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Abstract

The study of generalization in Language Mod-
els (LMs) requires controlled experiments that
can precisely measure complex linguistic vari-
ations between training and testing datasets.
We introduce DECAF, a framework that en-
ables the analysis and filtering of linguistically-
annotated datasets down to the character level.
Rather than creating new resources for each
experiment, DECAF starts from datasets with
existing linguistic annotations, and leverages
them to analyze, filter, and generate highly
controlled and reproducible experimental set-
tings targeting specific research questions. We
demonstrate DECAF’s functionality by adding
28 morphosyntactic annotation layers to the
115M-word BabyLLM corpus and indexing the
resulting 1.1B annotations to analyze its inter-
nal domain variance, and to create a controlled
training data curriculum for a small-scale gen-
der bias study. We release DECAF as an open-
source Python library, along with the parsed
and indexed version of BabyLLM, as resources
for future generalization research.

1 Introduction

The core methodological premise of Machine
Learning necessitates the evaluation of model capa-
bilities using non-overlapping train-test data splits.
For Language Models (LMs), this fundamental as-
sumption is increasingly violated due to issues such
as the inaccessibility of pre-training data (Palmer
etal., 2023), benchmark contamination (Deng et al.,
2024; Dong et al., 2024), and hidden overlaps in
train-test splits (Lewis et al., 2021; Kambhatla et al.,
2023). Addressing these challenges requires more
fine-grained knowledge and control over experi-
mental data (Hupkes et al., 2023). Generalization
research thus commonly relies on controlled train-
ing data interventions—deliberately removing ex-
amples with specific properties from training cor-
pora to evaluate whether models can infer these
properties from related structures (Patil et al., 2024).
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Figure 1: DECAF is a framework for large-scale corpus
analysis and filtering, which maintains extensibility by
constructing separate indices over raw text (literals)
and annotations (structures).

However, the community currently lacks uniform
standards and toolkits for conducting such experi-
ments due to the need to balance complexity, speci-
ficity, and reproducibility.

To provide LM generalization researchers with
a tool which balances all three desiderata, we intro-
duce DECAF—a Dynamically Extensible Corpus
Analysis Framework (illustrated in Fig. 1).

Complexity. Most work studying LM general-
ization through training data interventions relies
on line-by-line filtering of text files, where each
line is evaluated based on token-level attributes
(Maudslay et al., 2019; Wei et al., 2021; Patil et al.,
2024)—e.g., tokens + part-of-speech tags (Misra
and Mahowald, 2024). In practice, annotations
are concatenated to each token, and filters are de-
fined using regular expressions. This approach has
yielded many valuable findings, but it is difficult
to extend to more complex filtering criteria. New
annotation layers require adding an increasing num-
ber of specially formatted tags to each token. Cap-
turing relations beyond the token-level requires for-
matting, such as bracketing, which makes filtering
expressions more complex. Furthermore, queries
need to be linearized, limiting the experiments that
can be run in languages with freer word orders and
more complex morphologies than English.
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Specificity. Increasing the complexity of filter
queries typically requires specialized tools. For
instance, Tregex (Levy and Andrew, 20006) re-
mains the state-of-the-art for filtering constituency-
parsed data, and there are many other tools spe-
cialized to formats, such as the Universal Depen-
dencies (e.g. Popel et al., 2017; Peng and Zeldes,
2018; Kalpakchi and Boye, 2020). These tools sup-
port complex queries, but often have steep learning
curves, and as they are not designed to be exten-
sible to annotations beyond their initial purpose,
practitioners are limited in the types of research
questions they can investigate.

Reproducibility. With larger datasets and more
complex filtering criteria, reproducibility becomes
increasingly difficult. This problem is especially
prevalent for LM pre-training corpora, which stem
from less-curated sources. While datasets and
processing pipelines have become increasingly
standardized and consolidated on centralized
hubs (Honnibal and Montani, 2017; Lhoest et al.,
2021), filtering often still uses custom scripts
which—even if shared—depend on the dataset’s
original formatting. Working with new annotation
layers thus requires changes to both the data
formatting and the associated filtering code. Often,
it therefore remains necessary to re-process the
entire dataset to conduct new experiments.

