ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for
Operations Research

Zhiyuan Wang'"*, Bokui Chen'", Yinya Huang®, Qingxing Cao*,
Ming He**, Jianping Fan?, Xiaodan Liang*®
I'Tsinghua Shenzhen International Graduate School, Tsinghua University,
2AI Lab of Lenovo Research, *ETH Zurich, “Sun Yat-sen University,
SPeng Cheng Laboratory

{wang-zy22,

chenbk}@tsinghua.edu.cn, yinya.huang@hotmail.com

heming0l@foxmail.com,caogx@mail?2.sysu.edu.cn,
jfanl@lenovo.com, xdliang328@gmail.com

Abstract

Operations research (OR) is widely deployed to
solve critical decision-making problems with
complex objectives and constraints, impacting
manufacturing, logistics, finance, and health-
care outcomes. While Large Language Mod-
els (LLMs) have shown promising results in
various domains, their practical application
in industry-relevant operations research (OR)
problems presents significant challenges and
opportunities. Preliminary industrial applica-
tions of LLMs for operations research face
two critical deployment challenges: 1) Self-
correction focuses on code syntax rather than
mathematical accuracy, causing costly errors;
2) Complex expert selection creates unpre-
dictable workflows that reduce transparency
and increase maintenance costs, making them
impractical for time-sensitive business appli-
cations. To address these business limitations,
we introduce ORMind, a cognitive-inspired
framework that enhances optimization through
counterfactual reasoning. Our approach emu-
lates human cognition—implementing an end-
to-end workflow that systematically transforms
requirements into mathematical models and ex-
ecutable solver code. It is currently being tested
internally in Lenovo’s Al Assistant, with plans
to enhance optimization capabilities for both
business and consumer customers. Experiments
demonstrate that ORMind outperforms existing
methods, achieving a 9.5% improvement on the
NL4Opt dataset and a 14.6% improvement on
the ComplexOR dataset.

1 Introduction

Operations research (OR) is critical for business
decision-making, helping companies optimize re-
sources, reduce costs, and improve operational effi-
ciency across manufacturing, logistics, and supply
chain management. However, previous approaches
“Work done as an intern at AT Lab of Lenovo Research.

"Equal contributions.
*Corresponding authors.

usually require specialized expertise to translate
real-world problems into mathematical optimiza-
tion problems, hindering their application potential
in broader domains. Industry practitioners consis-
tently report that optimization projects face a 30-
40% failure rate due to the disconnect between
business requirements and mathematical formula-
tion.

Recent advancements in LLMs have enabled the
solving of OR problems. Such automation proce-
dures can avoid inconsistent math performance of
LLMs (Ahn et al., 2024; Imani et al., 2023; Yu et al.,
2024a) and leverage LLMs’ ability and knowledge
to extract implicit variables and constraints from
real-world problems.

However, as Figure 1a illustrates, existing ap-
proaches(Xiao et al., 2024; Wang et al., 2024; Ah-
madiTeshnizi et al., 2024) to operations research
automation face critical deployment challenges.
Their complex agent orchestration creates exces-
sive cognitive load through numerous API calls,
overwhelming analysts with irrelevant information
while significantly increasing costs. These unpre-
dictable expert selection processes reduce solution
transparency and create substantial overhead, fun-
damentally misaligning with human reasoning ca-
pabilities.

Inspired by cognitive science and how the brain
solves problems, ORMind implements a business-
oriented framework based on dual-process the-
ory, combining intuitive analysis with deliberate
reasoning. Our specialized modules mirror ana-
lyst workflows, from rapid comprehension to deep
mathematical thinking. Unlike existing multi-agent
frameworks that rely on unpredictable agent selec-
tion and complex orchestration, ORMind’s inno-
vation lies in its structured, predictable workflow
that drastically reduces API calls while maintain-
ing solution quality. ORMind framework is shown
in Figure 1b.

We evaluate ORMind on standard benchmark

104

Proceedings of the 63rd Annual Meeting of the Association for COI]nputational Linguistics (Volume 6: Industry Track), pages 104-131
July 28-30, 2025 ©2025 Association for Computational Linguistics

Prompt: You are a code . > s
The prompt template reviewer that conducts ah @ * @ .
of Code reviewer or thorough reviews of the Semantic Formalization EX’CCut.lve |
Evaluator implemented code. Encoder Thinking Compiler
. System 2 Metacognitive
Conductor/ a ™\ ORMind Reasoner Supervisor
Manager 22 :The number of lobster rolls - & ——- @ -—— g
select answer nal
; ~| cannot exceed 2/3 of the numbe_:r Qf solusion ﬁ<_—@7 ah
Agent Teamn crab cakes, rather than 40% limit. kﬂe—@
a2 The correct code should be: prob © The prompt of System 2 Reasoner 3
_ - * .
Agent 1 Evaluator += lobster roll <= 0.4 You are a counterfactual thinker for optimization
~; (crab_cake + lobster roll)X problem results. The original answer may have errors.
@ .l__l (" This line of code is mathematically | Write a Python code that identifies which specific ¢
(] /- equivalent to the original code. The 3 in the given problem need modification to
AL Al _GPT has hallucinated.) | make the solution valid and optimal.)
(@) (b)

Figure 1: Current frameworks rely on complex agent orchestration with unpredictable execution paths, dramatically
increasing API calls and computation time. Their focus on code syntax rather than mathematical accuracy results
in costly errors that can propagate through business operations undetected. This excessive coordination overhead
makes these systems impractical for time-sensitive business applications. Compared to traditional methods, OR-
Mind employs a streamlined end-to-end workflow with counterfactual reasoning, significantly enhancing solution

reliability.

datasets and complex OR problems in industrial
scenarios, creating more trustworthy Al systems for
business applications. Our contributions include:

* An industry-focused framework that stream-
lines optimization workflows.

* A counterfactual reasoning methodology for
business-critical constraint validation.

* A workflow that improves solution trustwor-
thiness and clarity, reducing implementation
risks.

2 Related Work

Operations Research Solving with LL.Ms. Oper-
ations research problem solving (Ramamonjison
et al., 2022; AhmadiTeshnizi et al., 2024; Xiao
et al., 2024) contains multiple and diverse applied
mathematical problems that require a model to per-
form complex understanding and reasoning. A tra-
ditional line of approaches (Ramamonjison et al.,
2022) decomposes the OR solving into two sepa-
rate tasks, first solving the NER task to recognize
the optimization problem entities (He et al., 2022),
then generating a precise meaning representation
of the optimization formulation (Gangwar, 2022).
Another line of work (Tang et al., 2024; Yang et al.,
2024) leverages LL.Ms to synthesize abundant and
diverse operations research problems, which later
empowers the LLMs with such synthetic data. Such
approaches may suffer guaranteed data quality and,
at the same time, can be costly.

LLM-based Multi-Agent Workflow Recent re-
search has demonstrated the potential of collabora-
tive problem-solving through autonomous coopera-
tion among Al agents (Li et al., 2023; Wang et al.,
2024; Hong et al., 2024a). Compared with existing
multi-agent collaboration approaches, ORMind’s
primary innovation lies in its counterfactual strat-
egy and memory pool coordination mechanism,
which aligns more closely with actual business
decision-making logic and transparency require-
ments. This enables the system to exhibit unique
advantages in industrial NLP problem scenarios.

LLM-based Reasoning Frameworks. Recent ad-
vancements in LLLMs have introduced various in-
novative frameworks to enhance their complex rea-
soning capabilities. For example, for solving math-
ematical problems in such as textbooks and con-
tests (Cobbe et al., 2021; Hendrycks et al., 2021;
Lightman et al., 2023; Zheng et al., 2022), current
research efforts (Gou et al., 2024; Zhu et al., 2023a;
Yu et al., 2024b; Hao et al., 2024) have explored
using LLMs via employing various structures to
enhance reasoning fidelity.

However, these single-agent reasoning methods
demonstrate notable shortcomings when dealing
with intricate Operations Research (OR) problems.
This is because they struggle to address the com-
bined challenges of implicit constraints and factual
hallucination on knowledge-intensive tasks.

105

2

Streamlined Multi-Agent Framework for Operations Research

Problem

A fishery wants to transport

their catch. They can either

use local sled dogs or

trucks. Local sled dogs and

trucks can take different

amount of fish per trip. ¢T
Also, the cost per trip for

=
JSON
—

fish that can be transported.

