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Abstract

Understanding and extracting spatial infor-
mation from text is vital for a wide range
of applications, including geographic infor-
mation systems (GIS), smart cities, disaster
prevention, and logistics planning.  This
capability empowers decision-makers to gain
crucial insights into geographic distributions
and trends. However, the inherent complexity
of geographic expressions in natural language
presents significant hurdles for traditional
extraction methods. These challenges stem
from variations in place names, vague direc-
tional cues, and implicit spatial relationships.
To address these challenges, we introduce
SpatialWebAgent, an automated agent system
that leverages large language models (LLMs).
SpatialWebAgent is designed to extract,
standardize, and ground spatial information
from natural language text directly onto maps.
Our system excels at handling the diverse
and often ambiguous nature of geographic
expressions—from varying place names and
vague directions to implicit spatial relation-
ships that demand flexible combinations of
localization functions—by tapping into the
powerful geospatial reasoning capabilities of
LLMs. SpatialWebAgent employs a series of
specialized tools to convert this extracted in-
formation into precise coordinates, which are
then visualized on interactive maps. A demon-
stration of SpatialWebAgent is available at
https://sites.google.com/view/Spatial WebAgent.

1 Introduction

The ability to extract spatial information from nat-
ural language is fundamental across diverse fields
such as geographic information systems (GIS),
smart city planning, disaster management, and lo-
gistics. Recent advancements in natural language
processing (NLP), particularly with the emergence
of LLMs (Brown et al., 2020), have revolution-
ized how we approach tasks like text comprehen-
sion, information extraction, and automated rea-

soning. Trained on vast datasets, these models ex-
cel at understanding and processing natural lan-
guage. The transformation of free-form text into
structured geographic entities is crucial for accu-
rate spatial analysis, real-time event monitoring,
and optimized resource allocation (Li et al., 2021).
By leveraging LLMs, we can automate this extrac-
tion process, empowering decision-makers to de-
rive valuable insights from unstructured data and
make timely, informed choices (Gao et al., 2022).

However, geospatial reasoning presents a
formidable challenge due to the inherent diver-
sity and ambiguity within geographic expressions.
This includes variations in place names (e.g.,
"New York," "NYC," "The Big Apple"), vague
directional phrases (e.g., "nearby," "north of"),
and complex implicit spatial relationships (Zhang
et al., 2020; Goodchild and Li, 2021; Gritta et al.,
2018). For instance, phrases like "the café next to
the school" require not only entity extraction but
also an understanding of their relative position-
ing (Yin et al., 2021). Traditional methods, such
as rule-based systems and classical NLP tech-
niques, often struggle with this complexity (Bom-
masani et al., 2021), exhibiting limited general-
ization across varied formats and contexts (Leid-
ner and Lieberman, 2011). While these methods
primarily focus on extracting fixed spatial entities,
they frequently fail to capture the relationships be-
tween them (Gelernter and Balaji, 2013). Fur-
thermore, their reliance on explicitly structured or
well-formed input renders them less robust when
dealing with informal or intricate spatial descrip-
tions common in real-world text (Karimzadeh,
2018). A critical limitation is their inability to
resolve place name ambiguities; many locations
share identical names, such as "Burwood" (found
in both Sydney and Melbourne) or "Victoria Har-
bour" (present in multiple countries). Although
some approaches (Syed et al., 2024) attempt to
refine geographic references by extracting place
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Figure 1: Overall SpatialWebAgent workflow: The top panel illustrates extraction of GPEs/LOCs and their as-
sociated SREs to compute spatial relationships, followed by coordinate generation via a specialised toolset. The
bottom panel shows how the agent leverages LLM geospatial reasoning with the toolset to resolve complex spatial

logic and map the resulting coordinates.

names via NLP and querying geocoding APIs,
they often default to the first API result when
faced with ambiguities, compromising accuracy
and leading to incorrect spatial interpretations.