By designing DECAF with flexibility at its core,
we aim to support the next level in scale and com-
plexity for filtered training corpus interventions.
Specifically, we contribute:

* DECAF: an open-source framework for filter-
ing corpora with respect to complex criteria
across annotation layers (Section 2).

* A demonstration of DECAF, in which we
parse and index the 115M-word BabyLLM cor-
pus to analyze the syntactic divergence be-
tween its sub-domains (Section 3).

* A case study, in which we use DECAF to
generate training data interventions for inves-
tigating the effects of grammatical gender and
data ordering on LM gender bias (Section 4).

We release DECAF as an MIT-licensed Python
package, and further publish our parsed BabyLM
corpus, with its associated DECAF index and fil-
ters, as resources for future work.!

"https://mxij.me/x/decaf
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Figure 2: Database Schema for DECAF, containing
raw text (literals), annotations (structures), links
between the two, as well as hierarchical relationships.

2 DECAF

DECAF acts as a framework over raw data, anno-
tations, and filters. It builds a unified index over
existing annotated data, which can be filtered based
on complex combinations of annotation layers.

2.1 Intended Use

The primary use case of DECAF is to facilitate
experiments using filtered training corpus interven-
tions (Patil et al., 2024). In addition to filtering, it
can also be used to analyze existing corpora with re-
spect to annotated properties, as well as to compare
different corpora with each other. Even with lim-
ited annotations, such as for classification bench-
marks, the framework can help identify spurious
signals by, e.g., identifying tokens which co-occur
frequently with a particular label. In cases with-
out any pre-existing annotations, DECAF can help
quantify character-level overlaps across training
and evaluation data. As such, we believe that DE-
CAF’s corpus analysis features can also help re-
duce errors during the creation of new corpora, by
continually identifying common error patterns.

2.2 Design Principles

To maintain extensibility across different types of
annotations, DECAF breaks them down into their
elemental components and constructs a unified
database index. Fig. 2 illustrates the underlying
schema, which encompasses the following.

literals as the atomic unit for raw text, in-
cluding its value and position in the original cor-
pus. They can correspond to different granularities,
such as characters (e.g., for morphological analy-
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ses), tokens (e.g., for most word-level annotations),
sentences (e.g., sentence-level classification), etc.
While they are necessary for filtering by surface
forms (e.g., upos="DET" & literal="an"), they
can be omitted to save storage space or to prevent
indexing of copyrighted materials.

structures correspond to linguistic units (e.g.,
boundaries of morphemes, tokens, documents), and
annotations thereof. They are specified by their
position, type (e.g., "token", "upos”), and value.
For linguistic units the value is traced back to the
corresponding literal, while for annotations it corre-

sponds to their labels (e.g., "VERB", "positive").

structure_literals links structures back to
their literals and is used for analyzing annotations
with respect to their surface form. While some
structures directly correspond to their start and end
range in the original corpus, this junction table
allows for the extraction of non-linear structures,
such as for graphs with intersecting edges.

hierarchies stores hierarchical relationships
between structures. At a fundamental level this
includes the relationships between, e.g., token-
annotations — tokens — sentences — documents.
This information is used to resolve filtering queries,
which search for lower-level annotations contained
in a specific higher-level structure. Additionally,
this table links graphical structures, such as depen-
dency trees, entity graphs, or cross-document links.

By importing common NLP annotations into this
unified schema, we create one index across many
different types of linguistic information, while pre-
serving rich, cross-structural relationships not cap-
tured by linearized filtering systems. Despite the
simplicity of this schema, extracting relevant in-
formation requires the construction of complex
database queries. To make such queries accessible
to users with different experience levels, DECAF
provides a simplified Python API which translates
and optimizes filtering criteria into the database
language, and automatically manages other hyper-
parameters for efficient processing.

