrices
DeepSeek-AI and et al. (2024); Chang et al. (2024).
Prior efforts in KV-cache compression using quan-
tization have laid a robust foundation for reducing
memory overhead in LLMs during inference. Early
methods in quantization, such as FlexGen Sheng
et al. (2023), employed 4-bit group-wise quantiza-
tion to compress both model weights and the KV
cache, achieving significant memory savings while
maintaining accuracy across diverse tasks. Build-
ing on this, KIVI Liu et al. (2024) introduced a
tuning-free 2-bit asymmetric quantization scheme,
leveraging per-channel key and per-token value
quantization to reduce memory usage. Similarly,
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GEAR Kang et al. (2024) combined 4-bit quanti-
zation with low-rank and sparse approximations of
quantization errors, offering near-lossless perfor-
mance. QAQ Dong et al. (2024) proposed quality-
adaptive quantization to exploit differing sensi-
tivities in key and value caches, while KVQuant
Hooper et al. (2024) pushed boundaries with sub-
4-bit quantization, enabling longer context lengths.
Inspired from Liu et al. (2024), HuggingFace has
enabled 2/4-bit quantization KV cache quantiza-
tion using Quanto and HQQ libraries (Turganbay,
2024).

In this paper, we introduce TaDA, a novel KV
cache compression strategy aimed at preserving
model accuracy while significantly reducing mem-
ory requirements. TaDA is motivated by eliminat-
ing the need for a separate noncontiguous outlier
matrix or low rank and sparse quantization error.
Our approach simply mean-centers the key and
value activations along the head dimension and
quantizes the deviations instead of key and value
activations. During inference, mean-centered acti-
vations and quantized deviations are stored instead
of original key and value activations to reduce KV
cache memory overhead. For attention, computa-
tion keys and values are reconstructed from mean-
centered activation and quantized deviation. As we
will show empirically, the main motivation behind
our approach is that mean-centering reduces the
quantization error due to extreme outliers and thus
eliminating the need for separate handling of out-
liers. TaDA also relies on exploring quantization
precision to adapt to error sensitivity across lay-
ers via search to further compress KV cache. Our
method not only alleviates the memory bottleneck
but also maintains accuracy levels comparable to
the 16-bit original unquantized baseline. We ex-
plore the efficacy of our approach by evaluating on
tasks that necessitate processing longer sequences
or more complex structures across different models,
demonstrating its versatility and robustness.

2 Background

The Transformer architecture, introduced by
Vaswani et al. (2023), relies on self-attention mech-
anisms to model relationships between tokens in a
sequence. During autoregressive inference, trans-
formers generate tokens sequentially, with each
step attending to all previous tokens. To avoid re-
dundant computations, models cache the key and
value activations from prior steps, forming the KV

cache. While this caching mechanism accelerates
inference, it also leads to substantial memory con-
sumption, especially with long input sequences.

To address the memory constraints imposed
by the KV cache, researchers have proposed var-
ious compression techniques such as multi- or
grouped-query attention Shazeer (2019); Ainslie
et al. (2023), dropping of non-important tokens Liu
et al. (2023); Zhang et al. (2023), and quantization
Sheng et al. (2023); Liu et al. (2024); Kang et al.
(2024); Hooper et al. (2024); Dong et al. (2024).
Among them, quantization methods reduce the pre-
cision of stored keys and values, thereby decreas-
ing memory usage. However, uniform quantization
across all heads and tokens can result in informa-
tion loss and degrade model performance due to
extreme and important outliers native to key and
value activations. To the best of our knowledge,
unlike for model weights, variable quantization
precision across attention layers for KV cache is
underexplored.

Our proposed method is motivated by outlier-
resistant quantization to overcome the need for
separate outlier handling. By mean-centering the
activations along the head dimension and quantize
the deviations to low precision, our method demon-
strates outlier-agnostic quantization approach for
KV cache compression. Our method also leverages
search to adaptively select quantization precision
for different layers based on the error sensitivity.
TaDA demonstrates substantial reduction in KV
cache memory requirements with accuracy compa-
rable to 16-bit original unquantized baseline.