To overcome these challenges, we introduce
SpatialWebAgent, an agent system that leverages
Large Language Models (LLMs) to automatically
identify, extract, standardize, and ground spatial
information from text, as shown in Figure 1. Spa-
tialWebAgent combines the advanced geospatial
reasoning capabilities of LLMs with a suite of spe-
cialized tools. This creates a robust, fully auto-
mated system capable of processing complex ge-
ographic information, including the implicit spa-
tial relationships often found in natural language.
Specifically, our agent system first extracts spa-
tial entities from the text. It then autonomously
applies various tools to convert these entities into
precise coordinates, and finally visualizes the re-
sults on interactive maps. This seamless transfor-
mation from unstructured geographic text to vi-
sualized spatial data significantly simplifies tasks
such as location interpretation, geographic query
resolution, and the development of downstream
applications.

Our contributions are as follows:

* Automated Spatial Agent System: We in-
troduce SpatialWebAgent, a novel pipeline
that seamlessly transforms natural language
into structured spatial data and interactively
visualizes it, streamlining the entire process
from extraction to map-based representation.

* Extensive Empirical Evaluation: We con-
ducted a rigorous empirical evaluation, per-
forming experiments on both entity extrac-

tion datasets and a specialized tool dataset.
We assessed several LLMs to evaluate their
ability to infer coordinates from diverse natu-
ral language descriptions, providing insights
into their performance on complex spatial un-
derstanding tasks.

* Interactive Web Prototype: We developed a
web prototype of SpatialWebAgent, demon-
strating its practical utility in processing nat-
ural language queries and visualizing spatial
information.

2 SpatialWebAgent

SpatialWebAgent leverages Large Language Mod-
els (LLMs) to accurately extract spatial informa-
tion from text and visualize it on maps. The sys-
tem’s workflow involves two primary modules:
the Spatial Entity Extraction Module and the Spa-
tial Grounding Module.

2.1 Spatial Entity Extraction Module

This module is responsible for identifying and
categorizing location-based entities within natu-
ral language text. SpatialWebAgent extracts three
types of entities:

* Geopolitical Entities (GPEs): Identifiable lo-
cations with geopolitical relevance, such such
as countries, cities, or administrative regions
(e.g., "France," "Sydney").

* Location Entities (LOCs): Physical land-
marks or geographic features anchored to
fixed reference points (e.g., "Eiffel Tower,"
"Sydney Opera House").
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» Spatial Relation Entities (SREs): Descrip-
tions of spatial relationships based on GPEs
and LOCs, including directional cues (e.g.,
"north," "second street on the left"), distance-
based terms (e.g., "10 kilometers away"), and
vague expressions (e.g., "nearby," "border").

To accurately extract these entities, we designed
an LLM-based pipeline using carefully crafted
prompts (detailed in Appendix B). The process be-
gins by extracting GPEs and LOCs. These are
then used to decompose the query into smaller
clauses, which are further processed to extract
SREs through three additional steps: identifying
directional expressions, distance terms, and fuzzy
spatial references.

For an SRE to be uniquely localizable, both ori-
entation and distance must be present. Cases in-
volving incomplete spatial information, such as
directional-only descriptions, are handled by the
Spatial Grounding Module as discussed in Sec-
tion 2.2. This multi-stage extraction process en-
ables our system to robustly handle both explicit
and implicit spatial references.

2.2 Spatial Grounding Module

The Spatial Grounding Module is designed to
interpret and resolve intricate spatial descrip-
tions, converting extracted spatial entities into pre-
cise geographic coordinates and ultimately visu-
alizing them. This module comprises two key
sub-sections: Entity Grounding and Advanced
Grounding.

2.2.1 Entity Grounding

To compute and visualize spatial information,
SpatialWebAgent encodes GPEs, LOCs, and
SREs into geographic coordinates.

For GPEs and LOCs, we use the Nominatim
API (OpenStreetMap contributors, 2024) to re-
trieve their coordinates. If the API returns multiple
candidate locations, the system prompts the LLM
to disambiguate based on the administrative region
associated with each location. Additionally, all
candidate locations are listed on a dedicated local-
ization page, allowing for secondary human con-
firmation if needed.