2.3 Implementation

Backend. Among the database backends which
could support the DECAF schema, we opt for the
open-source SQLite engine.> Compared to more
feature-rich backends, it offers a simple, server-less

2https://sqlite.org

setup, which is essential for the ease-of-use by in-
dividual researchers. Furthermore, the resulting
indices are self-contained in the respective SQLite
files, making them easy to share. To ensure high
read and write speeds, and scalability to larger an-
notated corpora, DECAF further implements shard-
ing of larger datasets into sub-databases, while pre-
serving hierarchical dependencies, such as docu-
ment boundaries. Sharding happens transparently
to the user, who can query the entire corpus as one.

Scalability. The core technologies of DECAF are
highly scalable: the database backend plus shard-
ing can be easily parallelized when additional com-
pute is available. Even in terms of single-threaded
performance, our experiments in Sections 3 and 4
exhibit linear scaling with respect to the number of
tokens versus processing time.

Packaging. The Python API for database man-
agement and querying is implemented with a focus
on limiting external dependencies to ensure future
reproducibility. As such, filtering of existing in-
dices requires only the Python standard libraries,
while external libraries are primarily used to parse
annotated data for index creation and for running
more complex analyses on the resulting statistics.

Extensibility. DECAF is designed to be easily
extensible to new annotation formats, as all queries
are processed within the unified data schema. By
uncoupling raw data and annotations, annotation
layers can be continually added to existing indices
without having to, e.g., modify text files and rewrit-
ing regular expression filters. Adding support for
new annotation formats thus only requires contrib-
utors to supply an import script. While the default
API aims to provide the most common querying
functionalities, it can be extended to support more
annotation-specific queries (e.g., dependency tree
traversal). As filters further query the index, instead
of the raw data, they can also be easily shared and
applied to new datasets. We believe this dataset-
agnostic framework allows for a more scalable,
community-driven approach to conducting corpus
analyses, and filtered training interventions.

2.4 Interface

Import. Data indexing is handled by dedicated
scripts, which translate each annotation format into
the unified schema. Out-of-the-box, DECAF pro-
vides an interface for importing CoNLL-U data—a
popular format for linguistic annotation, used in
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the Universal Dependencies project (Nivre et al.,
2020). An index is constructed by running:

python scripts/import/ud.py
--input /path/to/data.conllu
--output /path/to/index

Filtering. Data retrieval and filtering from a
DECAF index is specified through a Python
API, in which the user defines a Filter con-
taining one or more Criteria, each with one
or more Conditions. For example, the syn-
tactic generalization experiments of Misra and
Mahowald (2024) rely on identifying all Arti-
cle+Adjective+Numeral+Noun constructions (e.g.,
“a beautiful five days”)—originally, using a 326-
character regular expression. In DECAF, we would
specify this intervention as the following filter:

Filter ([
Criterion ([

Condition(
stype="upos',
values=["'DET'],
literals=["'a"',

Criterion ([

Condition(
stype="upos',
values=['ADJ '] 1),

Criterion ([

Condition(
stype="upos',
values=['NUM"'1) 1),

Criterion ([

Condition(
stype="upos',
values=['NOUN"]),

Condition(
stype="Number ',
values=['Plur'1)1],

operation="AND"')],

sequential=True,
hierarchy=["'sentence',

fan' 1),

"token']

The filter matches sentences within which all
criteria occur in sequence at least once. Note that
besides solely matching PoS-sequences, as in the
original work, we can more specifically provide,
e.g., the desired surface form (“a”, “an”), and nouns
in plural form. Finally, we supply a hierarchical
constraint, which specifies that the conditions must
be fulfilled for tokens within individual sentences

(i.e., cannot cross sentence boundaries).

Export. With the filter in place, the relevant data
can be extracted or masked from the index by ap-
plying it in a script following the example in:
python scripts/export/filtered.py

--input /path/to/index
--output /path/to/output.txt

DECATF can operate both at the level of par-
ent structures (e.g., all sentences containing the
matched structures), as well as at the sub-structure
level to, e.g., remove all relative clauses from a
corpus, while keeping the main clause intact.