Workflow of ORMind

Memory Pool
BE
)

N
>

it it i

(S:llef‘fj dogs and ‘rhUCkldiS also Semantic Formalization Executive Metacognitive — System 2
iffers. You shoul note H H H . v -

Encoder Thinkin, Compiler = Reasoner
that the budget has an upper s P Supervisor b=
limit and the number of sled «—-0——-
dog trips must be less than —®—> ‘ —Q—> 2 Q)—» ——@—> ® g —®
the number of truck trips. E +]—] > 0
Formulate an LP to [%]+] J El
maximize the number of «®

"DogCapability":

Problem {"Type": "integer",

. "Definition": "indicates
E Parameters

the amount of fish
]
Math formula

which sled dogs can take
~ per trip"}
Raw code

X + TruckCost * y <=
MaxBudget, x <y",

FishTransported =
DogCapability * x +
TruckCapability * y"

"CONSTRAINTS": "DogCost *

"OBJECTIVE": "Maximize

form pulp import * .
def optimize(...): |form pulp import *
5 def
prob = 8
LpProblem("Transpo | Prob_d(formatted p ”Qia#??iiims =
rtation_Problem", |arametes): {...}
LpMaximize)

import math
def analysis(obj,

return
obj,vari,var2

“ee return result
prob.solve()
return {...} >>>Don't need to modify

>>>(3000, 0, 10) any constraints!

Formatted code
Feedback

Final solusion

Perceive & Structure

Abstract & Formalize

Compile & Execute Deliberate& Verify

The Cognitive Process of Humans in Solving Optimization Problems

Figure 2: Our approach is grounded in established cognitive science theories, particularly dual-process frame-
work(Kahneman, 2011) and tripartite model of cognition(Stanovich, 2009). The Semantic Encoder and Formaliza-
tion Thinking modules correspond to Type 1 (intuitive) processing, while the System 2 Reasoner implements Type
2 (analytical) processing. The Metacognitive Supervisor embodies the reflective mind, monitoring and coordinating

between these systems.

3 Methodology

3.1 Problem Formulation

Optimization problems are typically expressed in
mathematical terms, consisting of an objective
function to be minimized or maximized, subject
to a set of constraints. For instance, a Integer Lin-
ear Program can be formulated mathematically as:

n
minimize » _ ¢;a; (1)
j=1

n
subject t0 Y agx; <bii=1,...,m (2)

Jj=1
ljSiL’jSUj, j=1,...,n (3)
z; €L, jel 4

3.2 Architecture Overview

As illustrated in Figure 2, when humans solve opti-
mization problems, their cognitive process aligns
with our framework. The brain first performs se-
mantic encoding, rapidly identifying key variables
from complex descriptions. It then uses formaliza-
tion thinking, methodically constructing mathemat-
ical relationships between variables and constraints.
Next, executive compiler translate these abstract
models into actionable solution.

With problem input D and agent sequence A =
{Agp, Agys -, Apy. > where N, represents total
agents and ¢, denotes agent-specific configura-
tions, each component builds upon previous out-
puts stored in memory pool P.

The transformation operation for agent k fol-
lows:

Or = Ag, (D, Pr—1)

where D represents business requirements input
and P contains all previously processed outputs.
Each agent’s contribution O}, incrementally en-
hances the solution repository:

Py = Pp_1 U{O}

This collaborative memory architecture enables
robust business optimization by leveraging special-
ized expertise while maintaining a comprehensive
solution context—critical for enterprise deploy-
ments where reliability and solution quality directly
impact operational outcomes.

3.3 Brief Introduction of Components
3.3.1 Semantic Encoder

The Semantic Encoder transforms unstructured text
into structured knowledge representations, reduc-
ing the working memory load. It recognizes and

106

Algorithm 1 Workflow of ORMind

Require: Pre-processed problems set
D={D1,Ds,...,Dy,}, maximum num-
ber of problems N7, Memory Pool accessible
to all modules

Ensure: Optimized solutions S7, S5, ..., Sy,
1: fort =1to Np do
2: O, <+ SemanticEncoder(D;)
3: M; + Formalization(D;, ©y)
4: C} + ExecutiveCompiler(My)
5: F; < Supervisorg(D;, O, My, Cy)
6: Sy +— Fy > Run the code
7: if .S; indicates any error then
8: R; <+ Reasoner(S;,Fy)
9: F] + Supervisor(Dy, O, My, Cy, Ry)

> Revise the code based on errors

10: Sy« F/ > Run the code
11: end if

12: R; < Reasoner(S;,D;)

13: if R; indicates discrepancies with fact then
14: F] < Supervisor(Dy, O, My, Cy, Ry)
15: else

16: Sy« F > Get solution
17: end if

18: end for

19: return 57,55, ..., Sy

categorizes parameters as either scalars or vectors
and determines the type of each parameter (e.g.,
integer, float, boolean, categorical). The output is
a parameter set © = {01, 02, ..., 0, }, where each
0 represents a parameter with its associated infor-
mation. This process mirrors the human cognitive
ability of selective attention and pattern recogni-
tion, where experts rapidly identify and categorize
relevant information from complex scenarios.

3.3.2 Formalization Thinking

The Formalization Thinking executes deep ana-
Iytical thinking to construct mathematical models
and constraint conditions. The critical steps in this
agent involve defining variables, formulating con-
straints, and constructing the objective function.
This component emulates the human brain’s ab-
stract reasoning capabilities, where domain experts
mentally translate real-world situations into sym-
bolic representations through conceptual abstrac-
tion and relationship mapping.

3.3.3 Executive Compiler

The Executive Compiler transforms abstract mod-
els into executable code snippets .S, similar to the
operationalization process of brain executive func-
tions. This transformation reflects the cognitive pro-
cess of implementation planning, where the human
brain converts abstract intentions into concrete ac-
tion sequences with precise operational details.

3.3.4 System 2 Reasoner

System 2 reasoner provides oversight, while delib-
erate verification employs counterfactual reason-
ing to test solutions by asking "what if" questions.
While conventional approaches verify solutions by
checking constraints directly, ORMind asks "what
constraints need to modify would make this so-
lution optimal?" - essentially learning from hypo-
thetical scenarios to identify potential flaws. This
approach mirrors human experts who often validate
complex solutions by considering what would need
to change for an alternative answer to be correct,
enabling more robust error detection than direct
verification alone. The approach also involves Syn-
tax Error Analysis. In cases where code execution
fails due to syntax errors, the specialist pinpoints
the problematic line and communicates the proba-
ble cause to the Metacognitive Supervisor for swift
resolution.

A core innovation in ORMind is the use of coun-
terfactual reasoning for error identification and so-
lution refinement. Assume that the optimization
problem can be described by a structural causal
model (SCM) with variables X, Y, and C, where:

Y = i (X,T), &)
C:fC(X,Y,U), (6)

and U denotes latent (exogenous) variables. In our
framework, X represents decision variables (e.g.,
production quantities), Y represents the objective
function value (e.g., total cost or profit), and C
encapsulates the business constraints.

Inspired by dual-process theories in cognitive
science, ORMind divides the reasoning into an in-
tuitive (System 1) phase and a deliberate, analytical
(System 2) phase.

For example, given a solution S; = {obj =
150,vary = 30,vare = 20}, the System 2 Rea-
soner might reason:

c1(St) : 2vary 4+ 3vare < 100
c2(Sy) s vary + vary < 35

107

Using Python tools to assist its reasoning, the
agent might determine:

.

This approach allows the agent to think through
which conditions should be altered to make the
given result valid, mimicking the cognitive process
of a human expert.

“Modify to: 2var; + 3vars < 1307
“Modify to: var; + vare < 507

3.3.5 Metacognitive Supervisor

The Metacognitive Supervisor mirrors human
metacognition—enabling self-awareness of so-
lution quality, strategic oversight, and adaptive
decision-making when errors are detected. It moni-
tors the entire solution generation process, making
high-level decision adjustments:

Iy = SuperVisorforward(Dt7 @t7 My, Ct)

When constraint violations are detected in pro-
duction scenarios:

/ .
F; = SuperV1sorbackward(St7 Rt)

where R; contains business-critical constraint fail-
ure details. The Supervisor uses this intelligence
to prioritize adjustments for maximum operational
impact.

Once all business constraints are satisfied:

S} = Run(FY)

This production-ready state S} represents a
deployment-vetted solution meeting all business
requirements and optimization targets.

4 Enterprise Application

Lenovo is piloting this innovative approach within
its Al Assistant system. The assistant leverages
customer computing requirements and budget con-
straints to formulate mathematical models that op-
timize the performance-to-cost ratio. Beyond prod-
uct configuration, Lenovo’s Al Assistant extends
this optimization capability throughout the cus-
tomer journey: it streamlines pre-sale product rec-
ommendations to shorten decision cycles, automati-
cally applies maximum discounts during purchases
to optimize the ordering process, and efficiently
handles post-sale services.

At the same time, ORMind is undergoing inter-
nal evaluation to enhance product configurations

for ¢q

for ¢y

across 292 product categories comprising more
than 8,000 potential SKUs (with approximately
2,000+ active SKUs available for recommendation
due to business rules requiring in-stock and direct
sales items). During testing, the system handled an
average of 3,000+ customer inquiries per day, main-
taining configuration time below 6 seconds and
achieving task completion rates exceeding 80%. In-
ternal assessment tracked additional metrics: intent
recognition accuracy reached 85%-+, recommen-
dation adoption rate (CTR) was 18%-+, and aver-
age customer satisfaction score was 4.2 out of 5.
Business analysts found the system’s transparent
reasoning aligned with their own, enabling quick
validation and intervention.