For SREs, once the coordinates of their corre-
sponding GPEs or LOCs are determined, we com-
pute new spatial coordinates using the extracted
relative relationships (e.g., cardinal/ordinal direc-
tions, distance-related expressions). In scenarios

where information is incomplete or ambiguous,
the system employs specific fallback grounding
strategies:

* If only an orientation is provided (e.g.,
"south-west of X"), we represent the loca-
tion as a directional arrow originating from
the reference point.

* If only a distance is mentioned (e.g., "10 km
from X"), we render a circular region cen-
tered at the GPE/LOC with the specified ra-
dius.

* When both orientation and distance are
present, we combine them to infer a more
precise region.

Following the previous work (Syed et al., 2024),
we adopt a graphical slicing method to present a
comprehensive and interpretable visual profile of
the spatial data. We retain the design choice of
visualizing directional areas based on projected
contours, as it aligns well with human intuition
and preserves semantic coherence. The final re-
sults, including both the extracted GPE/LOC co-
ordinates and the inferred SRE locations, are visu-
alized on interactive maps using OpenStreetMap,
providing users with an intuitive exploration of
spatial relationships (an example is shown in Ap-
pendix D).

2.2.2 Advanced Grounding

To address complex and multi-layered geographic
expressions in natural language, we enhance the
Spatial Grounding Module with a specialized
toolset featuring four core localization functions
that support compositional spatial reasoning in
LLM:s.

This toolset offers two key advantages: First,
it enables the system to autonomously identify
and handle a wide variety of spatial relation pat-
terns described in natural language, including di-
rectional, distance-based, and complex composi-
tional relationships. Second, it allows the LLM
to translate its semantic understanding of location
into precise geographic coordinates, which can
then be visualized and interpreted by subsequent
processes. The LLM performs Chain-of-Thought
(CoT) reasoning, then selects and composes ap-
propriate functions from this toolset based on the
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input text, ultimately outputting a set of target ge-
ographic coordinates representing the region of in-
terest.

We define the following four localization func-
tions within the toolset:

1. Coordinate Function: Takes a specified lo-
cation entity (GPE or LOC) as input and
outputs its corresponding geographic coordi-
nates.

2. Directional Localization Function: Given a
location’s coordinates, a specified direction,
and a distance, this function calculates the co-
ordinates of the area located in the given di-
rection at the specified distance from the ini-
tial location.

3. Middle Localization Function: Computes
the coordinates of the region situated be-
tween two given locations based on their re-
spective coordinates.

4. Azimuth Localization Function: Similar
to the Directional Localization Function, but
utilizes a precise bearing angle as input to de-
termine the target area’s coordinates.

Except for the Coordinate Function, which out-
puts the actual boundary of a specific region, the
other three functions project a circular area from
the centroid of the result location. The area of this
projected circle is dynamically adjusted to equal
that of the original basic location—or the average
of multiple input locations—so as to better reflect
human common-sense reasoning about spatial ex-
tent.For instance, if users mention "the western
part of a specific district,” the resulting circular
highlight will have the same area as that district.
If the query refers to a location between two cities,
the system computes the highlight area as the av-
erage of the two.

By prompting the LLM to integrate these four
functions along with the extracted entities, it can
effectively select and compose the appropriate op-
erations to localize regions described in complex
scenarios. For example, to determine the co-
ordinates of the phrase ‘An area located 4
kilometers west between Loc_A and Loc_B’,
the following steps are taken:

1. The Coordinate Function (Loc_A) and Coor-
dinate Function (Loc_B) are used to retrieve
the coordinates of "Loc_A" and "Loc_B".

2. The Middle Localization Function (step 1) is
applied to compute the midpoint between the
two locations.

3. The Directional Localization Function (step
2, west, 4 km) is then used with the mid-
point as a reference, incorporating the direc-
tion westward and a distance of 4 km to infer
the target region.