3 Methodology

In this section we explain our KV cache compres-
sion methodology, specifically we maintain a mean-
centered key-value activations requiring only 1

H (H
is the number of attention heads) elements, quan-
tized deviations requiring (nbits16 )th the memory and
overhead for scaling factors. Mean-centering and
deviation computation would be required for each
forward pass during inference as shown in Figure 1.
As an example, for Llama2-7b model with 32 heads
(each having 128 dimension) and 4-bit quantization
precision for deviations, the KV cache memory re-
quirement compared to original unquantized 16-bit
baseline is reduced to 1

32 + 4
16 + 2

128 ≈ 29%.
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Figure 1: Illustration of TaDA’s self-attention mechanism in comparison with vanilla self-attention (Vaswani et al.,
2023). TaDA uses custom Triton kernels to reduce the latency in computing self-attention with compressed forms
of key (Km and Dk) and value (Vm and Dv) activations (see 3). Subsequently, flash-decoding kernel is adapted
for compatibility with compressed key and value activations in computing self-attention (see A). Moreover, TaDA
employs random search to adapt quantization precision per layer using a small amount of training set.

3.1 Mean-centering the key-value activations

We chose to mean-center the key (K) and value (V )
activations along the head dimension as follows:

Km =
∑

i=1:H

Ki (1)

Vm =
∑

i=1:H

V i (2)

where subscript m stands for mean-centered ac-
tivation and superscript i denotes the head dimen-
sion index. We note that this is similar in spirit
to what was demonstrated in GQA Ainslie et al.
(2023). However, we 1) do not mean-pool weights
but rather activations, and also 2) do not need any
further training effort in recovering accuracy.

3.2 Computing deviation

We quantify the deviations for key (Di
K) and value

(Di
V ) activations for an ith head as follows:

Di
K = Km −Ki (3)

Di
V = Vm − V i (4)

To reduce the memory overhead for storing devi-
ations, we quantize it to lower precision and store
it in memory for autoregressive generation. To
reduce the overhead of online quantization, we de-
veloped Triton kernels to fuse the mean-centering
and quantization of deviations in rotary embedding

computation for K and projection computation for
V (see appendix A).

3.3 LLM decoding
Mean-centered key and value activations and quan-
tized deviation are used to compute attention scores
A and output O as follows:

Ai = softmax

(
Qi × (K̂i)T√

n

)
(5)

Oi = Ai × V̂ i (6)

And reconstructed key K̂ and value V̂ activa-
tions are computed as follows:

K̂i = Km − quantize(Di
K) (7)

V̂ i = Vm − quantize(Di
V ) (8)

We developed another Triton kernel to fuse the
reconstruction of key and value activations in the
flash-decoding kernel (see appendix A). This en-
ables TaDA to reduce the overhead of online de-
quantization unlike in Quanto Turganbay (2024).
In our experiments, we observed that for compress-
ing KV cache budget to ∼ 27% or less suffers from
accuracy loss due to insufficient precision for de-
viations. We employ the following two tailored
methods to ensure that we achieve baseline com-
parable accuracy across different benchmarks and
models.
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Residual tokens: We keep track of few past to-
kens (residual tokens) in high precision without
compression. Once the number of past tokens ex-
ceeds a certain threshold (R), they are compressed
and a new set of future tokens are uncompressed
and buffered.

K̂i
r = cat(Ki[r :], K̂i[: r]) (9)

V̂ i
r = cat(V i[r :], V̂ i[: r]) (10)

The buffer of recent uncompressed (r ∈ [0, R])
tokens (K̂i

r and V̂ i
r ) is concatenated with all pre-

vious compressed tokens (K̂i[: r] and V̂ i[: r]) to
obtain key and value tokens for attention computa-
tion. This form of retaining uncompressed residual
tokens bears resemblance to an implementation
demonstrated in Liu et al. (2024).

Searching for quantization precision: We take
inspiration from the study (Zhang and He, 2020)
that error sensitivity varies across different layers
in an LLM. As a result, LLM accuracy is less sen-
sitive to compression in some layers than others.
We employ random search by using a small portion
of selected samples from a training dataset that is
different from the evaluation benchmarks (ensur-
ing there is no data leakage) to identify the optimal
sensitivity pattern. This allows us to have vari-
able quantization precision for deviations across
different layers and better compress the overall KV
cache.