3 Case Study: Analyzing BabyLM

To demonstrate the analysis functionality of DE-
CAF, and to provide the community with a reusable
resource, we create a morphosyntactically parsed
and indexed version of the 115M-word BabyLM
corpus (Warstadt et al., 2023). We then analyze the
similarity of its sub-corpora with respect to the dis-
tributional divergence of their linguistic properties.

3.1 Parsing

Our annotation layers for BabyLM include the de-
fault Universal Dependencies (Nivre et al., 2020;
UD) annotations for tokenization, universal parts-
of-speech (UPoS), dependencies, as well as the
extended XPoS, and 23 morphological layers, plus
lemmatization. We train a multi-task model to per-
form all tasks simultaneously using the MaChAmp
toolkit (van der Goot et al., 2021) v0.4.2, using
default hyperparameters. As training data, we use
the UD GUM-corpus (Zeldes, 2017), as it covers
our target annotation set, is manually annotated,
and contains a wide variety of domains, which we
expect to lead to more robust transfer performance.
To obtain accurate annotations, we compared the
performance of four different LMs, and selected
DeBERTa-v3-large (He et al., 2021) as our final
model. More details on the parsing procedure and
annotation layers can be found in Appendix A.

3.2 Analysis

After parsing the BabyLM corpus, we next index
all sub-corpora using DECAF. Table 1 shows that
our pipeline identified 115M words with 1.1B an-
notations, linked via 1.3B hierarchical relations.
Indexing this corpus on an M3 MacBook Pro takes
~1.5 hours. As indexing time scales linearly with
corpus size, even on a local machine, this indicates
a reasonable potential for scaling to larger corpora.

With the indices, we next demonstrate running
a high-dimensional Exploratory Data Analysis
(EDA) using DECAF. Specifically, we query the
frequency distribution of each annotation layer and
compute the pairwise Jensen-Shannon divergence
(JSD; Wong and You, 1985) across all sub-corpora,
taking the average JSD across annotation types to
obtain the final divergence (details in Appendix B).
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SUBSET SENTENCES WORDS LITERALS STRUCTURES HIERARCHIES TIME
BNC 819,740 8,794,948 16,532,030 77,076,051 93,026,467 387s
CHILDES 5,809,876 30,811,091 54,254,290 271,728,676 327,731,106  1,901s
GUTENBERG 1,640,286 31,980,830 58,341,144 274,224,492 334,905,580 1,372s
SUBTITLES 3,508,947 24,933,681 44,863,286 219,920,133 262,769,601 1,061s
SWITCHBOARD 164,993 1,785,749 3,125,325 15,019,774 18,261,286 73s
WIKI 1,116,999 17,023,435 31,338,669 143,048,435 174,861,307 697s
Total ‘ 13,060,841 115,329,734 208,454,744  1,007,017,561 1,211,555,347 5,491s

Table 1: BabyLM Index Statistics per Subset, showing the number of sentences, words, database entries for
literals, structures, and hierarchies, as well as the runtime for importing each subset into a DECAF index.
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Figure 3: Morphosyntactic Divergence of BabyLM
Sub-corpora as measured by the Jensen-Shannon diver-
gence with respect to their annotation distributions.

Fig. 3 shows a clear split between written and
spoken language, where WIKI and GUTENBERG
diverge up to 0.83 JSD from the other sub-corpora.
Using DECAF to extract the overlaps across spe-
cific annotation layers, we find that these differ-
ences are driven by style differences (e.g., more
vernacular, “kind of*, “like* in spoken data), and
domain-specific biases, such as WIKI almost ex-
clusively using negative polarity indicators (e.g.,
“no”, “not”). Our analysis also identifies transcrip-
tion differences, such as WIKI writing numbers
as digits, while speech datasets write them out as
words. All spoken datasets further share compara-
ble distributions over the grammatical person used,
while WIKI almost never uses the first person, and
GUTENBERG uses the third person 71% of the time.
Finally, all corpora share similar skews in their gen-
der pronoun distributions with an average of 17%
female, 33% male, and 50% neutral pronouns.