S Experiments

5.1 Datasets

To compare our method, we utilized two datasets:

1. NL4Opt: This dataset, collected from the
NL4Opt competition' at NeurIPS 2022, contains
1101 elementary-level linear programming (LP)
problems. It is divided into 713 training samples,
99 validation samples, and 289 test samples.

2. ComplexOR: This dataset contains 37 actual
industrial optimization problems with the complex
constraints and business requirements that charac-
terize real-world applications. Each problem mir-
rors complex decision-making challenges under
various business conditions.

5.2 Experiment Setup and Metrics

We used GPT-3.5-turbo (OpenAl, 2022) as our de-
fault large language model, with a temperature
of 0. Our experimental framework is built upon
LangChain?, an open-source library designed to fa-
cilitate the development of applications powered by
language models. We extend the implementation
of ORMind to other backbones, including GPT-4o-
mini and GPT-4 (OpenAl, 2023).

Our evaluation employs metrics that assess
both the correctness and executability of solutions
against practical requirements:

Success Rate (SR): The success rate in solving
problems.

Model Formulation Failure Rate (MFFR):
The percentage of optimization problems where
the system fails to formulate a valid mathematical
model due to constraint interpretation errors.

'https://nl4opt.github.io/
*https://www.langchain.com/

108

5

https://nl4opt.github.io/
https://www.langchain.com/

Method NL40Opt ComplexOR
SRt MFFR| IEFR| | SRt MFFR| IEFR|
tag-BART (Gangwar, 2022) 47.9% - - 0% - -
OptiMUS (AhmadiTeshnizi et al., 2024) | 28.6% 4.0% 11.9% 9.5% 7.9% 15.0%
Chain-of-Thought (Wei et al., 2022) 45.8% 20.5% 9.4% 0.5% 35.3% 8.6%
Progressive Hint (Zheng et al., 2023) 42.1% 19.4% 10.3% 2.2% 35.1% 13.5%
Tree-of-Thought (Yao et al., 2024) 47.3% 17.4% 9.7% 4.9% 31.4% 7.6%
Graph-of-Thought (Besta et al., 2024) 48.0% 16.9% 9.1% 4.3% 32.4% 8.1%
ReAct (Yao et al., 2023) 48.5% 15.5% 112% | 14.6% 31.9% 10.8%
Reflexion (Shinn et al., 2023) 50.7% 7.3% 9.0% 13.5% 12.9% 10.1%
Solo Performance (Wang et al., 2024) 46.8% 17.9% 13.6% 7.0% 46.5% 13.5%
Chain-of-Experts (Xiao et al., 2024) 58.9% 3.8% 7.7% 25.9% 7.6% 6.4%
ORMind 68.8% 0.4% 2.0% 40.5% 5.4% 21.6%
Table 1: Comparison with baselines on NI4Opt and ComplexOR.
Method NL4Opt ComplexOR
SRT MFFR| IEFR| SRt MFFR| IEFR|
ORMind (Full) 68.8% 0.4% 2.0% 40.5% 5.4% 21.6%
w/ Conductor 63.2% 0.4 % 1.4% 40.5 % 2.7% 16.2%
w/ Terminology Interpreter 64.9% 0.4% 2.4% 29.7% 5.4% 29.7%
w/ Code Reviewer 33.0% 0.4% 6.6% 32.4% 0.0% 35.1%
w/o Semantic Encoder 58.0% 1.0% 6.9% 32.4% 5.4% 24.3%
w/o Formalization Thinking | 65.6% 1.4% 7.2% 35.1% 2.7% 32.4%
w/o Counterfactual Analysis | 59.4% 2.8% 11.1% | 32.4% 10.8% 24.3%
w/o Syntax Error Analysis 62.2% 1.0% 8.3% 35.1% 5.4% 29.7%
w/o All modules 42.4% 18.1% 13.2% 0.5% 36.8% 8.6%

Table 2: Ablation Study of ORMind.

Implementation Execution Failure Rate
(IEFR): The percentage of optimization models
that fail during solver execution due to technical
incompatibilities or resource limitations.

90 O=--NLAOp}-GPT-3:5 -
3= NL40p} GPT-40-min :
80 ¢ V< OR GPI-3'5 -
8 A OR_GPT-40-mini :
B 70 e
I [e
= . mm——— T
:Cd 0 i
50 : A
: A -

40 Y- -
‘ -
T Ty
30 L -
0 0.25 0.5 0.75 1.0

Temperature

Figure 3: Temperature analysis on NL4Opt and Com-
plexOR

5.3 Baseline Comparison

In contrast, ORMind’s more structured, human-
inspired workflow provides a clearer and more
effective problem-solving strategy, highlighting
its advantages in tackling complex operational re-
search challenges. We benchmark against tradi-
tional optimization solutions, including Tag-BART
(Gangwar, 2022), and standard LLM frameworks:
Chain-of-Thought (Wei et al., 2022), Progressive

Hint (Zheng et al., 2023), Tree-of-Thought (Yao
et al., 2024), Graph-of-Thought (Besta et al., 2024),
ReAct (Yao et al., 2023), Reflexion (Shinn et al.,
2023), Solo Performance Prompting (Wang et al.,
2024), CoE (Xiao et al., 2024) and OptiMUS (Ah-
madiTeshnizi et al., 2024).

5.4 Performance Evaluation

Our evaluation reveals critical limitations in exist-
ing approaches. Tag-BART (Gangwar, 2022) com-
pletely failed on ComplexOR’s complex scenarios,
while Reflexion (Shinn et al., 2023) showed mod-
erate error-handling capabilities. However, when
tackling the more intricate ComplexOR problems,
ReAct’s performance (Yao et al., 2023) slightly
surpassed Reflexion, likely due to its advantage in
accessing external knowledge bases, underscoring
the importance of external data in handling com-
plex scenarios. The results for OptiMUS are cited
from their original paper. They suffer significant
performance degradation when tested on GPT-3.5
due to counterintuitive workflow structures that
deviate from established problem-solving method-
ologies(AhmadiTeshnizi et al., 2024). In practice,
we found that the sequence in which agents are
invoked in these frameworks often appeared coun-
terintuitive and failed to reflect the natural problem-
solving process of human experts.

109

The performance disparity between NL4Opt
and ComplexOR datasets highlights a key finding:
ORMind excels at accurately formulating math-
ematical models (achieving near-zero MFFR on
NL4Opt), while implementation challenges emerge
in more complex industrial scenarios (higher IEFR
on ComplexOR). This pattern suggests that future
improvements should focus on enhancing the ro-
bustness of code generation for complex constraint
structures rather than model formulation accuracy.

5.5 Ablation Study
5.5.1 Parameter Sensitivity Analysis

As shown in Figure 3, we evaluated the effect of
temperature on GPT-3.5 and GPT-40-mini models.
Lower temperature values led to better performance
across both models, suggesting that more determin-
istic expert responses are beneficial.

GPT-4
Method NL4Opt ComplexOR
Standard 47.3% 4.9%
Reflexion 53.0% 16.8%
Chain-of-Experts 64.2% 31.4%
OptiMUS 78.8% 66.7%
ORMind 79.9% 62.2%

Table 3: Robustness of ORMind under Different Large
Language Models.

5.5.2 Impact of Various Components.

Table 2 quantifies each component’s contribution
to ORMind’s performance across industry-relevant
datasets. Ablation studies show that removing Se-
mantic Encoder or Formalization Thinking signifi-
cantly reduces solution quality, highlighting their
importance for enterprise problem structuring. The
System 2 Reasoner proves essential for production
systems, with its partial function removal causing
6-9% performance degradation.

Adding a Conductor for agent selection in-
creased operational complexity without improving
performance, as our streamlined approach proved
more cost-efficient. Introducing a Terminology In-
terpreter decreased performance by 3-5%, suggest-
ing additional interpretation layers create unneces-
sary overhead. Similarly, Code Reviewer caused
hallucinations in large language models, incorrectly
modifying appropriately functioning code.

5.5.3 Method Robustness

Table 3 demonstrates ORMind’s reliability with
GPT-4 as the foundation model. The consistent
performance enhancement across metrics confirms

that ORMind’s architecture effectively leverages
advanced LLMs, delivering superior optimization
solutions for business operations.

5.5.4 Operational Efficiency

Method NLA4Opt ComplexOR
CoE 2003 += 456 | 3288 4+ 780
OptiMUS 2838 + 822 | 3241 £+ 1194
ORMind 2676 =518 | 3336 + 997
w/o Reasoner | 1539 + 228 | 2390 4+ 500

Table 4: Comparison of prompt lengths across different
datasets for other methods.

ORMind maintains optimal token efficiency
across enterprise-scale datasets, reducing computa-
tional overhead by streamlining earlier processing
stages. Ablation study demonstrates that our sys-
tem exhibits significant robustness, transparency,
and engineering efficiency in industrial scenarios.