3.4 Implementation
To implement TaDA, we have developed three Tri-
ton kernels with a goal to minimize the overhead
of online mean-centering, quantization, and recon-
struction. Algorithm 1 illustrates the steps involved
in attention computation using TaDA. TaDA shares
the same query and key activation computation
and applying rotary position embedding (RoPE)
Su et al. (2021) with original attention implemen-
tation Vaswani et al. (2023). In step 5 of algo-
rithm 1, we fuse the RoPE and compression of key
activation by developing a custom Triton kernel
CompressV . Step 3 demonstrates that instead of
computing value activations, we fuse the projec-
tion computation with compression for value acti-
vations. Since original flash-attention Dao (2023) is
not compatible with TaDA’s compressed keys and
values, we leverage the flash-decoding kernel from
lightllm ModelTC (2024) to create a customized
(TaDAFlashAttn).

Algorithm 1 Attention computation in TaDA

Require: Input sequence: X , Query projection:
WQ, Key projection: WK , Value projection:
WV

1: Q = Linear(X , WQ)
2: K = Linear(X , WK)
3: Vm, DV , SV ,MV = CompressV (X,WV )
4: Qr = RoPE(Q)
5: Km, DK , SK ,MK = RoPECompress(K)
6: Ks = (Km, DK , SK ,MK)
7: Vs = (Vm, DV , SV ,MV )
8: Ks, Vs = KV Cache.update(Ks, Vs)
9: O = TaDAFlashAttn(Qr,Ks, V s)

4 Results

We provide extensive evaluation of our approach
and its comparison with recent approaches such
as KIVI (Liu et al., 2024) and GEAR (Kang et al.,
2024). The baseline in our results is the uncom-
pressed 16-bit (BF16 in tables 2 and 1) KV cache
implementation that is, by default, used in all deep
learning frameworks.

4.1 Experimental details

We evaluate TaDA on various datasets that require
longer context for accurate evaluations. We use
Llama2-7B (Touvron et al., 2023), Llama3-8B-it
Grattafiori et al. (2024), Mistral-7B Jiang et al.
(2023), and Mistral-7B-it Jiang et al. (2023) models
in our evaluations. For layerwise deviation quan-
tization precision search we use a random sample
from the training set of hotpotqa dataset on long-
bench tasks (Yang et al., 2018), GSM8k Cobbe
et al. (2021) we used the training set GSM8k. The
use of training set is motivated to simulate true
production deployment settings and avoid poten-
tial data leakage. We perform all our evaluations
on AMD InstinctTM MI300 GPUs and each run
requires only one GPU. In our Longbench-E eval-
uations, we used fixed residual length R of 128
tokens and quantization precision for each layer as
found to be optimal during the search process. The
search space for quantization precision consists of
{2, 4, 8}-bits. For GSM8k experiments, we fixed
R to be 32 though.

4.2 Longbench evaluations

We have evaluated TaDA on the Longbench (Bai
et al., 2024) dataset to study its efficacy on tasks
that require a longer context. We report accuracy
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Model Method KV cache triviaqa qasper repobench-p qmsum Average
Llama2-7b-4k BF16 1.00 83.67 21.92 51.94 20.87 46.03
Llama2-7b-4k KIVI-2-bits 0.25 81.68 14.20 50.10 18.28 43.09
Llama2-7b-4k KIVI-4-bits 0.37 83.51 15.03 52.08 20.03 44.48
Llama2-7b-4k GEAR 0.31 84.01 15.08 52.83 20.84 45.38
Llama2-7b-4k Quanto-2-bit 0.25 81.45 12.57 43.85 19.87 41.54
Llama2-7b-4k Quanto-4-bit 0.37 83.71 22.09 51.25 21.16 46.11
Llama2-7b-4k TaDA 0.27 83.61 20.91 51.96 20.83 45.87