LLMs autonomously determine the selection,
order, and input parameters for these functions,
facilitating accurate geospatial localization. Once
the target region’s coordinates are identified, they
can be visualized using platforms such as Open-
StreetMap. An example of the final output is pro-
vided in Appendix D.

3 Experiments

3.1 Entity Extraction Evaluation

This subsection is for extracting geographic infor-
mation from informal text, we utilize a series of
datasets that cover different aspects of geographic
entity recognition. To ensure a comprehensive
evaluation, we select four diverse datasets.

CoNLL-03 and OntoNotes 5.0: These two
datasets are foundational for recognizing GPEs
and LOCs, including countries, cities, and regions
globally. However, both datasets are limited to
only recognizing GPEs and LOCs types of geo-
graphic entities, leaving more complex spatial re-
lationships unaddressed. They provide a strong
baseline for recognizing geographic names but do
not capture the full diversity of spatial expressions
present in informal text (Tjong Kim Sang and
De Meulder, 2003; Schweter and Akbik, 2020).

HarveyNER: The HarveyNER dataset, a newer
and more comprehensive geographic NER re-
source, expands on this by incorporating both
standard and relative entity, thus capturing more
complex geographic expressions, including long
and intricate location mentions often found in in-
formal text (Chen et al., 2022).
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Standard Entity Relative Entity Total
LLM Model Dataset GPE (%) LOC (%) SRE (%) Total (%)
CoNLL-03 12.3 17.8 - 11.9
Llama-3-8B OntoNotes 5.0 | 15.5 18.0 - 14.9
HarveyNER 15.5 18.0 11.3 10.9
PADI-web 16.0 17.5 13.8 10.9
CoNLL-03 33.3 37.3 - 32.9
Mistral-7B-0.3 OntoNotes 5.0 | 34.8 38.0 - 24.1
HarveyNER | 34.8 38.0 28.8 21.9
PADI-web 33.5 36.3 30.3 21.5
CoNLL-03 35.0 33.3 - 32.6
Gemma.-2-10B OntoNotes 5.0 | 36.0 34.5 - 31.9
HarveyNER | 36.0 34.5 27.5 20.0
PADI-web 353 33.8 29.0 22.9
CoNLL-03 92.3 91.5 - 79.9
GPT4o OntoNotes 5.0 | 90.3 93.8 - 84.6
HarveyNER | 88.0 89.8 80.8 77.3
PADI-web 89.5 84.0 82.3 77.4
CoNLL-03 80.5 80.0 - 79.5
. OntoNotes 5.0 | 82.0 80.3 - 80.0
Gemini Pro
HarveyNER | 83.8 80.3 66.5 66.4
PADI-web 84.0 80.0 67.0 66.3
CoNLL-03 74.5 80.0 - 73.4
. . 2. - 1.1
DeepSeek-R1 OntoNotes 5.0 | 75.0 82.3 8
HarveyNER | 73.8 83.0 62.0 61.9
PADI-web 76.0 83.3 63.8 60.4

Table 1: Entity Extraction Evaluation: Performance of Different LLMs on Entity Recognition Across Various
Datasets. The evaluation of GPE and LOC entities requires the LLM to accurately extract all entities for each data
point to be considered correct. For SRE, the LLM only needs to correctly extract the SRE-related entities without
the need to verify their corresponding standard entity. The Total score reflects the ability of the model to correctly

extract all relevant entity types from the entire query.

PADI-web: A collection of natural language re-
lated to animal diseases . This dataset serves as
a benchmark for the previous work (Syed et al.,
2024), providing a comprehensive resource for
evaluating models focused on animal health in-
formation. The PADI-web dataset contains a
wide range of textual data, including descriptions
of various animal diseases, symptoms, treatment
methods, and geographical distributions. (PADI-
web, 2023).

For each dataset, we sample 350 positive ex-
amples per entity type plus 50 negative examples,
yielding 400 test instances per category.