6 Conclusion

This paper introduces ORMind, a cognitive-
inspired end-to-end reasoning framework, which
is being piloted within Lenovo’s Al Assistant as
part of internal evaluations to enhance optimization
capabilities for business. Future work will validate
the framework on larger enterprise datasets and
refine module coordination to build a stronger the-
oretical foundation and practical benchmarks for
industrial decision systems.

Acknowledgement

This work was supported by the Scientific Research
Innovation Capability Support Project for Young
Faculty No.ZYGXQNJSKYCXNLZCXM-128.

Ethics Statement

In developing and deploying the ORMind frame-
work, we have recognized that addressing ethical
challenges is crucial for generating fair, transparent,
and sustainable outcomes. One of the primary con-
cerns is data bias. To mitigate this risk, we imple-
ment rigorous data cleaning and curation processes.
Model robustness is another ethical challenge that
we address in ORMind. Given the complexity of
the multi-agent framework and the heavy reliance
on large language models, we recognize that unex-
pected inputs or adversarial scenarios may lead to
instability. As a risk mitigation measure, we have
developed a robust error-detection mechanism to
catch anomalies and iteratively correct errors.

110

Limitations

Our model’s performance is highly dependent on
the input data quality, and even with our robust data
cleaning protocols, there is still a risk that residual
biases may affect outcomes. Further work is needed
to develop automated workflows that periodically
audit and adjust data sources, thus reducing this
risk over the long term. In terms of robustness,
while our multi-agent iterative process allows for
continuous refinement, the inherent brittleness of
large language models under adversarial conditions
poses a challenge. Future improvements will focus
on integrating adversarial testing, uncertainty quan-
tification, and more sophisticated error-correction
protocols to enhance overall stability. Moreover,
the orchestration of multiple agents demands signif-
icant computational and memory resources, which
may not be feasible in every deployment scenario.
To address this issue, we plan to explore model
compression, caching techniques, and scalable in-
frastructure solutions that can dynamically allocate
resources based on the current load.

References

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell.
2024. Optimus: Scalable optimization modeling with
(mi) Ip solvers and large language models. In Forty-
first International Conference on Machine Learning.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682—17690.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better llm-based evaluators
through multi-agent debate. In The Twelfth Interna-
tional Conference on Learning Representations.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Nickvash Kani Neeraj Gangwar. 2022. Tagged input
and decode all-at-once strategy.

111
8

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al. 2024.
Tora: A tool-integrated reasoning agent for mathemat-
ical problem solving. In The Twelfth International
Conference on Learning Representations.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

JiangLong He, Mamatha N, Shiv Vignesh, Deepak Ku-
mar, and Akshay Uppal. 2022. Linear programming
word problems formulation using ensemblecrf ner
labeler and t5 text generator with data augmentations.
Preprint, arXiv:2212.14657.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurlPS Datasets
and Benchmarks 2021, December 2021, virtual.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024a. Metagpt: Meta programming for a multi-
agent collaborative framework. In The Tivelfth Inter-
national Conference on Learning Representations.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024b. Metagpt: Meta programming for a multi-
agent collaborative framework. In /CLR.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 5: Industry Track), pages 37—42.

Daniel Kahneman. 2011.
macmillan.

Thinking, fast and slow.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

OpenAl. 2022. Introducing chatgpt.

OpenAl. 2023. CoRR,

abs/2303.08774.

GPT-4 technical report.

https://arxiv.org/abs/2212.14657
https://arxiv.org/abs/2212.14657
https://arxiv.org/abs/2212.14657
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774

Rindranirina Ramamonjison, Timothy Yu, Raymond
Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar,
Shigi He, Mahdi Mostajabdaveh, Amin Banitalebi-
Dehkordi, Zirui Zhou, and Yong Zhang. 2022.
Nl4opt competition: Formulating optimization prob-
lems based on their natural language descriptions.
In Proceedings of the NeurIPS 2022 Competitions
Track, volume 220 of Proceedings of Machine Learn-
ing Research, pages 189-203. PMLR.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. 2023. Say-
plan: Grounding large language models using 3d
scene graphs for scalable robot task planning. In
Conference on Robot Learning, pages 23-72. PMLR.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366, 2(5):9.

Keith E Stanovich. 2009. Distinguishing the reflective,
algorithmic, and autonomous minds: Is it time for a
tri-process theory. In two minds: Dual processes and
beyond, pages 55-88.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi
Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. 2024. Orlm: Training large language mod-
els for optimization modeling. arXiv preprint
arXiv:2405.17743.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2024. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 257-279.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu,
Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao
Zhong, Jia Zeng, Mingli Song, et al. 2024. Chain-
of-experts: When llms meet complex operations re-
search problems. In The Twelfth International Con-
ference on Learning Representations.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng,
Linqgi Song, Yiwei Wang, Xiaodan Liang, and Jing
Tang. 2024. Benchmarking llms for optimization
modeling and enhancing reasoning via reverse so-
cratic synthesis. Preprint, arXiv:2407.09887.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Informa-
tion Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024a. Meta-
math: Bootstrap your own mathematical questions for
large language models. In The Tivelfth International
Conference on Learning Representations.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024b. Meta-
math: Bootstrap your own mathematical questions for
large language models. In The Twelfth International
Conference on Learning Representations.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo
Li, and Yu Li. 2023. Progressive-hint prompting
improves reasoning in large language models. arXiv
preprint arXiv:2304.09797.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023a. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4471-4485.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei
Lu, Xiaogang Wang, et al. 2023b. Ghost in the
minecraft: Generally capable agents for open-world
environments via large language models with text-
based knowledge and memory. arXiv preprint
arXiv:2305.17144.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dy-
lan R Ashley, Rébert Csordds, Anand Gopalakrish-
nan, Abdullah Hamdi, Hasan Abed Al Kader Ham-
moud, Vincent Herrmann, Kazuki Irie, et al. 2023.
Mindstorms in natural language-based societies of
mind. arXiv preprint arXiv:2305.17066.

112

https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://arxiv.org/abs/2407.09887
https://arxiv.org/abs/2407.09887
https://arxiv.org/abs/2407.09887

A NL4Opt Case Study

In this section, we provide a detailed case study to illustrate the workings of our proposed ORMind
framework. We take a specific problem from the NL4Opt dataset and walk through the entire process from
problem input to final solution. The case study demonstrates how each agent in the ORMind framework
contributes to the final output.

A.1 Problem Description

A pharmacy has 3000 mg of morphine to make painkillers and sleeping pills. Each painkiller pill
requires 10 mg of morphine and three units of digestive medicine. Each sleeping pill requires 6 mg
of morphine and five units of digestive medicine. The pharmacy needs to make at least 50 painkiller
pills. Since sleeping pills are more popular, at least 70 % of the pills should be sleeping pills. How
many of each should the pharmacy make to minimize the total amount of digestive medicine needed?

A.2 Workflow Execution

Semantic Encoder

Function Signature
output = self.forward_chain.invoke (

{"problem_example": problem_example,

"comment_text": comment_pool.get_current_comment_text ()}
.content

~—
Q
S
E
o}
=

© ® N R W N =

painkillers": {"Type": "integer", "Definition": "the number of painkiller
— pills"},
10 "sleeping_pills": {"Type": "integer", "Definition": "the number of sleeping
— pills"}
1}

__

Formalization Thinking

Function Signature

output = self.forward_chain.invoke (
{"problem_description": problem_description,
"comments_ text": comments_text}

) .content

171 14
Output

© N U AW N =

"VARIABLES": "painkillers: integer, sleeping_pills: integer",
"CONSTRAINTS": "painkillers >= 50, sleeping_pills >= 0.7 x (painkillers
< + sleeping_pills), 1lO0xpainkillers + 6*sleeping_pills <= 3000",

11 "OBJECTIVE": "Minimize 3xpainkillers + 5xsleeping_pills"

S

Executive Compiler

113
10

import pulp

2 output = self.forward_chain.invoke ({

3 "problem_description":problem_description,
4 "comments text":comments_text}

5) .content

6

7 # Output

8

9

10 def optimize_pharmacy () :
Create a LP minimization problem

12 prob = pulp.LpProblem("Pharmacy Optimization", pulp.LpMinimize)

13

14 # Define decision variables

15 painkillers = pulp.LpVariable("painkillers", lowBound=50, cat='Integer')
16 sleeping_pills = pulp.LpVariable("sleeping pills", lowBound=0,

— cat='Integer')

18 # Add constraints
19 problem += 10xpainkillers_var + 6*sleeping_pills_var <= 3000
20 problem += 3xpainkillers_var + 5xsleeping_pills_var >=

> 0.7x (painkillers_var + sleeping_pills_var)
21

2 # Set objective function

23 prob += 3xpainkillers + 5xsleeping_pills

24

25 # Solve the problem

26 prob.solve ()