This EDA shows how DECAF can help iden-
tify domain characteristics, annotation mismatches,
and biases that may be relevant during dataset cre-

ation, as well as for generating targeted training
interventions.

4 Case Study: Training Interventions for
Gender Bias Mitigation

To demonstrate DECAF’s ability to aid targeted
training interventions, we next run a small-scale
case study investigating: What are the effects of
training data order on occupational gender bias?
Specifically, the contrast between catastrophic for-
getting (Kotha et al., 2024), which posits that later
data are more likely to be retained, versus obser-
vations that data presented earlier are memorized
better (Leybzon and Kervadec, 2024). Measuring
how downstream model bias is affected by when
minority group data are observed may be helpful
for informing gender bias mitigation strategies.

Data Using DECAF, we construct a training data
intervention as follows: First, we define 16 fil-
ters, which extract all BabyLLM sentences contain-
ing pronouns of a specific gender (details in Ap-
pendix C). These sentences are then sorted by their
specificity with respect to the research question, i.e.,
sentences containing the target gender + a target
occupation (Occ) come first, while mixed-gender
sentences, and sentences containing the non-target
gender come later. Next, we balance the total num-
ber of pronouns in each specificity level to obtain
exactly the same amount of sentences containing
one gender versus the other. Finally, we interleave
the gendered sentences with the remaining non-
gendered BabyLLM data at regular intervals, obtain-
ing the training data schedule: Fem+Occ — Fem
— Fem+Masc — Masc — Masc+0cc (and reverse).
The final training data includes 12.5M total sen-
tences, including 1.1M gendered sentences, inter-
leaved every 11 steps.’

3*Note that about 500k sentences with exclusively mascu-
line pronouns are removed during data balancing.
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Figure 4: Training Dynamics on WinoBias, training five seeds of Pythia-14M from scratch on data with a balanced
number of FEM/MASC pronouns, for which the distribution shifts from one to the other across training (indicated
by dashed vertical lines). APPL shows the perplexity increase/decrease for when occupation-pronoun pairs are
anti-stereotypical; Training Loss is measured by the cross-entropy loss on next-token prediction.

Evaluation The success of the intervention is
evaluated using WinoBias (Zhao et al., 2018), a
benchmark measuring a model’s ability to link a bi-
nary gendered pronoun to one of 40 occupation in
1,584 sentences (e.g., “The developer argued with
the designer because she did not like the design.”).
We report the change in perplexity when the en-
countered pronoun is anti-stereotypical (APPL),
i.e., how ‘surprised‘ the model is by a gender and
occupation co-occurring. For LM pre-training, we
report the cross-entropy loss. In total, we evaluate
the training dynamics of 1,380 model checkpoints.

Models We train five seeds of Pythia-14M (Bi-
derman et al., 2023; van der Wal et al., 2025) from
scratch on our modified training data. While small
in scale, their pre-trained checkpoints already ex-
hibited clear biases on WinoBias (Fig. 5), making
them well suited for demonstrating the effect of this
training intervention. We use the hyperparameters
reported by Biderman et al. (2023) for one epoch,
and track the model bias during training.

4.1 Results

Fig. 4 shows the training dynamics of the Fem —
Masc, and Masc — Fem interventions. The general
training loss follows a stable trajectory, which starts
converging after around 1.5k steps. Meanwhile,
APPL flips throughout training in accordance with
the data ordering. During early training when only
one type of gendered pronoun has been observed
(i.e., before 2.2k steps), the models unsurprisingly
exhibit less perplexity when presented with pro-
nouns of the observed type. At the half-way point,
the models observe the first sentences containing

pronouns of more than one gender. In this range,
there is a brief period in which APPL tends towards
zero, before it flips in favor of the new pronoun,
which remains as a final bias until the end of train-
ing. At both flips, we notice a small spike in the
overall training loss, indicating that the model is ad-
justing to the data change. This pattern is mirrored
for either data setup, with the final bias tending
towards overconfidence for the most recently ob-
served gender. For bias mitigation strategies, our
results indicate that balanced training data alone
is insufficient to reduce gender bias, and that re-
cency bias must be taken into account. While this
experiment should not be taken as a full study of
bias mitigation, it demonstrates DECAF’s ability
to construct targeted training interventions for the
study of LM training dynamics.