Llama3-8b-it-8k BF16 1.00 90.21 31.20 51.19 23.52 49.51
Llama3-8b-it-8k KIVI-2-bits∗ 0.25 90.54 43.17 46.65 22.07 44.37
Llama3-8b-it-8k KIVI-4-bits∗ 0.37 90.33 44.83 52.03 22.44 45.31
Llama3-8b-it-8k Quanto-2-bit 0.25 89.03 13.50 41.83 21.16 43.44
Llama3-8b-it-8k Quanto-4-bit 0.37 90.89 30.19 51.08 23.06 49.61
Llama3-8b-it-8k TaDA 0.35 90.17 31.01 51.13 23.39 49.43
Mistral-7b-it-32k BF16 1.00 86.29 32.57 54.08 24.22 49.27
Mistral-7b-it-32k KIVI-2-bits∗ 0.25 86.00 28.73 51.16 23.65 43.43
Mistral-7b-it-32k KIVI-4-bits∗ 0.37 86.23 29.41 51.41 24.06 43.53
Mistral-7b-it-32k Quanto-2-bit 0.25 85.25 28.68 50.55 23.06 47.27
Mistral-7b-it-32k Quanto-4-bit 0.37 86.23 32.09 53.87 24.64 49.22
Mistral-7b-it-32k TaDA 0.35 86.12 31.99 53.79 24.37 49.07
Mistral-7b-32k BF16 1.00 90.90 7.85 60.88 21.91 49.06
Mistral-7b-32k KIVI-2-bits∗ 0.25 89.63 6.92 58.99 19.71 45.85
Mistral-7b-32k KIVI-4-bits∗ 0.37 89.80 7.89 58.62 20.06 46.56
Mistral-7b-32k Quanto-2-bit 0.25 90.77 5.69 54.56 21.28 45.15
Mistral-7b-32k Quanto-4-bit 0.37 90.64 7.72 60.48 21.94 48.85
Mistral-7b-32k TaDA 0.35 90.53 7.75 60.47 21.96 48.80

Table 1: Evaluation of TaDA’s KV cache compression on LongBench eight tasks namely triviaqa, qasper, trec,
samsum, lcc, repobench-p, qmsum, and multi-news. Average is the average across all the eight tasks and only four
tasks are shown in the table due to space constraints. ∗ implies the accuracy numbers are taken from the respective
published article. Each model is appended with its context length e.g., Llama3-8b-it-8K model has 8192 context
length. We show top-2 performing methods’ average accuracy in bold text.

on the data and KV cache memory requirements
normalized to that of 16-bit (BF16) original un-
compressed baseline model. We used 1000 random
samples from the hotpotqa dataset’s training set
(Yang et al., 2018) to search for an optimal set of
precisions per layer. Table 1 shows evaluation of
TaDA, KIVI, and GEAR on multiple Longbench
datasets. In general, TaDA achieves the same or
better accuracy compared to Quanto, GEAR, and
KIVI for lesser cache budget on all the long con-
text tasks with Llama2-7b that is available in MHA
configuration. For pretrained models with GQA
(Llama3-8b, Mistral-7b), TaDA performs compara-
bly to Quanto with similar KV cache memory bud-
get. However, unlike Quanto, TaDA offers fused
kernel for compression to hide memory transfer la-
tency which can potentially translate into memory
and latency savings (see appendix A).

4.3 Evaluations using chain-of-thought

We evaluated TaDA on graduate school math
(GSM8k) dataset (Cobbe et al., 2021) to study its
efficacy with chain-of-thought (CoT) reasoning,
specifically 8-shot CoT, on a mathematical bench-
mark. As shown in Table 2, TaDA consistently
offers near-baseline (16-bit) accuracy while requir-
ing lower KV cache budget compared to Quanto,
KIVI and GEAR for a pretrained model with MHA
configuration. With GQA, TaDA’s KV cache bud-
get is similar to other methods for better or similar
accuracy.

4.4 Ablation study

KIVI and TaDA both approaches do not require
separate outlier handling capability unlike other
quantization-based KV cache compression meth-
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Model Method KV cache GSM8k
Llama2-7b-4K BF16 1.00 21.30
Llama2-7b-4K KIVI-2-bits 0.25 18.31
Llama2-7b-4K KIVI-4-bits 0.38 20.80
Llama2-7b-4K GEAR 0.32 21.50
Llama2-7b-4K Quanto-2-bit 0.25 13.57
Llama2-7b-4K Quanto-4-bit 0.38 20.77
Llama2-7b-4K TaDA 0.27 21.26