27

28 # Return the optimal values of painkillers and sleeping pills
29 return {

30 "painkillers": int (painkillers.varValue),

31 "sleeping pills": int (sleeping_pills.varValue)

Metacognitive Supervisor forward

Function Signature

1
2 answer = self.forward_chain.invoke ({

3 "comment_ text": comment_text,

4 "code_example":problem["code_example"],

5 "attention":attention

6 }).content

7

8 # Output

9 from pulp import LpProblem, LpVariable, LpMinimize, lpSum

11 def prob_123(painkillers, sleeping_pills):

12 mmn

13 Args:
14 painkillers: an integer, representing the number of painkiller pills
15 sleeping pills: an integer, representing the number of sleeping pills
16 Returns:
17 amount_of_digestive_medicine: an integer, representing the total
— amount of digestive medicine needed
18 mrman
19 # Create a LP minimization problem
20 problem = LpProblem("Pharmacy Optimization Problem", LpMinimize)
21
22 # Define decision variables
23 painkillers_var = LpVariable("painkillers", lowBound=50, cat='Integer')
24 sleeping_pills_var = LpVariable("sleeping pills", lowBound=0,

— cat="'Integer')

114

25
26
27
28
29
30
31

32
33
34
35
36

37
38
39

System 2 Reasoner

2
23
24
25
26
27

28
29
30
31

32
33
34
35

36

Add objective function
problem += 3xpainkillers_var + 5xsleeping_pills_var

Add constraints
problem += 10xpainkillers_var + 6+sleeping pills_var <= 3000
problem += 3xpainkillers_var + 5xsleeping_pills_var >=

— 0.7 (painkillers_var + sleeping_pills_var)

Solve the problem
problem.solve ()

return (problem.objective.value (), int (painkillers_var.varValue),
— int (sleeping pills_var.varValue))

Running Result:
(150.0, 50, 0)

Function Signature

answer = self.forward_chain.invoke ({
"problem description": problem|['description'],
"code_example": code_example,
"input_content": input_content

}) .content

Output
import math

def counterfactual_solution_analysis(obj, varl, var2):

Analyze what changes would be necessary for the given solution to be
— valid and optimal.

The function variable names must remain ob7j, varl and varZ2. Do not alter
— these names.

Args:
obj: The objective value
varl: Value of variable 1
var2: Value of variable 2

Returns:
dict: Contains suggested modifications for each constraint and

— overall assessment
mmn

epsilon = le-2
modifications = {
"Modificationl": {
"check": lambda: varl >= O-epsilon,
"message": "Adjust constraint to allow varl to be

— {:.2f}".format (varl)
by
"Modification2": {
"check": lambda: var2 >= O-epsilon,
"message": "Adjust constraint to allow var2 to be
— {:.2f}".format (var2)
}y
"Modification3": {
"check": lambda: 10 % varl + 6 % var2 <= 3000+epsilon,
"message": "Modify resource constraint to allow 10xvarl + 6xvar2
— to be {:.2f}".format (10xvarl + 6xvar2)
by

115

37 "Modificationd": {

38 "check": lambda: varl >= 50,

39 "message": "Adjust constraint to allow varl to be at least 50"

40 s

41 "Modificationb": {

2 "check": lambda: var2 >= 0.7 %= (varl + var2),

43 "message": "Adjust constraint to ensure at least 70% of pills are
— sleeping pills"

44 b o

45 "Modification6": {

46 "check": lambda: math.isclose(varl, round(varl)) and
< math.isclose(var2, round(var2)),

47 "message": "Remove integer constraint on variables"

48 b

49 "Modification7": {

50 "check": lambda: math.isclose(obj, round(obj)),

51 "message": "Remove integer constraint on objective"

52 }

53 }

54

55 results = {}

56 all_valid = True

57

58 for name, modification in modifications.items () :

59 needed = not modification["check"] ()

60 results[name] = {

61 "modification_needed": needed,

62 "suggestion": modification["message"] if needed else None

63 }

64 if needed:

65 all _valid = False

66

67 results["solution_valid _without_changes"] = all_valid

68

69 return results

70

71 # Running Result:

72 Adjust constraint to ensure at least 70% of pills are sleeping pills

Metacognitive Supervisor backward

Function Signature

1
2 output = self.backward_chain.invoke ({

3 "problem_description": problem["description"],

4 "previous_code": self.previous_code,

5 "feedback": feedback_pool.get_closet_comment_text (),
6 "attention": self.attention

7 }).content

8

9 # Output

10 from pulp import LpProblem, LpVariable, LpMinimize, lpSum

12 def prob_123(painkillers, sleeping_pills):

mwn
13

14 Args:
15 painkillers: an integer, representing the number of painkiller pills
16 sleeping pills: an integer, representing the number of sleeping pills
17 Returns:
18 amount_of_digestive_medicine: an integer, representing the total
— amount of digestive medicine needed
19 e
20 # Create a LP minimization problem

116
13

1 problem = LpProblem (, LpMinimize)

24 painkillers_var = LpVariable (, lowBound=50, cat=)
25 sleeping_pills_var = LpVariable (, lowBound=0,
— cat=)
26
27
28 problem += 3xpainkillers_var + 5xsleeping_pills_var

31 problem += 10xpainkillers_var + 6*xsleeping_pills_var <= 3000
32 problem += 3xpainkillers_var + 5xsleeping_pills_var >=
— 0.7x(painkillers_var + sleeping_pills_var)

35 problem += sleeping_pills_var >= 0.7*(painkillers_var +
— sleeping_pills_var)

38 problem.solve ()

40 return (problem.objective.value(), int (painkillers_var.varValue),
<~ int (sleeping_pills_var.varValue))

44 (735.0, 50, 117)

.. 4

A.3 Discussion of Results

In this case study, we explored how each agent in the ORMind framework contributed to solving the
optimization problem of minimizing the total amount of digestive medicine needed to produce painkillers
and sleeping pills at a pharmacy.

Initially, the Semantic Encoder correctly identified key variables, such as the number of painkillers
and sleeping pills, as integers. The Formalization Thinking then successfully formulated the problem by
defining the constraints and the objective function. Specifically, the constraints ensured that at least 50
painkiller pills must be produced and that at least 70% of the pills should be sleeping pills, while the
objective was to minimize the use of digestive medicine.

The Programming Expert translated this mathematical model into Python code using the ‘pulp‘ library,
ensuring the formulated constraints were implemented correctly. Upon initial solution generation, the
Metacognitive Supervisor evaluated the code and returned a solution where only 50 painkiller pills were
produced, with no sleeping pills, resulting in a minimal amount of digestive medicine used. However, this
solution did not satisfy the 70% requirement for sleeping pills.

The System 2 Reasoner identified this issue through counterfactual analysis and suggested adjusting
the constraint to enforce the 70% sleeping pill requirement. After incorporating this feedback, the
Metacognitive Supervisor revised the model, leading to a new solution in which 50 painkiller pills and
117 sleeping pills were produced, minimizing the digestive medicine to 735 units.

This iterative process highlights the strength of the ORMind framework in refining solutions through
multiple expert agents, each focusing on specific aspects of the problem. By leveraging the System 2
Reasoner’s counterfactual reasoning, the framework was able to correct an oversight in the initial solution,
ensuring compliance with all constraints and optimizing the objective function more effectively. This case
study demonstrates the framework’s capability to generate solutions and iteratively improve them, thereby
achieving a robust and optimal outcome.

117
14

B ComplexOR Case Study

In this section, we provide a detailed case study to illustrate the workings of our proposed ORMind
framework. We take a specific problem from the ComplexOR dataset and walk through the entire process
from problem input to the final solution. The case study demonstrates how each agent in the ORMind
framework contributes to the final output.

B.1 Problem Description

Consider a production problem. Given a set of products param{ProductNum}. Each product p is
produced at a rate of param{ProductionRate_p} tons per hour. There are param{AvailableHours}
hours available in a week. The profit per ton for each product p is param{ProfitPerTon_p}. There is
a lower limit param{MinimumSale_p} and an upper limit param{MaximumSale_p} on the tons
of each product p sold in a week. The problem aims to maximize the total profit from selling all
products. It is constrained that the total of hours used by all products may not exceed the hours
available. How do we decide the tons of each product p to be produced?