5 Conclusion

We introduced DECAF, a flexible framework for an-
alyzing and filtering annotated datasets in order to
facilitate targeted LM training corpus interventions.
Using DECAF, we analyzed a parsed version of
the 115M-word BabyLM corpus, containing 1.1B
annotations in complex hierarchical relationships.
Using the resulting index, we measured the distribu-
tional divergence of 24 morphosyntactic annotation
layers across the sub-corpora of BabyLM. Finally,
we conducted a case study on how the order of
gendered pronouns in a balanced corpus affects
LM performance on the WinoBias benchmark. The
high level of control DECAF provides over the
generated training data allowed us to observe clear
shifts in bias throughout training despite an other-
wise balanced corpus.
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Limitations

Dependence on Existing Annotations. DECAF
does not perform any annotation on-the-fly, it relies
on annotations that are already available or per-
formed by an external annotation tool. We believe
this separation of text and annotations is crucial for
future extensibility. In total absence of annotations,
DECAF can still be used to compute character-
level overlaps across indices, e.g., to compare train-
ing data with target benchmarks. Additionally, we
share the parsing scripts, as well as the data and
models used in our case studies.

Annotation Formats. Currently, DECAF sup-
ports indexing datasets in CoNLL-U format, en-
abling the import of popular linguistically anno-
tated datasets, such as the Universal Dependencies,
but limiting the scope of available annotations. As
the underlying data schema is highly flexible, we
anticipate that new annotation formats can be easily
integrated by providing dedicated import scripts.

Filter Types. DECAF includes a Python API for
constructing complex filters for the underlying data
indices. For certain types of annotations, this inter-
face may however not be able to handle all queries:
e.g., traversing nested hierarchical structures in con-
stituency parses. As the required information is
nonetheless available in the underlying database
schema, implementing these filters is a matter of
augmenting the relevant SQL queries. Towards in-
corporating such specific features in the future, we
build the filtering API with extensibility in mind by
providing relevant pre-constructed SQL views, and
allowing for the direct querying of the underlying
databases, should users be proficient in SQL.

Case Study: BabyLM. To the best of our knowl-
edge, we provide the most granular analysis of the
morphosyntactic overlaps across the sub-corpora
of BabyLM to date. While our analysis based on
Jensen-Shannon divergence allows us to identify
the root differences across domains (e.g., between
written and spoken data), it is by no means com-
prehensive. We hope that future work can build on
the annotations and indices, which we release, and
develop new modes of analysis to provide an incre-
mentally clearer picture of how these sub-corpora
differ. Both the older methodologies from corpus
linguistics (Kilgarriff, 2001; McEnery and Hardie,
2013) and the newer techniques developed for the
analysis of NLP datasets, such as dataset cartogra-
phy, or the annotation artifact identification (Guru-

rangan et al., 2018; Swayamdipta et al., 2020), may
provide inspiration for future linguistic criteria to
be indexed and analyzed.

Case Study: WinoBias. The experiments in Sec-
tion 4 are run at a smaller scale compared to LMs
which are used in production, and are intended
only as a demonstration of DECAF framework.
However, overall there is currently much interest
in research on smaller models in order to predict
performance on larger models (Ivgi et al., 2022),
and Pythia-14M’s training dynamics have been
shown to be indicative of its larger variants (van der
Wal et al., 2025). The BabyLM corpus itself is
frequently used to conduct similar training inter-
ventions, wherein LMs are trained from scratch
for studying their generalization capabilities (e.g.,
Misra and Mahowald, 2024). Finally, while Wino-
Bias covers binary gendered pronouns only, the
filters applied in our experiments can easily be
extended with additional genders, cases, etc., (in-
cluding in other languages), given the relevant an-
notations. The fact that the indexing and filtering
of 115M words can already be conducted on a local
machine further gives us confidence in DECAF’s
ability to scale to larger corpora necessary for train-
ing modern LMs.