Llama3-8b-it-8K BF16 1.00 67.62
Llama3-8b-it-8K GEAR∗ 0.31 54.76
Llama3-8b-it-8K Quanto-2-bit 0.25 65.65
Llama3-8b-it-8K Quanto-4-bit 0.38 42.15
Llama3-8b-it-8K TaDA 0.35 66.73
Mistral-7b-it-32K BF16 1.00 47.30
Mistral-7b-it-32K GEAR∗ 0.31 41.93
Mistral-7b-it-32K Quanto-2-bit 0.25 36.01
Mistral-7b-it-32K Quanto-4-bit 0.38 45.48
Mistral-7b-it-32K TaDA 0.35 44.82
Mistral-7b-32K BF16 1.00 38.28
Mistral-7b-32K KIVI-2-bits∗ 0.25 36.01
Mistral-7b-32K KIVI-4-bits∗ 0.38 37.30
Mistral-7b-32K Quanto-2-bit 0.25 26.00
Mistral-7b-32K Quanto-4-bit 0.38 37.83
Mistral-7b-32K TaDA 0.35 37.33

Table 2: Evaluation of TaDA’s KV cache compression on tasks requiring chain-of-thought prompting. ∗ implies the
accuracy numbers are taken from the respective published article. Each model is appended with its context length
e.g., Llama3-8b-it-8K model has 8192 context length.
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Figure 2: Analysis of key and value activation compression error using Llama2-7B model on hotpotqa dataset’s
random training set samples. The figure shows Frobenius norm of differences between activations with and without
(16-bit uncompressed) compression. TaDA in most layers shows lower Frobenius norm compared to KIVI indicating
that TaDA preserves more information compared to KIVI and it is less affected by outliers unlike KIVI. Moreover,
label with suffix uniform represents TaDA with the same quantization precision across layers. Search does help in
reducing the compression error for TaDA but even without search TaDA does better compression than KIVI.

ods (such as (Hooper et al., 2024; Kang et al.,
2024)) but TaDA consistently outperforms KIVI
across different benchmarks and models. In our
ablation study, we analyze the reconstruction error
due to KV cache quantization comparing KIVI and

TaDA. The reconstruction error is defined as the
Frobenius norm of difference between key (and
value) activations of quantized and unquantized
(baseline) implementations for a subset from the
training set of hotpotqa dataset. Figure 2 shows the
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measure of compression error comparing KIVI and
TaDA. For initial few layers both KIVI and TaDA
are comparable but in rest of the layers TaDA has
lower Frobenius norm indicating that TaDA’s com-
pression preserves more information compared to
KIVI. The uniform suffix in the legend indicates
the use of same quantization precision for devia-
tions across layers. This indicates that quantization
precision search largely helps in exploiting layers
having lower sensitivity to the error. As a result,
mean-centering and deviation quantization helps
in eliminating the need for a separate routine to
account for outliers.

5 Conclusion

Controlling the KV cache enables online evalua-
tion with extended context lengths, supports bigger
model sizes, and allows for larger batch sizes dur-
ing LLM serving in practical deployments. Our
KV cache compression technique TaDA, anchored
by mean-centering and deviations stored in adap-
tively selected low-precision, achieves a synergy
along the trade-off between memory efficiency and
accuracy that sets it apart from other recent ap-
proaches. It achieves near-baseline accuracy with
lower KV cache memory budget than other existing
quantization methods on long context evaluations.
Moreover, our approach sidesteps the complexities
of outlier management and delivers a reduction of
up to 27% of the baseline memory requirement
for KV cache while retaining original accuracy.
Ablation studies helped reveal insights into why
our approach is more robust to outliers during the
quantization process. With custom kernels devel-
oped in Triton, TaDA offers an efficient solution
for real-world deployment of longer context LLMs
and reasoning models.

Limitations and future work: Our approach
relies on using search to find the right quantization
precision per layer to achieve appropriate compres-
sion. However for each task, we currently make
use of a sub-sampled training set that belongs to the
same domain but does not contain the same data
samples as in the evaluation benchmarks. Such
task dependent customization adds some practical
challenges for general and scalable deployment. A
data-agnostic search or a universal golden dataset
for the search would be an interesting solution to
this problem but that is left for future exploration.
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A Efficient Triton kernel for TaDA

We also developed custom Triton Tillet et al. (2019)
kernels for TaDA to efficiently realize the gains in
KV cache compression. Below, we provide the
overview of our kernel design and experiments.

