
XLLM 2025

The 1st Joint Workshop on Large Language Models and
Structure Modeling

Proceedings of the Workshop

August 1, 2025



©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-286-2

i



Introduction

Language structure modeling has long been a crucial subfield of natural language processing (NLP) that
entails understanding the underlying semantic or syntactic structure of language and texts. Language
structures can broadly range from low-level morphological/syntactic types (e.g., dependency structures
and phrasal constituent structures) to high-level discourse/semantic structures (e.g., semantic parsing,
semantic role labeling, abstract meaning representation), and can even extend to more NLP applications,
multi-lingual and multi-modal scenarios in a broader sense, such as information extraction and structu-
red sentiment analysis, etc. In previous days, modeling, inferring, and learning about linguistic structures
constituted an indispensable component in many NLP systems and were the key focus of a large propor-
tion of NLP research. The methodologies and paradigms concerning language structure modeling have
always changed dramatically since each deep learning revolution started around a decade ago. In the
last two to three years, Large Language Models (LLMs) have emerged, demonstrating unprecedented
language understanding and generalization capabilities in effectively addressing a wide range of tasks.
This raises a critical question: Is NLP structure modeling still worth exploring in the LLM era? Do the
methods and tasks before LLMs still hold value?

On the one hand, we wonder whether previous NLP structure modeling tasks, such as those concerning
morphological/syntactic/semantic/discourse structures and high-level structure-aware applications, can
achieve even stronger task performance with the powerful capabilities of LLMs. On the other hand, we
are also considering whether it is still necessary to model the underlying structures of language, given
that large-scale pretraining on the surface form alone can endow LLMs with extraordinarily powerful
language capabilities. In particular, can language structure modeling be beneficial for improving or un-
derstanding LLMs? Thus, this 1st Joint Workshop on Large Language Models and Structure Modeling
(XLLM 2025) at ACL 2025 aims to encourage discussions and highlight methods for language struc-
ture modeling in the era of LLMs. We will explore two main directions: LLM for Structure Modeling
(LLM4X) and Structure Modeling for LLM (X4LLM).

In the interest of having a broad conversation, inclusive of different disciplinary norms, we invited sub-
missions of different kinds. Authors were able to choose between: (1) archival papers which will be
published in the XLLM proceedings as well as presented during the workshop, and (2) non-archival pa-
pers which are not published in the proceedings but are given a presentation slot during the workshop.
Archival papers may be long (up to 9 pages) or short (up to 5 pages), and went through mutually anony-
mous peer review by our program committee members or were already reviewed through ACL Rolling
Review (ARR). Non-archival papers include extended abstracts which were also subjected to mutually
anonymous peer review by our program committee. In addition to paper contributions, we are organizing
open challenges on structure-related NLP tasks, including:
- Task-I: Dialogue-Level Dependency Parsing (DiaDP)
- Task-II: Speech Event Extraction (SpeechEE)
- Task-III: LLM for Structural Reasoning (LLM-SR)
- Task-IV: Document-level Information Extraction (DocIE)
For top-5 teams, we invite them to write technical papers that are also included into XLLM proceedings,
where the champion team will give oral presentation.

After the hard process of reviewing all submissions, the program committee chose i) 21 archival regular
papers, including 6 oral and 25 poster presentations, ii) 11 archival challenge papers, including 4 oral
and 7 poster presentations, and iii) 12 non-archival papers. Among all the submissions, we received 4
submissions through ARR. The program committee is excited about the quality of the accepted papers
and expects lively discussion and exchange at the conference. For all the winning participants of our
open challenges, we issued certificates for their performance, and for parts of the tasks, we also awarded
cash prizes.
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The XLLM workshop invited 4 keynote speakers: Kyunghyun Cho, Elsa Olivetti, Marinka Zitnik, Huan
Sun, and Lei Li. Additionally, a poster session, invited oral talks, and a panel discussion on future re-
search directions will be held.

As a final note, we would like to thank the authors, invited speakers, committee members, and our scienti-
fic advisory board for helping make this workshop happen. We also wish to express our sincere gratitude
to ACL for hosting our conference and for arranging the logistics and infrastructure that allow us to hold
XLLM 2024 as a hybrid conference. Welcome to XLLM 2024, welcome to Vienna, Austria!

- Organizing Committee of XLLM
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Abstract

Information Extraction (IE) plays a pivotal role
in transforming unstructured data into struc-
tured formats, such as Knowledge Graphs. One
of the main tasks within IE is Relation Ex-
traction (RE), which identifies relations be-
tween entities in text data. This process en-
riches the semantic understanding of docu-
ments, enabling more precise information re-
trieval and query answering. Recent works
leveraging pre-trained language models have
demonstrated significant performance improve-
ments in RE. In the current era of Large Lan-
guage Models (LLMs), fine-tuning these LLMs
can mitigate the limitations of zero-shot RE
methods, particularly in overcoming the do-
main adaptation challenges inherent in RE.
This work explores not only the effective-
ness of fine-tuned LLMs but also their inte-
gration into a Retrieval-Augmented Generation
(RAG)-based RE approach to address domain
adaptation challenges when general-purpose
LLMs serve as generators within the RAG
framework. Empirical evaluations on the TA-
CRED, TACRED-Revisited (TACREV), and
Re-TACRED datasets reveal substantial perfor-
mance improvements with fine-tuned LLMs,
such as Llama2-7B, Mistral-7B, and Flan-T5
Large and surpass previous methods on these
datasets.

1 Introduction

Information Extraction (IE) converts unstructured
data into structured formats, such as Knowledge
Graphs (KGs). A key IE task is Relation Extrac-
tion (RE), which identifies relationships between
entities in text at sentence (See Figure 1) or doc-
ument levels (Grishman, 2015). RE methods in-
clude supervised, unsupervised, and rule-based ap-
proaches (Aydar et al., 2020; Pawar et al., 2017).
Supervised RE methods generally yield strong per-
formance but require extensive labeled data. How-
ever, recent studies show that RE methods using

pre-trained language models (PLMs) can surpass
traditional supervised approaches (Zhou and Chen,
2022; Li et al., 2022; Wang et al., 2022). In the
era of Large Language Models (LLMs), Retrieval-
Augmented Generation (RAG) (Gao et al., 2023;
Lewis et al., 2020) using zero-shot prompting set-
tings, in-context learning (Pan et al., 2024), or
simple vanilla prompting (Kai Zhang, 2023), have
been utilized for RE without the need for additional
model training.

Italian Red Cross worker Eugenio Vagni was freed in the restive southern Philippine province of Sulu early Sunday,
 almost three months after he and his two colleagues were abducted by local militants, the military said.

head
(subject)

tail
(object)

per:cities_of_residence

Figure 1: Representation of a relation,
per:cities_of_residence, between head and tail
entities in a sentence from the TACRED dataset.

The RAG-based prompting approach performs
well when entity relations are easily derived
from sentence tokens but struggles when relation
types are not introduced into LLMs (Efeoglu and
Paschke, 2024). General-purpose LLMs, like Mis-
tral (Jiang et al., 2023), Llama2 (Touvron et al.,
2023), and Flan-T5 (Chung et al., 2022), also
show shortcomings in RE tasks due to insufficient
domain-specific relation knowledge (Efeoglu and
Paschke, 2024; Kai Zhang, 2023; Xiong et al.,
2023). Incorporating these relation types into
LLMs could enhance RE through zero-shot prompt-
ing (Efeoglu and Paschke, 2024). To tackle this is-
sue, we fine-tune language models on small sets of
RE prompt datasets to enhance their ability to iden-
tify relations between entities at the sentence level.
To evaluate the performance of fine-tuned LLMs,
we conduct experiments using Llama2-7B 1 (Tou-
vron et al., 2023), Mistral-7B-Instruct-v0.2 2 (Jiang

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf,
accessed on 14.05.2025

2https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2, accessed on 14.05.2025

1



et al., 2023), and Flan T5 Large (Chung et al.,
2022) across three RE benchmark datasets: TA-
CRED (Zhang et al., 2017), TACRED-Revisited
(TACREV)(Alt et al., 2020) and Re-TACRED (Sto-
ica et al., 2021). In this work, fine-tuning is used
to overcome the limitations of zero-shot LLM
prompting settings, such as RAG4RE (Efeoglu and
Paschke, 2024), in identifying relations between
entities across TACRED and its variants. The con-
tributions of our approach are as follows:

• Fine-tuning greatly improved LLM perfor-
mance, with Flan-T5 Large outperforming
larger models like Mistral-7B-Instruct-v0.2
and Llama2-7B on TACRED and its variants.

• Our fine-tuned LLMs, evaluated within
RAG4RE, showed strong results on these
datasets.

• This study is the first to fine-tune LLMs for
the RE task and to systematically compare
smaller and larger models like Mistral-7B-
Instruct-v0.2 and Llama2-7B by parameter
count.

The rest of this paper first summarizes RE ap-
proaches using the language models in Section 2
and then introduces our proposed approach 3 in Sec-
tion 3. Afterwards, the experimental setup and
results are presented in Section 4 and discussed
in Section 5. Lastly, all concluding remarks and
future works are summarized in Section 6.

2 Related Works

Relation Extraction (RE), as a core task of Infor-
mation Extraction (IE), plays a significant role in
natural language processing. RE aims to identify
or classify the relations between (head and tail) en-
tities in a given text. In this work, we primarily
focus on sentence-level RE approaches.

RE can be achieved through various meth-
ods: supervised, unsupervised, distant supervi-
sion, weak supervision, and rule-based (Pawar
et al., 2017). Supervised methods require costly,
annotated data (Pawar et al., 2017); distant su-
pervision reduces data needs but risks noise (Ay-
dar et al., 2020); weak supervision may lead to
semantic drift (Agichtein and Gravano, 2000);
and rule-based methods are limited by predefined

3The source code: https://github.com/sefeoglu/
fine-tuned-llm-relation-extraction

rules (Pawar et al., 2017). In addition to the fun-
damental approaches, leading RE methods with
fine-tuned LLMs include Cohen et al.’s span pre-
diction for broader entity relations (Cohen et al.,
2020), DeepStruct’s structural enhancements, Zhou
et al.’s entity-aware self-attention (Zhou and Chen,
2022), and Li et al.’s label graph for top-K pre-
diction analysis (Li et al., 2022). Furthermore,
Zhang et al. (Kai Zhang, 2023) used multiple-
choice prompts, improving RE predictions with
added context, though it does not surpass prior
rule-based methods. Chen et al. (Chen et al., 2024)
introduced context-aware prompt tuning, while
RAG4RE (Efeoglu and Paschke, 2024) utilized
retrieval-augmented prompting, all tested on TA-
CRED and similar benchmarks.

In this work, we aim to fine-tune LLMs on RE
prompt datasets to improve domain adaptation and
evaluate their performance on benchmark datasets.

3 Methodology

This work addresses the challenge of sentence-
level RE using general-purpose LLMs with zero-
shot prompting. General-purpose LLMs struggle
with domain-specific relation types, so we fine-tune
them on a small RE prompt dataset to improve their
ability to identify entity relations. We detail the
fine-tuning process in Section 3.1 and describe the
integration of fine-tuned LLMs into the RAG4RE
approach in Section 3.2.

3.1 Fine-tuning Models on Prompt Datasets
We fine-tune both encoder-decoder models (such as
Flan-T5) and decoder-only models, e.g., Llama2-
7B and Mistral-7B, on RE prompt datasets using
the Supervised Fine-Tuning Trainer (SFT) 4. This
fine-tuning process facilitates domain adaptation
for general-purpose LLMs. The SFT approach,
which requires labeled training data, is straight-
forward to implement and train. Additionally, we
utilize the Low-Rank Adaptation for quantized lan-
guage models (QLoRA) method (Dettmers et al.,
2023) to fine-tune LLMs. QLoRA optimizes model
parameters for text generation while minimizing
memory usage on GPUs, which is crucial in sce-
narios with limited GPU memory.

3.1.1 Prompt Dataset Generation.
The RE prompt dataset is constructed following the
template outlined in a previous study by (Efeoglu

4SFT: https://huggingface.co/docs/trl/sft_
trainer

2
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Figure 2: Fine-tuning a pre-trained model on a prompt
dataset alongside the QLoRA adapter and SFT.
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Figure 3: RAG with fine-tuned Large Language Models.

and Paschke, 2024). This dataset originates from
a supervised dataset within a single domain and
utilizes a specialized template for fine-tuning, as
illustrated in Figure 4.

Problem Definition: 
Relation extraction is to identify
the relationship between two entities in a sentence.
Question: 
What is the relation type between tail and head entities 
according to given relationships below in the following sentence?
Query Sentence: {sentence}
Head: {head}
Tail: {tail }
Relation types:  {relation_list}
output format: relation_type

Prompt Template

Figure 4: A prompt template for fine-tuning a Large
Language Model.

3.1.2 Parameter Efficient Fine-Tuning.
We utilize QLoRA, a parameter-efficient fine-
tuning method that begins by applying quantiza-
tion to a pre-trained language model. This tech-
nique reduces the model’s high-precision floating-
point representation to a lower precision, thus de-
creasing memory usage. In particular, we use the
“4-bit NormalFloat (NF4)” format, which is opti-

mized for normally distributed data and has been
shown to outperform traditional 4-bit integers and
floats (Dettmers et al., 2023). Following quanti-
zation, LoRA is applied to specific model mod-
ules. Fine-tuning is subsequently conducted using
the SFT on a single-domain, task-specific prompt
dataset. The entire process is illustrated in Figure 2.

3.2 Retrieval-Augmented Generation with
Fine-Tuned Models

The Retrieval-Augmented Generation-based Rela-
tion Extraction (RAG4RE) approach, introduced
by (Efeoglu and Paschke, 2024), comprises three
modules: i.) Retrieval, ii.) Data Augmenta-
tion, and iii.) Generation. In our implementa-
tion, we integrate fine-tuned LLMs, trained on RE
prompt datasets, into the generation module of the
RAG4RE approach (Efeoglu and Paschke, 2024) to
address the task of identifying relations between en-
tities in sentences, as illustrated in Figure 3. Specif-
ically, the LLM used in the generation module of
RAG4RE is replaced with our fine-tuned LLMs,
while all other components of RAG4RE remain
unchanged.

4 Evaluation

We evaluate our approach using three benchmark
datasets and language models. In Section 4.1, we
detail the datasets, metrics, and experimental set-
tings, including the fine-tuning of language models
and the use of Retrieval-Augmented Generation
with these fine-tuned models. Then, we present
and analyze the experimental results, comparing
them with those of previous high-performing RE
methods in Section 4.2.

4.1 Experimental Setup

Through this section, we initially introduce the
datasets utilized for evaluation, followed by a de-
tailed settings used on the fine-tuning and the
RAG4RE framework (Efeoglu and Paschke, 2024)
leveraging our fine-tuned language model within
its generation module.
Datasets. We utilize three RE benchmark datasets:
TACRED (Zhang et al., 2017), TACREV (Alt et al.,
2020), and Re-TACRED (Stoica et al., 2021) as
detailed in Table 1. The prompt datasets are gener-
ated from the validation partitions of the benchmark
datasets. The training datasets are utilized in the
Embedding Database (DB) of RAG4RE (Efeoglu
and Paschke, 2024), while the test splits are used
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for evaluation. We ensure a strict separation be-
tween the training and test splits across all bench-
mark datasets.

Table 1: The table gives the number of sentences in the
test, train, and prompt datasets, as well as the number
of relations per benchmark dataset.

Split TACRED TACREV Re-TACRED

Train 68124 68124 58465
Test 15509 15509 13418
Validation 22631 22631 19584
Prompt Dataset (Generated from
Validation)

22631 22631 19584

# of Relations 42 42 40

4.1.1 Metrics
The benchmark datasets used—TACRED and its
variants—are imbalanced, with a high proportion
of “no_relation” labels (Alt et al., 2020; Stoica
et al., 2021), necessitating the use of micro metrics.
For instance, in the TACRED test split, 12,184 out
of 15,509 relations are labeled as “no_relation”.
We evaluate our experiments using the micro
F1-score, precision, and recall across all three
benchmark datasets.

4.1.2 Settings for Models
We employed the fine-tuning approach from Sec-
tion 3.1, using a single GPU with 48 GB of mem-
ory and the parameters detailed below. Building on
prior studies in RE with language models (Efeoglu
and Paschke, 2024; Kai Zhang, 2023), we utilized
the following LLMs:

– Flan T5 Large: An encoder-decoder
model (Chung et al., 2022; Pan et al., 2024)
with 770M parameters. LoRA parameters:
alpha=32, dropout=0.01, r=4. Hyperparam-
eters: learning rate=5e-5, batch size=8, one
epoch.

– Mistral-7B (Jiang et al., 2023; Pan et al., 2024)
and Llama2-7B (Pan et al., 2024; Touvron
et al., 2023): Decoder-only models with 7B
parameters, used in (Efeoglu and Paschke,
2024). We used Mistral-7B-Instruct-v0.2 5.
LoRA parameters: alpha=16, dropout=0.1,
r=64. Hyperparameters: learning rate=2e-4,
batch size=4, one epoch, weight decay=0.001.

5https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.2

4.1.3 Settings for RAG4RE

Due to limited GPU resources, we were unable to
fine-tune the Flan-T5 XL model used in the origi-
nal RAG4RE (Efeoglu and Paschke, 2024). There-
fore, all experimental settings are replicated from
RAG4RE with Flan-T5 Large. We strictly adhere
to the experimental setups established in RAG4RE
for our study.

4.2 Results

We evaluated language models fine-tuned on
prompt datasets detailed at Table 1 in Section 4.1.
Furthermore, we integrated these fine-tuned lan-
guage models into the RAG4RE (Efeoglu and
Paschke, 2024). It is worth noting that due to
constraints in GPU resources, we opted to utilize
Flan-T5 Large instead of Flan-T5 XL or XXL for
fine-tuning. Hence, we chose Flan-T5 Large and
meticulously replicated the RAG4RE experiments
within the confines of our work. In this section, we
first introduce the results of our fine-tuned models
and then the results of RAG4RE approach using
our fine-tuned models.

With regard to evaluation of fine-tuned LLMs
alongside LoRA on four different datasets, fine-
tuned Mistral-7B models accomplish outstanding
performance at Table 2. Notably, these fine-tuned
Mistral-7B models achieve remarkable F1 scores
of 89.64%, 94.61%, and 90.09% on TACRED,
TACREV, and Re-TACRED, respectively (see Ta-
ble 2). The Llama2-7B models fine-tuned on TA-
CRED and TACREV follow the fine-tuned Mistral-
7B models with micro-F1 scores of 88.20% and
93.75%. Unfortunately, the fine-tuned Llama2-7B
models could not exhibit the same performance on
Re-TACRED at Table 2. The fine-tuned Flan-T5
Large model takes second place with a F1 score
of 86.94% on Re-TACRED dataset (see Table 2).
Moreover, fine-tuning LLMs outperformed sim-
ple query prompting and the previously introduced
RAG4RE method (Efeoglu and Paschke, 2024).
Additionally, we integrated these fine-tuned LLMs
into the RAG4RE approach (Efeoglu and Paschke,
2024) in order to explore their potential in address-
ing the limitations of general-purpose LLMs.

Remarkably, the integration of fine-tuned mod-
els into RAG4RE yielded significant improve-
ments across all three datasets, including TA-
CRED, TACREV and Re-TACRED, particularly
when leveraging Flan-T5 Large at Table 2. While
we observed enhancements in RAG4RE’s perfor-
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Table 2: Experimental results on three benchmark datasets using different large language models (LLMs) and
methods.

TACRED TACREV Re-TACRED

LLM Method P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

T5 Large Simple Query 95.10 03.18 06.16 96.72 06.90 12.89 90.91 00.26 00.51
RAG4RE 85.99 34.50 49.20 91.28 08.20 15.04 80.77 00.27 00.53
Fine-tuning (QLoRA) 86.74 86.76 86.74 89.93 90.13 90.03 86.27 87.62 86.94
RAG4RE + Fine-tuning 89.93 94.17 92.00 95.02 93.66 94.34 92.31 93.73 93.01

LLaMA2-7B Simple Query (Efeoglu and Paschke, 2024) 84.97 01.21 02.38 74.64 00.44 00.87 80.20 00.94 01.86
RAG4RE (Efeoglu and Paschke, 2024) 81.23 55.01 65.59 84.89 54.57 66.43 55.93 03.46 06.52
Fine-tuning (QLoRA) 88.07 88.34 88.20 90.07 97.73 93.75 87.54 44.58 59.08
RAG4RE + Fine-tuning 80.29 89.18 84.50 84.10 97.26 90.22 83.53 68.16 75.07

Mistral-7B Simple Query (Efeoglu and Paschke, 2024) 94.67 11.96 21.23 92.34 05.15 09.75 64.64 05.48 10.11
RAG4RE (Efeoglu and Paschke, 2024) 87.81 30.10 44.83 93.23 22.59 36.36 60.19 30.08 40.11
Fine-tuning (QLoRA) 94.73 85.06 89.64 95.79 93.48 94.61 92.40 87.83 90.09
RAG4RE + Fine-tuning 86.57 82.88 84.68 97.58 79.33 87.50 90.86 85.95 88.33

mance, as detailed in (Efeoglu and Paschke, 2024),
with the integration of fine-tuned Llama-7B on Re-
TACRED, it is noteworthy that this improvement
was not observed on TACRED and TACREV. Re-
grettably, the results indicate that the use of Mistral-
7B as the fined-tuned LLM did not yield improve-
ments in the results of RE. The reason why the
performance of the RAG4RE approach could not
be improved when fine-tuned decoder-only models
are used as a generator in its architecture (see Fig-
ure 3) might be related to catastrophic forgetting.
Previous work fine-tuning language models on a
single task is also dealing with the same forgetting
problem (Feng et al., 2024).

As a result, the fine-tuned Flan-T5 Large mod-
els consistently achieved the highest F1 scores
among all the experiments conducted in this work,
particularly when integrated into the RAG4RE
framework proposed in (Efeoglu and Paschke,
2024). However, fine-tuned Mistral is slightly
better than RAG4RE using fine-tuned Flan-T5
Large on TACREV. In addition to the findings of
the experiments using Flan-T5 Large, both fine-
tuning language models on the dataset and integrat-
ing these fine-tuned models into RAG4RE outper-
formed zero-shot prompting approaches, such as
simple queries and RAG4RE (Efeoglu and Paschke,
2024) (see Table 2).

5 Discussion

Our findings demonstrate significant improvements
over the original RAG4RE (Efeoglu and Paschke,
2024) results on the TACRED, TACREV, and Re-
TACRED datasets, as shown in Table 3, when fine-
tuned Flan-T5 Large models are integrated into the
RAG4RE approach. Fine-tuning language models,
particularly in the context of domain adaptation, led
to substantial performance enhancements for both
general-purpose LLMs and RAG4RE (Efeoglu and

Paschke, 2024) (see Table 3). The F1 scores of
RAG4RE combined with fine-tuned LLMs sur-
passed those of previous approaches across all
three datasets, as illustrated in Table 3. Similarly,
the F1 scores of the fine-tuned LLMs exceeded
those of prior approaches that employed both zero-
shot prompting and pre-trained language models
(PLMs) (see Table 3). The best-performing re-
sults in our experiments, reported in Table 3, sur-
passed those of approaches using both zero-shot
prompting and PLMs on the TACRED, TACREV,
and Re-TACRED datasets, achieving F1 scores
of 92.00%, 94.61%, and 93.01%, respectively.
Furthermore, our RAG4RE+Fine-tuning approach
also outperformed the original RAG4RE utilizing
general-purpose LLMs. Therefore, our fine-tuned
LLMs achieved outstanding results on the TA-
CRED, TACREV, and Re-TACRED datasets when
integrated into the RAG4RE framework (Efeoglu
and Paschke, 2024).

6 Conclusion

We address domain adaptation challenges in zero-
shot relation extraction (RE) with general-purpose
LLMs by fine-tuning Flan-T5 Large, Mistral-
7B-Instruct-v0.2, and Llama2-7B on TACRED,
TACREV, and Re-TACRED datasets. Our fine-
tuned models outperformed previous methods, in-
cluding RAG4RE (Efeoglu and Paschke, 2024).
Integrating these fine-tuned LLMs into RAG4RE
significantly enhanced its performance, especially
with Flan-T5 Large. However, Llama2-7B and
Mistral-7B showed inconsistent F1 scores, likely
due to single-task fine-tuning issues. Future work
will explore multi-task fine-tuning for RE and
entity recognition to mitigate catastrophic forget-
ting (Feng et al., 2024; Liu et al., 2023; Yang et al.,
2024).
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Table 3: A comparison of our best-performing results with those of prior works in terms of F1-score.

Method Type Method TACRED TACREV Re-TACRED

DeepStruct (Wang et al., 2022) 76.8% - -
EXOBRAIN (Zhou and Chen, 2022) 75.0% - 91.4%

PLM-based KLG (Li et al., 2022) - 84.1% -
SP (Cohen et al., 2020) 74.8% -
GAP (Chen et al., 2024) 72.7% 82.7% 91.4%

LLMQA4RE (Kai Zhang, 2023) 52.2% 53.4% 66.5%
Zero-Shot prompting RationaleCL (Xiong et al., 2023) 80.8% - -

RAG4RE (Efeoglu and Paschke, 2024) 86.6% 88.3% 73.3%

RAG4RE+Fine-tuning (Ours) 92.00% 94.34% 93.01%

Fine-tuning (Ours) 89.64% 94.61% 90.09%

Limitations

This approach requires an embedding database
within the data augmentation module of the RAG
and retrieves the most similar sentence for use in
the RAG module. The most similar sentence with
the sentence in the query might have low similar-
ity score. The pre-trained language models may
already be familiar with these datasets, as noted
in (Efeoglu and Paschke, 2024), since they might
be trained on these benchmark datasets.

References
Eugene Agichtein and Luis Gravano. 2000. Snowball:

Extracting relations from large plain-text collections.
In Proceedings of the Fifth ACM Conference on Dig-
ital Libraries, DL ’00, page 85–94, New York, NY,
USA. Association for Computing Machinery.

Christoph Alt, Aleksandra Gabryszak, and Leonhard
Hennig. 2020. TACRED revisited: A thorough eval-
uation of the TACRED relation extraction task. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1558–
1569, Online. Association for Computational Linguis-
tics.

Mehmet Aydar, Ozge Bozal, and Furkan Ozbay. 2020.
Neural relation extraction: a survey. arXiv preprint.

Zhenbin Chen, Zhixin Li, Yufei Zeng, Canlong Zhang,
and Huifang Ma. 2024. Gap: A novel genera-
tive context-aware prompt-tuning method for rela-
tion extraction. Expert Systems with Applications,
248:123478.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, and 12 others.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Amir DN Cohen, Shachar Rosenman, and Yoav Gold-
berg. 2020. Relation classification as two-way span-
prediction. arXiv preprint arXiv:2010.04829.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Sefika Efeoglu and Adrian Paschke. 2024. Retrieval-
augmented generation-based relation extraction.
Preprint, arXiv:2404.13397.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024. Mixture-of-loras: An efficient
multitask tuning for large language models. Preprint,
arXiv:2403.03432.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Ralph Grishman. 2015. Information extraction. IEEE
Expert, 30(5):8–15.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Yu Su Kai Zhang, Bernal Jiménez Gutiérrez. 2023.
Aligning instruction tasks unlocks large language
models as zero-shot relation extractors. In Findings
of ACL.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’20, Red Hook, NY, USA. Curran
Associates Inc.

Bo Li, Wei Ye, Jinglei Zhang, and Shikun Zhang. 2022.
Reviewing labels: Label graph network with top-
k prediction set for relation extraction. Preprint,
arXiv:2212.14270.

Bingchang Liu, Chaoyu Chen, Cong Liao, Zi Gong,
Huan Wang, Zhichao Lei, Ming Liang, Dajun Chen,
Min Shen, Hailian Zhou, Hang Yu, and Jianguo Li.

6

https://doi.org/10.18653/v1/2020.acl-main.142
https://doi.org/10.18653/v1/2020.acl-main.142
https://doi.org/10.1016/j.eswa.2024.123478
https://doi.org/10.1016/j.eswa.2024.123478
https://doi.org/10.1016/j.eswa.2024.123478
https://doi.org/10.48550/ARXIV.2210.11416
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2404.13397
https://arxiv.org/abs/2404.13397
https://arxiv.org/abs/2403.03432
https://arxiv.org/abs/2403.03432
https://arxiv.org/abs/2212.14270
https://arxiv.org/abs/2212.14270


2023. Mftcoder: Boosting code llms with multitask
fine-tuning. Preprint, arXiv:2311.02303.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering.

Sachin Pawar, Girish K. Palshikar, and Pushpak Bhat-
tacharyya. 2017. Relation extraction : A survey.
arXiv preprint.

George Stoica, Emmanouil Antonios Platanios, and
Barnabas Poczos. 2021. Re-tacred: Addressing
shortcomings of the tacred dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(15):13843–13850.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, and 49 others. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, and Dawn Song. 2022. DeepStruct: Pre-
training of language models for structure prediction.
In Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 803–823, Dublin, Ireland.
Association for Computational Linguistics.

Weimin Xiong, Yifan Song, Peiyi Wang, and Sujian Li.
2023. Rationale-enhanced language models are bet-
ter continual relation learners. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15489–15497, Singa-
pore. Association for Computational Linguistics.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu,
Pheng Ann Heng, and Wai Lam. 2024. Unveiling
the generalization power of fine-tuned large language
models. Preprint, arXiv:2403.09162.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
35–45, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Wenxuan Zhou and Muhao Chen. 2022. An improved
baseline for sentence-level relation extraction. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 161–168, Online only. Association for
Computational Linguistics.

7

https://arxiv.org/abs/2311.02303
https://arxiv.org/abs/2311.02303
https://doi.org/10.1609/aaai.v35i15.17631
https://doi.org/10.1609/aaai.v35i15.17631
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/2022.findings-acl.67
https://doi.org/10.18653/v1/2022.findings-acl.67
https://doi.org/10.18653/v1/2023.emnlp-main.958
https://doi.org/10.18653/v1/2023.emnlp-main.958
https://arxiv.org/abs/2403.09162
https://arxiv.org/abs/2403.09162
https://arxiv.org/abs/2403.09162
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/D17-1004
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21


Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025), pages 8–15
August 1, 2025 ©2025 Association for Computational Linguistics

Benchmarking Table Extraction: Multimodal LLMs vs Traditional OCR

1,2Guilherme G.M. Nunes, 1Vitor Rolla, 1Duarte Pereira, 1Vasco Alves,
1André Carreiro, 2Márcia Lourenço Baptista

1Fraunhofer AICOS, Portugal
2Information Management School (IMS)
Universidade Nova de Lisboa, Portugal

{guilherme.nunes, vitor.rolla}@fraunhofer.pt

Abstract

This paper compares two approaches for table
extraction from images: deep learning com-
puter vision and Multimodal Large Language
Models (MLLMs). Computer vision models
for table extraction, such as the Table Trans-
former model (TATR), have enhanced the ex-
traction of complex table structural layouts
by leveraging deep learning for precise struc-
tural recognition combined with traditional Op-
tical Character Recognition (OCR). Conversely,
MLLMs, which process both text and image
inputs, present a novel approach by potentially
bypassing the limitations of TATR plus OCR
methods altogether. Models such as GPT-4o,
Phi-3 Vision, and Granite Vision 3.2 demon-
strate the potential of MLLMs to analyze and
interpret table images directly, offering en-
hanced accuracy and robust extraction capabil-
ities. A state-of-the-art metric like Grid Table
Similarity (GriTS) evaluated these methodolo-
gies, providing nuanced insights into structural
and text content effectiveness. Utilizing the
PubTables-1M dataset, a comprehensive and
widely used benchmark in the field, this study
highlights the strengths and limitations of each
approach, setting the stage for future innova-
tions in table extraction technologies. Results
show that deep learning computer vision tech-
niques still have a slight edge when extracting
table structural layout, but in terms of text cell
content, MLLMs are far better.

1 Introduction

With the increasing volume of digital documents,
such as records, manuals, and scientific papers,
processing and transforming them into representa-
tions that allow proper extraction of information
has become highly challenging (Staar et al., 2018).
Many of these documents contain tables, as they
help represent data in an organized, readable, and
straightforward manner. However, automatically
identifying and extracting structural layout and con-
tent information becomes more complex, which

can be crucial in scientific and business applica-
tions (Chen et al., 2023; Burdick et al., 2020).

This work explores and compares two strate-
gies for extracting tables contained in images in a
structured manner: (a) a deep learning computer vi-
sion model, Table Transformer (TATR), combined
with Optical Character Recognition (OCR) and
(b) the novel Multimodal Large Language Mod-
els (MLLMs). These approaches were evaluated
using metrics that capture how well they extract the
tables’ structural and text content.

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of existing
and related work. Section 3 outlines the followed
methodology and experiment details and Section 4
discusses the obtained results. Finally, conclusions
and limitations are drawn in Sections 5 and 6.

2 Related Work

This section reviews key literature on Optical Char-
acter Recognition (OCR) and table extraction, and
LLMs.

2.1 Table Extraction & OCR

OCR is fundamental in extracting text from tables
within images (Li et al., 2024). Traditional OCR
methods, including Tesseract (Smith, 2007) and
Paddle-OCR (Du et al., 2020), follow a two-step
process of text detection and recognition but often
struggle with extracting complex table structural
layouts due to diverse fonts and layouts (Ranjan
et al., 2021; Zhong et al., 2020).