Broader Impact

DECAF supports basic research on generalization
and robustness of Machine Learning solutions for
Natural Language Processing. It aims to broaden
the scope of experiments that are possible with
training data interventions and highly-controlled
train-test splits—making such research easier and
more accessible. Towards this goal, we provide a
unified indexing schema which can support a wide
variety of annotations. To not compromise repro-
ducibility through added complexity, we further
separate the raw data, annotations, and filtering.
This way, indices on pre-existing annotations can
be shared and extended, while filters operate in a
unified space, meaning that they are transferable
across different datasets.
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Appendix
A BabyLM Parsing

Sub-corpora. The BabyLM corpus (Warstadt
et al., 2023) is a collection of six sub-corpora,
which aim to capture different facets of child-
directed language. The size of the corpus is moti-
vated by the number of words a child is typically
exposed to before the age of 12. In our studies, we
use the corresponding 100M-word version of the
corpus, counting 115M syntactic words following
our own tokenization pipeline. The six sub-corpora
are divided as follows:

* BNC (BNC Consortium, 2007): 8.8M words
of transcribed, spoken dialogue from the
British National Corpus.

* CHILDES (MacWhinney, 2000): 30.8M
words from the CHILDES project, which in-
cludes child-directed/produced speech, and
situational descriptions (in square brackets).
Each utterance starts with a speaker identi-
fier (e.g., CHI, MOT), which we extract into a
separate speaker metadata field.

* GUTENBERG (Gerlach and Font-Clos, 2020):
32.0M words from books in Project Guten-
berg, from authors born after 1850.

* SUBTITLES (Lison and Tiedemann, 2016):
24.9M words from the OpenSubtitles project,
which includes movie and TV subtitles cov-
ering spoken dialogue, as well as situational
descriptions (in round brackets).

* SWITCHBOARD (Stolcke et al., 2000): 1.8M
words from the Switchboard Dialogue Acts
corpus of transcribed phone conversations.

e WIKI (Wikimedia Foundation, 2022): 17M
words from the Simple English Wikipedia.

Note that the number of words in our parsed cor-
pus is higher than reported in the original corpus,
due to the fact that our tokenization identifies syn-
tactic words, 1.e., functional units in the Universal
Dependencies schema (e.g., It’s — It ’s).

Annotation Layers. For the initial sentence seg-
mentation of BabyLM, we use the NLTK seg-
menter (Bird et al., 2009). For parser training and
inference, we used the default hyperparameters of
MaChAmp, ignoring multi-word tokens according

360


https://doi.org/10.18653/v1/2021.eacl-demos.22
https://doi.org/10.18653/v1/2021.eacl-demos.22
https://openreview.net/forum?id=bmrYu2Ekdz
https://openreview.net/forum?id=bmrYu2Ekdz
https://openreview.net/forum?id=bmrYu2Ekdz
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2021.emnlp-main.72
https://doi.org/10.18653/v1/2021.emnlp-main.72
https://dumps.wikimedia.org/simplewiki/20221201/
https://dumps.wikimedia.org/simplewiki/20221201/
https://doi.org/10.1109/TPAMI.1985.4767707
https://doi.org/10.1109/TPAMI.1985.4767707
https://doi.org/10.1109/TPAMI.1985.4767707
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003

to the ud-conversion-tools*. We train a sepa-
rate decoder head for each of the following tasks:

* word: word segmentation modeled as a binary
subword level labeling task.

UPoS: 17 PoS tags following the UD guide-
lines, predicted by a single feedforward layer.

XPoS: language/corpus-specific PoS tags,
which, in the case of GUM, follow the Penn
Treebank guidelines (Santorini, 1990) and
cover 45 finer-grained labels.

lemma: the canonical or base form of the word.
In MaChAmp this task is converted to a se-
quence labeling task, where a label describes
character edits of the transformation of a word
to its lemma.

morphology: the labeling of 21 features (fol-
lowing GUM), each describing a morpholog-
ical categorization. If a feature is present, it
includes a label for the specific category (e.g.,
Number=Sing). For the purpose of DECAF,
we separate each feature into a separate anno-
tation layer.

dependencies: syntactic dependency rela-
tions that hold between words. MaChAmp
implements this task through a Deep Biaffine
Parser (Dozat and Manning, 2017). Each
word is labeled with a reference to its parent
+ the syntactic relation between them. There
are 36 different relations in UD.