B.2 Workflow Execution

Semantic Encoder

1 output = self.forward_chain.invoke (

2 {"problem_example": problem_example,

3 "comment_text": comment_pool.get_current_comment_text ()}

4) .content

5

6 # t

7 A

8 "ProductNum": {"Type": "Integer", "Definition": "The number of
— products"},

9 "ProductionRate": {"Type": "Array of floats, shape: ProductNum",
< "Definition": "The production rate of each product in tons per
<~ hour"},

10 "ProfitPerTon": {"Type": "Array of floats, shape: ProductNum",
<~ "Definition": "The profit per ton for each product"},

11 "MinimumSale": {"Type": "Array of floats, shape: ProductNum",
<~ "Definition": "The lower limit on the tons of each product sold
— in a week"},

12 "MaximumSale": {"Type": "Array of floats, shape: ProductNum",
— "Definition": "The upper limit on the tons of each product sold
— in a week"},

13 "AvailableHours": {"Type": "Integer", "Definition": "The total available
— hours in a week for production"}

14}

.
Formalization Thinking

1 output = self.forward_chain.invoke (

2 {"problem description": problem_description,

3 "comments_text": comments_text}

4) .content

5

6 # Ou

7 A

8 "VARIABLES": "x_p: Production quantity in tons for product p, where p
— ranges from 1 to ProductNum",

118
15

9 "CONSTRAINTS": "1. x_p >= 0 for all p (Non-negativity constraint)\n2.
— Sum(p=1 to ProductNum) (x_p / ProductionRate_p) <= AvailableHours
— (Total production time constraint)\n3. MinimumSale_p <= x_p <=
— MaximumSale_p for all p (Sales constraints)",

10 "OBJECTIVE": "Maximize Sum(p=1 to ProductNum) (ProfitPerTon_p * X_p)
— (Total profit)"

Executive Compiler

1 \begin{lstlisting}

2 output = self.forward_ chain.invoke ({

3 "problem description":problem_description,

4 "comments_ text":comments_text}

5) .content

6

7 # Output

8 import pulp

9

10 def solve_production_problem(ProductNum, ProductionRate, ProfitPerTon,

«— MinimumSale, MaximumSale, AvailableHours) :

11 # Create a linear programming problem to maximize profit

12 problem = pulp.LpProblem("Maximize Profit", pulp.LpMaximize)

13

14 # Define decision variables

15 x = pulp.LpVariable.dicts ("Production_Quantity", range (ProductNum),
— lowBound=0)

16

17 # Objective Function: Maximize total profit

18 profit_contributions = [ProfitPerTon[i] » x[i] for i in
— range (ProductNum)]

19 problem += pulp.lpSum(profit_contributions), "Total Profit"

20

21 # Constraint: Total production time must not exceed available hours

22 time_contributions = [(x[1] / ProductionRate[i]) for i in
<~ range (ProductNum)]

23 problem += pulp.lpSum(time_contributions) <= AvailableHours,
— "Total_Production_Time"

24

25 # Constraints: Sales constraints for each product

26 for i in range (ProductNum) :

27 problem += x[i] >= MinimumSale[i], f£"Min_Sale_ {i}"

28 problem += x[i] <= MaximumSale[i], f"Max_Sale_ {i}"

29

30 # Solve the problem

31 problem.solve ()

32

33 # Check if a valid solution has been found

34 if pulp.LpStatus|[problem.status] == 'Optimal':

35 # Extract the solution

36 production_quantities = {f'Product_{i+1}': x[1].varValue for i in

— range (ProductNum) }

37 total_profit = pulp.value (problem.objective)

38 return production_gquantities, total_profit

39 else:

40 return None, None

119
16

Metacognitive Supervisor(forward)

answer = self.forward_chain.invoke ({

49 TypeError: unsupported operand type(s) for /: 'LpVariable'

1

2 "comment_ text": comment_text,

3 "code_example":problem["code_example"],

4 "attention":attention

5 }).content

6

7 # Output

8 from pulp import x

9 import numpy as np

10

11 def solve(data):

12 ProductNum = data["ProductNum"]

13 ProductionRate = np.array(data["ProductionRate"])

14 ProfitPerTon = np.array(data["ProfitPerTon"])

15 MinimumSale = np.array (data["MinimumSale"])

16 MaximumSale = np.array (data["MaximumSale"])

17 AvailableHours = data["AvailableHours"]

18

19 prob = LpProblem("Steel3_ Problem", LpMaximize)

20 tons = LpVariable.dicts("Tons", range (ProductNum), lowBound=0,
«— cat='Continuous"')

21

2 # Objective Function: Maximize total profit

23 prob += lpSum([ProfitPerTon[i] * tons[i] for i in range (ProductNum)])

24

25 # Constraint: Total production time must not exceed available hours

26 prob += lpSum([tons[i] / ProductionRate[i] for i in range (ProductNum)])
< <= AvailableHours

27

28 # Constraints: Sales constraints for each product

29 for i in range (ProductNum) :

30 prob += tons[i] >= MinimumSale[1]

31 prob += tons[i] <= MaximumSale[i]

32

33 prob.solve ()

34

35 if prob.status == LpStatusOptimal:

36 # Extract the optimized variables as values

37 optimized_vars = ({

38 "tons": {i: tons[i].varValue for i in range (ProductNum) }

39 }

40 return

41 "status": "Optimal",

9 "objective_value": value (prob.objective),

43 "optimized_vars": optimized_vars

44 }

45 else:

46 return {"status": LpStatus|[prob.status]}

47

48 # Running Result:

and 'int'

System 2 Reasoner

answer = self.forward_chain.invoke ({

1
2 "problem description": problem]['description'],
3 "code_example": code_example,

4 "input_content": input_content

120

}) .content

5
6
7 # Output
8 1. The error is caused because the PulLP library does not support division
— of an “LpVariable® by an integer directly in the constraint
— formulation.
9 2. The specific problematic code section is: “prob += lpSum([tons[i] /
<~ ProductionRate[i] for i in range (ProductNum)]) <= AvailableHours".

Metacognitive Supervisor(backward)

output = self.backward_chain.invoke ({

1
2 "problem _description": problem["description"],

3 "previous_code": self.previous_code,

4 "feedback": feedback_pool.get_closet_comment_text (),
5 "attention": self.attention

6 }).content

7

8 # Output

9 from pulp import =

10

11 def solve(data):

12 ProductNum = data["ProductNum"]

13 ProductionRate = data["ProductionRate"]

14 ProfitPerTon = data["ProfitPerTon"]

15 MinimumSale = data["MinimumSale"]

16 MaximumSale = data["MaximumSale™]

17 AvailableHours = data["AvailableHours"]

18

19 prob = LpProblem("Steel3 Problem", LpMaximize)

20 tons = LpVariable.dicts("Tons", range (ProductNum), lowBound=0,
«— cat='Continuous")
21

22 # Objective Function: Maximize total profit
23 prob += lpSum([ProfitPerTon[i] % tons[i] for i in range (ProductNum)])
24
25 # Constraint: Total production time must not exceed available hours
26 # Correcting the division issue by multiplying with ProductionRate[i]

< instead of dividing
27 prob += lpSum([tons[i] * (1 / ProductionRate[i]) for i in

<~ range (ProductNum)]) <= AvailableHours
28
29 # Constraints: Sales constraints for each product
30 for i in range (ProductNum) :
31 prob += tons[i] >= MinimumSale[1]
32 prob += tons[i] <= MaximumSale[i]
33
34 prob.solve ()
35
36 if prob.status == LpStatusOptimal:
37 # Extract the optimized variables as values
38 optimized_vars = {
39 "tons": {i: tons[i].varValue for i in range (ProductNum) }
40 }
41 return
42 "status": "Optimal",
43 "objective_value": value (prob.objective),
44 "optimized_vars": optimized_vars
45 }
46 else:
47 return {"status": LpStatus|[prob.status]}
48

121

18

49
50 # Running Result:
51 {'status': 'Optimal', 'objective_value': 194828.5706, 'optimized_vars':

— {'tons': {0: 6000.0, 1: 500.0, 2: 1028.5714}}}

B.3 Discussion of Results

The process began with the Semantic Encoder correctly identifying the key variables, such as the number
of products, production rates, profits per ton, and sales constraints. These parameters were crucial in
formulating the problem accurately.

Next, the Formalization Thinking constructed the mathematical model by defining the decision variables
and the constraints. The objective function was set to maximize the total profit. At the same time, the
constraints ensured that the total production time did not exceed the available hours and that the production
quantities stayed within the specified sales limits.

The Programming Expert then translated this model into Python code using the pulp library. This initial
code successfully captured the essence of the problem but encountered a technical issue: the division of
LpVariable objects by integers within the constraints, which the pulp library does not directly support.

The System 2 Reasoner identified this issue and provided specific feedback, pinpointing the problematic
code and the nature of the error. This feedback was crucial in guiding the Metacognitive Supervisor’s
subsequent code revision.

The Metacognitive Supervisor corrected the division issue by multiplying instead of dividing the
variables within the constraint formulation. This adjustment ensured that the constraints were correctly
implemented and allowed the model to be solved without errors.

Finally, the revised model was solved, yielding an optimal solution where the production quantities and
total profit were maximized while adhering to all constraints. The solution indicated optimal production
quantities for each product and a corresponding total profit, demonstrating the effectiveness of the ORMind
framework.

C Prompt Templates for Agents

Below, we list the prompt templates used for each agent in the ORMind framework. These templates are
crucial for guiding the LLMs in performing their respective tasks.