Recent developments in OCR technology have
introduced bounding box detection, significantly
improving word localization and integration with
table structure recognition (Smock et al., 2023).
Models such as TableNet (Paliwal et al., 2019),
which utilize features for segmenting table regions,
and Microsoft’s TATR Transformer-based models
(Smock et al., 2021), which perform end-to-end
table detection and structural layouts recognition,
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have shown promising results. Challenges like
OCR errors, computational costs, and handling in-
tricate structures like merged cells remain despite
advancements.

2.2 Multimodal LLMs for Table Extraction
Multimodal LLMs can accomplish a wide range
of tabular tasks (Zheng et al., 2024). These mod-
els can bypass OCR for table extraction, providing
more efficient and accurate table extraction (Sui
et al., 2024). Models such as LLaVA (Liu et al.,
2023) and GPT-4o (Yenduri et al., 2023) can in-
corporate image and text processing, leveraging
their capabilities for improved table recognition.
Current research investigates representations and
prompting strategies like chain-of-thought to evalu-
ate the table’s structural understanding capabilities
of LLMs (Deng et al., 2024; Sui et al., 2024).

GPT-4 Omni (GPT-4o) (Yenduri et al., 2023)
was launched in May of 2024 by OpenAI. It in-
troduced several significant innovations as a foun-
dation model, dwarfing the other models. It has
a massive number of parameters — estimated to
be well over 1 trillion - compared to GPT-3, at
175 billion parameters, and GPT-1, at an estimated
117 million parameters (Shahriar et al., 2024). It
can process text, audio, and images at considerable
speeds, which grants it remarkable multimodal ca-
pabilities. It was pre-trained using data up to Octo-
ber 2023, including data from public datasets and
private partnerships.

Table LLaVA (Zheng et al., 2024; Liu et al.,
2023) is a LLaVA model fine-tuned on the MMTab
(Zheng et al., 2024) dataset. This enables it to
do table-based question answering and data in-
terpretation tasks. Regarding its limitations, Ta-
ble LLaVA focuses mainly on single tables in En-
glish, and the resolution of input images is rel-
atively low. MiniCPM-V (Yao et al., 2024) has
strong image capabilities, supporting up to 1.8M
pixels (high-resolution image perception) and ro-
bust OCR. It has multilingual support, covering
over 30 languages. Phi-3-Vision (Microsoft, 2024)
was trained on a diverse multimodal instruction tun-
ing dataset encompassing 500 billion tokens. The
Phi was trained primarily on English text. Lan-
guages other than English will experience worse
performance. The resolution of input images is
relatively low, similar to Table LLaVa. In multi-
ple vision-language benchmarks, it surpasses pre-
vious models. In most benchmarks, Granite Vi-
sion 3.2 (GraniteVision, 2025) outperforms Phi-

3-Vision. This model was trained on a curated
dataset comprising approximately 13 million im-
ages and 80 million instructions from public and
synthetic datasets. Granite Vision 3.2 is a stream-
lined and effective vision-language model tailored
for comprehending visual documents. It facilitates
the automated extraction of information from ta-
bles, charts, infographics, plots, and diagrams. The
resolution of input images is medium, greater than
Table LLaVa and Phi-3Vision.

Challenges persist, including accurately inter-
preting visual data, understanding complex table
formats, and designing practical input and prompt-
ing strategies (Sui et al., 2024). Models must effi-
ciently handle table serialization and adapt to var-
ious representation formats, ensuring accurate ex-
traction and reasoning.

2.3 Datasets

Several datasets with images of tables exist, includ-
ing SciTSR (Chi et al., 2019), TableBank (Li et al.,
2019), and PubTabNet (Zhong et al., 2020). With
nearly one million tables, PubTables-1M (Smock
et al., 2021) stands out due to its extensive scale
and detailed annotations, making it the most re-
cent and complete dataset. PubTables-1M’s rich
annotations, including spatial coordinates and OCR
ground truth, enable models to learn how to recog-
nize tables’ structural and textual aspects. In the
present study, the data used in the experiments is a
subset of the PubTables-1M dataset (Smock et al.,
2021).

3 Methodology

This section first explains the methodology used to
retrieve table outputs from large language models.
Then, in the second subsection, the evaluation met-
rics used are briefly detailed. Finally, in the third
subsection, the specific details of the experiment’s
execution are provided.

3.1 Prompting LLMs for Tables

Evaluating the TATR model on the PubTables-1M
dataset is straightforward, as the ground truth and
the model’s output prediction are essentially in the
same format. In contrast, submitting tables to a
large language model expecting structured output
introduces additional challenges, such as ensuring
proper formatting and dealing with potential re-
sponse inconsistencies due to LLMs’ generative
nature.
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Figure 1: (a) Example of table extraction with LLM structured output. The LLM converts the input image into a
structured JSON response, extracting the table attributes - headers and rows - whilst ignoring content outside the
table. This JSON is then converted into a comma-separated values (CSV) file for evaluation. (b) Structured output
schema definition. (c) The chain-of-thought prompt is used with the structured output technique.

An initial approach to extracting table informa-
tion involved prompting the models to produce an
output in a comma-separated values (CSV) for-
mat. This method was primarily effective for GPT
models, with performance varying based on the
prompts used; incorporating chain-of-thought in-
structions generally enhanced the outcomes. Alter-
natively, the Markdown format was tested for table
extraction. However, the absence of a standardized
Markdown structure across different models made
it challenging to evaluate and compare outputs con-
sistently.

Ultimately, OpenAI’s Structured Output func-
tionality was implemented alongside the chain-of-
thought instructions prompt (see Figure 1(c)), en-
suring compliance with a predefined JSON schema
(Figure 1(b). This approach established a standard-
ized format across all model outputs, facilitating

a more straightforward structural layout and cell
content evaluation. Figure 1(a) illustrates the trans-
formations applied to the tabular data and the chain-
of-thought prompt.

3.2 Evaluation
Several evaluation metrics were implemented to
evaluate the detection of the table’s structural lay-
outs and the content present in its cells. The struc-
tural layout metrics aim to classify the model’s
ability to detect and preserve the table’s organi-
zation, including its headers, rows, and columns.
The content metrics are based on string similarity,
which evaluates the accuracy and relevance of the
extracted information within the table cells.

Table shape accuracy evaluates how closely pre-
dicted table dimensions align with the actual ones,
calculated as the harmonic mean of row and col-
umn accuracy (Eq. 1). Significant inaccuracies in
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Figure 2: Example of projected row header cell and spanning cell, inspired by (Smock et al., 2021)

either dimension can significantly impact overall
accuracy.

Shape Acc =
2

1
Row Acc +

1
Column Acc

(1)

A vital metric utilized in this evaluation is the
F1 Score, which balances Precision and Recall to
gauge the accuracy of the extracted tables. The
F1 Score represents a harmonic mean of Precision
and Recall, ensuring that a model’s effectiveness
in extracting table data considers both correctness
and completeness.

Precision measures how many of the extracted
cells are accurate, in comparison to the total num-
ber of cells that were extracted.

Recall assesses how many ground truth cells
were accurately matched, guaranteeing a high re-
trieval rate.

The F1 Score (Eq. 2) integrates both metrics to
provide a comprehensive evaluation of the model’s
capability to correctly extract tables:

F1 =
2 · P ·R
P +R

(2)

,where P is precision and R is recall.
Various thresholds were utilized to determine

the similarity between predicted and ground truth
cell content to evaluate text-based table extraction
precisely.

• Threshold = 0 → Assesses structural lay-
out accuracy only, disregarding text con-
tent(Structural Layout F1 Score).

• Thresholds = 75, 85, 95, 100 → Evaluate
content similarity by using fuzzy matching
on the strings (text), requiring progressively
higher levels of textual accuracy (Cell content
F1 Score).

For example, a threshold of 75 permits minor text
variations (e.g., typing errors), while a threshold of
100 demands an exact correspondence between the
predicted and the ground truth content.

On the other hand, Grid Table Similarity (GriTS)
(Smock et al., 2022) evaluates tables in their ma-
trix form, accommodating topology, content, and
positioning within a unified framework. GriTS
operates by first computing the longest common
subsequence (LCS) between the ground truth and
predicted sequences. This step identifies which
items are missing in the truth sequence and which
are extra in the prediction, allowing for calculat-
ing precision, recall, and, ultimately, the F1 score
based on these discrepancies.

All metrics offer valuable insights, with GriTS
potentially providing more comprehensive results
due to its holistic assessment capabilities.

3.3 Experiment Details

PubTables-1M (Smock et al., 2021) has 94,000
samples of table images, of which 44,000 are classi-
fied as non-complex - they do not present spanning
cells or projected rows. Spanning cells are merged
cells that span horizontally or vertically from multi-
ple cells. At the same time, projected rows usually
subdivide tables encompassing situations where a
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specific row is not aligned with the other rows in
the table, acting as a subtitle (Smock et al., 2021;
Xiao et al., 2025) as shown in Figure 2.

Non-complex tables were selected because they
can effectively be represented as CSV files for
structural layout comparison. A final selection
of 1,000 samples ensured statistical compatibility
with the partial non-complex dataset. This subset
size was chosen considering the execution time and
costs required for processing images with local and
cloud-hosted LLMs.

Five different models were used in the experi-
ments: Granite Vision 3.2 (GraniteVision, 2025),
Phi-3-Vision (Microsoft, 2024), GPT-4o (OpenAI,
2024), GPT-4o-mini (OpenAI, 2024), and TATR-
OCR (Smock et al., 2023; Du et al., 2020). Granite
& other (Microsoft, 2024) was executed on a sys-
tem equipped with an NVIDIA V100 GPU with
32 GB of memory. Table 1 presents the models’
parameters and availability.

Model Parameters Availability

Granite Vision 3.2 2.8 Billion Free (Open Source)
Phi-3-Vision 3.8 Billion (approx.) Free (Open Source)
GPT-4o 1.8 Trillion (estimated) Paid
GPT-4o-mini 8 Billion (approx.) Paid
TATR 28 Million (approx.) Free (Open Source)

Table 1: Models parameters and availability.

As shown in Figure 1, an advanced prompting
technique was implemented to ensure structured
and interpretable outputs from LLMs. This ap-
proach guided the models to generate structured
responses, facilitating consistent evaluation across
different architectures (LLMs vs. TATR-OCR).
The performance of the models was measured us-
ing well-defined evaluation metrics, ensuring an
objective comparison.

4 Results

The results of the evaluation comparison, depicted
in Figure 3, provide a comprehensive overview of
the performance of the five models. These models
are TATR-OCR, Granite, Phi-3-Vision, GPT-4o-
mini, and the standout performer GPT-4o. The anal-
ysis begins in Figure 3(a) with the GriTS F1 Score,
where GPT-4o stands out with an impressive 89.6%,
closely followed by TATR-OCR at 87.8%. GPT-
4o-mini and Granite yield more moderate scores at
74.6% and 76.3%, respectively, while Phi-3-Vision
records a relatively lower score of 65.2%.

The Structural Layout F1 Score in Figure 3(a)
further differentiates the models, with TATR-OCR

achieving a remarkable 98.2% and GPT-4o also
performing strongly at 94.9%. Granite and GPT-
4o-mini demonstrate similar mid-tier performance
levels at 81.5% and 81.9%, respectively, and Phi-
3-Vision lay behind at 70.8%. In terms of Table
Shape Accuracy, the pattern is similar: GPT-4o
and TATR-OCR excel with accuracies of 95.2%
and 98.4%, respectively, while Granite and GPT-
4o-mini maintain comparable scores of 82.3% and
82.6%. Phi-3-Vision again underperforms with
only 71.3% accuracy.

Beyond these overall metrics, the analysis delves
into structural layout errors in Figure 3(b). These
errors refer to discrepancies in the arrangement
of elements within the document, examining both
missing and extra rows and columns. GPT-4o
performs the best, with only 0.3% missing rows.
TATR-OCR, Phi-3-Vision, and GPT-4o-mini show
moderate performance, missing around 2.7-3.2%
of rows. Granite is the least reliable, missing 7.9%
of table rows, which could lead to major data loss.
For the extra rows, TATR-OCR and Granite are tied
as best performance with a percentage of 0.7%. Fol-
lowed by Phi-3-Vision with almost 2%, the worst
performers are GPT-4o with 5.2% and GPT-4o-
mini with 8.2%.

Looking at the missing columns GPT-4o and
TATR-OCR both have a 0.3%. Phi-3-Vision and
GPT-4o-mini are in mid-performance 1-1.5%, re-
spectively. The worst is Granite with 4.2% missing
columns. Regarding the extra columns percentage
Granite is again the worst with almost 15%, Phi-3-
Vision and GPT-4o-mini are in mid-performance
4.7 - 5.4%. TATR-OCR is close to GPT-4o with
0%.

Overall, the analysis of structural layout errors
highlights significant differences in performance
among the models. GPT-4o consistently demon-
strates the best overall accuracy, only worse by a
high percentage of extra rows. TATR-OCR also
performs well, particularly in handling columns.
Phi-3-Vision and GPT-4o-mini exhibit moderate
performance, showing errors in missing and ex-
tra elements. However, Granite proves to be the
least reliable, with the highest percentage of miss-
ing rows and columns and a substantial number of
extra columns. These discrepancies in structural
layout accuracy can significantly impact data in-
tegrity, reinforcing the importance of selecting the
most precise model for document processing tasks.

The analysis of string matching thresholds in
Figure 3(c) reveals distinct performance variations
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Figure 3: (a) General Table Evaluation Metrics: GriTS F1 Score - table similarity based on structural layout and cell
text content, Structural Layout F1 Score - evaluate structural cell positions, and Table Shape Accuracy - evaluate the
harmonic mean of the table’s rows and columns accuracy. (b) Structural Layout Errors: percentage of missing/extra
rows and columns. (c) String Matching Thresholds: Cell content F1 Score of the cell position and content with
different thresholds for cell string match.

among the five models. These thresholds are cru-
cial as they determine the level of similarity re-
quired for a match, with a higher threshold indicat-
ing a stricter matching condition. GPT-4o consis-
tently achieves the highest scores across all thresh-
olds, demonstrating superior accuracy in string
matching. TATR-OCR follows closely behind,
maintaining a competitive performance. Phi-3-
Vision and GPT-4o-mini exhibit moderate results,
while Granite consistently underperforms, scoring
the lowest in most cases. As the matching threshold
increases from 75 to 100, all models experience a
decline in performance, indicating that stricter crite-
ria lead to greater difficulty in identifying matches.
Despite this trend, GPT-4o remains the most reli-
able, maintaining high accuracy even at the strictest
threshold. These findings highlight the varying ro-

bustness of different models and emphasize the im-
portance of selecting the most suitable one based
on the required level of precision.

In conclusion, the analysis underscores the im-
portance of selecting the most suitable model for
the task at hand. GPT-4o consistently outperforms
the other models across all key metrics, exhibit-
ing superior structural accuracy and text recog-
nition capabilities. GPT-4o-mini, on the other
hand, emerges as a strong alternative, showcas-
ing its potential with slightly lower performance.
TATR-OCR and Phi-3-Vision deliver similar mid-
range results, while Granite shows the least favor-
able performance with significant structural errors
and lower text accuracy. These findings suggest
that GPT-4o and GPT-4o-mini are the most reli-
able choices for table extraction tasks, whereas

13



the other models may benefit from additional post-
processing steps to improve their accuracy.

5 Conclusions

TATR outperforms the LLMs when only the table
structural layout is considered based on the metric
results. If the exact content of the cell is not a top
priority, using TATR with OCR is a viable choice,
keeping in mind that the OCR may not correctly
identify all the cells. However, when the text con-
tent of the cells is considered, the LLMs perform
better than TATR with OCR. GPT-4o is by far the
best among the LLMs tested, but is also the largest
and most expensive model. Smaller models can be
a good option depending on the specific use case
and the volume of data to be processed.

6 Limitations

The primary limitation of this study is that it does
not use complex tables from the original dataset in
the experiments, particularly those with spanning
cells and projected rows, because of the difficulty
in representing them as a matrix. This constraint
affects the generalization of the findings to more
intricate table layouts. Additionally, inconsisten-
cies were observed in the responses generated by
MLLMs, despite employing structured output for-
mats. This impacted metrics negatively, as con-
version to JSON/CSV was not achievable in such
cases.

To address these limitations, future work could
explore advanced prompting techniques to mitigate
inconsistencies in LLM outputs. One-shot and few-
shot learning, fine-tuning, and reflection-based ap-
proaches (e.g., Haystack framework (Pietsch et al.,
2019)) can improve output consistency and relia-
bility. Also, alternative structured output (to in-
clude more complex table structures, especially
with spanning cells) and prompting strategies (e.g.,
a two-step process with a preliminary table gener-
ation followed by parsing) could be investigated,
and performing a sensitivity analysis of the model’s
decoding parameters should be considered. Finally,
examining whether improvements in prompting
(like chain-of-thought or step-by-step reasoning)
might further enhance structured outputs could also
provide meaningful insights.

While TATR was chosen as the OCR option for
this study, exploring additional traditional meth-
ods or hybrid systems (combining OCR with LLM
strategies) could yield a more comprehensive com-

parison. A discussion on computational cost versus
performance can also be raised, especially noting
that while models like GPT-4o have trillions of pa-
rameters, simpler models like TATR operate at a
much lower price.

Furthermore, future work must consider com-
plex tables, but also incorporate more diverse
"other" tabular data sources, such as SciTSR (Chi
et al., 2019), TableBank (Li et al., 2019), and Pub-
TabNet (Zhong et al., 2020), which would provide a
more comprehensive evaluation of table extraction
performance across different domains and table
complexities.

Finally, experimenting with new LLMs specifi-
cally fine-tuned for table extraction - such as Gem-
ini 2.5 pro (Gemini-Team, 2025), Table LLaVA
(Zheng et al., 2024), Mistral OCR (et. al., 2023),
and MiniCPM-V (Yao et al., 2024) - could also im-
prove table structural layout recognition and con-
tent extraction accuracy. A more detailed qualita-
tive analysis of errors could pinpoint where each
model fails, thereby offering insights for further
improvements. These approaches would contribute
to a more robust and adaptable table extraction
framework.
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Abstract

Large language models (LLMs) have achieved
remarkable success in natural language process-
ing (NLP), but they often struggle to capture
explicit linguistic structures and world knowl-
edge. To address this limitation, we propose a
hybrid model that integrates LLMs with graph
neural networks (GNNs) to inject structured
knowledge into NLP tasks. Our approach lever-
ages the strengths of both components: LLMs
provide rich contextual representations, while
GNNs encode explicit structural priors from
sources such as dependency trees, Abstract
Meaning Representations (AMRs), and knowl-
edge graphs. We evaluate the hybrid model on
a diverse set of tasks, including semantic pars-
ing, multi-hop question answering, text sum-
marization, commonsense reasoning, and de-
pendency parsing. Experimental results demon-
strate consistent improvements over both stan-
dalone baselines and state-of-the-art methods,
with relative gains of up to 2.3% in Exact Match
scores for multi-hop QA and 1.7% in accuracy
for commonsense reasoning. Ablation studies
and sensitivity analyses further highlight the
importance of balancing contextual and struc-
tural information. By bridging the gap between
unstructured textual data and structured knowl-
edge, our work advances the state of the art in
NLP and paves the way for more interpretable
and robust language models.

1 Introduction

Models like GPT-3 (Brown et al., 2020), BERT
(Devlin et al., 2019), and T5 (Raffel et al., 2020)
have demonstrated remarkable capabilities in un-
derstanding and generating human-like text. How-
ever, despite their successes, LLMs often struggle
to capture explicit linguistic structures, such as
syntactic dependencies or semantic relationships,
which are critical for tasks requiring structured rea-
soning (Liu et al., 2021). This limitation raises
an important question: Can we enhance LLMs by

integrating structured knowledge into their archi-
tectures?

In this paper, we propose a hybrid model
that combines LLMs with graph neural networks
(GNNs) to inject structured knowledge into NLP
tasks. Our approach leverages the strengths of both
components: LLMs provide rich contextual rep-
resentations, while GNNs encode explicit struc-
tural priors from sources such as dependency trees,
Abstract Meaning Representations (AMRs), and
knowledge graphs. By fusing these representations,
our model achieves superior performance on tasks
requiring both linguistic structure and world knowl-
edge, such as semantic parsing, multi-hop question
answering, and commonsense reasoning.

The motivation for this work stems from the ob-
servation that structured data plays a crucial role
in many NLP applications. For example, AMRs
have been shown to improve semantic parsing (Cai
et al., 2020), while knowledge graphs like Con-
ceptNet enhance commonsense reasoning (Speer
et al., 2017). Despite the success of structured ap-
proaches in pre-LLM eras, their integration with
modern LLMs remains underexplored. Our work
bridges this gap by demonstrating how structured
knowledge can be effectively injected into LLMs
via GNNs, leading to improved interpretability, ro-
bustness, and task-specific performance.

This paper makes three key contributions: (1)
We propose a novel hybrid architecture that inte-
grates LLMs with GNNs for structured knowledge
injection; (2) We evaluate our model on a diverse
set of tasks, including semantic parsing, summa-
rization, and commonsense reasoning, achieving
state-of-the-art results; and (3) We conduct abla-
tion studies and sensitivity analyses to gain insights
into the model’s behavior and limitations. Through
these contributions, we aim to advance the under-
standing of how structured knowledge can comple-
ment the capabilities of LLMs in the modern NLP
landscape.
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2 Literature Review

The integration of structured knowledge into NLP
systems has long been a cornerstone of research in
computational linguistics. Early efforts focused on
rule-based methods and statistical models, which
relied heavily on handcrafted features and anno-
tated datasets (Manning and Schütze, 1999). With
the advent of deep learning, attention-based archi-
tectures like transformers (Vaswani et al., 2017)
enabled end-to-end learning of contextual represen-
tations, reducing the reliance on explicit structural
annotations. However, recent studies have high-
lighted the limitations of purely surface-level ap-
proaches, particularly in tasks requiring structured
reasoning (Liu et al., 2021).

One promising direction is the use of graph neu-
ral networks (GNNs) to encode structured data.
GNNs have achieved significant success in do-
mains such as social network analysis (Wu et al.,
2021), molecular property prediction (Gilmer et al.,
2017), and NLP tasks involving graphs, such as de-
pendency parsing (Dozat and Manning, 2017) and
AMR generation (Cai et al., 2020). For example,
Zhang et al. (2020) demonstrated that GNNs could
effectively capture hierarchical relationships in text,
improving performance on tasks like relation ex-
traction and event detection. Similarly, (Wang et al.,
2021) proposed a GNN-based framework for en-
coding discourse graphs, achieving state-of-the-art
results on narrative understanding tasks. We have
also studied similar approaches in (Wang et al.,
2024; Zhang and Sen, 2024; Peng et al., 2025; Yi
et al., 2025).

Another line of research explores the integra-
tion of external knowledge into LLMs. Knowl-
edge graphs like ConceptNet (Speer et al., 2017)
and Wikidata (Vrandečić and Krötzsch, 2020) have
been widely used to augment NLP models with
factual and commonsense information. Recent
work has focused on combining knowledge graphs
with LLMs through techniques such as retrieval-
augmented generation (Lewis et al., 2020b) and
knowledge-aware fine-tuning (Petroni et al., 2020).
For instance, He et al. (2021) introduced a method
for injecting knowledge graph embeddings into
transformer layers, achieving significant improve-
ments in question answering and fact verification
tasks. We have also studied similar work like
(Wang et al., 2025; Ding et al., 2025a).

Despite these advances, the combination of
LLMs and GNNs remains relatively unexplored.

A notable exception is the work of Huang et al.
(2021), who proposed a hybrid model for incor-
porating dependency parse trees into LLMs using
GNNs. Their results demonstrated that structured
priors could enhance the syntactic understanding of
LLMs, particularly in low-resource settings. Sim-
ilarly, Li et al. (2022) explored the use of GNNs
to encode AMRs for semantic parsing, achieving
state-of-the-art performance on the AMR Bank
dataset.

Our work builds on these foundations by propos-
ing a generalizable framework for integrating struc-
tured knowledge into LLMs via GNNs. Unlike
prior approaches, which focus on specific tasks or
types of structured data, our model is designed to
handle a wide range of tasks and datasets, making
it highly versatile. Furthermore, our experiments
include ablation studies and sensitivity analyses,
providing deeper insights into the contributions of
each component.

3 Methodology

Our proposed hybrid model combines the strengths
of LLMs and graph neural networks (GNNs) to
inject structured knowledge into NLP tasks. The ar-
chitecture consists of three main components: (1) a
pretrained LLM for contextual representation learn-
ing, (2) a GNN for encoding structured data, and
(3) a fusion mechanism that integrates the outputs
of the two components. Below, we describe each
component in detail, including its mathematical
formulation, key parameters, and how it relates to
prior work in the literature.

The encoded structure refers to a vector repre-
sentation derived from the Abstract Meaning Rep-
resentation (AMR) graph using a Graph Neural
Network (GNN). This vector captures the semantic
relationships and hierarchical dependencies within
the graph, enabling the model to leverage structural
information effectively.

3.1 Pretrained Large Language Model (LLM)
The backbone of our model is a pretrained LLM,
such as BERT (Devlin et al., 2019) or T5 (Raffel
et al., 2020), which provides rich contextual em-
beddings for input text. These embeddings capture
syntactic, semantic, and discourse-level informa-
tion from raw text, making them highly effective
for downstream NLP tasks. Mathematically, the
LLM can be represented as:

HLLM = fLLM(X; θLLM) (1)
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where X is the input text tokenized into sub-
word units, HLLM ∈ RT×dLLM is the contextual
embedding matrix for T tokens, with each token
represented by a dLLM-dimensional vector, fLLM
is the transformer-based architecture of the LLM,
and θLLM represents the pretrained parameters of
the LLM. This component aligns with prior work
on transformers (Vaswani et al., 2017), which intro-
duced the self-attention mechanism for capturing
long-range dependencies in text. However, while
transformers excel at learning contextual repre-
sentations, they often struggle to encode explicit
structural relationships (Liu et al., 2021). To adapt
the LLM to specific tasks, we fine-tune it on task-
specific objectives. For example, in summarization,
the LLM is trained to generate concise summaries,
while in dependency parsing, it predicts syntactic
relations.

3.2 Graph Neural Network (GNN) for
Structured Data Encoding

To incorporate explicit structural priors, we use a
GNN to encode structured data such as Abstract
Meaning Representations (AMRs), dependency
parse trees, or knowledge graphs. The GNN oper-
ates on graph-structured inputs, where nodes rep-
resent entities or concepts, and edges represent re-
lationships between them. Following Gilmer et al.
(2017), we adopt a message-passing framework to
propagate information across the graph. The math-
ematical formulation of the GNN is as follows:

h
(l+1)
i = σ


 ∑

j∈N (i)

W(l) · h(l)
j + b(l)


 (2)

where h
(l)
i ∈ RdGNN is the hidden representation

of node i at layer l, N (i) is the set of neighbors of
node i, W(l) ∈ RdGNN×dGNN and b(l) ∈ RdGNN are
learnable parameters, σ is a nonlinear activation
function (e.g., ReLU), and dGNN is the dimension-
ality of the GNN embeddings. After L layers of
message passing, the node representations are ag-
gregated to produce a fixed-size graph embedding
HGNN ∈ RdGNN using a readout function:

HGNN = greadout({h(L)
i |i ∈ V}) (3)

where V is the set of all nodes in the graph, and
greadout could be a mean pooling, max pooling, or
attention-based aggregation function. For exam-
ple, in AMR generation, the GNN encodes the

AMR graph into a vector representation; in com-
monsense reasoning, the GNN encodes paths from
ConceptNet to enrich the model’s understanding
of relationships between concepts; and in depen-
dency parsing, the GNN encodes dependency trees
to guide the model in predicting syntactic struc-
tures. This component builds on prior work in
graph neural networks (Wu et al., 2021), which
have demonstrated their effectiveness in encoding
structured data.

3.3 Fusion Mechanism
The outputs of the LLM (HLLM) and GNN (HGNN)
are combined using a fusion mechanism that bal-
ances their contributions. Specifically, we explore
three fusion strategies:

• Feature Concatenation: The embeddings
from the LLM and GNN are concatenated
and passed through a feedforward network:

Hfused = FFN([HLLM;HGNN]) (4)

• Attention-Based Fusion: A multi-head atten-
tion mechanism (Vaswani et al., 2017) dynam-
ically weights the contributions of the LLM
and GNN based on the task requirements:

Hfused = Attention(HLLM,HGNN) (5)

• Residual Connections: To retain the
strengths of both components, we add residual
connections:

Hfused = HLLM +Wres ·HGNN (6)

The fused representation Hfused is then passed
to a task-specific output layer (e.g., a classifier for
QA, a decoder for summarization). This fusion
strategy is inspired by prior work on combining het-
erogeneous representations (He et al., 2021), which
demonstrated the benefits of integrating structured
and unstructured knowledge.

3.4 Key Parameters and Tuning Strategies
Several parameters affect the performance of our
hybrid model. Below, we discuss these parameters
and the strategies used to tune them:

- Number of GNN Layers (L): Increasing L
allows the GNN to capture higher-order relation-
ships in the graph but may lead to overfitting. We
perform grid search over L ∈ {2, 3, 4} and select
the value that maximizes validation performance.

18



- Dimensionality of Embeddings (dLLM,
dGNN): Larger dimensions improve representa-
tional capacity but increase computational cost. For
LLMs, we use pretrained dimensions (e.g., 768
for BERT-base). For GNNs, we experiment with
dGNN ∈ {128, 256, 512}.

- Fusion Mechanism: The choice of fusion strat-
egy determines how effectively the model leverages
both components. We compare feature concatena-
tion, attention-based fusion, and residual connec-
tions on the validation set.

- Learning Rate and Batch Size: These hyper-
parameters control the optimization process. We
use a learning rate scheduler and tune batch sizes
in {16, 32, 64}.

- Regularization Techniques: Dropout (Srivas-
tava et al., 2014) and weight decay prevent overfit-
ting. We apply dropout rates in {0.1, 0.2, 0.3} and
weight decay coefficients in {1e−4, 1e−5}.

For each task, we initialize the parameters based
on the characteristics of the dataset. For exam-
ple, in semantic parsing, we prioritize higher-
dimensional GNN embeddings to capture complex
AMR structures, while in summarization, we em-
phasize attention-based fusion to ensure fluency
and coherence.

3.5 Training Strategy

We adopt a multitask learning approach to train
the hybrid model. During training, the LLM is
fine-tuned on task-specific objectives (e.g., cross-
entropy loss for classification tasks), the GNN is
trained to encode structured data using supervised
learning (e.g., predicting missing edges in knowl-
edge graphs), and the fusion mechanism is opti-
mized to align the outputs of the LLM and GNN
with the ground truth labels. Additionally, we em-
ploy regularization techniques such as dropout (Sri-
vastava et al., 2014) and weight decay to prevent
overfitting. For tasks requiring structured outputs
(e.g., AMR generation), we use structured loss
functions like Smatch (Cai and Knight, 2013) to
measure performance during training. This training
strategy builds on prior work in multitask learning
(Liu et al., 2021) and knowledge injection (He et al.,
2021), which demonstrated the benefits of jointly
optimizing multiple components. Similar training
strategy can be found in (Zhong and Wang, 2025;
Ding et al., 2025b) as well.

3.6 Relation to Literature Reviewed

Our methodology integrates ideas from several
strands of research: the use of transformers for
contextual representation learning (Vaswani et al.,
2017), the application of GNNs for encoding struc-
tured data (Gilmer et al., 2017; Wu et al., 2021), the
combination of structured and unstructured knowl-
edge (He et al., 2021; Zhang et al., 2020), and
multitask learning and regularization techniques
(Liu et al., 2021; Srivastava et al., 2014). By syn-
thesizing these approaches, our model bridges the
gap between unstructured textual data and struc-
tured knowledge, advancing the state of the art in
NLP.

Each dataset serves as a testbed for evaluating
specific aspects of our hybrid model. For example,
in AMR Bank, the GNN encodes gold-standard
AMR graphs, while the LLM generates sentence
representations. The fusion mechanism combines
these representations to predict AMRs for unseen
sentences, evaluated using Smatch (Cai and Knight,
2013). In HotpotQA, the GNN encodes discourse
graphs derived from input documents, capturing
relationships between sentences and entities. The
LLM provides contextual embeddings for the ques-
tion and document, and the fusion mechanism in-
tegrates these representations to predict answers,
evaluated using Exact Match (EM) and F1 scores
(Yang et al., 2018). Similarly, in CNN/DailyMail,
the GNN encodes discourse graphs representing
the structure of the input article, while the LLM
generates abstractive summaries. The fusion mech-
anism ensures that the generated summaries are
both fluent and structurally coherent, evaluated us-
ing ROUGE scores (Lin, 2004). By leveraging
these datasets, we aim to demonstrate the versatil-
ity and effectiveness of our hybrid model across a
wide range of NLP tasks.

4 Experiments

4.1 Datasets

We evaluate our hybrid model on several datasets
that require both linguistic structure and world
knowledge. Below are the datasets used in our
experiments:

- AMR Bank
Source: https://amr.isi.edu/
Description: A dataset of sentences annotated with
Abstract Meaning Representations (AMRs), which
capture semantic structures as directed acyclic
graphs (Banarescu et al., 2013).
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Tasks: Semantic parsing, commonsense reasoning.
- HotpotQA

Source: https://hotpotqa.github.io/
Description: A question-answering dataset requir-
ing multi-hop reasoning over multiple documents
(Yang et al., 2018).
Tasks: Multi-hop question answering, fact retrieval.

- CNN/DailyMail
Source: https://github.com/abisee/
cnn-dailymail
Description: A large-scale summarization dataset
consisting of news articles paired with human-
written summaries (Nallapati et al., 2016).
Tasks: Abstractive and extractive summarization.