We compare six LLMs—Llama-3-8B (Meta,

2024), Mistral-7B-0.3 (Jiang et al.,, 2023),
Gemma-2-10B (Team, 2024b), GPT-40 (OpenAl,
2024), Gemini Pro (Team, 2024a), and DeepSeek-
R1 (DeepSeek-Al, 2025).

The results are shown in Table 1. The closed-
source models: GPT-40, DeepSeek-R1, and Gem-
ini Pro, demonstrated strong accuracy, with GPT-
40 performing the best, which shows that the
closed-source models were generally able to accu-
rately recognize the corresponding entity types in
most normally expressed language inputs. How-
ever, certain special text formats still led to recog-
nition errors. For more details, please refer to Ap-
pendix C.
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Figure 2: The screenshot displays SpatialWebAgent in action. Given the input "I would like to know which area is
located 3 kilometers south of Burwood.", the system identifies the GPE Burwood and the SRE 3 kilometers south,
and computes the final location using a geographic function.

3.2 Spatial Grounding Evaluation

We evaluate the ability of LLMs to compose spa-
tial functions from our toolset and resolve com-
plex, multi-step geospatial instructions. As no
existing benchmark addresses this task, we con-
structed a dataset of 100 challenging queries:

* Five trained annotators created the 100

queries and drafted matching natural-
language instructions along with their
ground-truth function sequences.

* Each example was reviewed by at least three
different annotators, with any discrepancies
resolved by consensus (see Appendix E).

Listing 1: An example of function composition in our
benchmark dataset.

"index": 12,
"instruction”: "Find the area one-fourth
of the way from Burwood to Sydney

Town Hall, closer to Burwood.",
"steps”: [
{"id": 1, "function”: "Between”, "inputs
": ["Burwood", "Sydney Town Hall"]},
{"id": 2, "function”: "Between”, "inputs
": [1, "Burwood"]}
]

An example of one data point is illustrated in
Listing 1. To ensure the quality of the dataset, we
followed a set of annotation guidelines, which are
detailed in Appendix E.

Model Total Accuracy (%)
GPT-40 87
DeepSeek-R1 83
Gemini-Pro 80
Llama-3-8B 5
Mistral-7B-0.3 7

Table 2: Evaluation of the proposed Hierarchical
Geometric Function Localization method on various
LLMs. This is the first attempt to integrate fine-grained
geospatial reasoning capabilities into LLMs via func-
tion composition. We adopt a one-shot in-context
learning setting to guide function selection and reason-

ing.

We evaluated different LLMs using this dataset
to assess the models’ capabilities in handling com-
plex geospatial reasoning, the results are pre-
sented in Table 2. Given the challenging na-
ture of the task, which involves multi-step spa-
tial function interpretation, reliable performance
was observed only in strong open-source mod-
els known for their reasoning abilities. Among
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them, GPT-40 achieved the best performance
with an accuracy of 87%. Overall, all three
models—GPT-40, DeepSeek-R1, and Gemini-
Pro—demonstrated strong capabilities and are
well-suited for handling hierarchical geospatial
function interpretation tasks.

In contrast, small-parameter open-source mod-
els showed unsatisfactory performance. While
they can mimic the output format based on in-
context examples, they are only capable of han-
dling very simple logic. When faced with multi-
layered reasoning or ambiguous questions, they
often fail. Advanced closed-source models, how-
ever, are able to recognize subtle reasoning de-
tours to generate the final answers. For example,
in Listing 1, these models can infer that the final
location lies between ‘Burwood’ and the output of
step 1. In comparison, small open-source mod-
els tend to produce rigid outputs such as "id": 2,
"function": "Relative", "inputs": [1, "east", "d/4"],
without successfully reasoning through the correct
logic.