Semantic Encoder

W =

Please review the following example and extract the parameters along with
< their concise definitions:

4 {problem_example}

5 The comment from your colleague is:

6 {comment_text}

7 Your output should be in JSON format as follows:

8 {{

9 "Parameterl": {{"Type": "The parameter's data type or shape",
< "Definition": "A brief definition of the parameter"}},
10 "Parameter2": {{"Type": "The parameter's data type or shape",
< "Definition": "A brief definition of the parameter"}},

12 }}

13 Provide only the requested JSON output without any additional information.

122
19

Formalization Thinking

N A W —

Executive Compiler

System 2 Reasoner

1
2
3
4
5
6

Prompt Template:

Now the origin problem is as follows:

{problem_description}

You can use the parameters information from your colleague:

{comments_text}

The order of given parameters is random. You should clarify the meaning of
<~ each parameter to choose proper parameter to construct constraint.

Give your Mathematical model of this problem.

Your output format should be a JSON like this:

{{

"VARIABLES": "A concise description about variables and its shape or
— type",

"CONSTRAINTS": "A mathematical Formula about constraints",

"OBJECTIVE": "A mathematical Formula about objective"

b}

Don't give any other information.

Prompt Template:

You are presented with a specific problem and tasked with developing an
— efficient Python program to solve it.

The original problem is as follows:

{problem_description}

Your colleague has constructed a mathematical model for reference:

{comments_text}

Please note that this model may contain errors and is used as a reference.

You can analyze the problem step by step and provide your own code.

Requirements:

1. Use the PulP library for implementation.

2. Provide a function that solves the problem.

3. Do not include code usage examples or specific variable wvalues.

4. Focus on creating a general, reusable solution.

Prompt Template:
Analyze the following optimization problem:
{problem_description}

Task: Write a Python function that identifies which specific constraints or
<~ conditions in the given problem are not satisfied. This condition
— will need modification to achieve a valid and optimal solution.

Function specifications:

- Input arguments and their types: {input_content}
— Adhere to the given data types.

- Reference this code structure: {code_example}

— Import the necessary libraries.

123
20

Metacognitive Supervisor(backward)

(O N N

20

21

2
23
24

25

26

27
28

29
30
31
32
33
34
35
36

Notes:

The code example is only for reference in terms of format and structure.
<~ Generate code specifically for the given problem, not based on any
— examples.

All specific constraints should be determined based on the problem
<~ description provided.

Make sure to include checks for all constraints mentioned in the problem
< description. Don't give any Example usages.

Prompt Template:
FORWARD_TASK: Your colleague Executive Compiler has given his answer:

{comment_text}

This answer has not been formatted. You need to format the code as the
— example.

The final code must has the same input args and function name as the code
— example:

{code_example}

You also need to return the optimized variables.

Important: Your final code should strictly use same input args, function
<~ name and return style of the code example exactly.

{attention}

Don't forget to import the library. Don't give any example usage.

BACKWARD_TASK: In your previous answer may have errors, you receive
— feedback about the error.
The feedback is generated by counterfactual reasoning,
which means that the feedback does not represent actual changes that need
<~ to be made to the problem conditions.
the feedback highlights where your code may have misinterpreted the
<~ original conditions.
{feedback}

For example, If you receive a message like 'Remove integer constraint on
— variables',

it means that your previous answer is correct only when the integer
<~ constraint is removed.

This strongly suggests that your earlier solution likely overlooked the
<~ integer constraint.

You need to add the constraint.

If you receive a message like 'Modify resource constraint to allow...',

it means that your previous answer is correct only when this constraint is
— modified.

This strongly suggests that your earlier solution likely has error in this
<~ constraint.

You need to doublecheck your previous code corresponding to the feedback
— and fix the error.

Carefully review the feedback and give the final code as the format of your
— previous code.
{attention}

The original problem description remains unchanged:
{problem_description}

Your previous code for analyzing the solution was:
{previous_code}

124

37

38
39
40
41
42

43

(O N

8 _Conductor

Terminology Interpreter

Your task is to carefully review the original problem description and the
<~ counterfactual feedback.

Remember:

Provide your corrected code in the same format as your previous code.

Do not give any example or explanation.

If the feedback is not existed in the description, you may directly use the
<~ original code.

Use "from PulP import " to import the library as the example.

Prompt Template:

Now, you are presented with an operational optimization-related problem:

{problem_description}

In this multi-expert system, there are many agent_team, each of whom is
— responsible for solving part of the problem.

Your task is to CHOOSE THE NEXT EXPERT TO CONSULT.

The names of the agent_team and their capabilities are listed below:

{experts_info}

Experts that have already been commented include:

{commented_experts}

Please select an expert to consult from the remaining expert names
— {remaining_experts}.

Please note that the maximum number of asked agent_team is
— {max_collaborate_nums}, and you can ask {remaining_collaborate_nums}
— more times.

You should output the name of expert directly. The next expert is:''’

Prompt Template:
As a domain knowledge terminology interpreter, your role is to provide

<~ additional information and insights related to the problem domain.
Here are some relevant background knowledge about this problem: {knowledge}.

You can contribute by sharing your expertise, explaining relevant concepts,
— and offering suggestions to improve the problem understanding and
— formulation.
Please provide your input based on the given problem description:
{problem_description}

Your output format should be a JSON like this (choose at most 3 hardest
<~ terminology. Please provide your output, ensuring there is no
— additional text or formatting markers like ~"“Json. The output should
< be in plain JSON format, directly parsable by json.loads (output).):

n "

"terminology": 000y
"interpretation":

n n

125
22

2 # Prompt Template:

3 As a Code Reviewer, your responsibility is to conduct thorough reviews of
— implemented code related to optimization problems.

4 You will identify possible errors, inefficiencies, or areas for improvement
<~ in the code, ensuring that it adheres to best practices and delivers
— optimal results. Now, here is the problem:

5 {problem_description}.

7 You are supposed to refer to the codes given by your colleagues from other
— aspects: {comments_text}

D Code Example

The following are code examples used by the ORMind framework for the Counterfactual Analysis.

NL4Opt Code Example for Counterfactual Analysis

1 import math
2
3 def counterfactual_solution_analysis(obj, varl, var2):
4 mmn
5 Analyze what changes would be necessary for the given solution to be
— valid and optimal.
6 The function variable names must remain ob7j, varl and varZ2. Do not alter
— these names.
7 Args:
8 obj: The objective value
9 varl: Value of variable 1
10 var2: Value of variable 2
11
12 Returns:
13 dict: Contains suggested modifications for each constraint and
— overall assessment
14 mrmmn
15 epsilon = le-2
16 modifications = {
17 "Modificationl": {
18 "check": lambda: varl >= 0O-epsilon,
19 "message": "Adjust constraint to allow varl to be
— {:.2f}".format (varl)
20 by
21 "Modification2": {
22 "check": lambda: var2 >= O-epsilon,
23 "message": "Adjust constraint to allow var2 to be
— {:.2f}".format (var2)
24 }y
25 "Modification3": {
26 "check": lambda: 2 % varl + 3 % var2 <= 100+epsilon,
27 "message": "Modify resource constraint to allow 2xvarl + 3xvar2 to
— be {:.2f}".format (2+xvarl + 3xvar2)
28 by
29 "Modificationd": {
30 "check": lambda: varl + var2 <= 35+epsilon,
31 "message": "Adjust daily production limit to allow varl + var2 to
— be {:.2f}".format (varl + var?2)
32 }y
33 "Modification5": {

126
23

34 "check": lambda: math.isclose(varl, round(varl)) and
— math.isclose(var2, round(var2)),

35 "message": "Remove integer constraint on variables"
36 s

37 "Modification6": {

38 "check": lambda: math.isclose(obj, round(obj)),

39 "message": "Remove integer constraint on objective"
40 }

41 }

42

43 results = {}

44 all _valid = True

45

46 for name, modification in modifications.items () :

47 needed = not modification["check"] ()

48 results[name] = {

49 "modification_needed": needed,

50 "suggestion": modification["message"] if needed else None
51 }

52 if needed:

53 all_valid = False

54

55 results["solution_valid _without_changes"] = all_valid

56

57 return results

ComplexOR Code Example for Counterfactual Analysis

import numpy as np

1
2
3 def counterfactual_solution_analysis(alloys_used, data):
4 mmwn
5 Analyze what changes would be necessary for the given solution to be
— valid and optimal.
6
7 Returns:
8 dict: Contains suggested modifications for each constraint and
— overall assessment
9 mmwn
10 AlloysOnMarket = data["AlloysOnMarket"]
11 RequiredElements = data["RequiredElements"]
12 CompositionDataPercentage = np.array(data["CompositionDataPercentage"])
13 DesiredBlendPercentage = np.array(data["DesiredBlendPercentage"])
14 AlloyPrice = np.array(data["AlloyPrice"])
15
16 alloys_used_array = np.array([alloys_used[a] for a in
— range (AlloysOnMarket)])

17
18 modifications = {
19 "Modificationl": {
20 "check": lambda: all(alloys_used_array >= 0),
21 "message": "Adjust non-negativity constraint to allow negative