- ConceptNet
Source: https://conceptnet.io/
Description: A multilingual knowledge graph en-
coding commonsense relationships between con-
cepts (Speer et al., 2017).
Tasks: Commonsense reasoning, knowledge-
augmented NLP.

- Universal Dependencies (UD)
Source: https://universaldependencies.
org/
Description: A collection of treebanks annotated
with dependency parse trees, covering multiple
languages (Nivre et al., 2016).
Tasks: Dependency parsing, syntactic structure
modeling.

4.2 Role of Datasets in Evaluating the Hybrid
Model

Each dataset serves as a testbed for evaluating spe-
cific aspects of our hybrid model:

• AMR Bank: The GNN encodes gold-
standard AMR graphs, while the LLM gen-
erates sentence representations. The fusion
mechanism predicts AMRs for unseen sen-
tences, evaluated using Smatch (Cai and
Knight, 2013).

• HotpotQA: The GNN encodes discourse
graphs, while the LLM provides contextual
embeddings. The fusion mechanism predicts
answers, evaluated using EM and F1 scores
(Yang et al., 2018).

• CNN/DailyMail: The GNN encodes dis-
course graphs, while the LLM generates ab-
stractive summaries. The fusion mechanism
ensures coherence, evaluated using ROUGE
scores (Lin, 2004).

• ConceptNet: The GNN encodes paths, while
the LLM generates predictions. Accuracy is
used as the evaluation metric (Speer et al.,
2017).

• Universal Dependencies (UD): The GNN en-
codes dependency trees, while the LLM pre-
dicts syntactic structures. Performance is eval-
uated using UAS and LAS (Nivre et al., 2016).

4.3 Baselines

We compare our hybrid model (LLM+GNN)
against the following baselines:

- Pure LLM: A vanilla large language model
fine-tuned for each task.

- GNN-Only: A standalone graph neural net-
work trained to encode structured data (e.g., AMRs,
dependency trees).

- Concatenated Features: A simple concatena-
tion of LLM embeddings and GNN-encoded struc-
tural features.

- State-of-the-Art (SOTA): Existing models
specifically designed for each task (e.g., BART for
summarization (Lewis et al., 2020a), COMET for
commonsense reasoning (Bosselut et al., 2019)).

4.4 Results

4.4.1 Semantic Parsing (AMR Generation)

We evaluate our model’s ability to generate AMRs
for input sentences using the AMR Bank dataset.
We use the AMRBank dataset (version 3.0), which
contains 59,767 sentences annotated with AMR
graphs. Performance is measured using the Smatch
score, which compares the similarity between pre-
dicted and gold-standard AMRs (Cai and Knight,
2013).

Model Smatch Score (%)
Pure LLM 68.4
GNN-Only 70.2
Concatenated Features 72.5
SOTA (SPRING) 73.8
LLM+GNN (Ours) 75.1

Table 1: Smatch scores for AMR generation.

The baseline score for SPRING (73.8) is based
on its performance on the AMRBank 3.0 test set,
as reported in (Zhang et al., 2021).
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4.4.2 Multi-Hop Question Answering
(HotpotQA)

We test our model on the HotpotQA dataset, report-
ing Exact Match (EM) and F1 scores (Yang et al.,
2018).

Model EM (%) F1 (%)
Pure LLM 52.3 63.4
GNN-Only 55.6 66.7
Concatenated Features 58.9 69.1
SOTA (HGN) 60.4 70.2
LLM+GNN (Ours) 62.7 71.5

Table 2: Exact Match (EM) and F1 scores for Hot-
potQA.

4.4.3 Text Summarization (CNN/DailyMail)

We evaluate summarization performance using
ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-
L) (Lin, 2004).

Model ROUGE-
1 (%)

ROUGE-
2 (%)

ROUGE-
L (%)

Pure LLM 42.3 20.1 38.7
GNN-Only 43.5 21.4 39.8
Concatenated
Features

44.8 22.3 40.2

SOTA
(BART)

45.6 23.1 41.2

LLM+GNN
(Ours)

46.2 23.8 41.9

Table 3: ROUGE scores for CNN/DailyMail summa-
rization.

4.4.4 Commonsense Reasoning (ConceptNet)

We measure the accuracy of predicting missing
edges in ConceptNet triples (e.g., “dog → IsA →
?”) (Speer et al., 2017).

Model Accuracy (%)
Pure LLM 72.4
GNN-Only 74.8
Concatenated Features 76.3
SOTA (COMET) 78.5
LLM+GNN (Ours) 80.2

Table 4: Accuracy scores for ConceptNet commonsense
reasoning.

4.4.5 Dependency Parsing (Universal
Dependencies)

We evaluate dependency parsing performance us-
ing Unlabeled Attachment Score (UAS) and La-
beled Attachment Score (LAS) (Nivre et al., 2016).

Model UAS (%) LAS (%)
Pure LLM 84.2 79.8
GNN-Only 86.5 82.1
Concatenated Features 87.3 83.5
SOTA (mBERT) 88.1 84.2
LLM+GNN (Ours) 89.4 85.6

Table 5: UAS and LAS scores for dependency parsing.

4.5 Summary Graphs
To visualize the overall performance of our hybrid
model, we plot the relative improvement over the
best baseline (SOTA) for each task.

Figure 1: Relative improvement of the hybrid model
over SOTA across tasks.

5 Discussion

5.1 Synergistic Benefits of Combining LLMs
and GNNs

Our experimental results highlight the synergistic
benefits of combining large language models with
graph neural networks (GNNs). Across all evalu-
ated tasks—semantic parsing, multi-hop question
answering, text summarization, commonsense rea-
soning, and dependency parsing—the hybrid model
consistently outperforms both standalone baselines
and state-of-the-art methods. This performance im-
provement can be attributed to the complementary
strengths of the two components: LLMs excel at
capturing rich contextual representations from raw
text, while GNNs encode explicit structural priors
that guide the model toward more interpretable
and accurate predictions. For instance, in the
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AMR generation task, the hybrid model achieves
a Smatch score of 75.1%, surpassing the SOTA
baseline (SPRING) by 1.3%. Similarly, in multi-
hop question answering on HotpotQA, the model
demonstrates a 2.3% gain in Exact Match (EM)
over the best-performing baseline (HGN) (Yang
et al., 2018). These results suggest that structured
knowledge, when effectively integrated into LLMs,
enhances their ability to reason about complex lin-
guistic and world-knowledge relationships.

To further explore the contribution of each com-
ponent, we conducted an ablation study (Table 6)
where we incrementally removed parts of the hy-
brid architecture. The results reveal that both LLM
embeddings and GNN-encoded structural features
are critical for optimal performance. For example,
removing the GNN component leads to a signifi-
cant drop in Smatch scores for AMR generation
(from 75.1% to 68.4%), indicating that structured
priors play a vital role in semantic parsing (Cai
and Knight, 2013). Conversely, removing the LLM
component results in even steeper declines across
all tasks, underscoring the importance of contextual
representations learned by LLMs.

Ablation
Study

AMR
Smatch
(%)

Hotpot
QA EM
(%)

CNN/
Daily-
Mail
ROUGE-
L (%)

Full Hy-
brid Model
(LLM+GNN)

75.1 62.7 41.9

Without
GNN Com-
ponent

68.4 58.2 39.5

Without
LLM Com-
ponent

60.3 51.4 36.8

Concatenated
Features
Only

72.5 58.9 40.2

Table 6: Ablation study results.

5.2 Ablation Study Insights

The ablation study provides deeper insights into
how the hybrid model operates. When the GNN
component is removed, the model relies solely on
the LLM’s contextual embeddings, which lack ex-
plicit structural information. This limitation be-

comes particularly evident in tasks like AMR gen-
eration and dependency parsing, where the model
struggles to accurately capture hierarchical or re-
lational structures. On the other hand, remov-
ing the LLM component forces the model to rely
entirely on GNN-encoded features, which, while
structurally rich, lack the nuanced contextual under-
standing provided by LLMs. For example, in text
summarization, the absence of LLM embeddings
results in a sharp decline in ROUGE-L scores (from
41.9% to 36.8%), as the model fails to generate flu-
ent and coherent summaries (Lin, 2004). These
findings underscore the importance of integrating
both components to achieve balanced performance
across tasks.

5.3 Sensitivity Analysis

We also performed a sensitivity analysis to evaluate
how variations in key hyperparameters affect the
model’s performance. Specifically, we examined
the impact of the number of GNN layers, the size of
the LLM embeddings, and the weight assigned to
structural priors during training. Figure 2 illustrates
the sensitivity of our model to changes in these
parameters.

Figure 2: Sensitivity analysis of key hyperparameters.
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Increasing the number of GNN layers initially
improves performance but leads to diminishing
returns after three layers. This suggests that
overly deep GNN architectures may overfit to spe-
cific structural patterns, reducing generalizability.
Larger embedding sizes generally yield better per-
formance, but the gains plateau beyond 1,024 di-
mensions, indicating a trade-off between represen-
tational capacity and computational efficiency. As-
signing higher weights to structural priors enhances
performance on tasks requiring explicit structural
understanding (e.g., AMR generation, dependency
parsing) but slightly degrades performance on tasks
like text summarization, where fluency and coher-
ence are prioritized. This highlights the need to
carefully balance the contributions of LLMs and
GNNs based on the task requirements.

5.4 Task-Specific Observations

The hybrid model exhibits varying degrees of im-
provement across tasks, reflecting differences in
the types of knowledge required. In semantic pars-
ing and dependency parsing, the model achieves
the largest relative gains, with improvements of
1.3% and 1.4% in Smatch and LAS scores, respec-
tively. These tasks heavily rely on structured rep-
resentations, making them particularly well-suited
to benefit from GNN-encoded priors (Nivre et al.,
2016). In contrast, the gains in text summarization
are more modest, with a 0.7% increase in ROUGE-
L scores. This is likely because summarization
places greater emphasis on fluency and coherence,
which are already strengths of LLMs (Lewis et al.,
2020a). However, the hybrid model still outper-
forms baselines, suggesting that structured knowl-
edge contributes to generating more concise and
informative summaries.

In multi-hop question answering, the model
demonstrates a notable 2.3% improvement in Exact
Match (EM) scores. This task requires reasoning
over multiple documents and synthesizing infor-
mation from disparate sources, making it an ideal
testbed for evaluating the model’s ability to inte-
grate contextual and structural knowledge. The re-
sults suggest that the hybrid model excels at tasks
involving reasoning and inference, as it can lever-
age both the LLM’s contextual understanding and
the GNN’s structured representations to identify rel-
evant information and draw accurate conclusions
(Yang et al., 2018).

5.5 Limitations and Future Directions

Despite its strong performance, the hybrid model
has certain limitations that warrant further investi-
gation. First, the integration of GNNs introduces
additional computational overhead, particularly for
large-scale datasets or complex graph structures.
Future work could explore techniques for optimiz-
ing GNN architectures to reduce latency and im-
prove scalability. Second, the model’s reliance
on high-quality structured data (e.g., AMRs, de-
pendency trees) limits its applicability to domains
where such annotations are scarce or unavailable.
Developing methods for unsupervised or weakly
supervised learning of structural priors could ad-
dress this issue and broaden the model’s utility
(Banarescu et al., 2013).

Another area for future research is extending
the hybrid framework to multimodal tasks, such
as visual question answering or image captioning.
Preliminary experiments using scene graphs from
the Visual Genome dataset show promise, but fur-
ther exploration is needed to fully realize the poten-
tial of combining LLMs and GNNs in multimodal
settings (Krishna et al., 2017). Additionally, incor-
porating dynamic or task-specific structural priors
could enhance the model’s adaptability to diverse
tasks and domains.

6 Conclusion

In this paper, we introduced a novel hybrid model
that combines large language models with graph
neural networks to inject structured knowledge into
NLP tasks. Our approach addresses the limitations
of purely surface-level models by explicitly en-
coding linguistic and world-knowledge structures,
enabling more interpretable and robust predictions.
Through extensive experiments on tasks such as
semantic parsing, summarization, and common-
sense reasoning, we demonstrated that our model
consistently outperforms both standalone baselines
and state-of-the-art methods. Key findings include
significant improvements in multi-hop question an-
swering (+2.3% EM) and commonsense reason-
ing (+1.7% accuracy), underscoring the synergistic
benefits of combining LLMs and GNNs. Ablation
studies revealed that both components are critical
for optimal performance, while sensitivity analyses
provided insights into the impact of hyperparame-
ters.
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Abstract

While LLMs have grown popular in se-
quence labeling, linear-chain conditional ran-
dom fields (CRFs) remain a popular alterna-
tive with the ability to directly model interac-
tions between labels. However, the Markov
assumption limits them to interactions be-
tween adjacent labels. Weighted finite-state
transducers (FSTs), in contrast, can model
distant label–label interactions, but exact la-
bel inference is intractable in general. In
this work, we present regular-pattern-sensitive
CRFs (RPCRFs), a method of enriching stan-
dard linear-chain CRFs with the ability to learn
long-distance label interactions through user-
specified patterns. This approach allows users
to write regular-expression label patterns con-
cisely specifying which types of interactions
the model should take into account, allowing
the model to learn from data whether and in
which contexts these patterns occur. The result
can be interpreted alternatively as a CRF aug-
mented with additional, non-local potentials,
or as a finite-state transducer whose structure
is defined by a set of easily-interpretable pat-
terns. Critically, exact training and inference
are tractable for many pattern sets. We de-
tail how an RPCRF can be automatically con-
structed from a set of user-specified patterns,
and demonstrate the model’s effectiveness on
a sequence of three synthetic sequence model-
ing datasets.

1 Introduction

Sequence labeling is a common paradigm which
has provided a useful frame to modeling many
tasks in machine learning, ranging from Natural
Language Processing (e.g., part-of-speech (POS)
tagging (Schmid, 1994; Chiche and Yitagesu,
2022)) to protein structure prediction (Wang et al.,
2016; Mukanov and Takhanov, 2022) and weather
pattern prediction (Raje and Mujumdar, 2009).

Sequence labeling is fundamentally a structured
prediction task – individual labels are not in gen-

eral independent from one another, but should
form a coherent label sequence. E.g., in weather
pattern prediction, while the weather at a spe-
cific time point may be uncertain, it should still
be highly correlated to the weather at nearby time
points. In part-of-speech tagging, where an indi-
vidual word like “duck” may have ambiguous POS
in isolation, models strive to tag all words so that
they obtain a grammatical global POS sequence.

In recent years, research in NLP, but also be-
yond, has been dominated by the impressive de-
velopments in the area of neural networks. With
the widespread success of LLM encoders such as
BERT (Devlin et al., 2019), a common approach
is to represent the entire input sequence in the
joint latent space of such an LLM encoder, and to
make independent predictions for each token con-
ditioned on this joint latent representation.1 With
a sufficiently powerful encoder, models can try
to sidestep the issue of modeling interactions be-
tween output labels by modeling the interactions
at the level of the input sequence.

However, the success of LLMs is predicated on
both practical and conceptual factors.

• First, at the practical level, LLMs appear to
be a class of learning methods that capitalize
very well on the specific properties of natural
language – that is, the fact that most (hard)
constraints are local, that sequences are fairly
predictable, and that symbols are mildly am-
biguous. In contrast, research has found that
LLM-based models are not such clear suc-
cess stories when applied to languages with
different, properties, notably ’crisper’ ones
such as logics (Liu et al., 2024) and program-
ming languages (Fang et al., 2024)

• Second, LLMs work best when large
1Concretely, this would correspond to e.g. feeding the

input into BERT, and using a position-wise softmax output
layer.
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amounts of data are available for pre-training,
which again is not the case for all domains.

• Third, there are conceptual limits accord-
ing to which even strong encoder-based ap-
proaches to sequence modeling often cannot
be certain about a prediction. This may be
due to underlying ambiguity (e.g. no model
can be certain about the POS tags in an am-
biguous sentence like “I saw her duck.”),
limits imposed by data availability or model
complexity, or simply the difficulty of the un-
derlying task. In such cases, while models
won’t be able to always guess the correct la-
bel sequence, they stand to benefit from ex-
plicitly modeling interactions between labels,
such that they can exclude unlikely label se-
quences.

For these reasons, we believe that structured pre-
diction, with its ability to cope with a larger typol-
ogy of input languages, still warrants investigation
as a general approach to modeling interactions be-
tween labels.

In this paper, we extend linear-chain condi-
tional random fields (CRFs) (Lafferty et al., 2001),
maybe the most established approach to model-
ing label–label interactions. Within this frame-
work, interactions between adjacent labels are di-
rectly modeled, but distant labels are assumed to
only interact by proxy of their intervening labels.
This conditional independence assumption makes
CRFs well-suited for modeling local interactions
between labels, but leads to difficulties when long-
distance interactions are important, such as in quo-
tation detection (Scheible et al., 2016) but funda-
mentally unable to account for more global con-
straints in the interest of computational efficiency.

A related class of models are (neural) weighted
finite-state transducers or FSTs (Mohri, 1997; Eis-
ner, 2002; Rastogi et al., 2016). Like CRFs,
weighted FSTs define a distribution over label se-
quences conditioned on an input sequence, but
they do so by modeling transitions through latent
states. FSTs also obey a Markov assumption, but
in their case, this is a conditional independence as-
sumption on states, not on labels. While the state
at a given time step depends directly only on the
states of neighboring time steps, the output label
at that time step may not be conditionally inde-
pendent from distant output labels, depending on
the structure and weights of the underlying au-
tomaton, and which paths through that automaton

X A X B C B D

ϕ↗ ϕ↗ ϕ↗ ϕ↗ ϕ↗ ϕ↗ ϕ↗

ϕü ϕü ϕü

ϕ↔ ϕ↔ ϕ↔ ϕ↔ ϕ↔ ϕ↔

Figure 1: A linear-chain CRF can only model proba-
bilities of labels occurring at particular positions (ϕ↗),
and probabilities for labels being adjacent to one an-
other (ϕ↔). In particular, linear-chain CRFs cannot en-
courage or discourage the presence of nonlocal patterns
in the label sequence, e.g. the regular expression pat-
terns A.∗B and C.∗D. With an RPCRF, a set of such
patterns can be specified, and the model can learn the
probability of each of those patterns occurring at dif-
ferent positions of the label sequence (ϕü).

might explain those labels.
This ability to model distant interactions makes

weighted FSTs more powerful than CRFs but
also computationally more demanding. When the
underlying automaton is nondeterministic, infer-
ring the most probable label sequence is NP-hard
(Casacuberta and de la Higuera, 2000). Further-
more, it is often not obvious how to chose the cru-
cial automaton structure in order to be sensitive to
specific types of label–label interactions.

In this paper, we propose regular-pattern-
sensitive CRFs (RPCRFs), a model architecture
combining the strengths of CRFs and FSTs for
sequence labeling. An RPCRF can be seen as
a linear-chain CRF equipped with the ability to
be sensitive to specific types of long-distance in-
teractions between labels. When instantiating a
model, a user specifies a set of regular-expression
label patterns, such that the resulting model will
be able to punish or reward occurrences of those
patterns at specific positions in the label sequence.
In this way, particular types of long-distance in-
teractions can be chosen in a task-specific manner,
while the model is still free to learn how and when
those interactions are important for sequence la-
beling. Figure 1 illustrates how an RPCRF can
model long-distance interactions through sensitiv-
ity to patterns. Equivalently, RPCRFs are a frame-
work for specifying automaton structures for FSTs
in an easily interpretable manner such that the re-
sulting FST will be sensitive to exactly those long-
distance interactions the user would like to model.
Unlike in the general-case for weighted FSTs, an
RPCRF will always define a deterministic automa-
ton, support efficient exact inference like CRFs.
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We first characterize RPCRFs formally, and dis-
cuss how one can be implemented as a linear-chain
CRF defined over an alternative label sequence.
We then discuss the time-complexity of param-
eter estimation and inference. Finally, we per-
form a number of experiments on synthetic data
wherein we compare an RPCRF against a linear-
chain, demonstrating different types of nonlocal
label structures an RPCRF can be made sensitive
to through an appropriate choice of patterns.

2 Model architecture and construction

2.1 Formal description
For a label set Σ, a standard linear-chain CRF, pa-
rameterized by θ, defines a distribution over label
sequences y ∈ Σ∗ conditioned on input sequences
x in terms of a transition potential function ϕ↔

θ

and a emission potential function ϕ↗
θ :

Pθ(y | x) = 1

Z

∏

i

(
ϕ↔
θ (yi, yi+1) · ϕ↗

θ (x, yi, i)
)

(1)
Z, the partition function, acts as a constant of pro-
portionality, and is chosen such that all probabili-
ties sum to unity:

Z =
∑

y′

(∏

i

(
ϕ↔
θ (y′i, y

′
i+1) · ϕ↗

θ (x, y
′
i, i)
)
)

(2)
The transition potential function is applied pair-
wise to each pair of adjacent labels, and is re-
sponsible for modeling label-to-label interactions,
while the emission potential function models the
interaction between the input sequence and indi-
vidual labels.

An RPCRF can be understood as standard
linear-chain augmented with additional potential
functions defined by the set of specified patterns.
An RPCRF is additionally hyperparameterized by
a set L of regular-language patterns, and includes
a pattern potential function, ϕü

θ , to model the like-
lihood of different label-sequence patterns ending
at different positions in the sequence:

PL
θ (y | x) ∝ Pθ(y | x) ·

∏

L∈L

∏

i

ϕü

θ (L, i)
I (3)

with I = 1(L matches x ending at position i)

In principle, since deciding if an arbitrary regular-
language pattern matches ending on a given la-
bel index requires looking at all preceding labels,

this defines a CRF without linear-chain structure
wherein all labels are adjacent to one another.
However, as we will show next, the RPCRF distri-
bution can be represented as the distribution over
an auxiliary CRF which does have a linear-chain
structure, allowing for tractable training and exact
inference for these models.

2.2 Construction from patterns
This subsection describes how training and infer-
ence can be done with RPCRFs. As described,
these models are highly cyclic CRFs, for which
exact training and inference are infeasible in gen-
eral. However, we will present a method for defin-
ing an auxiliary, linear-chain CRF whose distribu-
tion happens to equal the RPCRF distribution. As
this auxiliary CRF has a linear-chain structure, pa-
rameter estimation and inference can be done with
the forward and Viterbi algorithms respectively.

We begin by defining a deterministic finite-state
automaton (DFA) Π whose state space captures
information about all patterns in L. Specifically,
we would like to define Π such that, as Π pro-
cesses the label sequence y, the current state of
Π at time step i can tell us which set of patterns
in L match y ending at position i. We achieve
this as follows: for each L ∈ L, we construct a
DFA for the language L′ = Σ∗ ⊕ L, i.e., the lan-
guage of label sequences with a suffix matching
L. We can then construct Π as a product of the au-
tomata for these L′, whose states are |L|-tuples of
the states the constituent automata. While accept-
ing y through Π, we can examine the state-tuple
at each time-step, and determine which set of pat-
terns match y ending at that time step by check-
ing which states in that tuple are accepting states
in their original automata. We can interpret Π as
a state-labeled DFA, where each state is labeled
with the set of patterns which match y ending at
that time-step when that state is reached. In par-
ticular, for each state q in Π, we will notate the set
of patterns which label that state as L[q] ⊆ L.

Once we have constructed Π, we will define an
auxiliary linear-chain CRF whose label set is the
set A of arcs (labeled arrows) of Π. As Π is deter-
ministic, each possible label sequence y ∈ Σ∗ cor-
responds to exactly one path through Π – as a path
through Π can be represented as a sequence of arcs
π ∈ A∗ , that path can be used directly as a label
sequence for our auxiliary CRF. We specifically
construct our auxiliary CRF such that the proba-
bility assigned to each arc sequence π is equal to
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the RPCRF probability for the corresponding label
sequence y:

P ′
θ(π | x) = 1

Z

∏

i

(
ϕ′↔
θ (πi, πi+1) · ϕ′↗

θ (x, πi, i)
)

= PL
θ (y | x) (4)

We achieve this through suitable definition of our
auxiliary CRF’s transition function ϕ′↔

θ and emis-
sion function ϕ′↗

θ :

ϕ′↔
θ (⟨q a−→r⟩ ,

〈
s b−→t

〉
) =

{
ϕ↔
θ (a, b) if r = s

0 otherwise
(5)

ϕ′↗
θ (x, ⟨q a−→r⟩ , i) =





0 if C
ϕ↗
θ (x, a, i)·∏

L∈L[r]

ϕü

θ (L, i) otherwise

(6)

where C = 1(i = 1 and q is not initial state of Π)

These definitions ensure that our auxiliary CRF
will only assign nonzero probability to proper
paths through Π (which start at the initial state
and contain only valid transitions), and, for those
paths, will assign a probability to path π equal to
the RPCRF distribution’s probability for the cor-
responding label sequence y. Figure 2 shows a
worked example of this construction, illustrating
the state-labeled automaton obtained from a set of
patterns and the auxiliary CRF computing a prob-
ability for a path through that automaton.

As the time- and space-complexity of our learn-
ing and inference algorithms will depend on the
size of Π, we would like to make Π as small as
possible. This can be achieved by minimizing all
automata for our L′ languages before constructing
Π, and pruning unreachable states in Π.

In the worst case, all states in Π will be reach-
able, and the size of Π equals the product of the
minimal number of states for all languages in L,
i.e. it is exponential in |L|. However, we observe
that in many cases where different patterns “share
information,” we can do significantly better than
this upper bound. For instance, when one pattern
is a strict prefix of another, we can include the pre-
fix pattern “for free”, without necessitating any ad-
ditional states, as the product construction has the
effect of simply labeling which states in the larger
automaton match the prefix. Unfortunately, a full

characterization of such synergies falls outside the
scope of the current work.

3 Experiments

To concretely demonstrate the differences between
RPCRFs and linear-chain CRFs, we perform three
experiments with synthetic data, each demonstrat-
ing a particular class of problem where an RPCRF
can model interactions not capturable by a linear-
chain CRF. Each experiment will feature a syn-
thetic dataset exhibiting a certain type of label
structure, and a pattern set designed to be sensitive
to that label structure. As all labels are trivially
independent under certainty (i.e. when all label
probabilities are either zero or one), all synthetic
data tasks are fundamentally underspecified, such
that models will always need to “guess” the right
answer from some space of possibilities. Thus, for
each experiment, in addition to reporting model
performance, we will report the highest level of
performance possible by a hypothetical model em-
ploying an optimal strategy.

For all synthetic data experiments, we will use
digits as input symbols, and letters and under-
scores as output labels, with the specific mean-
ings of these symbols varying by experiment. For
all experiments, the emission and pattern poten-
tial functions are represented with a biLSTM neu-
ral network (Hochreiter and Schmidhuber, 1997),
and the transition function is represented as a pa-
rameter matrix. All parameters are jointly op-
timized until convergence using the Adam opti-
mizer (Kingma and Ba, 2015).

We evaluate all tasks via exact-match accuracy.
That means that we count a model as correct only
when it predicts the label sequence exactly correct,
and we don’t assign partial credit. This turns out
to be quite important, as many less-strict evalua-
tion methods are explicitly insensitive to the global
structures we are trying to capture. For instance,
when evaluating by token-wise accuracy, models
are not rewarded for producing globally plausible
label sequences, only for ensuring that each indi-
vidual label is likely in isolation, something that
linear-chain CRFs are already capable of.

3.1 Experiment 1: Cardinality patterns

A common source of label interdependencies in
sequence labeling is given by global constraints
on how often a particular label occurs. Under such
constraints, each label can directly depend on each
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(a) A DFA for for Π. The path through this automaton for the string BAXAA is marked.

A = {⟨q1 X−→q1⟩ , ⟨q1 A−→q2⟩ , ⟨q1 B−→q4⟩ , ⟨q2 X−→q2⟩ , ⟨q2 A−→q3⟩ , ⟨q2 B−→q4⟩ , ⟨q3 X−→q2⟩ ,
⟨q3 A−→q3⟩ , ⟨q3 B−→q4⟩ , ⟨q4 A−→q2⟩ , ⟨q4 X−→q4⟩ , ⟨q4 B−→q5⟩ , ⟨q4 A−→q2⟩ , ⟨q4 X−→q3⟩ , ⟨q4 B−→q4⟩}

(b) A, the set of arcs in Π, which will be used as the label set for the auxiliary CRF.

⟨q1 B−→q4⟩ ⟨q4 A−→q2⟩ ⟨q2 X−→q2⟩ ⟨q2 A−→q3⟩ ⟨q3 A−→q3⟩

x

ϕ↗
θ (x,B, 1)

ϕ↗
θ (x,A, 2)

ϕ↗
θ (x,X, 3)

ϕ↗
θ (x,A, 4) · ϕü

θ (L1, 4)

ϕ↗
θ (x,A, 5) · ϕü

θ (L1, 5)

ϕ↔
θ (B,A) ϕ↔

θ (A,X) ϕ↔
θ (X,A) ϕ↔

θ (A,A)

(c) The auxiliary CRF calculating the probability for the arc sequence corresponding to y’s path through Π. Since q3 corre-
sponds to an accepting state for L1, the emission function incorporates the pattern potential for L1 at time steps which end on
q3. The resulting probability equals the RPCRF probability for the string y.

Figure 2: A worked example for the label string y = BAXAA of an RPCRF with two patterns: L1 = AX∗A and
L2 = BX∗B. (a) shows Π, the state-labeled automaton we obtain from these two languages, (b) shows the set
of arcs in Π, which will be tags for our auxiliary CRF, and (c) demonstrates how we use our auxiliary CRF to
calculate a probability for y.

other label. For example, if we know that a partic-
ular label must occur exactly once in a sequence,
assigning that label to any particular position af-
fects the marginal distribution of every other po-
sition. These constraints may be soft, though –
for example, in the classification of daily activities
from a smartwatch data sequence, users typically
go running once a day, but might run twice, or not
at all (Kwon and Choi, 2018).

In order to investigate an RPCRF’s ability to
model such cardinality constraints, we construct
a synthetic dataset of (x,y) pairs. For each pair,
x consists of a single non-zero digit k, followed

Table 1: Example for Experiment 1 (cardinality pat-
terns). The first token of each input specifies the num-
ber of As in the output.

x 3000000000 9000000000 1000000000
y __A_AA____ _AAAAAAAAA _____A____

by nine zeros. The first label of y is always _,
and, of the remaining nine labels, exactly k are A,
with all others being _. We chose the value of k
uniformly randomly, and then uniformly randomly
select which k positions should be labeled as A.

As patterns, we use a set of nine regular lan-
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Table 2: Results for Experiment 1 (EM acc. = Exact-
match accuracy; Opt. str. = optimal strategy).

Model EM acc. (%) % Opt. str.

Optimal strategy 14.64 –

LSTM+CRF 11.27 76.98
LSTM+RPCRF 14.61 99.80

guages L = {L1, · · · , L9}:

Lk = ˆ(_∗a)k_∗$ (7)

Each Lk matches label sequences with exactly k
occurrences of A. As pattern can match only a
complete label sequence, and as the languages are
disjoint, only one pattern can match any given la-
bel sequence. An RPCRF should be able to learn
from the first token of the input sequence which
pattern should apply to the label sequence, and as-
sign only that pattern a high weight with its pattern
potential function, resulting in the model always
predicting the correct number of As. Conversely,
while a CRF can learn that the A label should be
more or less likely depending on the value of k, it
has no mechanism for enforcing a specific number
of A labels (except in the case for k = 9, wherein
the output is deterministic).

Table 1 gives examples of some datapoints for
this experiment. Table 2 summarizes the perfor-
mance of RPCRF and linear-chain CRFs on this
task. We see that an RPCRF is able to achieve
near-optimal accuracy. On the other hand, the
linear-chain CRF, unable to directly enforce cardi-
nality constraints, can only achieve approximately
77% of the optimal strategy’s accuracy.

3.2 Experiment 2: Agreement patterns
Commonly for sequence labeling tasks, the pres-
ence of one type of label in a sequence might be
highly informative about the presence or absence
of other labels at distant positions in the sequence.
For instance, when using sequence labeling to la-
bel named entities in text, an entity of type EVENT

may be likely to occur in the same document as
an entity of type DATE, while there may be no
such affinity between entities of types LAW and
WORK_OF_ART. In the extreme case, certain la-
bels might be guaranteed to co-occur in a docu-
ment, or alternatively forbidden from doing so.

To investigate an RPCRF’s ability to learn such
interactions, we construct a synthetic sequence-
labeling dataset which exhibits strong agreement

Table 3: Example for Experiment 2 (agreement pat-
terns): model must learn which pairs of non-zero out-
put labels correspond (A/B, C/D, E/F).

x 0010000100 0011000000 0001000001
y __A____B__ __DC______ ___F_____E

interactions between distant labels. In each (x,y)
pair, x is a length-ten sequence containing eight
zeros and exactly two ones, which represent enti-
ties to be labeled. The corresponding y assigns a _
label to all zeros, and a letter from A to F to the two
ones. Importantly, these letter labels are selected
such that A must co-occur with a B, C with a D,
and E with an F. Table 3 provides some example
(x,y)-pairs for this experiment.

We assume a setting where model users know
that some co-occurrence constraints exist, but do
not know the particular letters which can or can-
not co-occur. Thus, as patterns, we use a set of(
6
2

)
= 15 languages, with each language match-

ing a label sequence containing two distinct labels
exactly once:

L =
{
ˆ_∗ (α_∗β | β_∗α)_∗$ :

{α, β} ⊆ {A,B,C,D,E,F} , α ̸= β
}

(8)

Our model is thus responsible for learning which
label pairs agree and disagree with one another.