3.3 Web Prototype

Our SpatialWebAgent web prototype—built with
Streamlit—offers an intuitive, interactive environ-
ment for extracting and visualizing geographic in-
formation directly from user queries, shown in
Figure 2. In the central panel, users enter free-
form text containing spatial descriptions. The left-
hand sidebar provides filter options for selecting
categories of interest such as geopolitical entities
(GPE), generic locations (LOC) or specific spatial
relations (e.g., SRE, RSE). Once the user confirms
these selections, the system invokes the corre-
sponding extraction modules, automatically iden-
tifies the requested entities and plots them on an
embedded map. For example, when a query spec-
ifies “the area located 3 km south of the Burwood
district,” Spatial WebAgent computes the target co-
ordinates and highlights that zone in real time.

4 Conclusion

In this paper, we introduced SpatialWebAgent,
an automated agent system designed to extract
geographic named entities from natural language
queries and pinpoint their precise spatial loca-
tions. Our system accomplishes this by skillfully
combining the geospatial reasoning capabilities of
Large Language Models (LLMs) with specialized
tools, ultimately grounding and visualizing these

results on interactive maps. SpatialWebAgent ef-
fectively tackles the challenge posed by ambigu-
ous and complex spatial expressions within text.
It first accurately identifies diverse spatial enti-
ties from natural language inputs. Then, by in-
telligently integrating a suite of spatial localiza-
tion tools, the system precisely infers geographic
coordinates, even for intricate or abstract spatial
scenarios. These inferred coordinates are then
seamlessly grounded and displayed on interac-
tive maps, effectively bridging the gap between
unstructured text and structured geographic data.
This work highlights a promising direction for
automated geospatial analysis systems and sug-
gests significant potential applications across GIS,
location-based services, and advanced spatial data
processing.

Limitations

The model’s accuracy in extracting SRE entities
requires improvement, as the three subcategories
of SRE are prone to confusion by the model.
This issue leads to errors in recognizing and dis-
tinguishing between various spatial relationships,
which hinders overall performance. Additionally,
the model’s performance is suboptimal in low-
parameter open-source models. While SpatialWe-
bAgent can operate effectively, achieving high ac-
curacy still necessitates the use of closed-source
model APIs.

Ethical Considerations

This work involves automated extraction and
geocoding of location references from unstruc-
tured text using LLMs. The system may process
data that includes names of geographic locations,
organizations, or individuals. To mitigate privacy
concerns, we only use publicly available and non-
sensitive textual inputs. No personally identifiable
information (PII) is collected, stored, or used in
this work.

The mapping component relies on third-party
geocoding APIs (e.g., Nominatim), which may re-
turn ambiguous or multiple candidate locations.
While our system includes mechanisms to prompt
LLMs for disambiguation and allow user confir-
mation, geocoding errors could still lead to mis-
representation of spatial intent. We encourage
cautious interpretation when using this system for
high-stakes applications.

Additionally, the use of pretrained language
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models may inadvertently reproduce geographic,
cultural, or geopolitical biases present in the train-
ing data. Future work will focus on bias miti-
gation, fairness-aware prompting, and increased
transparency in location reasoning.
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A System Screen Shot

Deploy

SpatialWebAgent

£ Please input your text here:

Deployment Method

You can select the deployment method for
the model.

Choose deployment method:
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LLM Model

You can select different LLM model
powered by API.
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GPT-40 v

Spatial Entity Labels

Please Mark the Spatial Entities you want
to extract.

GPE
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Figure 3: The screen shot of SpatialWebAgent, users can specify the type of entities they want to extract and
specific language models. For open source models, users can specify the model address.
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B The Prompts of Different types of Named Entity Extraction

Here we list the different prompts provided to LLM for extracting different types of spatial entities.

Entity: GPE extraction prompt

System Prompt: You are a professional geographer. Your task is to extract all fuzzy spatial entities (keywords) from a
given text. Fuzzy spatial keywords can include terms like nearby, near, vicinity, close, beside, next, adjacent, immediate,
border, surrounding, neighbourhood, proximity, territory, locality, and similar terms.