For selecting the base language model
to parse BabyLM with, we first evaluated

4 LMs on the development data of the
GUM corpusS: DeBERTa-v3-large (He
et al., 2021), luke-large (Yamada et al.,
2020), mluke-large (Ri et al.,, 2022), and

xlm-roberta-large (Conneau et al.,, 2020).
On the development data of GUM, the average
performance of the best model over all 5 tasks
was 98.0 F1. This was within 0.2% compared
to the worst LM (97.7 F1). Hence, we opted
for a qualitative comparison; an annotator with
previous experience in UD annotation inspected
the first 25 differences in predictions on our target
data. Based on these observations, we selected
DeBERTa-v3-large model as our final model.
*https://github.com/bplank/

ud-conversion-tools

5https://robvanderg.github.io/evaluation/
tune-1ms/ informed our initial selection.
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B BabyLM Analysis

The annotation divergence analysis in Section 3 is
based on the frequency distributions of all "non-
sparse’ annotation layers (i.e., no tokens, or lem-
mas). This includes the morphological annota-
tions, Abbr, Case, Definite, Degree, ExtPos,
Foreign, Gender, Mood, NumForm, NumType,
Number, Person, Polarity, Poss, PronType,
Reflex, Style, Tense, Typo, VerbForm, Voice,
as well as the syntactic annotations, deprel, upos,
xpos. As some of these annotations are binary (e.g.,
abbreviations), we add an Other category to each
of these, which covers all non-marked occurrences.

For measuring the distributional similarity, we
chose the Jensen-Shannon divergence (JSD; Wong
and You, 1985), which we compute for each anno-
tation type a € A across each sub-corpus pair , j,
before taking an overall average:

> Dis(piallpja) (D

1
|A| acA

C WinoBias Experiments
Filters. We define filters of increasing specificity
to the WinoBias benchmark, to identify all gen-

dered pronoun occurrences in the BabyLM corpus.
In simplfied form, these include:

* any target-gender pronoun:
— {upos=PRON & Gen=Fem}
* target-pronoun as subject:

— {upos=PRON & Gen=Fem & dep=nsubj}
— {upos=VERB|AUX}

* target-pronoun as subject of subordinate
clause:

— {upos=SCONJ & dep=mark}
— {upos=PRON & Gen=Fem & dep=nsubj}
— {upos=VERB|AUX}

* target-pronoun as oblique:

— {upos=ADP}
— {upos=PRON & Gen=Fem & dep=obl}

Additionally, we add filters, in which any of the
above co-occur in a sentence with any of Wino-
Bias’ 40 occupational terms (Zhao et al., 2018).
Together with filters targeting the opposite gender,
we construct at a total of 16 DECAF filters.
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Figure 5: Training Dynamics on WinoBias, across the
original pre-training of Pythia-14M (Biderman et al.,
2023; van der Wal et al., 2025). APPL shows the per-
plexity increase/decrease for when occupation-pronoun
pairs are anti-stereotypical.

Pre-trained Models. Evaluating five seeds of
the pre-trained Pythia-14M checkpoints (Biderman
et al., 2023; van der Wal et al., 2025) throughout
their original training on the Pile corpus (Gao et al.,
2020), Fig. 5 shows perplexity that is biased against
female pronouns. This divide manifests surpris-
ingly quickly, after around 1k training steps, or
0.7% of full training, and remains until the end.

Custom Model Training. For training our own
Pythia-14M models on the data interventions gen-
erated by DECAF, we train using the same hyper-
parameters as in (Biderman et al., 2023), on an
NVIDIA A100 GPU with 40GBs of VRAM and an
AMD Epyc 7662 CPU. Training one model takes
approximately one hour.
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