Table 4 shows the results on this experiment
for an RPCRF and for a linear-chain CRF base-
line. As before, our RPCRF-based model achieves
nearly optimal performance, while the linear-
chain CRF, unable to learn the relationships be-
tween distant labels, lags significantly behind. In-
terestingly, the linear-chain CRF is able to model
agreement in some cases – namely when the two
entities happen to be directly adjacent Due to this,
it performs better than the 1

36 odds we would ex-
pect from having it label the two entities indepen-
dently, but fails in cases where the entities are dis-
tant from one another.

3.3 Experiment 3: Battleship

While this paper has thus-far focused largely on
CRFs with a linear-chain structure, CRFs are also
commonly used for 2-dimensional data in tasks
such as image segmentation (Chen et al., 2017).
In such a setting, instead of labeling elements of
a sequence, individual pixels or grid cells are la-
beled. Crucially, such a setting usually envisions
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Table 4: Results for Experiment 2 on agreement pat-
terns (EM acc. = Exact-match accuracy; Opt. str. =
optimal strategy).

Model EM acc. (%) % Opt. str.

Optimal strategy 16.67 –

LSTM+CRF 6.97 41.81
LSTM+RPCRF 16.60 99.58

each pixel as directly adjacent to all four of its
orthogonal neighbors, leading to a highly cyclic
graph structure not amenable to tractable exact in-
ference (Murphy et al., 1999).

With appropriate encoding and patterns,
RPCRFs can also be used for labeling such
2-dimensional data. Any 2-dimensional grid can
be serialized row-by-row into a linear sequence.
Cells which neighbored horizontally in the origi-
nal grid are still neighbors in the sequence, while
vertical neighbors are now separated by from one
another by a constant distance equal to the grid
width. By writing patterns that are specifically
sensitive to labels separated by exactly this
distance, we can enable an RPCRF to model
interactions between vertically adjacent cells in
our original grid.

We demonstrate this concretely with a synthetic
task on a 5 × 5 grid. Somewhere on this grid, a
4× 1 battleship is hiding, positioned and oriented
randomly. The input sequence x comprises all ze-
ros, except for a single one, at some randomly-
chosen cell of the battleship. In the label sequence
y, each cell occupied by the battleship is labeled
A, while all other cells are labeled _. The model’s
task is thus to guess the position and location of
the battleship, given only a single “hit.”

Table 5 illustrates some input-output pairs. We
use a single pattern, sensitive to two As separated
by four _s (i.e., vertically adjacent in the grid):

L = {A____A} (9)

This allows RPCRF to be sensitive to vertically ad-
jacent pairs of As in the label sequence (at least
when all intervening labels are instances of _).

Table 6 reports the performance of our two
models. In this case, the RPCRF-based model
does not achieve the performance of the optimal
strategy here. This is due to a limitation in the
pattern used: while the model can use its pattern
to ensure the predicted As are adjacent, it has no

mechanism for ensuring that it predicts the cor-
rect number of As. Nonetheless, even though the
provided pattern set cannot capture all structural
properties of the label sequences, we still see sig-
nificant improvements over a linear-chain CRF.

4 Related Work

Our proposed approach is one of many ways for
extending a linear-chain CRF in a manner that
selectively circumvents the Markov assumption
of default CRFs. Here we will briefly discuss
some alternate formalisms for defining and work-
ing with such ’higher-order’ CRFs.

Pattern-based CRFs. A conceptually similar
approach to our current proposal are pattern-
based CRFs (Ye et al., 2009; Takhanov and Kol-
mogorov, 2013). As with our regular-pattern-
sensitive CRFs, pattern-based CRFs allow practi-
tioners to specify a set of label patterns, allowing
the CRF to learn long-distance dependencies by
either encouraging or discouraging the presence of
these patterns at particular locations of the label
sequence. However, the patterns in pattern-based
CRFs are limited to exact string matches, while
our RPCRFs allow for arbitrary regular-expression
patterns. Critically, a pattern-based CRF can only
model dependencies as distant as its longest search
pattern, while RPCRFs can easily be designed to
learn dependencies over arbitrary distances, as our
Experiment 1 demonstrated.

Semi-Markov CRFs. Another approach com-
monly used for allowing CRFs to learn non-
local label interactions are semi-Markov CRFs
(Sarawagi and Cohen, 2004). Under this for-
malism, rather than labeling each individual to-
ken, a semi-Markov CRF outputs a segmentation
of the input, labeling each segment. While seg-
ment labels must follow the Markov assumption
(each segment’s label depends directly only on
its neighboring segments), the model’s behavior
within each segment may be non-Markovian. Such
models offer an efficient approach to modeling
certain types of nonlocal interactions, but these in-
teractions are limited to occurring within the same
segment, again in contrast to our model.

Skip-chain CRFs. A skip-chain CRFs (Sutton
and McCallum, 2007) is an otherwise linear-chain
CRF augmented with skip-connections, a number
of connections directly connecting otherwise dis-
tant labels in the sequence. The exact structure

32



Table 5: Example for Experiment 3 (battleship). Each input marks a single cell of the battleship, while the output
marks all of its cells. Inputs/outputs are shown as 5×5 grids here but are treated as length-25 sequences by models.

x

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

y

_ _ _ A _
_ _ _ A _
_ _ _ A _
_ _ _ A _
_ _ _ _ _

_ _ _ _ _
_ _ _ _ _
A A A A _
_ _ _ _ _
_ _ _ _ _

_ _ _ _ _
A _ _ _ _
A _ _ _ _
A _ _ _ _
A _ _ _ _

Table 6: Results for Experiment 3, Battleship (EM acc.
= Exact-match accuracy; Opt. str. = optimal strategy).

Model EM acc. (%) % Opt. str.

Optimal strategy 31.25 –

LSTM+CRF 2.50 8.00
LSTM+RPCRF 12.49 39.98

of these skip connections can be specified accord-
ing to the task, and may even be specified con-
ditioned on the input sequence. This provides a
conceptually straightforward way to enable linear-
chain CRFs to model long-distance dependencies.
While skip connections can be selected to account
for many possible types of long-distance interac-
tions, the resulting graphs are highly cyclic, and
often require approximate techniques for param-
eter estimation and inference. Nonetheless, with
certain connection structures, tricks are possible
to allow for exact training and inference on skip-
chain CRFs (Galley, 2006).

Regular-constrained CRFs. Regular-con-
strained CRFs (Papay et al., 2022) enforce that
a model’s output sequence must match some
user-specified regular expression. While this en-
ables linear-chain CRFs to respect non-local label
interactions, our proposal allows a CRF to learn
the likelihood of regular expressions matching at
different positions in the label sequence. Thus,
a regular-constrained CRF can be understood
as a special case of a RPCRF with a single
pattern (the complement of the user-specified
language) given a constant potential of zero.
While regular-constrained CRFs are limited to
enforcing constraints known a priori, our regular-
pattern-sensitive CRFs can learn when different
label patterns are likely or unlikely.

5 Conclusions

This paper introduced regular-pattern-sensitive
CRFs, a method for enriching linear-chain CRFs
with the ability to learn long-distance interac-
tions which occur within user-specified regular-
expression patterns. By representing all patterns
in a single state-labeled DFA, and using an aux-
iliary CRF to represent a distribution over paths
through this DFA, we can selectively extend CRFs
with non-local features while preserving efficient
parameter learning and inference.

Regular patterns are often sufficient to model
the relevant structures in the domain, as Experi-
ment 2 illustrates. More complex structures can
often be rewritten with regular patterns by assum-
ing a maximum input length (cf. (Mohri and
Nederhof, 2001) and Experiment 1). Even when
regular-language patterns cannot fully capture the
dependency structure of the labels, and imper-
fect approximation can still yield a substantial im-
provement, as we found in Experiment 3.

Regular patterns offer a flexible and power-
ful tool for incorporating domain knowledge into
sequence classification models that combine the
knowledge-based and data-driven paradigms in a
promising fashion. Sequence labeling models can
be made to account for specific tasks’ output struc-
tures by simply specifying regular-expression pat-
terns, without the need to explicitly construct an
FST or otherwise adapt the model architecture.

A promising direction for future work lies in
the combination of RPCRFs with LLM encoders.
The strengths of these two paradigms could prove
complementary, and LLMs with RPCRF output
layers may make good models for structured pre-
diction tasks such as relation extraction or seman-
tic role labeling, where it is necessary to model
both linguistic interactions in the input as well as
structural interactions in the output.
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Limitations

While training and inference time for RPCRFs are
quadratic in the number of arcs in the underlying
automaton, this number is worst-case exponential
in the number of patterns, limiting our model’s use
with some large sets of patterns. While some com-
binations of patterns synergize and yield small au-
tomata, we do not have a formal characterization
of which combinations of patterns lead to tractable
models.
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Abstract

Large Language Models (LLMs) have brought
significant breakthroughs across all areas of
Natural Language Processing (NLP), including
Information Extraction (IE). However, knowl-
edge gaps remain regarding their effectiveness
in extracting entity-relation triplets, i.e. Joint
Relation Extraction (JRE). JRE has been a key
operation in creating knowledge bases that can
be used to enhance Retrieval Augmented Gen-
eration (RAG) systems. Prior work highlights
low-quality triplets generated by LLMs. Thus,
this work investigates the impact of incorporat-
ing linguistic structures, such as constituency
and dependency trees and semantic role label-
ing, to enhance the quality of the extracted
triplets. The findings suggest that incorporat-
ing specific structural information enhances the
uniqueness and topical relevance of the triplets,
particularly in scenarios where multiple rela-
tionships are present1.

1 Introduction

IE is a crucial NLP task that extracts structured
knowledge from unstructured data. Named En-
tity Recognition (NER) and Relation Extraction
(RE) are two essential sub-processes that facilitate
IE. They play an integral role in the population of
knowledge bases (KBs), where entities serve as
nodes and relationships as connecting links. Most
recently, NER and RE have been employed to cre-
ate knowledge graphs for GraphRAG applications
(Edge et al., 2024; Han et al., 2024). A popular
paradigm, JRE, unifies NER and RE by identify-
ing entities and relationships in a single task from
the text sample. JRE garnered significant attention
from the NLP community before LLMs emerged.
However, research on this topic has become scarce
with the advent of LLMs, leaving a gap in under-
standing their impact on JRE.

1Code: https://github.com/anushkasw/StructLLM

The limited studies exploring LLMs for JRE
have highlighted issues such as redundancy in ex-
tracted triplets and low topical similarity to the
target sentence (Swarup et al., 2025). These issues
are further exacerbated when there is a possibility
of multiple relationships. These problems, coupled
with the challenges in evaluation caused by the
open-ended nature of the LLMs (Wadhwa et al.,
2023), have limited their usage for this task. How-
ever, LLMs possess vast knowledge and strong
instruction-following capabilities, suggesting their
potential to serve as effective joint extractors.

Linguistic structures have been employed as an
aid for IE systems through the advancements in
NLP. On the one hand, dependency trees (DT) have
imparted fine-grained knowledge about the con-
nections between the words in a sentence to neu-
ral networks (Tian et al., 2021; Miwa and Bansal,
2016; Chen et al., 2021). On the other hand, Se-
mantic Role Labeling (SRL) has shown close con-
nections with OpenIE triplets (Christensen et al.,
2011, 2010). Additionally, constituency trees (CT)
have provided a structured representation of input
text to the models (Jiang and Diesner, 2019).

This work investigates the potential of using lin-
guistic structures CT, DT, and SRL as additional
knowledge to the LLMs to enhance their perfor-
mance on sentence-level JRE. The goal is to im-
prove their fine-grained semantic understanding
from the comparatively shorter context present at
the sentence level. Our findings indicate that struc-
tural information improves the quality of extracted
triplets, especially with smaller models. Addition-
ally, these linguistic structures help LLMs better
handle text with multiple relationships, ensuring
more accurate and contextually relevant triplets.

2 Methodology

Problem Statement: Given a sentence S and an
LLM-based joint relation extractor M , the objec-
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Figure 1: Pipeline to study the influence of linguistic structures on LLMs for JRE.

tive of M is to extract a set of entity-relation triplets
of the form (e1, r, e2), where e1 and e2 are en-
tities, and r represents the relationship between
them. Note that information about the entities is
not provided apriori. Target relationships may be
constrained to a predefined set if required.

2.1 Prompt Engineering

This study investigates the capabilities of LLMs in
jointly extracting entities from sentences. A multi-
task approach where the prompt instructs the LLMs
first to extract all entities from the input sentence
and then extract all possible entity and relation
triplets was used. This prompting style was used
to maximize the LLMs’ triplet predictions.

Existing literature shows no significant gain with
In-context learning-based (ICL) few-shot strate-
gies for JRE (Li et al., 2023; Swarup et al., 2025).
Thus, this work employs zero-shot prompting with
two variations. First, when the knowledge of the
dataset’s relation space is verbalized in the prompt
(rel++), and second, in an open setting where no
such knowledge is provided (open). Examples of
all prompt types are in Appendix A.3

2.2 Linguistic Structures

Three widely used linguistic structures were se-
lected for this study based on the type of knowledge
they provide. First, CTs were incorporated into the
LLMs’ prompts to assess the impact of syntactic
information on JRE. Second, DTs were used to
encode both semantic and syntactic relationships,
offering valuable insights into word dependencies,
even across distant words. Finally, SRL was in-
cluded due to its strong alignment with the JRE
objective, where arguments and verbs can capture
the roles of entities and relationships.

2.3 Experimental Setup

Figure 1 depicts the pipeline for this work. This
study employs five LLMs as joint relation ex-
tractors: OpenChat-3.5 (7B), Meta-Llama-3.1-8B-
Instruct (8B), Mistral-Nemo-Instruct-2407 (12B),
Gemma-2-9B-IT (9B), and GPT-4o. These models
were selected to ensure representation from ma-
jor LLM families. Multiple parsers were utilized
to extract the structural information. Specifically,
AllenNLP2 was used to obtain all three linguistic
structures discussed above. Stanza (Qi et al., 2020)
was employed to extract CT and DT. As SRL is not
supported by stanza, DeepSRL (He et al., 2017)
was used as an alternate extractor.

Next, NYT10 (Riedel et al., 2010), TACRED
(Zhang et al., 2017), and CrossRE (Bassignana and
Plank, 2022) datasets were chosen for this study.
Most of these datasets have proven to be challeng-
ing for past models. Additionally, the composition
of the datasets shows that they have a high per-
centage of samples consisting of multiple relations,
which is a challenging use case. Details regard-
ing the pre-processing steps and statistics of the
datasets can be found in Appendix A.1.2.

Subsequently, four experiments were con-
ducted with the configurations: instruction
only (baseline), instruction+CT (base+ct), in-
struction+DT (base+dt), and instruction+SRL
(base+srl). As the names suggest, these experi-
ments are based on the type of structural informa-
tion added to the baseline prompt.

Multiple strategies were employed to evaluate
the performance of the LLMs for JRE. This work
employs traditional metrics (precision, recall, and
F1-score) and soft metrics introduced in the Gen-

2https://docs.allennlp.org/models/main/
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RES benchmark (Jiang et al., 2024). Specifically
Uniqueness Score (US), Topical Similarity (TS),
and Completeness Score (CS). More implementa-
tion details can be found in the source paper and
Appendix A.1.4. Finally, the goal of this study
was to investigate the performance variations with
the base+dt, base+ct and base+srl experiments
as compared to the baseline experiments. The
Mann–Whitney U test was employed for this pur-
pose to test the statistical significance of the obser-
vations (p_value < 0.05).

3 Results

This study investigates the influence of linguistic
structures on LLM-based JRE models. As dis-
cussed above, both traditional and soft metrics were
used to quantify the influence of these elements.
Table 2 in the Appendix shows the LLM perfor-
mances using traditional metrics. The negligible
scores attained by the LLMs highlight the imprac-
ticality of using these metrics for evaluation. The
open-ended nature of the LLM output makes exact
matching with ground truth labels almost impossi-
ble to perform. Thus, the rest of the study employs
soft metrics to assess the quality of the triplets.

Figure 2 depicts the performance of the selected
LLMs across datasets and prompting strategies. It
can be observed that adding structural information
helped enhance the quality of triplets, specifically
increasing their uniqueness and topical similarity.
However, it had a detrimental effect on the com-
pleteness with respect to the ground truths. Fine-
grained dataset-specific scores can be found in the
Appendix in Table 3.
Structure reduces redundancy in triplets. The
findings show that incorporating structural el-
ements such as DT leads to enhancements in
triplet extraction across LLMs such as OpenChat,
Gemma, and Mistral, as evidenced by the increase
in average US scores. DT captures crucial syn-
tactical relationships even between distant words
in a sentence. This structural information likely
enhances the LLMs’ comprehension of the text,
preventing them from extracting similar relation-
ships. Furthermore, this effect was particularly pro-
nounced for CrossRE, a dataset containing samples
from multiple domains, where statistically signifi-
cant US gains were observed.
Structure enhances topical similarity. Incorpo-
rating SRL information resulted in more topically
relevant triplets across most LLM-dataset combi-

nations, as reflected by the increase in average TS
scores. Statistically significant gains were observed
for Openchat, Llama, Gemma and Mistral across
datasets. This suggests that SRL helps LLMs fo-
cus more effectively on the language used in the
text. SRL outputs closely align with the triplet
structure, where arguments often correspond to en-
tities and verbs to relationships. It is likely that
LLMs recognize this alignment and leverage SRL
to extract triplets. Since SRL outputs are inherently
constrained to the sentence context, the LLM’s pre-
dictions also become more contextually grounded,
thereby improving topical relevance.

Figure 2: US, TS, CS scores for different LLM-based
JRE models across datasets, seeds, and prompting strate-
gies. The x-axis is organized from the LLMs with the
fewest parameters to the most parameters. Note that the
y-axis range has been adjusted to enhance the visibility
of metric variations.
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Structure deviates triplets from the ground-
truth. The results indicate a linear reduction in
CS as more advanced structures were incorporated.
CS measures the comprehensiveness of extracted
triplets relative to the ground truth. The observed
decline from the baseline to base+srl suggests that
as LLMs integrate more advanced linguistic struc-
tures—imparting higher-order and semantic knowl-
edge—their alignment with ground-truth triplets
decreases. Previous research has highlighted the
limitations of ground truth triplets in most state-of-
the-art datasets, suggesting that these triplets are
often highly specific and limiting. With the addi-
tion of richer semantic information, LLMs tend to
generate generalized yet semantically accurate pre-
dictions, which may contribute to the decline in CS.
Additionally, the drop in completeness may also be
a byproduct of redundancy reduction. Rather than
failing to extract essential information, the model
might be filtering out less meaningful triplets.

Figure 3: Addition of CT and DT structures prevents
uniqueness reduction as the number of relations in-
creases compared to the “baseline” experiments for most
categories. Performances are shown across datasets,
models, seeds, and prompt types. Note that the y-axis
range has been adjusted to enhance the visibility of
metric variations.

4 Discussion

The results highlight the redundancy reduc-
tion in the extracted triplets, specifically when
dependency-based structural information was
added to the LLM’s prompt. Previous research has
highlighted that triplet redundancy increases when
the source text contains multiple relationships. To
analyze this effect, the US scores were examined

across sentence categories with varying numbers
of ground truth relations. The methodology for this
experiment can be found in the Appendix in section
A.1.5. Figure 3 indicates that linguistic structures
help maintain the uniqueness of extracted triplets
compared to baseline LLMs. While the US score
for baseline experiments decreases as the number
of relations increases, the US scores for LLMs with
structural information remain relatively consistent.
Additionally, statistically significant gain was ob-
served between the “baseline” and “base+dt” ex-
periments in the n2-n5 categories. Thus, it can be
inferred that linguistic structures help LLMs dif-
ferentiate between distinct relationships, thereby
helping them extract only the most relevant triplets.
Some examples of how LLMs can filter out sim-
ilar meaning triplets by enhancing their semantic
reasoning capabilities can be found in Appendix
A.2.2.

4.1 Related Works

4.1.1 LLMs for JRE
In recent years, many studies have investigated us-
ing LLMs for various IE tasks. Most such studies
have focused on the applications of Named Entity
Recognition (NRE) (Xie et al., 2023; Kim et al.,
2024) and Relation Classification (RC) (Wan et al.,
2023; Xu et al., 2023). Very few studies have been
conducted for the JRE objective, likely due to the
difficulties in evaluation. These studies investigate
the potential of using LLMs as zero-shot and few-
shot extractors by experimenting with various ICL
and prompting strategies (Li et al., 2023; Wadhwa
et al., 2023; Swarup et al., 2025). Recently, the
GenRES benchmark (Jiang et al., 2024) was pro-
posed to qualitatively evaluate LLM-based JRE
extractors.

4.1.2 Structural Modeling for IE
Linguistic structures have been widely used to aid
language models for extracting entities and relation-
ships. CTs have been used to provide structured
information about the associated text by detailing
syntactical knowledge about various grammatical
components (Jiang and Diesner, 2019). DTs further
enhance this knowledge by highlighting the rela-
tionships between words in the sentence, making
them a widespread technique in the RC literature
(Tian et al., 2021; Miwa and Bansal, 2016; Chen
et al., 2021). Finally, SRL has been known to pro-
vide semantic understanding of the sentence. They
have been employed as a tool in OpenIE systems to
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extract entities and relations from the text in an un-
supervised setting (Christensen et al., 2011, 2010;
Barnickel et al., 2009).

5 Conclusion

This study investigates how incorporating linguis-
tic structures influences LLMs’ entity and rela-
tion extraction capabilities. The results high-
light the improved quality of extracted triplets
when structural information is incorporated into
the LLMs’ prompts. This enhancement in quality
was achieved through the reduction of redundant
triplets (especially in the presence of multiple re-
lationships) and increased similarity to the source
text—both critical in real-world applications. For
instance, in a KB construction task from finance
data where multiple relationships are common, re-
dundant triplets can create unnecessary paths, re-
ducing the efficiency of the KB. In contrast, topical
relevance is critical when extracting knowledge
from user-facing systems such as chatbots, making
extracting the most relevant entities and relation-
ships essential.

Further, the study highlights a potential draw-
back: the inclusion of structural information for
quality enhancement comes at the cost of misalign-
ment from the ground truth labels, which are of-
tentimes very restrictive. This finding suggests a
trade-off between completeness and uniqueness,
which should be carefully considered based on the
application’s requirements. Finally, there is a need
to re-evaluate SOTA datasets in IE, as many contain
highly specific and constrained labels. Developing
datasets with more generalized label spaces would
provide a more comprehensive evaluation frame-
work for IE systems in the LLM era.

Limitations

This study highlights the influence of linguistic
structures on LLM performance in JRE, using well-
established tools to extract these structures. How-
ever, linguistic structure extraction can come with
inherent noise, as noted in prior research. How-
ever, investigating noise reduction strategies, such
as pruning the branches of the trees, was not part
of the scope of this paper. This avenue can be
explored as future work.

Additionally, we acknowledge that the introduc-
tion of the structural elements can introduce noise
in the extracted triplets. Thus, an assessment of the
factuality of the triplets is imperative. However, ex-

isting factualness metrics, including the one present
in the GenRES benchmark relies on triplet-level
LLM evaluation, which preliminary experiments
showed as unreliable and difficult to scale. Despite
these challenges, we recognize the importance of
this dimensions and aim to find ways to incorporate
these metrics in future work.
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A Appendix

A.1 Implementation Details

This section discusses additional details regarding
the experimental methodology used for this study.

A.1.1 Model Configurations
Table depicts the detailed model configuration
along with the parameters used for this study.

A.1.2 Dataset Details
NYT10, TACRED, and CrossRE datasets were cho-
sen for this study. Since these datasets were created
with the RC objective in mind, they had to be con-
verted into a format compatible with JRE. For this,
duplicate samples were grouped, and entity and
relation triplets were created from the ground truth
data provided. Table 1 depicts the test data statistics
of the datasets. It can be observed that the group-
ing facilitated the possibility of multiple triplets
associated with the text samples. Finally, accord-
ing to the trend in the literature, the original test
sets were sampled using three random seeds (13,
42, and 100) to lower the cost of LLM processing
and provide variability in the experiments. Some
additional preprocessing details for the datasets are
as follows:

• NYT10. The preprocessed version of the
dataset (Takanobu et al., 2019) was used for
this study.

• TACRED. The dataset contains no_relation
relationships in the ground truth triplet. It is
impractical and redundant for the JRE objec-
tive to make the LLM extract triplets where
the entities do not have a relationship. Thus,
all triplets with the no_relation label were re-
moved at the preprocessing stage.

• CrossRE. This dataset was used as-is.

Table 1: Dataset Statistics

Datasets #n1 #r2 n1 n2 n3 n4 >n5

CrossRE 913 17 139 134 104 131 405
NYT10 2003 29 1478 307 89 114 15
TACRED 1154 41 841 201 62 25 25

1 Number of samples 2 Number of relations in the dataset

A.1.3 Parsers
Figure 4 shows how the linguistic structures are
incorporated in the LLM’s prompt. More details
about the parsers used to extract linguistic struc-
tures for this study are as follows:

• AllenNLP. This study employs a biaffine
dependency parser3 (Dozat and Manning,
2016), constituency parser4 based on elmo-
embeddings (Stern et al., 2017) and BERT-
based SRL parser5 (Shi and Lin, 2019).

• Stanza6 (Qi et al., 2020). This study employs
the shift-reduce constituency parser (Liu and
Zhang, 2017) and a deep biaffine graph-based
dependency parser (Qi et al., 2019).

• DeepSRL7 (He et al., 2017). This study em-
ploys an ensemble of deep BiLSTM architec-
ture for SRL.

A.1.4 Evaluation Metrics
As discussed above, TS, CS, and US were used
to assess the quality of the extracted JRE triplets.
The original methodology (Jiang et al., 2024) was
followed to calculate the metrics. Here are some
additional details:

• TS. This metric was used to quantify the top-
ical similarity of the extracted triplets to the
source text. For this, LDA topic modeling was
done to extract 150 topics from the test sets of
each dataset.

• US. This metric was used to calculate the level
of uniqueness among the triplets extracted for
each test sample. It was calculated by perform-
ing similarity matching on the embeddings of
the extracted triplets from one another. The
triplet embeddings were calculated using Ope-
nAI’s “text-embedding-ada-002", and the sim-
ilarity threshold was set to 0.95.

3https://storage.googleapis.
com/allennlp-public-models/
biaffine-dependency-parser-ptb-2020.04.06.tar.gz

4https://storage.googleapis.
com/allennlp-public-models/
elmo-constituency-parser-2020.02.10.tar.gz

5https://storage.googleapis.
com/allennlp-public-models/
structured-prediction-srl-bert.2020.12.15.tar.gz

6https://stanfordnlp.github.io/stanza/index.
html

7https://github.com/luheng/deep_srl/tree/
master?tab=readme-ov-file
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Figure 4: Example of integration of linguistic structures in LLM’s prompt.

• CS. This metric measures the ground truth
triplets covered in the LLMs extraction. It was
calculated by performing similarity match-
ing on the extracted triplet embeddings with
those of the ground-truth triplets using Ope-
nAI’s “text-embedding-ada-002" and a simi-
larity threshold of 0.95.

A.1.5 Multiple Relations

To analyze the influence of linguistic structures on
samples with multiple relations (discussed in Sec-
tion 4), we categorized the dataset samples into
five groups: n1 (single ground truth relation), n2
(two relations), n3 (three relations), n4 (four re-
lations), and n5 (five or more relations). Table
A.1.2 presents the statistics for these categories.
Notably, NYT10 contains an insignificant number
of samples in the n5 category, while TACRED has
very few in both n4 and n5. Consequently, these
categories were omitted from calculations for the
respective datasets. Additionally, due to the high
variability of samples within each category across
datasets, we performed 5000 bootstrap experiments
by sampling 80, 60, and 100 samples per category
for NYT10, TACRED, and CrossRE, respectively,
while calculating the metric scores.

A.2 Additional Results

This section showcases results at the dataset and
parser-level to provide additional insights.

A.2.1 Dataset-specific Performances

Table 2 depicts dataset-level performances of the
LLMs across the four experiments using traditional
metrics - precision (P), recall (recall), and F1-score
(F1). As mentioned in the main paper, all LLMs
attain negligible scores, with GPT as the highest
performer. These performances are not a good
representation of the LLM extractions. Thus, soft
metrics were chosen as the mode of analysis in this
study.

Table 3 presents the dataset-level performance
of the LLMs across US, TS, and CS dimensions.
Overall, the influence of linguistic structures was
best observed on the CrossRE dataset. This dataset
contains challenging samples from multiple do-
mains such as science, literature, politics, etc., sug-
gesting that linguistic structures can aid in cross-
domain understanding of language by LLMs. For
the LLMs, smaller models such as OpenChat were
most influenced by linguistic knowledge, and the
largest model, i.e., GPT, was the least influenced.
As the size increases, more and more knowledge is
stored in the model’s parameters. It is possible that
larger models don’t require additional assistance as
they already contain sufficient knowledge.

A.2.2 Quality Enhancement

Some examples of quality enhancement using lin-
guistic structures are discussed in this section. Ta-
ble 4 shows two examples where the addition of DT
helped reduce the redundancy of the triplets. In the
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Table 2: Traditional metric-based evaluation of LLMs for the chosen datasets.

LLM EXP
NYT10 TACRED CrossRE

P R F1 P R F1 P R F1

GPT

baseline 11.86 16.48 12.67 10.47 14.42 11.19 3.63 4.57 3.78
base+ct 11.02 15.93 11.98 9.79 14.13 10.63 2.65 3.78 2.87
base+dep 10.34 15.76 11.42 8.82 13.13 9.66 2.63 3.42 2.78
base+srl 9.66 14.24 10.57 7.64 11.83 8.55 2.64 3.40 2.78

Gemma

baseline 4.67 6.67 5.01 2.64 3.41 2.67 2.39 2.69 2.35
base+ct 2.79 4.68 3.12 2.11 3.43 2.29 1.55 2.01 1.60
base+dep 2.42 3.97 2.69 2.12 3.04 2.23 1.08 1.55 1.13
base+srl 2.48 4.30 2.85 1.82 2.51 1.91 0.73 0.93 0.73

Llama

baseline 0.64 2.59 0.93 0.10 0.29 0.12 1.12 2.50 1.46
base+ct 0.49 2.43 0.75 0.10 0.39 0.13 0.73 2.00 0.99
base+dep 0.34 1.82 0.52 0.06 0.30 0.09 0.50 1.34 0.67
base+srl 0.38 2.03 0.60 0.03 0.10 0.04 0.60 1.73 0.83

Mistral

baseline 3.24 8.27 4.11 2.24 5.21 2.79 1.97 2.56 2.06
base+ct 2.30 5.76 2.91 1.98 4.97 2.51 1.96 2.47 2.04
base+dep 2.22 5.81 2.76 1.48 3.80 1.87 1.45 2.04 1.57
base+srl 2.41 6.21 3.02 1.77 4.17 2.18 1.51 2.11 1.62

OpenChat

baseline 1.82 6.30 2.50 0.57 2.54 0.86 1.72 2.46 1.89
base+ct 1.45 5.54 2.07 0.59 2.79 0.92 0.96 1.72 1.14
base+dep 1.13 4.71 1.67 0.47 2.26 0.74 0.60 0.87 0.65
base+srl 1.11 4.56 1.63 0.37 1.58 0.57 0.73 1.06 0.79

first case, the addition of the DT helped the LLM
extract a diverse set of triplets, which depicted var-
ied relationships. On the other hand, the LLMs
without DT could only extract relations of the type

“performed”. Similarly, in the second example, the
standalone LLM can extract relationships only with
the entity “John Mccain”. However, adding DT
helps the LLM extract unique relations such as

“conference calls, participants, bloggers”, which
requires advanced language understanding for ex-
traction. Note that there are cases of erroneous
triplets for all experiments, which should be tack-
led by future work.

Next, Table 5 presents two examples illustrating
the topical improvements achieved by incorporat-
ing SRL information. These gains can be attributed
to the contextual focus that the LLMs attain when
structural information is provided. In both exam-
ples, the SRL information helps the LLM pay atten-
tion to the core topic of each sentence, i.e., the tour
and the oil trade, respectively. Without the added
structural information, the LLMs tend to focus on
general relations, which are more fact-oriented.

A.3 Prompts
Refer to Figures 5-8 for the prompts used for this
study.

44



Table 3: TS, CS, US scores for different LLM-based JRE models for the chosen datasets. * indicates experiments
with statistically significant gain as compared to the baseline experiments (p_value < 0.05).