For each fuzzy spatial keyword, wrap the name in a unique character sequence, such as [###ENTITY###]. If there are
multiple entities, output them in the following format:
CHHHENTITY V4, ##HENTITY2###, ##HENTITY3##]

Here is an example:

Text:

"The park is located nearby the lake, with several cafes close to the walking paths, and a small
garden adjacent to the main entrance.”

Expected Output:
[##t#nearby#it#, #ttclose##t#, #i#t#adjacenti#titi]

Figure 4: An example prompt for extracting GPEs.

Entity: LOC extraction prompt

System Prompt: You are a professional geographer. Your task is to extract all location entities (LOC) from a given text.
Location entities can include physical locations such as landmarks, geographical features, mountains, rivers, oceans, and
places, but do not include political or administrative divisions such as countries or cities (these are considered geopolitical
entities).

For each location entity, wrap the name in a unique character sequence, such as [###ENTITY###]. If there are multiple
entities, output them in the following format:
CHAHENTITY V##, #HHENTITY2##4, #HHENTITY3###]

Here is an example:

Text:

"The Grand Canyon is one of the most spectacular natural wonders in the world, located in the state
of Arizona. Nearby, the Colorado River flows through the canyon, carving its way through the rugged
terrain. In the north, the Rocky Mountains stretch across several states, including Colorado and
Wyoming."

Expected Output:
[###Grand Canyoni#it#, #it#Arizona#it#, #i##Colorado River###, ###Rocky Mountains###, ###Colorado##i,
#H##Wyoming###]

Figure 5: An example prompt for extracting LOCs.
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Entity: SRE (direction) extraction prompt

System Prompt: You are a professional geographer. Your task is to extract all spatial entities (directional keywords) from
a given text. Spatial entities can include directional keywords such as north, south, east, west, and more specific terms
like northeast, northwest, southeast, southwest, as well as terms indicating locations like center; central, downtown, and
midtown.

For each spatial entity, wrap the name in a unique character sequence, such as [###ENTITY###]. If there are multiple
entities, output them in the following format:
[HHHENTITY 14, #HHENTITY 244, #HH#ENTITY3###]

Here is an example:

Text:

"The hotel is located in the downtown area of New York, just south of Central Park, with a beautiful
view of the southeast corner.”

Expected Output:
[##t#downtown#t, #it#south###, #it#southeast#it#]

Figure 6: An example prompt for extracting SREs (direction).

Entity: SRE (fuzzy) extraction prompt

System Prompt: You are a professional geographer. Your task is to extract all fuzzy spatial entities (keywords) from a
given text. Fuzzy spatial keywords can include terms like nearby, near, vicinity, close, beside, next, adjacent, immediate,
border, surrounding, neighbourhood, proximity, territory, locality, and similar terms.

For each fuzzy spatial keyword, wrap the name in a unique character sequence, such as [###ENTITY###]. If there are
multiple entities, output them in the following format:
CHAHENTITY 14, ##HENTITY2###, ##H#ENTITY3###]

Here is an example:

Text:

"The park is located nearby the lake, with several cafes close to the walking paths, and a small
garden adjacent to the main entrance.”

Expected Output:
[###nearby#it#, #tclose##t#, #i#t#adjacenti#titi]

Figure 7: An example prompt for extracting SREs (fuzzy).

Entity: RSE (distance) extraction prompt

System Prompt: You are a professional geographer. Your task is to extract all concrete distance keywords from a given
text. Concrete distance keywords must include both a numeric value and a specific distance unit. These units can be in
various formats, such as kilometer, mile, meter, foot, inch, centimeter, or their abbreviations (e.g., km, mi, m, ft, cm, mm,
vd, etc.).

For each extracted distance keyword, wrap the entire expression (number + unit) in a unique character sequence, such as
[H#H#HENTITY##4#]. If there are multiple entities, output them in the following format:
[HHHENTITY 144, #HHENTITY2H##, #HHENTITY3###]

Here is an example:

Text:

"The park is located 3 km away from the city center, while the nearest supermarket is only 500
meters from here, and the lake is about 1 mile further down the road.”