— quantities: {}".format (alloys_used_array)
2 Bo
23 "Modification2": {
24 "check": lambda: all (np.dot (CompositionDataPercentage,

< alloys_used_array) >= DesiredBlendPercentage x*
— np.sum(alloys_used_array)),
25 "message": "Modify desired blend percentages to:
— {}".format (np.dot (CompositionDataPercentage,
— alloys_used_array) / np.sum(alloys_used_array))
26 b

127
24

27 "Modification3": {

28 "check": lambda: all(alloys_used_array <= 1),

29 "message": "Increase market availability to allow quantities:
— {}".format (alloys_used_array)

30 }

31 }

32

33 results = {}

34 all_valid = True

35

36 for name, modification in modifications.items () :

37 needed = not modification["check"] ()

38 results[name] = {

39 "modification_needed": needed,

40 "suggestion": modification["message"] if needed else None
41 }

42 if needed:

43 all valid = False

44

45 results(["solution_valid_without_changes"] = all_valid

46
47 return results

E Hardware and Software Configurations

E.1 Software

The software environment used in the experiments includes: - Operating System: Windows11 - Python:
3.10 - LangChain: 0.2.7 - LangChain-Community: 0.2.7 - NumPy: 1.23.5 - Tqdm: 4.62.3 - PuLP:
2.8.0 - OpenAl API Key: Required for accessing OpenAl’s models

F Data Format Example

Formatted NL4OPT data in JSON format

3 "description":A fishery wants to transport their catch. They can either use

<~ local sled dogs or trucks. Local sled dogs and trucks can take
— different amount of fish per trip. Also, the cost per trip for sled
<~ dogs and truck is also differs. You should note that the budget has
<~ an upper limit and the number of sled dog trips must be less than
— the number of truck trips. Formulate an LP to maximize the number of
— fish that can be transported.

4

5 {

6 "input": {

7 "DogCapability": 100,

8 "TruckCapability": 300,

9 "DogCost": 50,

10 "TruckCost": 100,
11 "MaxBudget": 1000
12 b

13 "output": [

14 3000

15]

128
25

Formatted ComplexOR data in JSON format

ESTENC NV NS

25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44

"description": "The Aircraft Assignment Problem is a mathematical

— programming model that aims to assign \\param{TotalAircraft}
— aircraft to \\param{TotalRoutes} routes in order to minimize the
< total cost while satisfying availability and demand constraints.
< The availability for each aircraft i is \\param{Availability_ i}
< and it represents the maximum number of routes that the aircraft
< can be assigned to. The demand for each route j is
— \\param{Demand_7j} and it denotes the number of aircraft required
— to fulfill the passenger or cargo needs of the route. The
< capability of each aircraft i for each route j is given by
— \\param{Capacity_{i, j}} and it defines whether the aircraft can
< service the route, considering factors such as range, size, and
< suitability. Finally, \\param{Cost_{i,j}} represents the cost of
— assigning aircraft i to route j, which includes operational,
— fuel, and potential opportunity costs.",
"parameters": [
{
"symbol": "TotalAircraft",
"definition": "The total number of aircraft available for
— assignment",
"shape": []
}y
{
"symbol": "TotalRoutes",
"definition": "The total number of routes that require aircraft
— assignment",
"shape": []
by
{
"symbol": "Availability",
"definition": "The availability of each aircraft, indicating the
— maximum number of routes it can be assigned to",
"shape": [
"TotalAircraft"
]
by
{
"symbol": "Demand",
"definition": "The demand for each route, indicating the number of
— aircraft required",
"shape": [
"TotalRoutes"
]
by
{
"symbol": "Capacity",
"definition": "The capacity matrix defining the suitability and
< capability of each aircraft for each route",
"shape": [
"TotalAircraft",
"TotalRoutes"
1
}y
{
"symbol": "Costs",
"definition": "The cost matrix representing the cost of assigning
— each aircraft to each route",
"shape": [
"TotalAircraft",
"TotalRoutes"

129
26

45]
46}

47

48

49

50 [

51 |

52 "TotalAircraft": 5,

53 "TotalRoutes": 5,

54 "Availability": [10, 19, 25, 15, 0],
55 "Demand": [250, 120, 180, 90, 600],
56 "Capacity": [

57 [16, 15, 28, 23, 811,
58 (o, 10, 14, 15, 571,
59 [o, 5, o, 7, 291,

60 [®, 1i, 22, 17, 58],
61 i, i, i, d, dJ

62 1,

63 "Costs": [

64 7, 9, 48, 47, T,
65 [15, 20, 9, 5, 18],
66 [15, 13, 8, 5, 191,
67 [13, 14, 6, 16, 8],
68 [13, 14, 14, 10, 7]
69]

0},

71 "output": [

72 "Infeasible"

73]

G Agent-Memory Pool Interaction in ORMind

The Memory Pool in ORMind functions as a centralized repository that supports the collaboration and
coordination of agents during the reasoning process. It stores and provides access to shared data, ensuring
consistency and efficiency in solving complex operations research (OR) problems.

Agents interact with the Memory Pool primarily through retrieval and update. Before performing a
task, an agent retrieves relevant information from the Memory Pool, such as the current problem state,
previously identified variables and constraints, and intermediate results from earlier reasoning steps. This
ensures that all agents operate with access to the most up-to-date context, avoiding redundant computations
and inconsistencies.

Once an agent completes a task, it updates the Memory Pool with its results. These updates include
newly discovered variables, constraints, other task-specific outputs, and annotations summarizing the
reasoning process. Every update is tagged with metadata, such as the agent’s identifier and a timestamp,
to maintain traceability and facilitate debugging.

The Memory Pool also plays a critical role in the iterative refinement process. As new information
becomes available, earlier results can be revisited and improved by subsequent agents, allowing for
modular and adaptive problem-solving. This centralized structure ensures that the system’s collective
progress is reflected in a single shared repository, enabling efficient and coherent reasoning across all
agents.

The Memory Pool enhances the ORMind framework’s ability to tackle complex OR problems by
providing a shared, structured, and continuously updated context. It promotes collaboration, reduces
redundancy, and ensures that agents work synchronized and context-awarely.

130
27

H Comparison with Other Planning with Feedback Methods

While our methodology adopts a multi-expert framework, it distinguishes itself through two unique
features: human problem-solving process and counterfactual reasoning. These features enable a more
structured and iterative problem-solving process compared to other approaches.

The table 5 highlights the differences between our approach and other methods regarding key func-
tionalities such as multi-agent frameworks, industry-focused processes, external knowledge access, and
feedback refinement.

Method Multi-agents Industry-Focused External Knowledge Feedback Refinement
ReAct(Yao et al., 2023)
Voyager(Wang et al., 2023)
Ghost(Zhu et al., 2023b)
SayPlan(Rana et al., 2023)
MetaGPT(Hong et al., 2024b)
NLSOM(Zhuge et al., 2023)
SSP(Wang et al., 2024)
ChatEval(Chan et al., 2024)
ORMind

NSNS N XXX X
U3 X X X X X X X
R R RNENENENENEN
WX X X XN NN X

Table 5: Comparison of ORMind with existing planning and feedback-based methods.

I Long-term Research Value and Future Directions

This work establishes a foundation for advanced reasoning systems in operations research with implications
far beyond the current implementation. Below, we analyze the key long-term research values and potential
future directions:

I.1 Counterfactual Reasoning as a Fundamental AI Capability

The counterfactual reasoning approach introduced in ORMind represents a fundamental advancement
in how Al systems can validate and refine solutions. By reasoning about what constraints would need
to change for a given solution to be valid, our approach begins to bridge the gap between correlation
and causation in Al reasoning systems. This opens avenues for more sophisticated causal reasoning
frameworks that can identify patterns and underlying causal mechanisms. Beyond operations research,
this methodology could fundamentally transform how Al systems approach problem validation and
solution refinement across domains ranging from scientific discovery to medical diagnosis. The ability
to perform "what-if" analyses on potential solutions provides a form of self-verification that increases
solution reliability without requiring explicit programming of all edge cases, a crucial advancement for
mission-critical enterprise applications.

L2 Cognitive Architectures for Complex Decision Making

ORMind’s cognitively-inspired framework mirrors human expert reasoning processes and offers a blueprint
for next-generation business intelligence systems. The sequential decomposition of complex problems
into stages of understanding, formulation, and refinement provides a generalizable architecture that could
be applied to various reasoning tasks beyond optimization. This represents a significant shift from current
approaches that often rely on monolithic models or rigid predefined workflows. Future research could
explore how such cognitive architectures can dynamically adapt their reasoning strategies based on
problem characteristics, incorporate domain-specific knowledge while preserving flexible reasoning, and
create natural interaction points for human-Al collaboration. The emergence of such cognitively-aligned
systems could fundamentally transform how organizations approach complex decision-making, enabling
more intuitive, explainable, and effective enterprise Al solutions.

131
28