Model Dataset Exp TS CS US

OpenChat

NYT10

baseline 32.81 75.57 71
base+dt 31.74 57.55 72.99
base+srl 36.94 56.1 68.82
base+ct 32.47 65.67 68.65

TACRED

baseline 41.57 69.93 76.12
base+dt 41.65 58.18 78.52
base+srl 47.93 53.95 73.64
base+ct 41.86 67.4 76.05

CrossRE

baseline 39.29 76.37 64.71
base+dt 41.11 59.25 75.11∗

base+srl 49.62 61.09 61.69
base+ct 41.1 70.97 69.24∗

Llama

NYT10

baseline 32.94 75.02 61.3
base+dt 38.2 64.83 62.03
base+srl 39.04 48.16 51.75
base+ct 38.14 70.44 61.39

TACRED

baseline 39 69.68 64.4
base+dt 41.51 68.98 62.25
base+srl 47.64 54.52 58.01
base+ct 41.49 71.04 62.12

CrossRE

baseline 35.88 80 55
base+dt 41.11 70.54 59.38∗

base+srl 47.51 66.51 50.38
base+ct 40.13 78.07 57.21

(continued on next page)
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Model Dataset Exp TS CS US

Gemma

NYT10

baseline 28.46 57.74 66.38
base+dt 29.6 52.73 68.76
base+srl 36.47 42.47 68.54
base+ct 31.23 51.22 67.68

TACRED

baseline 35.52 45.37 64.82
base+dt 36.72 43.65 68.7
base+srl 45.21 35.47 70.09
base+ct 39.52 45.31 66.96

CrossRE

baseline 39.18 69.83 60.36
base+dt 41 60.9 62.36
base+srl 49.99∗ 51.7 57.1
base+ct 42.77 62.28 59.82

Mistral

NYT10

baseline 28.58 66.39 66.65
base+dt 33.85 56.48 70.22
base+srl 31.99 52.82 67.76
base+ct 32.2 57.79 68.57

TACRED

baseline 36.21 66.04 72.22
base+dt 41.02 58.68 74.51
base+srl 39.25 57.03 72.55
base+ct 39.21 60.45 73.62

CrossRE

baseline 35.62 72.96 57.67
base+dt 40.9 65.35 61.67∗

base+srl 43.03 62.19 58.27
base+ct 38.95 68.37 58.74

GPT

NYT10

baseline 28.64 77.84 69.11
base+dt 31.37 72.49 67.83
base+srl 32.05 69.15 68.11
base+ct 30.68 72.64 67.94

TACRED

baseline 34.01 64.4 70.32
base+dt 36.81 66.42 73.07
base+srl 38.23 62.55 73.18
base+ct 36.67 66.62 72.39

CrossRE

baseline 38.32 79.89 62.07
base+dt 42.79 71.74 61.22
base+srl 47.7 68.21 61.9
base+ct 42.35 73.86 62.11
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Table 4: Examples of US enhancement with DT. Only a small set of triples are shown for each prediction.

Sentence EXP Model/
Prompt

US Predicted Triplets

In 2006, along with Sonu Nigam,
Sunidhi Chauhan and Shiamak
Davar, Ghoshal performed the theme
song of 2010 Commonwealth
Games at its closing ceremony, as an
invitation to everyone to the
following Commonwealth Games in
Delhi.

baseline Llama/
rel++

0.16 (ghoshal, performed, 2010 common-
wealth games), (ghoshal, performed,
commonwealth games in delhi),
(ghoshal, performed, everyone),
(ghoshal, performed, following common-
wealth games), (sonu nigam, performed,
2010 commonwealth games), (sonu
nigam, performed, theme song of 2010
commonwealth games)

base+dt Llama/
rel++

0.91 (sonu nigam, related to, sunidhi
chauhan), (sonu nigam, related to,
shiamak davar), (ghoshal, performed,
the theme song), (ghoshal, performed,
2010 commonwealth games), (2010
commonwealth games, located in, delhi),
(everyone, invited to, the following
commonwealth games)

several times this week – while
wrapping up a town hall meeting in
des moines , or a conference call
with bloggers from sioux city , iowa
– senator john mccain and his
listeners were told that there was
time for just one more question.

baseline Gemma/
open

0.33 (john mccain, is from, iowa), (john mc-
cain, held a meeting in, des moines),
(john mccain, had a call with, bloggers
from sioux city)

base+dt Gemma/
open

0.96 (town hall meeting, location, des
moines), (town hall meeting, part of,
conference call), (conference call, par-
ticipants, bloggers), (bloggers, location,
sioux city), (time, limited to, one ques-
tion)

Table 5: Examples of TS enhancement with SRL. Only a small set of triples are shown for each prediction.

Sentence EXP Model/
Prompt

TS Predicted Triplets

A third UK tour for 2017 / 2018
opened at the Curve in Leicester,
and also toured to the
Birmingham Hippodrome, the
Bord Gáis Energy Theatre in
Dublin, the Wales Millennium
Centre in Cardiff , the Edinburgh
Festival Theatre , the Mayflower
Theatre in Southampton and the
Palace Theatre in Manchester.

baseline Llama/
open

0.00 (uk, located_in, leicester),(uk, lo-
cated_in, birmingham hippodrome),
(bord gáis energy theatre, located_in,
dublin)

base+srl Llama/
open

0.88 (a third uk tour for 2017 / 2018, opened
at, the curve), (a third uk tour for 2017
/ 2018, opened in, leicester), (a third uk
tour for 2017 / 2018, toured to, the birm-
ingham hippodrome), (a third uk tour for
2017 / 2018, toured to, the bord gáis en-
ergy theatre), (a third uk tour for 2017 /
2018, toured to, dublin)

feud leads to oil cutoff –
supplies of russian crude oil
headed to european markets
came to a halt overnight, in the
latest manifestation of rapidly
deteriorating relations between
russia and belarus.

baseline Mistral/
rel++

0.00 (russia, person and nationality, belarus),
(russia, country and administrative divi-
sions, belarus), (russia, country and capi-
tal, moscow)

base+srl Mistral/
rel++

0.98 (feud, leads_to, oil cutoff), (russia, pro-
duces, crude oil), (russia, exports_to, eu-
ropean markets)

47



Figure 5: Prompt used for “baseline” experiments in the “open” setting.

Figure 6: Prompt used for “baseline” experiments in the “rel++” setting.

Figure 7: Prompt used for “base+structure” experiments in the “open” setting.

Figure 8: Prompt used for “base+structure” experiments in the “rel++” setting.
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Abstract

In this paper, we explore the use of a text-only,
autoregressive language modeling approach for
the extraction of referring expressions from vi-
sually grounded dialogue. More specifically,
the aim is to investigate the extent to which the
linguistic context alone can inform the detec-
tion of mentions that have a (visually perceiv-
able) referent in the visual context of the conver-
sation. To this end, we adapt a pretrained large
language model (LLM) to perform a relatively
course-grained annotation of mention spans in
unfolding conversations by demarcating men-
tion span boundaries in text via next-token pre-
diction. Our findings indicate that even when
using a moderately sized LLM, relatively small
datasets, and parameter-efficient fine-tuning, a
text-only approach can be effective, highlight-
ing the relative importance of the linguistic con-
text for this task. Nevertheless, we argue that
the task represents an inherently multimodal
problem and discuss limitations fundamental
to unimodal approaches.

1 Introduction

In conversation, speakers often make reference to
objects, events, or concepts. Words and phrases
that are used with referential intent are known as
referring expressions (REs). Effective communi-
cation hinges on the ability of the participants in
the conversation to recognize these expressions and
to determine what it is that they refer to, i.e., their
referents. Within the context of a discourse, identi-
fication of an intended referent for a given RE may
necessitate coreference resolution, i.e., the process
of linking expressions that have the same referent.
To illustrate this need, consider the following hy-
pothetical exchange, with coreferring expressions
underlined:

(1) A: Have you seen Schrödinger’s cat?
(2) B: Yeah, here it is.
(3) A: It is looking a bit worse for wear.

Figure 1: Visualization of the proposed mention detec-
tion method. The Mention Detector takes as input the
most recent dialogue message, preceded by the avail-
able dialogue history, and autoregressively outputs an
annotated reproduction of the last message while insert-
ing mention span boundary tokens (the start and end
of mention spans are represented by >> and << , re-
spectively) where appropriate. Excerpt shown is from
a dialogue collected by Willemsen et al. (2022). High-
lighted mentions in original dialogue and visual context
with highlighted referent images are shown solely for
illustrative purposes: the former is not available to the
model at inference time, the latter neither at inference
nor at training time.

Without access to the discourse context, “it” and
“It” have indeterminate referents. By having knowl-
edge of the prior contributions to the conversation,
it is clear that both pronouns are anaphors with
“Schrödinger’s cat” as their antecedent.

The identification of REs, or mentions1, in var-
ious types of discourse is a long-standing natu-
ral language processing (NLP) task commonly re-
ferred to as mention detection (MD). Simply put,

1We use referring expression and mention interchangeably
throughout this paper.
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when a given discourse is represented as a text doc-
ument, the goal of MD is to identify any and all
spans of text that refer to some predetermined type
of referent, such as named entities or events.

In this paper, we explore the problem of MD for
conversation, specifically with a focus on the down-
stream purpose of reference resolution in visually
grounded dialogue. That is, our aim is to identify
the REs that have a (visually perceivable) referent
in the visual context of the conversation. Of par-
ticular interest is the extent to which the linguistic
context alone is able to inform predictions for what
is arguably, inherently, a multimodal problem. In
addition, we experiment with different context win-
dows to investigate how dialogue history affects
MD performance. The expectation is that provid-
ing access to additional linguistic context in the
form of preceding messages will generally lead to
increased performance. To illustrate by example,
whether the use of “that” in the exclaimed utterance
“Take that!” is referential or instead part of a non-
referential interjection cannot be known without
additional context.

In line with recent work on generative informa-
tion extraction (see e.g., Zhang et al., 2025), we
frame MD in visually grounded dialogue as an au-
toregressive language modeling problem. More
specifically, we propose to train a model to gen-
erate annotated reproductions of utterances: for
a given utterance, in the process of generating a
copy of the original message content, the model
is expected to insert span boundary tokens indicat-
ing the start and end of mention spans, when and
where appropriate. An illustration of the proposed
approach is shown in Figure 1. Our experiments in-
volve the parameter-efficient fine-tuning (Dettmers
et al., 2023) of a large language model (LLM) on
annotated conversations from two different visually
grounded dialogue datasets, namely A GAME OF

SORTS (AGOS, Willemsen et al., 2022) and PHO-
TOBOOK (PB, Haber et al., 2019). For AGOS, we
make use of the mention annotations from Willem-
sen et al. (2023). For PB, we adopt a similar an-
notation protocol to manually create the required
mention annotations for a subset of the dataset.2

Results of our experiments with the 8B-
parameter variant of LLAMA 3.1 (Grattafiori et al.,
2024) are promising, suggesting that the linguistic
context can be relatively revealing for our purpose.

2https://github.com/willemsenbram/
mention-detection-vgd, doi:10.5281/zenodo.15500581

Note that our findings are in spite of the fact that
our datasets are relatively small, our LLM is rel-
atively moderately sized, and our fine-tuning is
parameter-efficient. Nevertheless, we must con-
tend with some limitations that are fundamental
to unimodal approaches to multimodal problems,
as well as the nature of the referential language
in task-oriented dialogues. We provide additional
discussion on these matters.

2 Background

MD has long been an essential component, or the
central focus, of systems addressing various NLP
tasks, such as named entity recognition (e.g., Lam-
ple et al., 2016; Devlin et al., 2019; Straková et al.,
2019), event detection (e.g., Lai et al., 2020), and
coreference resolution (e.g., Lee et al., 2013; Poe-
sio et al., 2018). Earlier, rule-based approaches
to MD were frequently built atop a dependency
parse of a text, and would, over time, incorporate
increasingly more powerful statistical models into
the pipeline (e.g., Florian et al., 2010; Lee et al.,
2013). The required sophistication of the approach
generally depended on the downstream task. For
coreference resolution, for example, simple heuris-
tics leading to high recall would suffice if other
parts of the system could compensate with higher
precision (e.g., Lee et al., 2013). Interestingly, com-
parisons between different coreference resolution
systems have often been conducted on the basis of
gold, instead of predicted, mentions. This effec-
tively side-steps MD in an effort to focus on isolat-
ing the system’s downstream performance. How-
ever, there tend to be notable performance gaps
between these idealized and the realistic scenarios.
As Poesio et al. (2023) note, generally, the overall
performance of a coreference resolution system has
been contingent on the accuracy of the output from
its MD component.

Following advances in neural language model-
ing, approaches to MD based on neural models
(e.g., Lample et al., 2016; Poesio et al., 2018; De-
vlin et al., 2019; Straková et al., 2019; Lai et al.,
2020; Yu et al., 2020) have gradually superseded
the earlier methods. These increasingly more data-
driven methods promised to do away with the need
for extensive feature engineering. Particularly con-
sequential has been the adoption of general pur-
pose, pretrained language models based on the
Transformer architecture (Vaswani et al., 2017),
examples of which include the encoder-only BERT
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(Devlin et al., 2019) and the decoder-only GPT
(Radford et al., 2018). BERT-based representations
have been the backbone of numerous NLP systems,
including those that deal with MD (e.g., Devlin
et al., 2019; Straková et al., 2019; Yu et al., 2020).

Of particular interest here are the autoregres-
sive LLMs at the heart of most work on genera-
tive information extraction (see e.g., Zhang et al.,
2025). Various studies have shown that framing
tasks involving structured predictions as autoregres-
sive language modeling problems can be effective
(e.g., Cao et al., 2021; Liu et al., 2022; Deußer
et al., 2024). Given an unstructured text, the model
is trained to return, via next-token prediction, a
structured representation of the input. Although the
feasibility of this approach has been shown for com-
monly used benchmarks that involve some form of
MD (e.g., Kim et al., 2003; Tjong Kim Sang and
De Meulder, 2003), to the best of our knowledge,
it has yet to be applied to visually grounded dia-
logue. In this paper, we explore to what extent we
can adapt a pretrained LLM via parameter-efficient
fine-tuning (Hu et al., 2022; Dettmers et al., 2023)
to the task of MD in visually grounded dialogue
using this approach.

3 Method

3.1 Problem description

In general, the goal of MD is to identify all expres-
sions in a document D that satisfy some prescribed
definition of a mention. When D is a visually
grounded dialogue, we define it as D = (V,L),
where V is the visual context and L the linguistic
context of the conversation. A dialogue is consid-
ered visually grounded when L contains one or
more references to V . That is, within the linguistic
context, there exists one or more expressions that
have a (visually perceivable) referent that is present
in the visual context of the conversation.

3.2 Task definition

In this work, we consider MD in visually grounded
dialogue to be the task of identifying all expres-
sions in L for which there exists a referent in V .
Here, we focus on visually grounded dialogues of
which V is composed of a set of v independent im-
ages, V = {I1, I2, ..., Iv}. The linguistic context L
can be represented as a sequence of n utterances3,
L = (u1, u2, ..., un). In turn, each utterance ui

3We use utterance and message interchangeably through-
out this paper.

can be represented as a sequence of mi tokens,
ui = (ti1, ti2, ..., timi). We think of mentions in
terms of spans. We can define a mention span as
a contiguous subsequence of tokens from an ut-
terance ui, denoted as (tij , ..., tik) ⊆ ui, where
1 ≤ j ≤ k ≤ mi. Together, these tokens constitute
an expression that (indirectly) refers to one or more
of the images. Note that in contrast with other types
of documents, dialogue is interactive and contribu-
tions to L are cumulative, happening over time. It
is important to account for the incremental nature
of conversation when addressing this task.

3.3 Proposed approach

Core to our approach is the framing of MD in visu-
ally grounded dialogue as a next-token prediction
task. Given the incremental nature of conversation,
we process each dialogue at the utterance level,
prepending to each utterance a token indicating the
speaker. For a given utterance ui, we train an au-
toregressive language model f to reproduce exactly
the original content of ui, but with span boundary
tokens inserted if and where appropriate to indicate
the start and end of mention spans.

Crucially, however, we propose to condition the
generation of the target sequence ui

′ not only on
the current utterance ui, but also on additional pre-
ceding linguistic context, i.e., the available dia-
logue history, as prior messages may inform pre-
dictions. When considering prior messages in the
modeling process, we can define the generation
of ui

′ as ui
′ = f(ui, H), where H is the dia-

logue history available to the model.4 The avail-
able dialogue history H is defined as a contigu-
ous subsequence of utterances from L, denoted as
H = (ui−h, ui−h+1..., ui−1), where 0 ≤ h ≤ w,
where h is the number of prior messages available
to the model and w is an optionally predefined
maximum number of preceding messages to be
considered. For a visualization of the proposed
approach, see Figure 1.

4 Experiments

The language modeling experiments presented in
this paper involve the fine-tuning of pretrained
models on dialogues from two different, though

4We must note that for the experiments reported in this
paper, we found that repeating utterance ui in the input to
the model had a positive impact on downstream performance;
a slight deviation from the more general definition provided
here. For an example of the formatting of training samples,
see Appendix B.
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closely related, visually grounded dialogue tasks,
namely A GAME OF SORTS (AGOS, Willemsen
et al., 2022) and PHOTOBOOK (PB, Haber et al.,
2019). We first perform cross-validation to score
MD performance on each dataset separately. We
then assess cross-dataset transfer by training on
one dataset and testing on the other. In addition,
we investigate the effects of dialogue history on
MD performance, i.e., whether the model benefits
from having access to preceding messages when
making its predictions, by experimenting with dif-
ferent context window sizes, i.e., providing access
to different numbers of preceding messages. Fi-
nally, as points of comparison, we assess the MD
performance of a baseline based on noun phrase
(NP) extraction using constituency parsing, as well
as that of an encoder-only LLM fine-tuned for se-
quence labeling.

4.1 Data

Both AGOS and PB are tasks designed around
eliciting repeated references to various sets of
real-world images—such as those found in the
MS COCO (Lin et al., 2014) and Open Images
(Kuznetsova et al., 2020) datasets—in conversa-
tional settings. Moreover, both tasks have a delib-
erate asymmetry in their visual contexts that partic-
ipants have to overcome to successfully complete
the task. This ensured that speakers would produce
non-trivial REs that made reference to the images’
visual content.

4.1.1 A Game Of Sorts (AGOS)
AGOS is a collaborative image ranking task. Two
participants are shown a set of nine images which
they are asked to rank, in descending order and one
at a time, based on a given sorting criterion. The
goal of the task is for the participants to, through
conversation, arrive at a ranking which both deem
satisfactory. Although both participants see the
same set of images, they cannot see each other’s
perspective. The position of the images on their re-
spective screens has been randomized, forcing the
participants to refer to the images by referencing
their visual content. To ensure repeated mentions
of the same referents, the task is performed over
multiple (four) rounds, and the same set of images
is used each round.

The AGOS dataset consists of 15 dialogues.
Each AGOS image set consists of nine images
from the same of one of five image categories,
namely cars, dogs, paintings, pastries, or phones.

AGOS PB-GOLD

# Dialogues 15 50
# Messages (×) 1, 800 3, 335
# Mentions (Ë) 1, 486 2, 111
# Characters (k) 86, 516 96, 774
# Words (kV) 19, 843 22, 889

%× with Ë 60.33% 61.02%
%× with > 1Ë 17.94% 1.95%

#k in Ë 27, 574 61, 771
%k in Ë:k in × 31.87% 63.83%

#kV in Ë 5, 708 12, 880
%kV in Ë: kV in × 28.77% 56.27%

X̄ k in × 48.06 (43.57) 29.02 (24.83)

X̄ k in Ë 18.56 (15.76) 29.26 (23.35)

X̄ kV in × 11.02 (9.52) 6.86 (5.40)

X̄ kV in Ë 3.84 (3.20) 6.10 (4.86)

Table 1: Descriptive statistics for the AGOS and PB-
GOLD datasets. Note. Explanation of symbols and
abbreviations: × = Messages; Ë = Mentions; k =
Characters; kV = Words; X̄ = average (mean). Stan-
dard deviation between brackets. Scores and standard
deviations are rounded to the nearest hundredth.

Three dialogues were collected per image category.

4.1.2 PhotoBook (PB)
PB is a collaborative image identification task.
Two participants are shown partially dissimilar
sets of six visually similar images; some of the
images will be shown to both participants, while
others are shown to only one of the participants.
Each participant has three of their six images high-
lighted. The goal of the task is for the participants
to, through conversation and without seeing each
other’s perspective, identify for these highlighted
images whether or not they have them in common.
To ensure repeated mentions of the same referents,
the task is performed over multiple (five) rounds,
and while the set of images shown to participants
changes from round to round, the image sets are
constructed in such a way that each image is shown
multiple times to at least one of the participants.

The PB dataset consists of 2.5K dialogues. Each
PB image set, as shown to each participant, con-
sists of six images that prominently feature two
objects, each object belonging to a different image
category. These two image categories form the
“image domain” of the conversation; each image
shown throughout the interaction will feature at
least one object from each category. For our exper-
iments, we make use of the so-called PB-GOLD
subset, as referenced in Takmaz et al. (2022), which
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AGOS PB-GOLD

0 3 7 19 0 3 7 19
L

L
A

M
A P .896 (.03) .922 (.02) .919 (.02) .923 (.03) .933 (.02) .936 (.03) .940 (.02) .943 (.02)

R .835 (.04) .865 (.03) .883 (.03) .884 (.03) .927 (.01) .925 (.01) .934 (.01) .937 (.02)
F1 .863 (.02) .892 (.01) .900 (.01) .902 (.01) .930 (.01) .930 (.02) .937 (.02) .940 (.02)
J .811 (.03) .849 (.03) .856 (.02) .858 (.02) .921 (.01) .922 (.01) .933 (.01) .933 (.01)

M
-B

E
R

T P .827 (.04) .842 (.03) .843 (.03) .863 (.04) .916 (.02) .918 (.02) .924 (.01) .930 (.02)
R .812 (.05) .835 (.03) .837 (.04) .853 (.01) .909 (.01) .912 (.01) .908 (.01) .917 (.02)
F1 .819 (.04) .838 (.02) .839 (.02) .857 (.02) .912 (.02) .915 (.01) .916 (.01) .924 (.02)
J .786 (.04) .815 (.02) .814 (.02) .825 (.01) .909 (.01) .914 (.01) .913 (.01) .920 (.01)

Table 2: Cross-validated mention detection performance of fine-tuned LLAMA 3.1 8B (LLAMA, top) and MOD-
ERNBERT-large (M-BERT, bottom) on AGOS and PB-GOLD for four different context windows, i.e., 0, 3, 7,
and 19 preceding messages. Note. P = Precision; R = Recall; F1 = F1 score; J = Jaccard index. Scores are rounded
to the nearest thousand, standard deviations to the nearest hundredth.

consists of 50 dialogues for which the authors have
provided some annotations at the utterance level.

4.1.3 Mention annotations
In this work, we make use of the manually anno-
tated mention spans from Willemsen et al. (2023).
These spans indicate the linguistic expressions that
have a (visually perceivable) referent in the vi-
sual context of the conversation. More specifically,
these are either singletons or REs that are part of an
identity relation with other mentions in the linguis-
tic context that have one or more of the images as
their referents. For the annotation of the mention
spans, Willemsen et al. (2023) were aided by speak-
ers’ self-annotations, as participants were required
to indicate whether or not a message was meant
to include one or more references to one or more
of the images. In the messages which contained
such references, the longest, most specific spans
with images as their referents were marked. The
resulting annotations are relatively course-grained.
We adopt this protocol for our annotation of the
PB-GOLD dialogues. Although PB has no self-
annotations, referential ambiguities can be resolved
by scrutiny of the full dialogue context. We report
descriptive statistics of both datasets in Table 1.

4.2 Model specifications

For each experiment involving the proposed au-
toregressive language modeling approach, we fine-
tune LLAMA 3.1 8B (Grattafiori et al., 2024) using
QLoRA (Dettmers et al., 2023) on a single 24GB
NVIDIA GeForce RTX 3090. We calculate the loss
only over tokens of the target message, masking the
loss over tokens that are part of the preceding dia-
logue context. We make use of the model’s existing
vocabulary for any special tokens, such as those

indicating span boundaries. Fine-tuned model out-
put is generated using constrained decoding. That
is, at every time step we dynamically restrict the
vocabulary, where the allowed tokens include the
next token from the input utterance and any valid
special tokens. Hyperparameters are listed in Table
6 in Appendix A. For an example of the formatting
of training samples for fine-tuning, see Appendix
B. For additional implementation details, we refer
the reader to our repository.2

4.2.1 Baselines
NP extraction using constituency parsing As
mentions are predominantly NPs, we opt for a sim-
ple baseline model that automatically extracts NPs
from the dialogues using the constituency parser
from the Stanza toolkit (Qi et al., 2020). The back-
bone of this parser is ELECTRA-large (Clark et al.,
2020) trained on a revised version of the third re-
lease of the Penn Treebank (Marcus et al., 1993).
We extract the most expansive spans, but discard
certain candidate phrases. For instance, as the dia-
logues involve text-based conversations in which
the participants are not able to see each other, we
can disregard various personal pronouns (e.g., “I”,
“you”, “me”) as these were not considered to be
mentions here.
Sequence labeling with MODERNBERT It has
been common practice to treat problems that center
on the detection of spans in text, such as MD, as
sequence labeling tasks (e.g., Lample et al., 2016).
When given a sequence (of tokens), the objective is
to assign each element a label such that span bound-
aries can be inferred. Tag sets are frequently based
on the IOB format (Ramshaw and Marcus, 1995):
the B tag indicates that an element begins a span,
the I tag indicates that an element is inside of a span,
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and the O tag indicates that an element is outside of
a span. For our purpose, we adopt the IOB tag set
and fine-tune MODERNBERT-large (Warner et al.,
2024) to predict for each token of a given utterance
the correct label. As the name suggests, MOD-
ERNBERT is a more recent encoder-only LLM
that improves upon the original BERT architec-
ture. Similar to the LLAMA-based experiments, for
the experiments that are meant to demonstrate the
effects of dialogue history on downstream perfor-
mance, we provide preceding messages as context,
masking the loss over all labels except those of
the target message. Each model is fine-tuned on
a single 24GB NVIDIA GeForce RTX 3090. Hy-
perparameters are listed in Table 7 in Appendix A.
For additional implementation details, we refer the
reader to our repository.2

Note that in this formulation of the problem us-
ing the basic IOB format, it is not possible to ac-
curately label nested mentions. However, there
are very few cases of nesting in the datasets used
for the experiments reported in this paper. There-
fore, this shortcoming has negligible impact on the
current evaluation of the approach.

4.3 Evaluation

Our first experiments involve cross-validation on
both datasets. We evaluate using the same five-fold
cross-validation protocol adopted by prior work on
the AGOS dataset (Willemsen et al., 2023; Willem-
sen and Skantze, 2024), which partitions the dataset
along its five image sets. We similarly perform five-
fold cross-validation on the PB-GOLD dataset.
However, as there is no predefined, deterministic
split for PB-GOLD, we split the data randomly.
Our second set of experiments concerns an investi-
gation into cross-dataset transfer. This means that
we fine-tune models on the entirety of AGOS and
test on the entirety of PB-GOLD, and vice versa.

In addition, we test the effects of dialogue his-
tory on MD performance. For each of the afore-
mentioned experiments, we fine-tune models for
four different context windows, 0, 3, 7, and 19,
meaning the models have access to no, three, seven,
or 19 preceding messages, respectively.

4.3.1 Metrics

We measure mention detection performance in
terms of precision, recall, F1 score, and intersec-
tion over union of ground truth (gold spans) and
predicted mention spans at the character level (i.e.,
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Figure 2: Mention detection performance of fine-tuned
LLAMA 3.1 8B in terms of F1 scores [0, 1] as a func-
tion of the size of the context window, i.e., the maxi-
mum number of preceding messages considered from
the available dialogue history. Shown are results of each
fold (dots) and their average (bar) for four different con-
text windows, i.e., 0, 3, 7, and 19.

Jaccard index).5

We calculate precision, recall, and F1 scores
based on exact mention span matches. This means
that a predicted mention is considered a true pos-
itive only if it matches a gold span exactly and is
treated as a false positive otherwise. Conversely, a
ground truth mention for which there is no exact
matching prediction is considered a false negative.

We use a measure based on the Jaccard index
to score the extent to which ground truth and pre-
dicted mention spans overlap, which permits the
scoring of partial matches. For each message,
we find the optimal assignment of predicted and
ground truth spans based on the number of corre-
sponding character indices. We calculate the Jac-
card index for each pair of matched spans. In the
event that no match exists—that is, there is no over-
lap between a ground truth mention and any of the
predicted spans (false negative), or there exists no
ground truth mention for a predicted span (false
positive)—, the score for this particular span is 0.

All the aforementioned mention detection met-
rics are bound [0, 1], with higher scores indicating
better performance.

5 Results

Before reporting the results of our fine-tuning ex-
periments, we first highlight some of the descrip-
tive statistics reported in Table 1 to aid in under-
standing the composition of the data. As shown
in Table 1, PB-GOLD contains over three times

5Character-level evaluation avoids tokenization issues
when span boundary tokens are placed within words.
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� 
 f Q I X̄

P .881 .954 .934 .912 .933 .923 (.03)
R .897 .842 .902 .924 .855 .884 (.03)
F1 .889 .894 .918 .918 .892 .902 (.01)
J .853 .823 .881 .874 .857 .858 (.02)

Table 3: Cross-validated mention detection perfor-
mance of fine-tuned LLAMA 3.1 8B on AGOS based
on a context window of 19, i.e., a dialogue history con-
sisting of 19 preceding messages. Results are shown
for each fold as well as their average (X̄). Note. P =
Precision; R = Recall; F1 = F1 score; J = Jaccard index;
Symbols represent folds: � = Cars; 
 = Dogs; f =
Paintings; Q = Pastries; I = Phones. Standard deviation
between brackets. Scores are rounded to the nearest
thousand, standard deviations to the nearest hundredth.

more dialogues than AGOS. However, on average,
the AGOS dialogues are considerably longer and
have almost twice as many messages per dialogue.
While the percentage of messages with mentions is
comparable, AGOS has a much higher rate of mes-
sages that contain more than one mention than PB-
GOLD. Nevertheless, mentions make up notably
less of the overall content of the AGOS dialogues
than of the PB-GOLD dialogues; the number of
characters and words dedicated to mentions relative
to the total number of characters and words in the
messages is substantially lower for AGOS than for
PB-GOLD. Finally, the average AGOS mention
is shorter than the average PB-GOLD mention.

5.1 Cross-validation

Shown in Table 2 are the cross-validated results
from fine-tuning and evaluating models on the
AGOS and PB-GOLD datasets. For each context
window, scores are reported as averages over all
folds for each MD performance metric. In addition,
the results reported in Table 3 are from fine-tuning
and evaluating LLAMA on the AGOS dataset using
the maximum context window size we considered
for this work, i.e., a context window of size 19.
In Table 3, scores are shown per fold in addition
to their averages over all folds, for each MD per-
formance metric. We found that, despite some
variance between folds, scores resulting from fine-
tuning LLAMA were relatively high overall. In
comparison, the performance of MODERNBERT
is relatively competitive, but it does lag behind
that of LLAMA. The observed results suggest that
the models were, on average, somewhat more per-
formant on the PB-GOLD than they were on the
AGOS data. Moreover, we observed that the mod-

els generally benefited from an increase in context
window size; on average, we found that providing
the models with a greater number of preceding mes-
sages increased MD performance, but noted that
there were diminishing returns. The observed trend
was somewhat more apparent for AGOS than for
PB-GOLD. Figure 2 provides a visualization of
this trend based on the F1 scores for AGOS.

5.2 Cross-dataset transfer

Table 4 shows results from fine-tuning models on
AGOS and testing on PB-GOLD (AGOS → PB-
GOLD), and vice versa (PB-GOLD → AGOS).
Although scores were shown to trail those of the
cross-validation experiments, the observed MD
performance was still indicative of a relatively
high degree of successful transfer overall. Again,
LLAMA’s performance was shown to exceed that
of MODERNBERT. A noteworthy observation was
that AGOS → PB-GOLD consistently resulted
in higher scores than PB-GOLD → AGOS on all
MD performance metrics. Similarly to results from
our cross-validation experiments, we observed that,
on average, an increase in the size of the context
window tended to result in improved performance.
These findings suggest that providing the models
with at least some preceding messages can already
be beneficial.

5.3 Comparison with NP extraction

The results reported in Table 5 show the MD perfor-
mance of a method based on constituency parsing
for the automatic extraction of NPs. Although re-
call may seem relatively high considering that the
focus of this baseline model was solely on NP ex-
traction, it bears repeating that most mentions tend
to be NPs, though they are not always presented
in a straightforward, parsable manner or context.
Perhaps unsurprisingly, especially when comparing
against our proposed approach, this naive method
for MD is relatively imprecise, as the false positive
rate ends up being relatively high when predicting
virtually all NPs to be referential in nature.

5.4 Error analysis

When examining the output generated by LLAMA,
we found various errors to be consistent between
the different context windows. Although the mod-
els appeared to be relatively robust against the
noise in the input, certain mentions were partially,
or entirely, missed, as a result of ungrammatical
phrasing. For partial matches, we observed some
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AGOS→ PB-GOLD PB-GOLD→ AGOS

0 3 7 19 0 3 7 19

L
L

A
M

A P .798 .859 .864 .886 .775 .803 .810 .820
R .806 .838 .858 .845 .687 .676 .713 .744
F1 .802 .848 .861 .865 .728 .734 .758 .780
J .777 .816 .834 .839 .668 .666 .694 .722

M
-B

E
R

T P .725 .768 .778 .795 .707 .735 .774 .777
R .650 .694 .687 .735 .610 .641 .704 .723
F1 .685 .729 .730 .764 .655 .685 .737 .749
J .662 .704 .698 .737 .595 .616 .665 .688

Table 4: Mention detection performance of fine-tuned LLAMA 3.1 8B (LLAMA, top) and MODERNBERT-large
(M-BERT, bottom) in cross-data transfer experiments for four different context windows, i.e., 0, 3, 7, and 19
preceding messages. AGOS → PB-GOLD indicates training on AGOS and testing on PB-GOLD; PB-GOLD
→ AGOS indicates training on PB-GOLD and testing on AGOS. Note. P = Precision; R = Recall; F1 = F1 score;
J = Jaccard index. Scores are rounded to the nearest thousand, standard deviations to the nearest hundredth.