Expected Output:
[###3 kmiHt#, ###500 meters#t#, ###1 miled#]

Figure 8: An example prompt for extracting SREs (distance).
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C Case Study
C1

In this case study, we demonstrate the ability of our system to extract geographic entities from unstruc-
tured text. Below are the input, model output, and target output for a given example.

Legend:

¢ . Location (LOC).

¢ : Geopolitical Entity (GPE).

* = Relative Spatial Entity (SRE)
Input and Target Output:

ORE - IMC TBN - 70,000 tonnes Dampier / Kaohsiung 20-30/12 $ 5.25 fio 35,000 shinc /
30,000 shinc yellow China Steel.

Model Output:
{ ‘Dampier’: ‘GPE’, ‘Kaohsiung’: ‘GPE’, ‘China’: ‘GPE’}

In this case, we found that the model sometimes struggles to differentiate between GPE (Geopolitical
Entity) and LOC (Location). However, this does not pose a significant issue for locating coordinates
using the Nominatim API, as both are considered absolute spatial entities.

At times, the model incorrectly identifies certain terms containing place names, such as "company" or
region/country names in products, as geographic entities.

C.2
Input and Target Output:

The company’s new headquarters is located roughly 5 miles south of the Sydney city center .

S miles south is a directional spatial entity.
Model Output:

{‘south’: ‘RES_1’, ‘center’: ‘RES_1"}
{None}
{5 miles’: ‘RES_3’}

Here, the model erroneously classifies the word "center" in "city center" as a directional spatial entity.
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D Visualization Examples

Query 1:

There was a massive parade _ of Sydney Town Hall .
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Figure 9: When using ‘Toolset Method’, the LLM automatically extracts the necessary parameters, selects the
appropriate function, and inputs the corresponding arguments. In this example, the chosen function is directional,

and the input parameters are ‘Sydney Town Hall’, ‘4 kilometers’, and ‘north’.

Query 2:

The office is located in North Sydney , close to several major public transport hubs.

Main
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the model.
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Input text: The office is located in North Sydney, close to several major public transport hubs.

GPE: North Sydney Direction: North Distance: None
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Figure 10: In this query, we only one GPE which is ‘North Sydney’.

Query 3:

I would like to know which area is located _ of Burwood .
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Deployment Method

You can select the deployment method for
the model.

Choose deployment method:
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) Local deployment
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LLM Model

GPT-40 v
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to extract.
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Deploy

SpatialWebAgent

Input text: | would like to ich area is located 3 kil of Burwood.

GPE: Burwood Direction: south Distance: 3 kilometers

Figure 11: In this query,

‘Burwood’ is the GPE and ‘3 kilometers south’ is the SRE.
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E Annotation Guidelines

Instruction abstraction and reasoning complexity: The instructions are intentionally designed to
require multi-level spatial reasoning. For example, given the randomly sampled functions—"steps”
field in Listing 1—a literal interpretation might be: ‘Find the point between location A and location
B, then find the point between that and location A.” However, we abstract this into a more concise and
cognitively demanding instruction, such as: ‘Find the area one-fourth of the way from location A to
location B, closer to A’

Topical diversity of scenarios: To ensure broad coverage of real-world geographic expressions, the
dataset includes instructions spanning diverse contexts. These range from urban navigation and public
infrastructure to natural landmarks and administrative zones. This diversity exposes models to vari-
ous spatial reference patterns and linguistic formulations, encouraging generalization beyond narrow
domains.

Variation in geographic scale: The spatial entities referenced in the dataset vary significantly in scale,
from fine-grained local features (e.g., buildings or suburbs) to coarse-grained global references (e.g.,
countries or regions). This variation ensures that the task reflects the hierarchical nature of spatial rea-
soning in natural language, requiring models to adapt their localization strategies based on the level of
geographic granularity.
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