Since autoregressive generation or decoding in
LLMs is bottlenecked by memory and especially
by KV cache memory transfers at high sequence
lengths and bandwidth, Triton kernels enable us
to write custom operations to reduce the memory
traffic. A common approach is to fuse multiple
operators as is evident from the success of flash-
attention Dao (2023). We fuse the mean-centering
and deviation quantization computations with ex-
isting operators in the LLM graph. This adds some
computational overhead, but removes redundant
memory traffic.

Compressing key activations: To hide the la-
tency in computing mean and deviations of key
activations, one must fuse these operations with
existing ones to eliminate the redundant data trans-
fers from memory. We achieve this by fusing mean-
centering and deviation computation for key activa-
tions with rotary position embedding computation.
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Since RoPE is the most recent computation before
updating the KV cache with new tokens, this is the
logical operation for fusion.

Compressing value activations: To hide the
latency in computing mean and deviations of value
activations, the only obvious operation is linear pro-
jection for computing value activation. Unlike key
activations, value activations are directly used in
attention computation. We fuse the linear projec-
tion layer for value activation with mean-centering
and deviation quantization to remove redundant
memory transfers otherwise.

Flash-attention: Since TaDA stores two compo-
nents (mean and deviation) per key and value ac-
tivations, flash-attention kernel cannot be directly
used during inference. Flash decoding Hong et al.
(2024) was proposed as tuned flash-attention ker-
nel specifically for LLM decoding. We adapt the
Triton realization of flash decoding from ModelTC
(2024) to work with mean-centering and quantized
deviation of key and value activations. This helps
in removing the overhead of reconstructing key and
values by dequantizing them during inference for
each input.

These custom Triton operators enable TaDA to
realize its full potential in compressing KV cache
and offer better memory consumption and latency
for LLM decoding.

A.1 Performance results

Method Memory (GB) time/token (ms)
BF16 7.8 119.35

TaDA (2-bit) 4.6 10.83
TaDA (4-bit) 6.7 40.71

Table 3: Performance measurement of com-
puting single self-attention layer output us-
ing TaDA or BF16 with flash-attention-v2
on Llama3.1-70B config (model_dim=8192,
num_kv_heads=8, num_attentionheads=64,
max_token_length=32K).

We measure the execution performance to as-
sess the actual peak memory utilization and latency
benefits from executing the TaDA kernel. We run
a single self-attention layer using 16-bit original
uncompressed (BF16) with flash-attention-v2 Dao
(2023) and TaDA for compressing key and value ac-
tivations. The dimensions of the self-attention layer
match that of Llama3.1-70B Grattafiori et al. (2024)
model, and we run the kernel autoregressively for
32K tokens. The numbers reported are averaged

Model Accuracy 4-bit 2-bit
Llama2-7B-4k 45.90 29 3
Llama2-7B-4k 45.87 24 8
Llama2-7B-4k 37.31 12 20

Table 4: Analysis of search candidate outputs on
Llama2-7B model for Longbench (hotpotqa’s training
set). The columns 4-bit and 2-bit indicate the number
of layers with that quantization precision for deviations.

across 100 runs. BF16 in the table refers to base-
line PyTorch implementation in brain-float preci-
sion format with 16-bits. Table 3 shows the peak
memory usage and time per token (averaged across
32K tokens and 100 independent runs). TaDA with
2(4)-bit requires only 59% (85%) peak memory
compared to BF16. In terms of latency per token,
both 2 and 4-bit TaDA require 10× and 3× less
compared to BF16.

B Quantization precision search

Our search implementation uses a training set to
find optimal candidates for layer-wise quantization
precision. We search for {2, 4, 8}-bit quantization
precision for deviation of both key and value acti-
vations. For optimal candidates, we observed that
search chooses 4-bit precision for lower layers and
2-bit precision for higher layers. Table 4 shows
the analysis of 3 different candidates from search
on the Llama2-7B model. As the large number of
lower layers use 4-bit precision for deviations, it
directly correlates to accuracy improvement.
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