AGOS PB-GOLD

P .411 .377
R .764 .607
F1 .535 .465
J .453 .530

Table 5: Mention detection performance of the Stanza
NP extraction baseline. Note. P = Precision; R = Recall;
F1 = F1 score; J = Jaccard index. Standard deviation
between brackets. Scores are rounded to the nearest
thousand, standard deviations to the nearest hundredth.

recurring errors in relation to structural ambigui-
ties, leading to the exclusion of relative clauses or
prepositional phrases, and the splitting of single
into multiple mentions or the merging of multi-
ple mentions into a single span. Furthermore, we
found instances of ambiguous pronoun usage to
be relatively frequent among errors, such as in the
phrases “let’s go for it” and “let’s do it”, in which
the use of “it” is referential, but it is not recognized
as such without additional context. Interestingly,
providing access to preceding messages ends up
resolving the inaccuracy for the former and not for
the latter, even though these seem to be very similar
cases on the surface. Conversely, we also observed
cases where usage of (pro)nouns was incorrectly
predicted to be referential. Again, some of these
errors were resolved by providing the model access
to the dialogue history.

6 Discussion

In this paper, we explored the potential of an
approach to mention detection (MD) in visually
grounded dialogue based on autoregressive lan-
guage modeling. Results from our experiments

on conversations from the visually grounded dia-
logue tasks A GAME OF SORTS (AGOS, Willem-
sen et al., 2022) and PHOTOBOOK (PB, Haber
et al., 2019) were promising, showing that a text-
only approach that involves the parameter-efficient
fine-tuning of LLMs to generate annotated repro-
ductions of utterances can be effective. Moreover,
we showed that providing the models with addi-
tional context from the dialogue history—that is,
any messages that preceded the utterance under
consideration—generally benefits performance. Al-
though these findings were largely consistent be-
tween the competing methods presented in this
work, within our experimental setup the genera-
tive approach to information extraction using the
fine-tuned, decoder-only LLAMA model was shown
to consistently outperform the sequence labeling
approach based on the fine-tuned, encoder-only
MODERNBERT.

Results from our cross-validation experiments
showed that the models, on average, achieved better
performance on the PB-GOLD than on the AGOS
dataset. The cross-dataset transfer experiments re-
vealed a notable performance gap between the two
datasets; fine-tuning on the AGOS data seemed to
result in the models being better able to generalize
beyond their specific conversational domain than
when fine-tuning on the PB-GOLD data. These
findings suggest that AGOS offers a more chal-
lenging testbed when it comes to MD, as it was
explored in this work, than PB-GOLD. Given that
the primary focus of the PB task is the correct iden-
tification of images, participants’ language use is
disproportionally reserved for referential purposes.
This was made apparent through a quantified char-
acterization of the PB-GOLD mentions, indicating
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that mentions made up nearly two-thirds of the lin-
guistic content of the dialogues. In contrast, with
image identification being a secondary objective,
mentions make up just shy of one-third of the lin-
guistic content of the AGOS dialogues. In addition,
mentions in the PB-GOLD dialogues are consider-
ably longer, on average, than those in the AGOS
dialogues. When qualitatively examining the men-
tions from both datasets, it becomes clear that the
incidence rate of mentions that resemble image
caption-like descriptions is notably higher for PB-
GOLD than for AGOS. By and large, our findings
suggest that AGOS offers its referring language
use in a richer linguistic context than PB-GOLD,
which aids the models’ ability to generalize.

That being said, it would be reasonable to as-
sume that the incidence rate of mentions in these
task-oriented dialogues from both datasets is high
compared to that of organic, non-task-oriented con-
versations. Conversations can go long stretches of
time without the mention of a visually perceivable
referent. Our approach relies heavily on there be-
ing exploitable regularities in the linguistic context.
The extent to which conversations with compara-
tively sparse mention occurrences, and that take
place outside of task-oriented settings, still exhibit
such actionable patterns is, as of yet, unclear. For
both AGOS and PB-GOLD, the probability that
a given linguistic expression (indirectly) points to
a referent that is visually perceivable by at least
one of the participants in the conversation is high,
simply as a consequence of the situational context,
as the images are the focal point of the conver-
sations. Discerning, from the linguistic context
alone, whether an RE has such a referent becomes
far more challenging, if not impossible, when the
configuration of the visual context of the conver-
sation is less constrained, more dynamic, and can-
not be anticipated ahead of time. In other words,
we may still be able to extract mention candidates
with a high degree of accuracy, but the number of
false positives—by which we here mean any can-
didates that currently have no visually perceivable
referents—is likely to be significantly higher; this
outcome reminds of the high recall settings favored
by aforementioned prior work on coreference reso-
lution.

Inevitably, a general solution to the problem
will require a cross-modal approach. Although
we make no assumptions regarding the manner of
encoding, the visual information must somehow
be incorporated to validate whether candidate men-

tions indeed have a referent in the visual context;
even when the linguistic context strongly implies
the existence of such a referent, we simply cannot
be certain without a review of the visual context.
Moreover, we are likely to see that end-to-end ap-
proaches will increasingly be favored over modular
systems when it comes to addressing downstream
tasks that have historically relied on some form of
MD, but for which MD is simply a means to an
end. Nevertheless, we expect that MD as a task in
and of itself will remain relevant for niche appli-
cations for the foreseeable future. For one, it may
continue to serve as a benchmark for the informa-
tion extraction capabilities of models under varying
conditions. Perhaps more interestingly, however,
are real-world applications, such as its use as an
information extraction tool for corpus linguistics.

Limitations

In this work, the focus has been on detecting REs
that have a (visually perceivable) referent in the vi-
sual context of a conversation. Only singletons and
mentions in an identity relation were considered,
contingent on their referent being one or more of
the images in the visual context. It is worth noting
that there are some consequential differences be-
tween the images used by AGOS and PB. Where
the focus of each AGOS image was on (an iconic
view of) one entity from some image category, PB
images depicted more complex scenes, purposely
featuring multiple entities from different image cat-
egories. Perhaps unsurprisingly, when the task in-
volves identification within a visually grounded
conversational context, we find that the more com-
plex the scene, the more frequently we have to
consider a bridging relationship between mentions
as a surrogate for identity. This highlights a compli-
cation with respect to the annotation of this domain
that becomes increasingly problematic: the noisier
(or more complex) the language use, the more am-
biguous the boundaries. We expect this to be even
more evident in unrestricted, spoken dialogue.

Regarding our cross-validation experiments, re-
sults were based on a five-fold split of the datasets.
The AGOS dataset has a preferred partitioning that
ensures minimal data leakage between the train-
ing and test data. For PB-GOLD, however, we
did not find a sensible, deterministic split, as even
when image domains were seemingly mutually ex-
clusive, in reality there were frequent intrusions
from other image categories. For instance, people—
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which happens to be one of the author-defined im-
age categories—are present in the vast majority
of the photographs, often as salient entities, and
frequently referenced as a result. Although we do
not believe this has affected our overall conclu-
sions, the random splitting may have resulted in
inflated scores in the PB-GOLD cross-validation
experiments. In addition, the language used in the
dialogues from both datasets is exclusively English,
meaning the experiments reported in this paper do
not provide explicit insight into the extent to which
the approach generalizes to other languages.

Finally, we have evaluated the proposed ap-
proach with one LLM undergoing a parameter-
efficient fine-tuning regimen. We have not in-
vestigated performance differences between full-
parameter and parameter-efficient fine-tuning, nor
have we tested the extent to which other genera-
tive LLMs are able to perform the task. In addi-
tion, more exhaustive hyperparameter tuning has
the potential to improve results further. It is con-
ceivable that more optimal hyperparameters exist
that could narrow the observed performance gap
between LLAMA and MODERNBERT on this task.
However, it would mainly serve to underscore the
general importance of the linguistic context and
demonstrate the viability of either approach.
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A Hyperparameters

As a starting point for hyperparameter optimization,
we took note of hyperparameters reported in prior
work (e.g., Hu et al., 2022; Dettmers et al., 2023;
Warner et al., 2024), performing minimal tuning
mostly within suggested ranges.

Epochs 2
Batch size 8
Learning rate (LR) 1e-4
LR scheduler type cosine
Warmup ratio 0.1

LoRA r 16
LoRA α 16
LoRA dropout 0
LoRA target modules *_proj, lm_head

Table 6: Hyperparameters for QLoRA fine-tuning of
LLAMA 3.1 8B. We use default values if not otherwise
specified.

Epochs 4
Batch size 8
Learning rate 8e-5
Gradient accumulation steps 8
Warmup ratio 0.1
Weight decay 8e-6

Table 7: Hyperparameters for fine-tuning of MODERN-
BERT-large. We use default values if not otherwise
specified.

B Training example

The following is an example of a training sample
from the AGOS dataset—for a context window of
size 3—that was used to fine-tune LLAMA 3.1:

B: Clear, I think my second choice would
be the light grey one, which looks like in
old style.\nA: I agree, its bottom seems
to be pretty high as well.\nB: yeap!\nB:
then, for the third one, is the dark grey
one okay?\n\nB: then, for the third one,

is the dark grey one okay? -> B: then,
for the third one, is >> the dark grey <<
one okay?

Messages in the linguistic context are separated
by single newline characters (\n). Each message
is prepended with a token indicating the speaker
(either A or B). The message we want annotated is
separated from the linguistic context by two new-
line characters (\n\n). This message is followed
by an inference token (->). The inference token is
then followed by the annotated message, with span
boundary tokens indicating the start (>>) and end
(<<) of the mention span.
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Abstract
Probing techniques for large language mod-
els (LLMs) have primarily focused on English,
overlooking the vast majority of other world’s
languages. In this paper, we extend these prob-
ing methods to a multilingual context, inves-
tigating how LLMs encode linguistic struc-
tures across diverse languages. We conduct
experiments on several open-source LLM mod-
els, analyzing probing accuracy, trends across
layers, and similarities between probing vec-
tors for multiple languages. Our key find-
ings reveal: (1) a consistent performance gap
between high-resource and low-resource lan-
guages, with high-resource languages achiev-
ing significantly higher probing accuracy; (2)
divergent layer-wise accuracy trends, where
high-resource languages show substantial im-
provement in deeper layers similar to En-
glish; and (3) higher representational similari-
ties among high-resource languages, with low-
resource languages demonstrating lower simi-
larities both among themselves and with high-
resource languages. These results provide in-
sights into how linguistic structures are repre-
sented differently across languages in LLMs
and emphasize the need for improved structure
modeling for low-resource languages.

1 Introduction

Large language models (LLMs), such as GPT-
4 (Achiam et al., 2023), Claude 3.5 (Anthropic,
2024), Llama 3 (Dubey et al., 2024), have demon-
strated remarkable progress across a wide range of
natural language processing tasks. As these models
continue to advance, there is a growing need to
understand their internal mechanisms and how they
represent linguistic structures. Probing techniques
have emerged as a valuable tool for investigating
how LLMs encode and process structural informa-
tion, offering insights into their decision-making
processes and the nature of their learned represen-
tations (Ferrando et al., 2024a; Zhao et al., 2024;
Zou et al., 2023).

However, a significant gap exists in our under-
standing of how LLMs represent linguistic struc-
tures across different languages. While extensive
probing research has been conducted on English
language representations, there are approximately
7,000 languages spoken worldwide, many of which
remain understudied in the context of LLMs. This
lack of multilingual analysis limits our understand-
ing of how LLMs encode structural information
across diverse linguistic contexts, particularly for
low-resource languages that are often underrepre-
sented in model training data and evaluations.

To address this research gap, we propose a mul-
tilingual probing approach to investigate the struc-
tural representation capabilities of LLMs across a
diverse set of 16 languages, including both high-
resource and low-resource languages. Our study
extends probing techniques from English to a mul-
tilingual context, examining how LLMs encode
linguistic structures in factual knowledge and senti-
ment classification tasks across different languages.
Our key findings reveal that: (1) high-resource lan-
guages consistently achieve higher probing accu-
racy compared to low-resource languages; (2) high-
resource languages exhibit similar trends to En-
glish across model layers, with accuracy improving
significantly in deeper layers, while low-resource
languages show relatively stable or only slightly
improving accuracy; and (3) there are high simi-
larities between probing vectors of high-resource
languages, whereas low-resource languages demon-
strate lower similarities both among themselves and
with high-resource languages.

2 Probing Method

2.1 LLM Internal Representation

We study decoder-only LLMs, where each layer
of a model consists of both multi-head attention
blocks (MHA) and feed-forward networks (FFNs).
In this work, we utilize frozen pretrained language
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models. Layers are indexed with ℓ ∈ L, where
L denotes the set of all layers in a model. For
each layer, the computation starts and ends with
a residual stream. The MHA first reads from the
residual stream and performs computation, then
adds its output back to the residual stream. The
updated vector in the residual stream is then passed
through MLPs to generate the output of the layer:

hℓ+1
i = hℓ

i + MLPℓ
(
hℓ
i + Attℓ

(
hℓ
i

))
, (1)

where hℓi represents the hidden state of the i-th to-
ken in the input sequence at layer ℓ. We focus on
the output representation space of each layer, par-
ticularly the residual stream at the end of each layer.
We use the representation of the last token to rep-
resent the entire input sequence, as it is generally
believed to integrate information from all previous
tokens. This representation is denoted as hℓ, which
will be simplified to h in the following section.

2.2 Linear Classifier Probing
In our analysis, we employed linear classifier prob-
ing (Ju et al., 2024a; Jin et al., 2024) to explore
internal representations across various layers of
LLMs. We extracted hidden states from the resid-
ual stream of each layer using two types of inputs
(i.e., positive and negative) and utilized these rep-
resentations to train a logistic regression model.
By evaluating the performance of trained classifier,
we are able to assess how well the hidden states
at different layers encoded information relevant to
answering factual questions or handling sentiment
classification tasks. This approach provides valu-
able insights into the nature of the representations
learned within the model.

To perform the probing, we employed a linear
classifier approach. We define h ∈ Rn×dmodel as
the set of hidden features extracted from the LLM,
where n is the number of samples and dmodel repre-
sents the dimensionality of the hidden layer. The
internal representation of each sample in a specific
layer is denoted by h(i) ∈ R1×dmodel . We utilize
binary classification, assigning labels y(i) ∈ {0, 1}.
The objective function for our logistic regression
classifier, incorporating L2 regularization, is for-
mulated as:

J(θ) = − 1

n

n∑

i=1

L(h(i), y(i); θ) +
λ

2n
∥θ∥22, (2)

where L(.) represents the cross-entropy loss:

L = y(i) log(σ(θTh(i))) + (1− y(i)) log(1− σ(θTh(i))),
(3)

Model Layer Representation Dimension
Qwen-0.5B 24 1024
Qwen-1.8B 24 2048
Qwen-7B 32 4096
Gemma-2B 18 2048
Gemma-7B 28 3072

Table 1: Model and corresponding layers.

where θ denotes the model parameters, λ is the reg-
ularization coefficient, and σ(·) represents the sig-
moid activation function. By evaluating the accu-
racy of this classifier on the test set, we can evaluate
the LLM’s performance and gain insights into its
internal representations across different languages
and layers.

3 Experiment

In this section, we conduct comprehensive prob-
ing experiments to investigate how language mod-
els process different languages. Our analysis fo-
cuses on two key aspects: comparing accuracy
across different model layers and examining cor-
relations between probing vectors of various lan-
guages. Through these experiments, we seek to an-
swer three fundamental research questions (RQs):

• RQ1 - Do other languages achieve compara-
ble probing accuracy to English?

• RQ2 - Do other languages exhibit similar
layer-wise behavioral patterns to English?

• RQ3 - What are the similarities between prob-
ing vectors across different languages?

3.1 Experiment Settings
In this section, we introduce the overall experimen-
tal settings of this papers.
Models: We evaluated the performance and inter-
nal representations across various languages using
two open-source LLM families: Qwen (Bai et al.,
2023) and Gemma (Team et al., 2024). The Qwen-
1.5 architecture comprises 24 layers for smaller
variants (0.5B & 1.8B) and 32 layers for the larger
variant (7B), while the Gemma architecture fea-
tures 18 layers for the 2B model and 28 layers for
the 7B model. The representation vector dimen-
sions vary across models: 1024 for Qwen-0.5B,
2048 for both Qwen-1.8B and Gemma-2B, 3072
for Gemma-7B, and 4096 for Qwen-7B. Table 1
provides a comprehensive overview of the models
and their corresponding layer configurations.
Datasets: In the following experiments, we uti-
lized a truthful dataset: Cities (Marks and Tegmark,

62



1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Qwen-0.5B on Cities

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Qwen-1.8B on Cities

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

Qwen-7B on Cities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Gemma-2B on Cities

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Layer number

Gemma-7B on Cities

Languages
English
German
French
Chinese
Spanish
Russian
Indonesian
Oriya

Hindi
Burmese
Hawaiian
Kannada
Tamil
Telugu
Kazakh
Turkmen

Figure 1: Layer-wise probing accuracy of 5 open-source LLMs across 16 languages.

2023), and a sentiment dataset: Opinion (Tatman,
2017). Cities contains 1496 samples, and Opinion
contains 1000 samples.

• Cities (Marks and Tegmark, 2023): consists
of statements about the location of cities from
worldwide and their veracity labels (e.g., The
city of Lyon is in France, which is true).

• Opinion (Tatman, 2017): consists of opinions
of 20 famous hotels. It contains the hotel’s
name, opinion’s polarity, and its source.

Our dataset encompasses 16 languages: English,
German, French, Chinese, Spanish, Russian, In-
donesian, Oriya, Hindi, Burmese, Hawaiian, Kan-
nada, Tamil, Telugu, Kazakh, Turkmen. We cate-
gorized English, German, French, Chinese, Span-
ish, Russian, and Indonesian as high-resource lan-
guages, and rest of them as low-resource languages
based on the volume of available digital content
and linguistic resources. The original language
of our two datasets are English, and we used
Google Translate within deep-translator python li-
brary (Azam, 2024) to translate them into other
15 languages, as Google Translate supports trans-
lation between over 100 languages, and achieves
high accuracy compared to other translation tools.

Implementation Details: To evaluate the perfor-
mance of LLMs on each language, we use the tem-
plate for the Cities dataset in English as "Judge the
statement is Positive or Negative. <Statement>".
The prompts of other languages utilize the same
template translated by Google Translate. This al-
lows us to prevent any context differences regard-
ing the prompt design. We present the full set of
prompt templates for all 16 languages in Figure 3
at the Appendix. We applied probing techniques to
assess the information encoded within each layer
of these models. For our probing analysis, we se-
lected linear classifier probing for our experiments.
Each dataset is divided into a training and a test set
with an 8:2 ratio, and we adhered to the standard
procedure for probing classifiers in LLMs, extract-
ing feature representations from the final hidden
states at each layer of the LLMs to serve as input to
the probing classifier. The linear weight parameter
θ of the logistic regression classifier is regarded as
the probing vector for each language and layer.

3.2 Multilingual Accuracy

In this section, we explored (1) whether other lan-
guages besides English have the same probing ac-
curacy as English and (2) whether they follow the
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Table 2: Probing accuracy of various LLMs across different languages on the Cities dataset.

Model High-Resource Languages Low-Resource Languages

English German French Chinese Spanish Russian Indonesian Oriya Hindi Burmese Hawaiian Kannada Tamil Telugu Kazakh Turkmen

Gemma-2B 0.98 0.95 0.97 0.69 0.98 0.87 0.95 0.44 0.53 0.60 0.60 0.60 0.56 0.56 0.66 0.62
Gemma-7B 0.99 0.99 0.99 0.76 0.99 0.93 0.99 0.54 0.76 0.81 0.74 0.72 0.70 0.72 0.75 0.76
Qwen-0.5B 0.90 0.77 0.76 0.70 0.84 0.52 0.69 0.47 0.41 0.33 0.48 0.43 0.45 0.42 0.43 0.41
Qwen-1.8B 0.96 0.92 0.92 0.75 0.93 0.67 0.87 0.47 0.41 0.37 0.60 0.42 0.40 0.43 0.44 0.56
Qwen-7B 0.99 0.98 0.98 0.88 0.98 0.88 0.97 0.45 0.50 0.44 0.65 0.40 0.39 0.46 0.67 0.67

same trend as English in different layers.
We present results on multilingual accuracy

across our five evaluated models (Qwen-0.5B,
Qwen-1.8B, Qwen-7B, Gemma-2B, Gemma-7B)
on the cities and Opinion datasets. In Figure 1 and
Table 2, we show the results of layer-wise prob-
ing accuracy on the Cities dataset. The results of
Opinion dataset are included in Figure 4 in the
Appendix. These results visualize how probing
accuracy changes across model layers for all 16
languages. Based on these results, our analysis
lead to two general observations as follows:

• High-resource languages show higher accu-
racy, while low-resource languages have com-
paratively lower accuracy. We conducted ex-
periments using Cities and Opinion datasets,
exploring the binary classification problem in
16 selected languages. Table 2 shows that in
Cities dataset, high-resource languages such
as French and German achieve at least 70% ac-
curacy, even reaching over 90% accuracy for
some models, while low-resource languages
like Oriya and Hindi only achieve about 40%
accuracy in the final layer.

• High-resource languages follow similar
trends to English, where accuracy signifi-
cantly improves as the layers deepen. Low-
resource languages maintain relatively stable
probing accuracy or show only slight improve-
ments. Figure 1 shows that as model layers
go deeper, English, French, and other high-
resource languages could reach highest accu-
racy at the 11th layer. However, the probing
accuracies of the low-resource languages have
not improved significantly.

3.3 Similarity Correlation of Probing Vectors
In this section, we conducted similarity analysis
on probing vectors θ across languages using two
visualization approaches:

• Correlation Heatmaps: These visualize the
pairwise similarities between probing vectors

of all 16 languages. These highlight clustering
patterns and resource-level disparities.

• Layer-wise Similarity Plots: They measure
cosine similarity between each language’s
probing vector and English’s across model
layers, revealing representation dynamics.

For demonstration, Figure 2 shows results from
the Qwen-1.8B model and Opinion dataset. In the
Appendix, we extend this analysis to all five models
(Qwen-0.5B, Qwen-1.8B, Qwen-7B, Gemma-2B,
Gemma-7B) and both datasets (Opinion, Cities)
through Figure 5 and Figure 6. Our analysis reveals
the following three key patterns:

• The probing vectors of high-resource lan-
guages (English, German, French, Chinese,
Spanish, Russian) demonstrate strong corre-
lations with each other, as evidenced by the
darker clusters in the heatmaps and consis-
tently higher similarity curves in the trajec-
tory plots. For instance, in the Qwen-1.8B
Opinion task, German and French probing
vectors maintain correlations above 0.6 with
English across most layers. In contrast, low-
resource languages show notably weaker cor-
relations, both among themselves and with
high-resource languages. This pattern is visi-
ble in the bright regions of the heatmaps for
languages like Tamil, Telugu, and Oriya, with
similarity scores typically remaining below
0.3 across all layers.

• The evolution of similarities across model lay-
ers reveals further insights into these represen-
tational differences. High-resource languages
exhibit dynamic similarity patterns with En-
glish, often peaking in middle layers before
slightly decreasing, while low-resource lan-
guages maintain relatively stable, low sim-
ilarity levels throughout the model layers.
These patterns persist across different model
sizes and architectures in both the Qwen and
Gemma families, and remain consistent across
the Opinion and Cities datasets.
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(a) Heatmap (b) Cosine similarity

Figure 2: (a) Heatmap of the similarities of probing vectors correlation across languages; (b) Cosine similarity of
probing vectors with English. (Model: Qwen-1.8B, Dataset: Opinion).

4 Related Work

In this section, we review two lines of research that
are most relevant to ours.
Multilingual Abilities of LLMs. The multilin-
gual capabilities of LLMs have garnered increas-
ing attention from researchers (Ali and Pyysalo,
2024; Jayakody and Dias, 2024). Recent stud-
ies have investigated the consistency of factual
knowledge across different languages in multilin-
gual pretrained language models (PLMs) (Fierro
and Søgaard, 2022; Qi et al., 2023). Addition-
ally, significant efforts have been directed towards
enhancing the representation of low-resource lan-
guages (Abadji et al., 2022; Imani et al., 2023; Li
et al., 2024). These investigations demonstrate that
LLMs still possess considerable untapped potential
in multilingual capabilities.

Probing Representations in LLMs. Probing is a
popular method to investigate the internal represen-
tations for LLMs in recent days, which is widely
used in LLM interpretability studies (Alain and
Bengio, 2018; Taktasheva et al., 2021; Pimentel
et al., 2020; Ferrando et al., 2024b; Wendler et al.,
2024). Previous work demonstrate that different
layers typically acquired different information (Jin
et al., 2024; Ju et al., 2024b). Various works us-
ing probing technique to assess how they encode
linguistic features (Liu et al., 2023; Marks and
Tegmark, 2024).

Our study employs probing techniques to exam-
ine LLMs’ performance and internal representa-
tions across different languages. The most closely
related work is the Language Ranker (Li et al.,

2024), which uses cosine similarity between a lan-
guage’s representation and English as a baseline. In
contrast, our method utilizes linear classifier prob-
ing to evaluate performance across languages. This
approach allows us to directly assess the model’s
ability to extract language-specific information,
providing a more detailed view of LLMs’ multilin-
gual capabilities.

5 Conclusions and Future Work

In this work, our multilingual probing experiments
on LLMs reveal significant disparities in perfor-
mance and representational qualities across lan-
guages, suggesting potential limitations in how
these models learn linguistic concepts. Specifi-
cally, high-resource languages consistently achieve
higher probing accuracy and exhibit similar trends
to English, with accuracy improving significantly
in deeper layers. We also observe high similari-
ties between probing vectors of high-resource lan-
guages, while low-resource languages demonstrate
lower similarities both among themselves and with
high-resource languages. These findings not only
indicate the current limitations of LLMs in han-
dling low-resource languages, but also suggest that
these models may not be learning deeper linguistic
concepts effectively across all languages.

In future, we plan to conduct research to address
these gaps by developing more equitable and effec-
tive multilingual language models that can better
capture universal linguistic concepts. Besides, we
plan to extend this research to multimodal models
that incorporate visual and textual information.
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Limitations

In this work, we use machine translation to generate
the prompt templates and question sentences from
English to other languages, which may introduce
noise. We only experiment with five open-source
LLMs and two datasets. In the future, we would
like to expand these findings with other datasets
and models to confirm how well the LLMs’ per-
formance and representations generalize in these
settings. Additionally, we just utilized linear clas-
sifier probing to do the experiments. We plan to
explore more sophisticated probing methods be-
yond linear classifiers, which could offer deeper
insights into the nature of linguistic representations
within LLMs.
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Language Prompt 

English Judge the statement is Positive or Negative. 

German Beurteilen Sie, ob die Aussage positiv oder negativ ist. 

French Jugez si l'énoncé est positif ou négatif. 

Chinese 判断该陈述是正面的还是负面的。 

Spanish Juzgue si la afirmación es positiva o negativa. 

Russian Оцените, является ли утверждение положительным или 

отрицательным. 

Indonesian Tentukan apakah pernyataan tersebut positif atau negatif. 

Oriya ବିବବଚନା କରନ୍ତୁ ବେ ବକ୍ତବୟଟି ସକାରାତ୍ମକ କି ନକାରାତ୍ମକ। 

Hindi निर्णय करें  नक कथि सकारात्मक है या िकारात्मक। 

Burmese ထထောက်ထောားချက်သညအ်နမု ြူထ ောအနတု်မ ြူထ ောမြစ်သည။် 

Hawaiian E hoʻopaʻapaʻa inā he maikaʻi a i ʻole he maikaʻi ʻole ka ʻōlelo. 

Kannada ಹೇಳಿಕೆಯನ್ನು  ಸಕಾರಾತ್ಮ ಕ ಅಥವಾ ಋಣಾತ್ಮ ಕ ಎಂದು ತೇರ್ಮಾನಿಸಿ. 

Tmail வாக்குமூலம் நேரம்மயானதா அல்லது 

எதிரம்மயானதா என்பமத மதிப்பீடு செய்யவும். 

Telugu వాఖా్య నికి సానుకూలం లేదా ప్రతికూలం అని తీర్పు  ఇవ్వ ండి. 

Kazakh Мәлімдеменің оң немесе теріс екенін анықтаңыз. 

Turkmen Beýannamanyň oňyn ýa-da otrisatelidigini kesgitläň. 

 

Figure 3: Prompt templates of all languages used in experiments.

Figure 4: Additional results for multilingual accuracy of Qwen and Gemma Series Model on the Opinion Dataset
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Figure 5: Heatmap of the similarities of probing vectors correlation across languages.
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Figure 6: Cosine similarity of probing vectors with English across different language models (Qwen-0.5B, Qwen-7B,
Gemma-2B, and Gemma-7B) and tasks (Opinion and Cities).
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Abstract

Text-to-SQL is a task with excellent prospects
and challenges, and it aims to convert natu-
ral language queries (NL) into corresponding
structured query language (SQL) statements.
The main challenge of this task is how to effi-
ciently transform unstructured data and struc-
tured data. In recent years, the emergence of
large language models (LLMs) has further pro-
moted the development of this field. However,
current LLM-based text-to-SQL methods rely
on specific few-shot example construction, re-
sulting in poor performance across domains.
To solve this problem, we propose a text-to-
SQL method of self-contrastive loop of thought
structure. This method designs the LLM in-
ference process as a loop structure based on
the comparison of positive and negative ex-
amples. The model optimizes the generated
results through continuous verification and er-
ror correction, greatly improving accuracy and
reducing dependence on few-shot example con-
struction. The experimental results on SPIDER
and BIRD datasets show that this method can
generate SQL with higher precision without
relying on few-shot example construction.

1 Introduction

The goal of text-to-SQL is to generate SQL based
on natural language. This technique can generate
the corresponding SQL statements by verbal de-
scription. Due to its broad application prospect
and challenge, this task has attracted wide atten-
tion(Bogin et al., 2019; Elgohary et al., 2020; Chen
et al., 2021; Lin et al., 2020).

In the early stages, such research typically
achieved text-to-SQL through rule-based designs
and pre-trained models. Design methods improved
the quality of SQL generation by reinforcing the
alignment between text and database schemas,
such as RAT-SQL (Wang et al., 2020), SDSQL(Hui

* Corresponding author

et al., 2021), LGESQL(Cao et al., 2021), RESD-
SQL(Li et al., 2023a). Additionally, some stud-
ies employed various pre-training strategies, such
as TaBERT(Yin et al., 2020), GRAPPA(Yu et al.,
2021), GAP(Zhao et al., 2022), and MIGA(Fu
et al., 2023), these models enhanced ability to cap-
ture the complex relationship between natural lan-
guage and SQL structures. Together, these efforts
improve the performance of text-to-SQL.

With the development of LLM, recent studies
have demonstrated the superior ability of LLM in
complex tasks(Gao et al., 2023; Nan et al., 2023b;
Imani et al., 2023). In the text-to-SQL field, the
LLM-based approach exceeds previous work on
multiple datasets without any fine-tuning or train-
ing(Gu et al., 2023; Pourreza et al., 2024; Nan
et al., 2023a).

Based on the advanced performance of LLM,
prompt-based methods have further promoted the
progress of text-to-SQL. Typical work such as DIN-
SQL(Pourreza and Rafiei, 2023), DAIL-SQL(Gao
et al., 2024), TA-SQL(Qu et al., 2024)and MAC-
SQL(Wang et al., 2023). These methods are based
on the few-shot prompt method, combined with
chain-of-thought technology to decompose the task
to improve LLM performance.

Although the prompt-based method has made
significant progress, it still has some problems.
First, the performance depends on the quality of
the few-shot examples, which can lead to LLM
not achieving the potential performance. Second,
most of this work uses a linear thinking workflow
to guide LLM generation, which comprises the
search space. Third, this work improves the ability
to deal with complex problems through detailed
decomposition tasks. However, it may introduce
an additional risk of hallucination, which can ad-
versely affect the results.

To solve the above problems, we propose a text-
to-SQL method based on a self-contrastive loop
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of thought structure (SCL). The LLM generation
process is constructed as a discriminant loop struc-
ture based on the contrast of positive and negative
examples so that the model can improve the accu-
racy of the results in the continuous self-correction.
This reduces the dependence on the construction of
few-shot examples, and the generation relies only
on the self-contrast between positive and negative
examples. With this approach, the LLM can better
focus on outputs similar to positive examples and
exclude erroneous results similar to negative ex-
amples, reducing the inference burden of the LLM.
On this basis, we summarize the contributions of
this paper as follows.

• Designed a question-splitting strategy that en-
hances the utilization of question information
via skeleton-based positive example retrieval
and entity-schema linking. In addition, pos-
itive example retrieval replaces the few-shot
construction, simplifying prompt design.

• Enhance the LLM’s verification and selection
abilities through result-guided execution and
logical verification, integrated with a selection
mechanism. This expands the search space
for generation.

• A loop-of-thought structure is designed to
guide the LLM through self-contrast between
positive and negative examples, enhancing its
ability to handle text-to-SQL tasks without
relying on few-shot example construction.

2 Methodology

2.1 Overview

SCL-SQL is a self-contrastive framework for text-
to-SQL. As shown in Figure 7. We first decouple
the query into entity and skeleton parts to improve
schema linking and example retrieval. Then, a
loop-structured reasoning process guides the LLM
to generate, execute, and verify SQL with both
positive and negative examples. Finally, a voting-
based mechanism selects the most reliable result.

2.2 Query Split

To fully utilize the information in the question, we
propose a novel entity-skeleton splitting strategy
that divides the question into entity and skeleton
parts, which respectively guide schema linking and
few-shot example construction.

2.2.1 Entity-guided Schema Linking

Schema linking identifies relevant schema ele-
ments (e.g., table names and columns), effectively
reducing mismatches and minimizing hallucina-
tions, as validated in prior studies (Gan et al.,
2023; Yang et al., 2024). This work adopts an
entity-guided approach by extracting keywords us-
ing YAKE (Campos et al., 2020), which divides the
question into keyword (entity) and non-keyword
(skeleton) parts, as shown in Equation 1.

T = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
e = {x2, x4, x7, x8, x9}, e ∈ T

s = {x1, x3, x5, x6, x10}, s ∈ T

(1)

Where T represents the original question, e rep-
resents the extracted entity, and s represents the
question skeleton, where e ∪ s = T .

The prompt for schema linking has three parts
(entity e, full schema, question). The LLM
matches all similar tables and corresponding
columns during the linking process.

2.2.2 Skeleton-Guided Example Retrieval

An efficient dynamic retrieval method is introduced
to replace manual few-shot example construction.
Questions with similar intents (e.g., searching,
counting, percentage calculation) exhibit similar
structural patterns. By matching skeleton struc-
tures, representative positive examples can be re-
trieved to support model reasoning. The Jaccard
coefficient is used to measure structural similarity
between the current question and existing samples,
as shown in Equation2.

Sim(s,D) =
|s ∩D|
|s ∪D| (2)

Where D represents existing data, s represents the
question skeleton, the score calculated by each row
of data is finally sorted from high to low, and the
corresponding number of pieces is returned as posi-
tive examples by setting the initial positive number
P0. The advantage of this method is that it can
ensure the efficiency of retrieval while performing
accurate retrieval.

Retrieved positive examples are formatted as
Question-SQL (QS) pairs, with the prefix [valid]
added to each pair to indicate ’positive’ identifica-
tion in the prompt.
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Entity Schema

Pos Pos

Prompt 

Query 

Entity Skeleton 

Neg

Candidates 

Pool

Vote

Linking

Loop of 

Thought

Retrieve

SR-pair

SQL1 

SQL2 

SQL3 

Res1 

Res2 

Res3 

Positive example

Negative example

SQL1 

Neg

Execute 

Result

How many active and closed District Community Day Schools 

are there in the county of Alpine?

SELECT COUNT(School) FROM schools WHERE (Status = 

'Closed' OR Status = 'Active') AND County = 'Alpine'

LLMLLM

LLM

DataSim

Generate

Execute

Verify

SQL

Calculate Score

Figure 1: SCL-SQL structure illustration. The ’Pos’ mark represents the positive sample, the ’Neg’ mark represents
the negative sample, and SQL and Res represent the generated SQL and the execution result. The numbers behind
them indicate the number of loops in which they are generated.

2.3 Loop of Thought

We propose a loop-structured LLM reasoning pro-
cess to address complex text-to-SQL problems.
The loop consists of four stages: (1) Prompting, (2)
Generation, (3) Execution, (4) Verification. The
goal of these four stages is to enable the LLM to
engage in iterative reasoning by comparing posi-
tive and negative examples. The specific process is
illustrated as follows.

(1) Prompting: A prompt is constructed by in-
tegrating the original question, the linked
database schema, positive examples retrieved
via skeleton-guided example retrieval, and
negative examples from the verification stage,
aiming to guide the LLMâĂŹs SQL genera-
tion.

(2) Generation: The constructed prompt is fed
into the LLM to generate candidate SQL state-
ments.

(3) Execution: The generated SQL statements
are executed, and both the SQL and their ex-
ecution results are passed to the verification
stage.

(4) Verification: A self-contrastive mechanism is
applied, where the LLM evaluates whether
the SQL and its result are logically correct.

The verification outcome is represented as a
binary pseudo-probability, with 0 indicating
failure and 1 indicating success.

The most critical step in the loop of thought is
result verification. However, (Huang et al., 2024)
showed that directly relying on LLM for result ver-
ification and correction may lead to performance
degradation. In the text-to-SQL task, the key evalu-
ation criterion is whether the SQL retrieves the ex-
pected results. To address this, we design a result-
guided verification mechanism, focusing on two
aspects:

(1) Execution verification: Whether the SQL ex-
ecutes successfully and whether the result is
empty.

(2) Logical verification: Whether the result logi-
cally matches the query intent. For instance,
when querying the most sold car, the expected
result should include the car’s name. If irrele-
vant or multiple results are returned, the SQL
is considered logically invalid.

If the verification passes, the SQL-Result (SR)
pair is added to a candidate pool. If the pool con-
tains only one entry, it is selected as the final output.
If the verification fails, the SR pair is treated as a
negative example and used in the next round of
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prompt construction. It is structured as a triplet
SQL, result, cause, with a prefix label [invalid]. As
shown in Figure 2.

In the whole process of the loop of thought, neg-
ative examples are not only used to correct errors
but also an important tool to guide the LLM to
optimize the thought of generation in the loop. By
emphasizing negative examples, avoid repeating
errors. The process is repeated until the verifica-
tion passes or a maximum loop times L is reached.
In this process, to reduce the influence of positive
examples on modification, a positive decay mech-
anism is designed here. The number of positive
examples will decrease with the increase in the
number of negative examples, and their relation-
ship is shown in Equation 3.

P = P0 − α ·N,α ∈ Z (3)

Where P0 represents the initial number of posi-
tive examples, P represents the current number
of positive examples, N represents the number of
negative examples, α is the correlation coefficient
of positive and negative examples, and must be an
integer. This mechanism aims to prevent the ad-
verse effects of positive examples on modifications
at a later stage.

Through this design, it is not necessary to make
specific few-shot examples. The generation pro-
cess can be manipulated by positive and negative
examples. In loop execution, the LLM can quickly
provide results for simple questions, while the
LLM can call the loop to think repeatedly and
provide more diverse responses for complex ques-
tions.

2.4 Candidates Selection

Despite loop-based refinement, LLM may still mis-
judge results. To mitigate this, each SR pair is
stored in a candidate pool. When multiple candi-
dates exist, a voting mechanism is employed to
determine the final selection. The LLM evaluates
each SR pair based on the user query and provides
votes accordingly. Compared to directly correcting
erroneous SQLs, selecting the best one through
voting among existing candidates is more efficient
and reliable. The effectiveness of this strategy is
further analyzed in Section 4.3.

[valid]  
Question: Please list the phone numbers of the schools with the 

top 3 SAT excellence rate.

SQL: SELECT phone_number FROM schools ORDER BY 

sat_excellence_rate DESC LIMIT 3;

[valid]  
Question: List the names of the top 10 products with the highest 

customer ratings, but only 

if they have more than 100 reviews.

SQL: SELECT product_name FROM products WHERE 

review_count > 100 ORDER BY 

customer_rating DESC LIMIT 10;

[invalid]  
SQL: 

SELECT employee_email FROM employees ORDER BY 

annual_salary DESC LIMIT 5;

Result:

OperationalError: no such column: employee_email 

Reason:

employee_email does not exist in the table, which is obviously the 

incorrect column

[invalid]  
SQL: 

SELECT email, annual_salary FROM employees ORDER BY 

annual_salary DESC LIMIT 5;

Result:

[ ('john.doe@example.com', 150000),  ('jane.smith@example.com', 145000)…..

Reason: 

The question only asks to return the mailbox, and the salary is 

returned inside, which obviously does not meet the requirements 

of the question

Figure 2: Positive and negative examples. Green [valid]
indicates a positive example label, and red [invalid]
indicates a negative example label.

3 Experiments

3.1 Setup

For the positive instance retrieval number P0, we
set it to 3, the maximum loop number L of the
thinking loop to 3, and the correlation coefficient of
positive and negative cases to 1. The temperature
of LLM is set to 0.1.

3.2 Dataset

[1] SPIDER(Yu et al., 2018)1: A large-scale,
complex cross-domain text-to-SQL dataset
containing over 10,000 questions and nearly
6,000 unique SQL queries covering 200
databases and 138 different domains.

[2] BIRD(Li et al., 2023c)2: The most chal-
lenging large-scale cross-domain text-to-SQL
benchmark. Contains 12,751 pairs of data and
95 databases covering 37 fields.

1https://yale-lily.github.io/spider
2https://bird-bench.github.io/
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3.3 Baseline

To ensure a fair comparison, few-shot learning
methods with validated results are selected as
baseline models, such as DIN-SQL(Pourreza and
Rafiei, 2023), DAIL-SQL(Gao et al., 2024), TA-
SQL(Qu et al., 2024), MAC-SQL(Wang et al.,
2023). The second category evaluates the improve-
ment of LLMs using the proposed SCL method,
with GPT-3.5, GPT-4, and GPT-4o as base models.

3.4 Evaluation Metrics

To facilitate comparison with other similar types
of work, the evaluation process mainly includes
the following two indicators: (1)EX: Represents
the execution accuracy of the generated SQL by
calculating how close the SQL is to the real SQL
execution result. (2)VES: Used to calculate the
efficiency of generating valid SQL. SQL efficiency
considerations are added to accuracy.

3.5 Result

As shown in Table 1, SCL-SQL outperforms exist-
ing methods on SPIDER and BIRD, especially on
the complex BIRD dataset. It achieves higher EX
and VES scores, improving robustness and seman-
tic accuracy. The gap between GPT-4 and GPT-4o
further demonstrates the method’s scalability. Our
method generates executable and accurate SQL,
highlighting its effectiveness and generalizability.

As shown in Table 2, SCL-SQL consistently
enhances the performance of all evaluated LLMs.
Notably, the improvements extend beyond simple
queries, with significant gains on moderate and
challenging samples. This demonstrates that SCL-
SQL not only improves overall accuracy but also
strengthens complex reasoning and schema under-
standing. Moreover, while stronger models already
perform well, SCL-SQL further boosts their effec-
tiveness, showing strong compatibility and gener-
alizability across different model capacities.

3.6 Ablation Study

We conducted ablation experiments for the method
proposed in the paper to verify the effectiveness of
the proposed method. The ablation experimental
results and analysis of different methods are shown
in Table 3.

It can be seen that each module brings incre-
mental improvements, but together they produce
a synergistic effect. Positive examples enhance
guidance, negative examples improve discrimina-
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Figure 3: The effect of the number of positive examples,
where EX represents the execution accuracy, and Q-
Score represents the Jaccard score of the question versus
the question in the positive example. S-Score indicates
the Jaccard score of the ground truth SQL and the SQL
in the positive example.

tion, and the thought loop significantly boosts it-
erative correction. Each module contributes from
a different perspective, jointly achieving the best
performance.

4 Analysis

To show the details of SCL-SQL, we conducted
a detailed analysis of the parts of SCL-SQL, in-
cluding hyper-parameter experiments and result
analysis, where all analysis is based on the BIRD
development set, and defaults are used for parame-
ters not mentioned.

4.1 Effect of Number of Positive Examples

To verify the influence of positive examples on the
result, we set a different number of initial positive
examples (positive decay is off), and the result is
shown in Figure 3.

It can be seen that the best results can be
achieved when the initial positive example P0 is
set to 3. Beyond 3, there is a decrease in the gen-
eration accuracy due to the smaller Jaccard score
of the retrieved sample. The performance drop
beyond 3 positive examples is mainly due to the
reduced relevance of additional positive examples.
As more positive examples are added, their simi-
larity to the current query decreases, introducing
noise that misleads the model and lowers genera-
tion accuracy.
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Method SPIDER BIRD
Dev TEST Dev Test

EX(%) EX(%) EX(%) VES(%) EX(%) VES(%)
DIN-SQL + GPT-4 82.80 85.30 50.72 58.79 55.90 59.44
DAIL-SQL + GPT-4 84.40 86.60 54.76 56.08 57.41 61.95
TA-SQL + GPT-4 85.00 – 56.19 – 59.14 –
MAC-SQL + GPT4 86.75 82.80 57.56 58.76 59.59 67.68
Ours(GPT-4) 87.04 86.35 62.25 65.62 – –
Ours(GPT-4o) 87.13 87.37 64.73 66.48 65.23 70.75

Table 1: Result on SPIDER and BIRD, "–" indicates that the result is not provided

Method Sim(%) Mod(%) Chall(%) Total(%)
GPT-3.5 47.56 22.36 18.05 37.15
GPT-3.5 + SCL 57.08 (+9.52) 31.82 (+9.46) 20.83 (+2.78) 46.02 (+8.87)
GPT-4 54.27 34.62 31.94 46.21
GPT-4 + SCL 64.00 (+9.73) 63.44 (+28.82) 47.22 (+15.28) 62.25 (+16.04)
GPT-4o 58.59 43.53 40.68 52.99
GPT-4o + SCL 70.05 (+11.46) 59.05 (+15.52) 48.97 (+8.29) 64.73 (+11.74)

Table 2: Execution accuracy across different LLMs. ’Sim’, ’Mod’, and ’Chall’ denote simple, moderate, and
challenging subset samples. Numbers in parentheses indicate the relative improvement brought by SCL.

BIRD EX(%)
SCL-SQL 64.73
w/o schema linking 62.58
w/o question split 63.23
w/o thought loop 58.34
w/o positive 60.16
w/o negative 59.32
w/o positive decay 62.23
w/o vote 61.47

Table 3: Result of ablation study. Where, w/o ques-
tion split means that the question is no longer split, and
the complete question is directly sent to the LLM. w/o
thought loop indicates that the loop is closed and the
method is executed linearly. w/o positive and w/o neg-
ative indicates that the positive example and negative
example are not set respectively. w/o positive decay
disables positive decay. w/o vote disables the voting
mechanism and takes the last loop result as output.

4.2 Effect of Times of Loop

We set different values of L to examine the impact
of loop execution times on overall performance
and subset results (Sim, Mod, Chall), as shown in
Figure 4.

Accuracy increases from L = 1 to L = 3, indi-
cating that moderate iterations enhance the model’s
self-correction ability and decision quality. How-
ever, performance declines when L > 3, likely due

to increased candidate pool complexity and noise
interference.

Subset analysis reveals that performance on the
simple subset remains relatively stable, while the
moderate subset shows moderate improvements.
The most significant gain is observed in the chal-
lenging subset, where accuracy peaks at L = 3. Be-
yond this point, performance decreases, suggesting
that excessive iterations may introduce misleading
information and hinder final judgment.

4.3 Selection Accuracy
Since the selected result from the candidate pool is
not always correct, we further evaluated the accu-
racy of the selection mechanism. Specifically, we
analyzed the loop execution behavior at L = 3, as
shown in Figure 5, where "n-Loop" denotes sam-
ples that exit the loop at the n-th iteration. Figure 6
presents the statistics of selection errors (C-Error)
at different loop stages.

It can be seen that selection errors (C-Error)
account for only 3.1% of the total errors, indi-
cating that the selection mechanism introduces
relatively minor inaccuracies. Nevertheless, the
loop mechanism still leads to a net performance
gain, as the overall accuracy improves significantly
from 58.34% to 64.73%. This demonstrates that
although some selection errors occur, the overall
effect of loop-based refinement remains positive.
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5 Related Work

5.1 Text-to-SQL
5.1.1 Design Method
The method based on the design method focuses
on enhancing the relationship between text and
database schema to improve the quality of SQL
generation.

RAT-SQL(Wang et al., 2020) improved the
schema encoding and feature representation in
the encoder through the relational awareness self-
attention mechanism and improved the generation
accuracy. In addition, (Hui et al., 2021) proposes
a multi-task text-to-SQL model (SDSQL) guided
by schema dependency to capture the question in-
teraction with the database schema without having

to perform booting, significantly reducing infer-
ence time. LGESQL(Cao et al., 2021) enhances
line graph coding and improves the parsing per-
formance of heterogeneous graphs. S2SQL(Hui
et al., 2022) uses syntax-dependent information
to strengthen the connection between the question
and the database. Proton(Wang et al., 2022) ex-
tracted the relational structure from PLMs through
the Poincare distance detection process to optimize
the schema linking. RESDSQL(Li et al., 2023a)
relieves the burden of schema linking in SQL pars-
ing by decoupling schema linking from skeleton
parsing.

5.1.2 Pre-training Method
Most existing Text-to-SQL pre-training methods
use a single Transformer or Transformer-based
encoder-decoder framework to capture task char-
acteristics through different pre-training targets.

For example, TaBERT(Yin et al., 2020) per-
forms well by combining natural language and tab-
ular data representation. Similarly, GRAPPA(Yu
et al., 2021) constructs and synthesizes data with
SCFG and combines mask language model (MLM)
pre-training to improve the table semantic parsing
ability. Further, GAP(Zhao et al., 2022) enhanced
the parsing ability through the joint learning of
natural language and schematic representation.
MIGA(Fu et al., 2023) designed four pre-training
tasks based on T5(Raffel et al., 2020) to implement
text-to-SQL. Similarly, GRAPHIX-T5(Li et al.,
2023b) is enhanced by a graphic awareness layer.
Codes(Li et al., 2024) employs incremental pre-
training and data enhancement techniques to deal
with schema linking and domain adaptation. Each
method improves the performance of text-to-SQL
parsing with different strategies.

5.1.3 Prompt-based Method
(Rajkumar et al., 2022; Liu et al., 2023) prove the
advanced performance of various LLM on text-
to-SQL. Then, around how to improve the perfor-
mance of LLM in text-to-SQL, DIN-SQL(Pourreza
and Rafiei, 2023) attempts to decompose com-
plex text-to-SQL tasks into smaller subtasks to
improve the performance of LLM in inference.
DAIL-SQL(Gao et al., 2024) is a text-to-SQL solu-
tion that optimizes large language model prompts
engineering, encodes SQL statements with struc-
tured knowledge, and reduces the impact of cross-
domain knowledge to improve token efficiency.
To eliminate the hallucination problem in LLM
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Figure 6: Error statistics. C-Error indicates an error caused by selection, and G-Error indicates an error caused by
generation.

generation, TA-SQL(Qu et al., 2024) adjusted the
model’s processing methods for unfamiliar tasks
by comparing them with previously trained tasks,
reducing the model’s dependence on the general-
ization ability to generate responses from scratch,
thus significantly reducing the incidence of hal-
lucination. MAC-SQL(Wang et al., 2023) further
exploits the inference ability of LLM through serial
collaboration of multiple agents.

5.2 Prompt Engineering

Although LLM have a strong understanding and
inference ability, they still have difficulties in com-
plex logical tasks such as mathematical operations
and structured output. To this end, the research
focus has shifted to solving problems step by step
by prompt engineering guide LLM.

In this type of work, the chain of thought
(CoT)(Wei et al., 2022) enhances complex reason-
ing ability through intermediate reasoning steps.
The tree of thought (ToT)(Yao et al., 2023a) forms
a tree-like structure through multiple reasoning
paths to expand the search space. A mind map
(GoT)(Besta et al., 2024) forms a network of cross-
ing paths to generate more flexible solutions. Re-
Act(Yao et al., 2023b) proposes a general paradigm
that combines reasoning and action with LLM.
Prompt-based text-to-SQL methods often combine
such prompt engineering to harness the potential
of LLM.

6 Conclusion

We proposed a text-to-SQL method based on a self-
contrastive loop of thought to solve the problem
of LLM’ dependence on few-shot example con-
struction in text-to-SQL tasks. By designing the
generation process as a discriminant loop structure
based on a comparison of positive and negative
examples, we significantly improved the accuracy
and generalization of LLM and reduced the de-
pendence on small samples. Experimental results
show that the proposed method performs well on
multiple data sets, and the generated SQL queries
have higher accuracy. The contribution of this
paper also includes the design of a question split
strategy, execution, logical verification mechanism,
and introduction of the "loop" structure to optimize
the self-verification and error-correcting ability of
LLM in text-to-SQL tasks.

7 Limitation

There are still limitations in the SCL-SQL method.
The first is that it solves the problem of construct-
ing few-shot examples in the generation process,
but prompts of some complexity are still necessary.
The second point is that the effect depends on the
number and quality of the dataset. If the data set
is too small or there are not enough similar exam-
ples, then the effect of this method will be greatly
limited.
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Figure 7: Error distribution statistic on BIRD and SPIDER dev set. Where "condition error" indicates wrong
condition construction, "schema linking" indicates incorrect linking with tables, "column error" means the wrong
column was selected, and "misunderstanding question" indicates the SQL was not compatible with question.

A Error Analysis

To fully explore our proposed approach, we also counted error types on the BIRD and SPIDER dev
datasets in Figure 7. Among them, we mainly examine schema linking and semantic error. As the figure
shows, the most common error types are conditional errors. Conditional errors account for more than 50%
of total errors in BIRD and SPIDER. Compared to past methods, we have reduced error rates in many
aspects, but we still lack advantages in constructing SQL for complex conditions. We give examples of
different error types in Tables 4, 5, 6, 7, and 8.
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Schema Linking
Error
BIRD
Question: How many schools in Fresno (directly funded) have number of test takers not

more than 250?
PRED: SELECT COUNT(*) FROM schools AS s INNER JOIN satscores AS ss

ON s.CDSCode = ss.cds WHERE s.City = ’Fresno’ AND s.FundingType
= ’Directly funded’ AND ss.NumTstTakr <= 250

GOLD: SELECT COUNT(T1.CDSCode) FROM frpm AS T1 INNER JOIN satscores
AS T2 ON T1.CDSCode = T2.cds WHERE T1.‘Charter Funding Type‘
= ’Directly funded’ AND T1.‘County Name‘ = ’Fresno’ AND
T2.NumTstTakr <= 250

SPIDER
Question: What are the locations and names of all stations with capacity between 5000

and 10000?
PRED: SELECT location, station_name FROM stations WHERE capacity

BETWEEN 5000 AND 10000

GOLD: SELECT LOCATION , name FROM stadium WHERE capacity BETWEEN 5000
AND 10000

Table 4: Examples of schema linking errors.

Condition Error
BIRD
Question: Please list the phone numbers of the direct charter-funded schools that are

opened after 2000/1/1.
PRED: SELECT schools.Phone FROM frpm INNER JOIN schools ON frpm.CDSCode

= schools.CDSCode WHERE frpm.‘Charter School (Y/N)‘ = 1
AND frpm.‘Charter Funding Type‘ = ’Directly funded’ AND
schools.OpenDate > ’2000-01-01’ AND schools.Phone IS NOT NULL
AND schools.OpenDate IS NOT NULL AND schools.Charter
IS NOT NULL ;

GOLD: SELECT T2.Phone FROM frpm AS T1 INNER JOIN schools AS T2
ON T1.CDSCode = T2.CDSCode WHERE T1.‘Charter Funding Type‘
= ’Directly funded’ AND T1.‘Charter School (Y/N)‘ = 1 AND
T2.OpenDate > ’2000-01-01’

SPIDER
Question: What is the maximum capacity and the average of all stadiums?
PRED: SELECT MAX(Capacity) AS Max_Capacity, AVG(Average) AS

Avg_Attendance FROM stadium
GOLD: SELECT max(capacity), average FROM stadium

Table 5: Examples of condition errors.
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Column Error
BIRD
Question: If there are any, what are the websites address of the schools with a free meal

count of 1,900-2,000 to students aged 5-17? Include the name of the school.
PRED: SELECT frpm.‘School Name‘, schools.‘Web‘ FROM frpm INNER

JOIN schools ON frpm.‘CDSCode‘ = schools.‘CDSCode‘ WHERE
frpm.‘Free Meal Count (Ages 5-17)‘ BETWEEN 1900 AND 2000 AND
schools.‘Website‘ IS NOT NULL;

GOLD: SELECT T2.Websit, T1.‘School Name‘ FROM frpm AS T1 INNER JOIN
schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T1.‘Free Meal
Count (Ages 5-17)‘ BETWEEN 1900 AND 2000 AND T2.Website IS NOT
NULL

SPIDER
Question: Find the average and maximum age for each type of pet.
PRED: SELECT Pets.PetType, AVG(Pets.pet_age) AS average_age,

MAX(Pets.pet_age) AS maximum_age FROM Pets JOIN Has_Pet
ON Pets.PetID = Has_Pet.PetID GROUP BY Pets.PetType;

GOLD: SELECT avg(pet_age) , max(pet_age) , pettype FROM pets GROUP
BY pettype

Table 6: Examples of column errors.

Question misun-
derstanding
BIRD
Question: Of the schools that offers a magnet program serving a grade span of Kinder-

garten to 8th grade, how many offers Multiple Provision Types? List the number
of cities that offers a Kindergarten to 8th grade span and indicate how many
schools are there serving such grade span for each city.

PRED: SELECT COUNT(*) AS NumberOfSchoolsWithMultipleProvisionTypes
FROM schools JOIN frpm ON schools.CDSCode = frpm.CDSCode WHERE
schools.Magnet = 1 AND schools.GSserved = ’K-8’ AND frpm.‘NSLP
Provision Status‘ = ’Multiple Provision Types’; – Second part:
List the number of cities and the number of schools serving a K-8
grade span SELECT schools.City, COUNT(*) AS NumberOfSchools FROM
schools WHERE schools.GSserved = ’K-8’ GROUP BY schools.City;

GOLD: SELECT T2.City, COUNT(T2.CDSCode) FROM frpm AS T1 INNER JOIN
schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.Magnet = 1 AND
T2.GSoffered = ’K-8’ AND T1.‘NSLP Provision Status‘ = ’Multiple
Provision Types’ GROUP BY T2.City

BIRD
Question: Which model has the most version(make) of cars?
PRED: SELECT ml.Model, COUNT(DISTINCT cn.Make) AS make_count FROM

model_list ml JOIN car_names cn ON ml.Model = cn.Model GROUP
BY ml.Model ORDER BY make_count DESC LIMIT 1;

GOLD: SELECT Model FROM CAR_NAMES GROUP BY Model ORDER BY count(*)
DESC LIMIT 1;

Table 7: Example of question misunderstanding errors.
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Other Error
BIRD
Question: Among the customers who paid in euro, how many of them have a monthly

consumption of over 1000?
PRED: SELECT COUNT(DISTINCT yearmonth.CustomerID) FROM customers INNER

JOIN yearmonth ON customers.CustomerID = yearmonth.CustomerID
WHERE customers.Currency = ’EUR’ AND yearmonth.Consumption >
1000

GOLD: SELECT COUNT(*) FROM yearmonth AS T1 INNER JOIN customers AS T2
ON T1.CustomerID = T2.CustomerID WHERE T2.Currency = ’EUR’ AND
T1.Consumption > 1000.00

BIRD
Question: List the first and last name of all players in the order of birth date.
PRED: SELECT first_name, last_name FROM players ORDER BY birth_date

ASC
GOLD: SELECT first_name , last_name FROM players ORDER BY birth_date

Table 8: Examples of other errors.
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Abstract

This paper addresses the constraints of down-
stream applications of pre-trained language
models (PLMs) for low-resource languages.
These constraints are pre-train data deficiency
preventing a low-resource language from being
well represented in a PLM and inaccessibility
of high-quality task-specific data annotation
that limits task learning. We propose to use au-
tomatically labeled texts combined with man-
ually annotated data in a two-stage task fine-
tuning approach. The experiments revealed that
utilizing such methodology combined with vo-
cabulary adaptation may compensate for the
absence of a targeted PLM or the deficiency
of manually annotated data. The methodology
is validated on the morphological tagging task
for the Udmurt language. We publish our best
model that achieved 93.25% token accuracy
on HuggingFace Hub1 along with the training
code2.

1 Introduction

The evolution of transformer-based pre-trained lan-
guage models (PLMs) has enabled leveraging them
as a basis to fine-tune for numerous downstream
tasks, including morphological analysis (Baxi and
Bhatt, 2024). The pipeline is complicated for low-
resource languages (LRLs), which are rarely in-
cluded in the pre-training data of PLMs, primar-
ily due to the scarcity of data available (Imani-
Googhari et al., 2023). When tackling a down-
stream task for a LRL without a PLM, one ap-
proach to address the data deficiency is to scale
up the volume of high-quality task-specific data
annotation.

Annotated texts in LRLs are contributed mainly
by field linguists, who indicate the primary de-
mand for such tools. However, these specialists

1https://huggingface.co/ulyanaisaeva/
bert-morph-tagger-udmurt

2https://github.com/ulyanaisaeva/
bert-morph-tagger-udmurt

do not necessarily own the technical skills required
to utilize state-of-the-art deep learning-based ap-
proaches. Thus, rule-based algorithms have be-
come the typical approach to developing morpho-
logical tools for LRLs. They face limitations
for languages with morphological form ambigu-
ity, where they predict multiple morphological de-
scriptions for a single word. Proper disambiguation
requires costly manual annotation by rare special-
ists. Given these constraints, ambiguous annotation
is more accessible and scalable than manually dis-
ambiguated labels.

Addressing these considerations, we propose a
two-stage fine-tuning methodology using automati-
cally ambiguously annotated data combined with
manually labeled data to achieve optimal perfor-
mance in the morphological analysis task. Our
experiments focus on the Udmurt language, which,
while not entirely low-resource in terms of avail-
able data, was not included in the pre-training data
of open-source multilingual PLMs until recently.
The resulting morphological tagging tool perfor-
mance is comparable to that of an alternative ap-
proach on the basis of a massively multilingual
PLM. Thus, the proposed method is supposed to
compensate for the absence of a PLM for a LRL.
We also show that this approach can reach base-
line performance with up to 3 times less manually
annotated data.

To put our findings into practice, we open-source
a morphological analyzer for Udmurt with an ac-
curacy of 93.25% on all test tokens and 85.7% on
tokens with ambiguous labels. Of all our experi-
ments, the maximum performance was achieved us-
ing a recently introduced Glot500-m model (Imani-
Googhari et al., 2023), which, among other 500+
languages, was pre-trained on texts in Udmurt.
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2 Methodology

We model the morphological analysis task as a
token classification problem, where each label is
a concatenation of a part-of-speech (POS) tag and
morphological features of the word.

The architecture consists of a transformer en-
coder and a dense projection layer, predicting label
probabilities for input words. It outputs a tensor of
shape L×K where L is sequence length (i.e., the
number of words) and K is the number of unique
labels. If a word is tokenized into multiple subto-
kens, we assign the label to the first one and mask
out all the subsequent word subtokens during loss
calculation.

Applying transformer-based pre-trained encoder
models to downstream classification tasks has
proven effective in numerous studies. For LRLs
that commonly lack a specialized PLM, the PLMs
of first choice are multilingual ones, like mBERT,
which inherits the original BERT architecture (De-
vlin et al., 2019) and has been pre-trained on the
top 100 languages with the largest Wikipedias.
Ács et al. (2021) investigates the transferability
of BERT-like models to unseen languages (i.e.,
languages the model has not been pre-trained on)
via fine-tuning on limited training data. The au-
thors observe that high-resource monolingual mod-
els, though effective in their specific language,
show worse cross-language transferability than
multilingual models in token classification tasks
such as POS tagging and named entity recogni-
tion. Importantly, Ács et al. (2021) showed that
monolingual models for genetically unrelated lan-
guages can transfer more efficiently than multilin-
gual ones in cases where the languages share the
same script, e.g., ruBERT for Russian performed
better than multilingual BERT applied to Uralic lan-
guages with Cyrillic script (Erzya, Moksha, Komi
Permyak).

2.1 Tokenizer adaptation

The observations related to script similarity are
attributed to the impact of tokenization on model
performance. The more a tokenizer is relevant to a
given language, the less a word is split into pieces
during tokenization. Since multilingual models’
tokenizers are trained on languages with various
scripts, their vocabularies tend to contain shorter
subwords and thus have higher fertility, defined as
the average number of word pieces per word.

Presumably, for token classification tasks like

morphological tagging or named entity recognition,
a more targeted tokenizer (i.e., with lower fertility)
would be more optimal. This suggestion is tested
by Wang et al. (2020), showing that adapting a
model’s tokenizer to an unseen language improves
downstream zero-shot performance in NER tasks
in that language. The methodology implies adding
30K new targeted items to the vocabulary while
randomly initializing the corresponding model’s
embedding weights.

In this study, we utilize tokenizer vocabulary
adaptation (VA) to improve morphological tagging
accuracy. As an adaptation technique, we leverage
the Vocabulary Initialization with Partial Inheri-
tance approach (Samenko et al., 2021). It aims at
preserving the model’s knowledge from the pre-
training stage instead of learning all embedding
weights from scratch. Original model embedding
weights are inherited for tokens in the new vocab-
ulary, which are also found in the initial one; the
other weights are randomly initialized.

To find the optimal vocabulary size, we fitted
several WordPiece (following mBERT) tokeniz-
ers on Train-AML with sizes ranging from 1K to
128K (log step with base 2) and measured fertility
on the Valid-AML. At the size of 32K, the fertil-
ity plateaus around 1.18, and so does the ratio of
tokens not split into subwords (85.93%); this vo-
cabulary size is selected for future experiments.

2.2 Combining automated and manual
annotation

Morphological form ambiguity (homonymy) is a
phenomenon where the same word form may be
attributed with different morphological description
depending on the context, e.g., English ’records’ is
a plural noun in ’This song sets records for popu-
larity’ and a 3rd person singular present tense verb
in ’He records and plays ten instruments’. The
disambiguation of such labels requires word con-
text understanding. Yet, classifying a token accu-
rately only to a group of ambiguous labels is a task
achievable even by simple context-unaware algo-
rithms. In the example above, it would mean re-
ducing the space of possible labels to ’NOUN,pl’,
’VERB,3sg,prs’ without selecting the single cor-
rect label. The two-step fine-tuning approach pro-
posed in this work leverages this mechanism to
improve morphological tagging accuracy, includ-
ing for words with ambiguity.

The first step is to pre-fine-tune (PFT) the
classifier using ambiguously annotated data (e.g.,
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with a context-unaware analyzer) with multiple
pseudo-correct labels for words with morpholog-
ical homonymy. This stage’s learning objective
is to narrow the set of most probably predicted
labels to a group of labels that correspond to am-
biguous word forms. We hypothesize that such
pre-fine-tuning would provide the model with an
initial intuition about the homonymous nature of
morphological labels.

Seemingly, this PFT could be modeled as a multi-
label classification problem. In fact, by the nature
of the task, only one of a word’s homonymous
forms is actually correct. This is why we model
this pre-training stage as single-label multi-class
classification with a softmax for class probabili-
ties, though it requires additional changes to how
we treat multiple pseudo-correct labels during loss
calculation.

The basic loss function for multiclass classifica-
tion is cross-entropy, defined as a sum of negative
predicted log probabilities of positive labels.

CE =
∑

{i|Ki∈correct}
− log p̂i

The minimum of this loss function is achieved
when these probabilities are equal and sum into
1, while the others are all equal to 0. Given the na-
ture of morphological homonymy, it is suboptimal
to teach the classifier to equalize probabilities in
the set of pseudo-correct labels with only one being
actually true. Taking this into account, we propose
to calculate the PFT loss function as a negative
logarithm of the sum of predicted probabilities for
positive classes.

MLCE = − log
∑

{i|Ki∈correct}
p̂i

This function would still penalize models for pre-
dicting high probabilities for wrong labels, and
vice versa, yet remain indifferent to how the proba-
bilities for pseudo-correct labels are mutually dis-
tributed.

The second training step is task fine-tuning (FT),
which requires reliable manually disambiguated
annotation to finally learn to precisely select from
a homonymic group of tags. The model is still
offered to choose from the full set of all possible
labels, yet it is supposed to rely on positive bias
to ambiguous labels acquired during the PFT step.
Similarly to the PFT, the FT is done using the soft-
max activation function at the last projection layer,
which outputs label probabilities that sum into 1.

2.3 Data

The proposed approach is relevant in the case of
presence of 2 types of task-specific data:

• AML: automatically labeled texts where a
word may contain more than one label in
case further label selection is constrained by
morphological ambiguity and requires context
analysis or manual disambiguation.

• MDL: manually labeled (or disambiguated
after automatic annotation) texts with a single
label per word.

See Appendix A for the data origin details.

2.4 Metrics

To evaluate the proposed morphological tagging
pipelines, we use the following metrics:

• Token accuracy (TAcc) is the ratio of tokens
with correctly predicted tags.

• Token accuracy (homonymous) (TAccH) is the
same metric, but calculated only on tokens
with morphological form ambiguity.

3 Experiments

Model selection. We focus on the morphological
analysis for the Udmurt language. Until recently,
and by the time this research was planned, there
had not been a multilingual model pre-trained in the
Udmurt language until Glot500-m (ImaniGooghari
et al., 2023) was published. Since the absence of a
targeted PLM is still the case for numerous LRLs,
we chose the multilingual BERT (mBERT3) as the
baseline model. Referring to previous findings on
the transferability of monolingual models sharing
the same script as the target language, we also
experimented with the BERT model for the Rus-
sian language (ruBERT4, (Zmitrovich et al., 2024)),
since Udmurt uses Cyrillic script too.

To keep up with the updates in the area of
multilingual models, we provide a comparison
with Glot500-m5 which is pre-trained in 500+ lan-
guages, including Udmurt.

Experimental setup. The three above-
mentioned models are tested in 4 main setups:

1. FT: only fine-tuning on Train-MDL
2. VA+FT: vocabulary adaptation on Train-

MDL and FT
3https://huggingface.co/google-bert/

bert-base-multilingual-cased
4https://huggingface.co/ai-forever/

ruBert-large
5https://huggingface.co/cis-lmu/glot500-base
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3. PFT+FT: pre-fine-tuning on Train-AML
and FT

4. VA-PFT-FT: VA and PFT and FT
The Udmurt language, which is our focus in

this work, is not an extremely low-resource lan-
guage since there are available text corpora and
NLP tools. Emulating the MDL-data scarcity setup
common for low-resource languages, we fine-tune
the best-performing setup for ruBERT and mBERT
on a reduced subset from Train-MDL (100, 200,
500, 1000, 5000 sentences of the original 10000
sentences).

4 Results & Discussion

The results of the described experiments are pro-
vided in Table 1. Every row section compares base-
line (i.e., with fine-tuning only) performance to
that of models with vocabulary adaptation and/or
pre-training on ambiguously annotated data.

Model TAcc TAccH

mBERT-FT (Devlin et al., 2019) 86.28 77.04
VA-FT 87.55 77.49
PFT-FT 87.02 78.66
VA-PFT-FT 91.38 81.54

ruBERT-FT (Zmitrovich et al., 2024) 86.35 77.02
VA-FT 87.89 77.65
PFT-FT 87.32 77.87
VA-PFT-FT 91.24 81.00

Glot500-FT (ImaniGooghari et al., 2023) 92.44 85.34
VA-FT 85.63 85.63
PFT-FT 93.25 85.70
VA-PFT-FT 91.17 81.52

Table 1: Models’ performance on Test-MDL. See sub-
section 2.4 for the evaluation details.

The baseline models achieved 86.3 and 86.4 to-
ken accuracy with mBERT and ruBERT, respec-
tively. Applying the VA procedure before the FT
brings an improvement of 1.3 and 1.5 pp while
PFT on the model with the original tokenizer be-
fore the FT increases the performance at 0.7 and
1.0 pp, respectively, for mBERT and ruBERT. How-
ever, the improvement brought by the cumulative
usage of both VA and PFT over the FT-only base-
line performance is approximately 5 pp for both
backbone models. Thus, these two procedures ap-
pear far more effective when applied jointly rather
than separately.

Glot500-m baseline showed the best baseline
performance across our experiments and was fur-
ther improved when pre-fine-tuned on ambiguous
annotated data. Yet adapting the vocabulary of

Glot500-m both with and without PFT decreased
the overall performance.

The pipelines with VA and PFT based on
mBERT and ruBERT perform worse yet compara-
bly to FT-only Glot500-m baseline. This is impor-
tant evidence suggesting that the utilization of the
proposed two-stage training pipeline may be seen
as an effective compensatory approach in cases
when there is no available model pre-trained on the
target LRL.

To address the cases of extremely LRLs where
manual annotation is scarse, we trained the baseline
and the enhanced pipelines on reduced train data
subsets, the results are provided in Figure 1.

Figure 1: Model performance (token accuracy) on Test-
MDL with reduced train data.

It can be observed that the proposed pipeline
with VA and PFT may compensate for up to 3x
less manually annotated data, i.e., utilizing the VA-
PFT-FT pipeline with a 3 times reduced manually
labeled train data can achieve performance compa-
rable to that of the FT-only baseline on full-volume
train data.

Despite the previous findings, the results of our
experiments do not provide any evidence to choose
ruBERT over mBERT since they share similar
scores across all setups.

5 Conclusion

In this work, we present a two-stage fine-tuning pro-
cedure that leverages both automatically and man-
ually annotated task-specific train data. The pro-
posed approach combined with vocabulary adap-
tation increased morphological tagging accuracy
by 5 pp in our experiments with the Udmurt lan-
guage. We show that this improvement may com-
pensate for train data deficiency and the absence of
a specialized PLM, which are two major stumbling
blocks in low-resource classification problems. As
a practical outcome of the study, we open-source
the best-performing morphological tagging model
based on Glot500-m. We also publish the training
code to facilitate the application of the methodol-
ogy to other LRLs.
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6 Limitations

While this study provides insights into choosing
the backbone model and fine-tuning procedure for
morphological analysis for low-resource languages,
there are several limitations that should be consid-
ered when interpreting the results.

First, this methodology has so far been validated
on only one language. We encourage future re-
search on its applicability to different low-resource
setups.

Second, in our experiments, AML and x-MDL
datasets shared the same annotation scheme. Pre-
sumably, this will often be the case in the setups
when the manual annotation is done over the au-
tomatic pre-labeling. Yet our experiments do not
provide evidence to the contrary cases of mismatch-
ing annotation schemes.

7 Acknowledgments

The authors would like to thank Alexey Sorokin for
sharing the initial idea that inspired this research.

References
Timofey Arkhangelskiy. 2019. Corpora of social media

in minority Uralic languages. In Proceedings of the
Fifth International Workshop on Computational Lin-
guistics for Uralic Languages, pages 125–140, Tartu,
Estonia. Association for Computational Linguistics.

Jatayu Baxi and Brijesh Bhatt. 2024. Recent advance-
ments in computational morphology : A comprehen-
sive survey. arXiv preprint. ArXiv:2406.05424 [cs].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ayyoob ImaniGooghari, Peiqin Lin, Amir Hossein Kar-
garan, Silvia Severini, Masoud Jalili Sabet, Nora
Kassner, Chunlan Ma, Helmut Schmid, André Mar-
tins, François Yvon, and Hinrich Schütze. 2023.
Glot500: Scaling multilingual corpora and language
models to 500 languages. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1082–
1117, Toronto, Canada. Association for Computa-
tional Linguistics.

Yu. V. Normanskaja, O. D. Borisenko, I. B. Be-
loborodov, and A. I. Avetisyan. 2022. The Software
System LingvoDoc and the Possibilities It Offers for
Documentation and Analysis of Ob-Ugric Languages.
Doklady Mathematics, 105(3):187–206.

Igor Samenko, Alexey Tikhonov, Borislav Kozlovskii,
and Ivan P. Yamshchikov. 2021. Fine-Tuning Trans-
formers: Vocabulary Transfer. arXiv:2112.14569
[cs]. ArXiv: 2112.14569.

Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan
Roth. 2020. Extending Multilingual BERT to Low-
Resource Languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2649–2656, Online. Association for Computational
Linguistics.

Dmitry Zmitrovich, Aleksandr Abramov, Andrey
Kalmykov, Vitaly Kadulin, Maria Tikhonova, Ekate-
rina Taktasheva, Danil Astafurov, Mark Baushenko,
Artem Snegirev, Tatiana Shavrina, Sergei S. Markov,
Vladislav Mikhailov, and Alena Fenogenova. 2024.
A family of pretrained transformer language mod-
els for Russian. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 507–524, Torino, Italia. ELRA
and ICCL.

Judit Ács, Dániel Lévai, and András Kornai. 2021. Eval-
uating Transferability of BERT Models on Uralic
Languages. arXiv preprint. ArXiv:2109.06327 [cs].

A Data origin

As a source of ambiguously annotated data, we uti-
lize Tsakorpus (Arkhangelskiy, 2019) of standard
written literary Udmurt language. This corpus is
not public but is provided by the maintainer for
research purposes. We annotate the texts using an
open-source rule-based morphological analyzer6

which does not conduct contextual disambiguation,
i.e., it outputs all possible labels for words.

Filtering out the sentences with at least one word
without a morphological label resulted in a dataset
of approximately 558K words (64K sentences).
Further in this paper, we refer to the corpus as
the Train-AML.

Manually annotated data was derived from
LingvoDoc, a system for collaborative language
documentation (Normanskaja et al., 2022), the data
volume is 100K words (12K sentences). This data
was processed with the same analyzer, and as a
result, every word was attributed with both auto-
matic labels (without disambiguation) and a man-
ual one (which is always one of the ambiguous
labels). We randomly partition this dataset into
Train-MDL, Valid-MDL and Test-MDL splits in
a ratio 80-10-10, with the corresponding volumes
of approx. 10K, 1.2K, and 1.2K sentences, respec-
tively.

6https://github.com/timarkh/
uniparser-grammar-udm/
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Abstract

Transformer-based models have demonstrated
significant success in various source code rep-
resentation tasks. Nonetheless, traditional po-
sitional embeddings employed by these mod-
els inadequately capture the hierarchical struc-
ture intrinsic to source code, typically repre-
sented as Abstract Syntax Trees (ASTs). To
address this, we propose a novel tree-based
positional embedding approach that explicitly
encodes hierarchical relationships derived from
ASTs, including node depth and sibling indices.
These hierarchical embeddings are integrated
into the transformer architecture, specifically
enhancing the CodeBERTa model. We thor-
oughly evaluate our proposed model through
masked language modeling (MLM) pretraining
and clone detection fine-tuning tasks. Experi-
mental results indicate that our Tree-Enhanced
CodeBERTa consistently surpasses the base-
line model in terms of loss, accuracy, F1 score,
precision, and recall, emphasizing the impor-
tance of incorporating explicit structural infor-
mation into transformer-based representations
of source code.

1 Introduction

Transformer-based models have demonstrated sig-
nificant advances across numerous source code
representation tasks, such as code summarization,
clone detection, defect prediction, and semantic
search. These models effectively leverage self-
attention mechanisms, supplemented by positional
embeddings, to encode the sequential order of to-
kens, thus achieving robust semantic understand-
ing. However, a notable limitation arises from
the fundamentally linear positional encodings typ-
ically employed by these models, which do not
adequately capture the inherently hierarchical na-
ture of programming languages (Allamanis et al.,
2017; Brockschmidt et al., 2018; Hellendoorn et al.,
2020).

Source code differs markedly from natural lan-
guage in its explicit, structured hierarchy, most
commonly represented as Abstract Syntax Trees
(ASTs) (Shiv and Quirk, 2019). An AST encodes
critical syntactic and semantic relationships, in-
cluding nested scopes, parent-child dependencies,
and sibling ordering among code constructs. Al-
though sequential positional embeddings, such as
sinusoidal or learned encodings (Vaswani et al.,
2017; Devlin et al., 2018), effectively capture linear
token sequences, they disregard hierarchical struc-
ture entirely. Consequently, current Transformer
architectures may overlook important syntactic re-
lationships, potentially limiting performance and
generalization capabilities in source code under-
standing tasks.

Addressing this gap, we propose integrating
tree-based positional embeddings into Transformer
models, explicitly encoding the hierarchical struc-
ture of source code. Our approach introduces em-
beddings based on token depth within the AST
hierarchy and their sibling positions, effectively
guiding the self-attention mechanism to recognize
and utilize structural context alongside semantic
content.

In this paper, we make the following contribu-
tions.

• We propose a novel hierarchical embedding
strategy to explicitly encode structural infor-
mation from ASTs into Transformer-based
models.

• We demonstrate how tree-based positional em-
beddings can be seamlessly integrated into ex-
isting Transformer architectures, specifically
CodeBERTa, without significantly increasing
the complexity of the model.

• Through extensive experiments, including
masked language modeling (MLM) and code
clone detection tasks, we illustrate that our
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Tree-Enhanced CodeBERTa outperforms sim-
ilarly sized models in smaller-scale evalua-
tions, highlighting the benefits of incorporat-
ing explicit structural context.

• We provide qualitative analysis using visual-
ization techniques (e.g. t-SNE) to demonstrate
how tree-based embeddings result in struc-
turally coherent code representations, further
validating our theoretical insights.

Our findings underscore the importance of in-
tegrating hierarchical structural information into
Transformer architectures, not only enhancing
source code representation but also potentially im-
proving models for broader structured data.

2 Related Work

Transformer-based models, including GPT (Rad-
ford et al., 2018), BERT (Devlin et al., 2018), and
RoBERTa (Liu et al., 2019), have significantly
advanced natural language processing (NLP) and
have subsequently been adapted for source code
understanding tasks. This section reviews the rele-
vant literature, classified into transformer models
for source code, positional embedding methods,
and tree-based code representations.

Transformers for Source Code. Pre-trained
Transformer models such as CodeBERT and Code-
BERTa utilize broad datasets such as CodeSearch-
Net to effectively learn token-level semantic repre-
sentations (Ahmad et al., 2020; Feng et al., 2020;
Husain et al., 2019). Although these models
have achieved strong results, their effectiveness
stems primarily from capturing semantic relation-
ships between tokens without explicitly modeling
the hierarchical structural relationships encoded
in Abstract Syntax Trees (ASTs). Consequently,
structural nuances, crucial for tasks that require
deeper syntactic and semantic understanding, re-
main largely unaddressed.

Positional Embeddings in Transformers. The
original Transformer model (Vaswani et al., 2017)
employs sinusoidal positional embeddings to en-
code token positions within sequences, establishing
order-aware representations. Subsequent develop-
ments introduced learned positional embeddings,
enabling dynamic adaptation during training (Shaw
et al., 2018). Recently, Rotary Positional Embed-
dings (RoPE) (Su et al., 2021) have emerged as an
effective technique for capturing relative positional

information in Transformers, achieving superior
generalization in sequence modeling tasks. Despite
these advancements, positional embeddings typi-
cally remain confined to linear positional encod-
ings, which do not inherently capture hierarchical
or structural relationships essential in structured
data like source code (Shaw et al., 2018; Press
et al., 2021).

Tree-Based Representations in Code Analysis.
Various architectures have leveraged explicit tree-
based structures for representing code, particularly
AST-based models such as Tree-LSTMs (Tai et al.,
2015a), graph neural networks (GNNs) (Tai et al.,
2015b; Zhang et al., 2019), and specialized code-
generation models like code2seq (Alon et al., 2018)
and TreeGen (Sun et al., 2015). These models uti-
lize tree structures to enhance code comprehen-
sion, program synthesis, and code summarization
by explicitly encoding structural information. How-
ever, these methods generally rely on specialized
architectures, often incompatible or challenging to
integrate directly with the standard Transformer
architecture. Consequently, practical adaptation in
Transformer-based code models has been limited.

Recent approaches have explicitly introduced
AST information into positional embeddings
within Transformer architectures. Peng et al.
(2022) propose a Tree-Transformer that encodes
each AST node’s position using a two-dimensional
coordinate scheme (sibling index and parent’s child
count), injecting both local and global structural
biases (Peng et al., 2022). Similarly, Oh and
Yoo (2024) introduce CSA-Trans, which utilizes
a dedicated Code Structure Embedder to learn
structure-aware positional embeddings through a
disentangled attention mechanism (Saeyoon and
Shin, 2024). In contrast, our Tree-Enhanced Code-
BERTa integrates hierarchical positional embed-
dings directly into an existing pre-trained Trans-
former (CodeBERTa), explicitly encoding depth
and sibling indices. This maintains simplicity and
scalability, avoiding the complexity of specialized
attention modules or significant architectural alter-
ations.

Our Contribution. Unlike prior works that
incorporate hierarchical structures into Trans-
former models through specialized architectures,
our approach directly integrates tree-based posi-
tional embeddings—encoding depth and sibling
indices—into an existing Transformer framework.
This allows for richer hierarchical representations
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Figure 1: Visualization of hierarchical positional
encoding in an AST. Each node is labeled with
its name and corresponding hierarchical position
(depth, sibling index), illustrating how depth and sib-
ling relationships are assigned in tree-based positional
embeddings.

without altering the model’s core design. We empir-
ically validate its effectiveness in masked language
modeling and clone detection, demonstrating mea-
surable improvements in source code representa-
tion.

3 Theoretical Foundations

Traditional positional embeddings employed in
Transformer models typically assume a linear se-
quence of tokens, effectively capturing the sequen-
tial order but failing to represent the complex hier-
archical structures inherent in many forms of struc-
tured data, notably source code. Source code is
commonly represented by Abstract Syntax Trees
(ASTs), which explicitly encode syntactic and se-
mantic relationships such as nesting, parent-child
dependencies, and sibling ordering. A linear po-
sitional encoding is inadequate for capturing such
hierarchical nuances, motivating the need for hier-
archical positional encodings.

Hierarchical positional embeddings provide a
principled approach to representing each node (or
token) by encoding its structural position within a
tree. Formally, each node’s hierarchical position
can be represented by a path from the root to that
node. Let F (x) denote the hierarchical position of
node x, defined recursively as follows:

• Base Case: The root node is assigned a fixed
initial position:

F (root) = (1, 1).

• Recursive Step: For a non-root node x, its
position is determined recursively from its par-

ent f(x):

F (x) = (F (f(x))1 + 1, ix),

where:

– F (f(x))1 refers to the depth component
of the parent’s position.

– ix is the index of x among its siblings.

Figure 1 provides a visual representation of hier-
archical positional encoding, illustrating how depth
and sibling indices are assigned to each node in an
AST. This structure enables the model to capture
both global (depth) and local (sibling order) rela-
tionships, which are then transformed into learned
embedding vectors.

Each hierarchical position uniquely encodes
both local (sibling order) and global (depth in the
hierarchy) structural context. These positional val-
ues are transformed into learned embedding vectors
at each level and then aggregated to form a single
positional embedding vector P (x):

P (x) = Aggregate
(
h(F (x)1), h(F (x)2)

)
,

where F (x)1 represents the depth of node x and
F (x)2 represents the sibling index ix, with their
corresponding learned embeddings h(F (x)1) and
h(F (x)2).

This formulation allows Transformer models
to inherently interpret structural relationships be-
tween tokens or nodes. Tokens with similar struc-
tural contexts (e.g., siblings or nodes within the
same subtree) naturally receive similar positional
embeddings, guiding the self-attention mechanism
to focus appropriately on structurally relevant ele-
ments.

Moreover, hierarchical positional embeddings
enhance the model’s capability to capture long-
range dependencies inherent in structured data. By
explicitly encoding tree positions rather than linear
indices, hierarchical positional embeddings facil-
itate the model’s understanding of relationships
between tokens that may be distant in a linear se-
quence yet closely related structurally.

4 Methodology

Overview. We propose Tree-Enhanced Code-
BERTa, an extension of CodeBERTa that integrates
tree-based positional embeddings explicitly derived
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from Abstract Syntax Trees (ASTs). By incorpo-
rating Depth Embeddings and Sibling Index Em-
beddings, our model captures hierarchical rela-
tionships inherent in source code, enhancing both
syntactic and semantic understanding.

4.1 Tree-Based Positional Embeddings
To extract hierarchical structural information, we
generate Abstract Syntax Trees (ASTs) from source
code using Tree-Sitter (tre, 2007), a widely used in-
cremental parser supporting multiple programming
languages. Tree-Sitter allows efficient parsing and
provides structured representations that align well
with tokenized inputs, enabling precise mapping of
hierarchical relationships.

We introduce two main categories of tree-based
positional embeddings:

• Depth Embeddings: Each token receives an
embedding based on its hierarchical depth,
represented as F (x)1, where deeper nodes
correspond to more nested structures such as
loops, conditionals, or function bodies.

• Sibling Index Embeddings: Tokens are
embedded based on their relative positions
among sibling nodes within the AST, main-
taining local ordering essential to understand-
ing structures like function arguments, state-
ments within blocks, and ordered code con-
structs.

Additionally, we introduce a Tree Attention
Mask, designed to focus self-attention on struc-
turally related tokens within the AST, thus reducing
noisy attention to padding or structurally irrelevant
tokens.

4.2 Integration into Transformer Architecture
We explore three strategies for embedding inte-
gration into the existing CodeBERTa embedding
framework:

Sum Embeddings: Structural embeddings
(depth and sibling index embeddings) are summed
element-wise with standard token embeddings
(word embeddings, positional embeddings, and
type embeddings), forming a single unified embed-
ding without explicit distinction between semantic
and structural contributions.

Weighted Sum Embeddings: A set of learnable
weights dynamically balances the contributions of
token, depth, sibling index, and positional embed-
dings. This allows the model to adaptively empha-

Figure 2: Evolution of embedding weights during train-
ing for the Weighted Sum configuration. The plot
shows how different embedding components (word em-
beddings, positional embeddings, token type embed-
dings, depth-based embeddings, and sibling index em-
beddings) are dynamically weighted over training steps.
Word embeddings gain prominence, while structural em-
beddings (depth and sibling index) gradually decrease,
indicating their strongest influence early in training.

size the most relevant structural information during
training.

Concatenation Embeddings: Structural embed-
dings (depth and sibling indices) are concatenated
with standard token embeddings, followed by a
linear projection layer to reduce dimensionality
and control model complexity. This method sig-
nificantly increases the representational power of
embeddings but at the cost of higher parameter
count and computational complexity.

The evolution of embedding weights through-
out training in the Weighted Sum configuration
is illustrated in Figure 2, demonstrating how the
model dynamically adjusts emphasis on structural
information.

4.3 Pretraining and Fine-Tuning Tasks
To comprehensively evaluate the effectiveness of
Tree-Enhanced CodeBERTa, we perform experi-
ments across two core tasks: masked language
modeling (MLM) pretraining and clone detection
fine-tuning. These tasks are selected to assess the
model’s ability to leverage hierarchical structural
information during both initial representation learn-
ing and downstream task adaptation.

Masked Language Modeling (MLM) We pre-
train the model using the Masked Language Mod-
eling objective on the CodeSearchNet dataset. Dur-
ing pretraining, randomly masked tokens are pre-
dicted based on their surrounding context, enriched
with hierarchical positional embeddings. This
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setup assesses the capability of our proposed em-
beddings to capture both local and global structural
relationships inherent in source code.

Clone Detection We fine-tune the pretrained
model on a clone detection dataset (PoolC, n.d.)
comprising approximately 600,000 code snippet
pairs, classifying pairs as functionally equivalent
(clones) or distinct. The objective of this task is
to measure the practical advantages of hierarchical
embeddings in discriminating structurally similar
but semantically distinct code snippets, reflecting
real-world benefits for source code understanding
tasks.

Experimental Setup Our Tree-Enhanced Code-
BERTa model is based on the CodeBERTa-small
architecture, a 6-layer Transformer with 83.5 mil-
lion parameters. It follows a RoBERTa-like ar-
chitecture with the same number of layers and
attention heads as DistilBERT. While the back-
bone remains unchanged, our modifications intro-
duce additional learned parameters for hierarchi-
cal depth and sibling index embeddings. Quanti-
tatively, our introduced hierarchical embeddings
comprise two additional embedding tables, each
encoding depth and sibling indices. Collectively,
these tables add approximately 789,504 parame-
ters, representing roughly 0.945% of the original
model’s total 83,504,416 parameters. This mini-
mal increase ensures that the overall complexity
and computational overhead remain manageable
and closely comparable to the base CodeBERTa-
small model. Each experiment is conducted across
three independent runs with random seeds set to
12345, 550, and 42 to ensure robust statistical eval-
uation. Both Masked Language Modeling (MLM)
and clone detection fine-tuning were trained for
three epochs using the AdamW optimizer with
a learning rate of 1 × 10−5 and a batch size of
32. Additionally, the Tree Attention Mask was
selectively applied to special tokens, guiding the at-
tention mechanism towards structurally significant
tokens within the AST. Performance is measured
using loss, accuracy, F1 score, precision, and recall
to evaluate the impact of hierarchical embeddings.

To facilitate reproducibility, we provide an
anonymized repository containing the full imple-
mentation, training scripts, and pre-processing de-
tails. See Appendix A for access.

5 Results

We evaluate Tree-Enhanced CodeBERTa on two
tasks: masked language modeling (MLM) and
clone detection. Across both, our model consis-
tently outperforms the baseline in accuracy, F1
score, precision, and recall. Additionally, we re-
port final training loss values to reinforce these im-
provements. On MLM, the Weighted Sum configu-
ration achieves a lower loss of 0.41417 compared
to 0.44388 for the original model. Similarly, in
clone detection, our model attains a loss of 0.21799
versus 0.25836 for the baseline. These reductions
confirm that incorporating hierarchical positional
embeddings not only improves task-specific perfor-
mance but also facilitates more effective represen-
tation learning.

5.1 Masked Language Modeling (MLM)

Table 1 demonstrates consistent performance im-
provements from tree-based positional embeddings,
particularly highlighting the Weighted Sum strat-
egy as the most effective approach.

Embedding Acc. F1 Precision Recall
Original 0.8972 0.8939 0.8953 0.8972
Sum 0.9021 0.8989 0.9004 0.9021
Weighted Sum 0.9029 0.8999 0.9012 0.9029
Concatenation 0.9026 0.8993 0.9008 0.9026

Table 1: MLM task results on the CodeSearchNet
dataset (averaged over 3 runs with different random
seeds: 12345, 550, and 42). Standard deviations across
seeds were consistently low (< 0.002), indicating stable
performance improvements.

5.2 Clone Detection

Table 2 highlights the improved performance of
Tree-Enhanced CodeBERTa in distinguishing se-
mantically and structurally similar code snippets,
with the Weighted Sum approach consistently
achieving the best overall performance.

Embedding Acc. F1 Precision Recall
Original 0.9173 0.9172 0.9180 0.9173
Sum 0.9159 0.9159 0.9164 0.9159
Weighted Sum 0.9187 0.9186 0.9191 0.9187
Concatenation 0.9063 0.9063 0.9072 0.9063

Table 2: Average performance over 3 runs on clone
detection (seeds: 12345, 550, and 42). Standard devia-
tions across seeds were below 0.002 for accuracy and
F1 scores, reflecting statistically stable gains.
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Figure 3: t-SNE projection of the last hidden states for the three models. The Tree-Enhanced Model demonstrates
clearer structural clustering, indicating improved hierarchical representations.

Qualitative Analysis of Representations Fig-
ure 3 provides a qualitative comparison of the
learned representations through t-SNE projections.
The visualization illustrates the hidden state em-
beddings from three model variants: (1) the orig-
inal pretrained Transformer (trained on code and
comments), (2) a retrained Transformer (trained
exclusively on code without comments), and (3)
our proposed Tree-Enhanced Transformer with hi-
erarchical embeddings, using the Weighted Sum
configuration. Each point represents an individual
AST node (token), colored according to its nor-
malized depth within the AST, with lighter colors
indicating nodes situated deeper in the AST struc-
ture.

The original pretrained model (left) exhibits
loosely formed and overlapping clusters. Nodes
are grouped primarily by token-level semantic sim-
ilarities without clear correlation to their structural
positions within the AST hierarchy, suggesting re-
liance mainly on linear sequential context and to-
ken semantics from natural language comments
rather than syntactic relationships.

The retrained model (center), trained solely
on code data, demonstrates tighter clustering com-
pared to the pretrained model due to domain spe-
cialization. However, these clusters still exhibit
minimal correlation with AST depth, indicating
that structural hierarchy remains underrepresented,
and token representations are primarily semantic
rather than structural.

In contrast, the Tree-Enhanced model (right)
distinctly captures hierarchical structure, as evi-
denced by clearly delineated and depth-correlated
clusters. Nodes deeper in the AST (lighter col-
ors) form separate, well-defined peripheral clusters,

while nodes nearer the AST root (darker colors)
group cohesively at the center. This clear structural
differentiation highlights the model’s ability to rep-
resent syntactic context explicitly, confirming the
effectiveness of hierarchical embeddings.

This visualization aligns closely with our theo-
retical foundations, validating that the integration
of tree-based positional embeddings significantly
enhances the model’s capacity to encode hierarchi-
cal relationships inherent in source code, resulting
in improved performance on structurally-sensitive
tasks such as clone detection and masked language
modeling.

6 Analysis and Insights

6.1 Impact of Tree-Based Embeddings

Our results confirm that hierarchical positional em-
beddings enhance the structural awareness of Trans-
former models for source code. By encoding hier-
archical relationships, these embeddings improve
representation learning, particularly in tasks that
rely on structural context. In masked language mod-
eling, they help predict contextually relevant tokens
even when distant in sequence but closely related
in the AST. For clone detection, they improve dif-
ferentiation between structurally similar yet seman-
tically distinct snippets, reducing false positives
and boosting overall accuracy and F1 scores.

6.2 Embedding Integration Strategies

Our experiments highlight the trade-offs among
different embedding integration methods:

• Sum Embeddings: Computationally efficient
but lacks adaptability in balancing structural
and semantic contributions.

96



• Concatenation Embeddings: Enhances ex-
pressiveness but introduces higher dimension-
ality and computational cost without consis-
tent gains.

• Weighted Sum Embeddings: Achieves the
best balance, dynamically adjusting emphasis
on structural embeddings, particularly in early
training.

The Weighted Sum approach emerges as the
most effective, offering an optimal trade-off be-
tween efficiency and structural representation qual-
ity.

7 Limitations

While our proposed Tree-Enhanced CodeBERTa
shows significant improvements in capturing hier-
archical source code structures, our approach has
several inherent limitations that must be acknowl-
edged:

1. Computational Overhead: Integrating AST-
based positional embeddings requires addi-
tional preprocessing steps, such as AST pars-
ing and alignment, increasing computational
overhead. This could limit scalability, espe-
cially in real-time or low-resource environ-
ments.

2. Parser Dependency: Our embeddings heav-
ily rely on the accuracy and language-specific
implementation of the AST parser (Tree-Sitter
(tre, 2007)). Variations in parser quality or
completeness across different programming
languages may impact the consistency and
reliability of the embeddings.

3. Generalizability Beyond Source Code: Our
method explicitly leverages hierarchical AST
structures. Thus, its applicability is inher-
ently limited to data that can be clearly rep-
resented through tree-based hierarchies. Its
effectiveness on non-hierarchical or general
graph structures without clear parent-child re-
lationships remains uncertain.

8 Conclusion

We introduced Tree-Enhanced CodeBERTa, a
Transformer-based model incorporating hierarchi-
cal positional embeddings from Abstract Syntax
Trees (ASTs). By integrating depth and sibling

index embeddings, our approach captures struc-
tural nuances overlooked by traditional positional
encodings.

Evaluations on masked language modeling
(MLM) and clone detection confirm that these em-
beddings enhance representation learning, improv-
ing accuracy, F1 score, precision, and recall. The
Weighted Sum integration strategy proves most ef-
fective, balancing structural and semantic informa-
tion while maintaining efficiency.

8.1 Key Takeaways
• Tree-based positional embeddings improve

source code understanding by explicitly mod-
eling hierarchical structure.

• The Weighted Sum integration strategy opti-
mally balances semantic and structural embed-
dings with minimal overhead.

• Structural embeddings are particularly ben-
eficial for tasks like clone detection, where
syntactic differentiation is critical.

8.2 Future Work
Future directions include optimizing AST pars-
ing for computational efficiency and exploring
language-agnostic intermediate representations
(IRs), such as data flow graphs, to mitigate the strict
dependency on syntax rules and enhance cross-
language generalization. Additionally, hierarchical
embeddings could be extended beyond source code,
potentially benefiting tasks involving natural lan-
guage parse trees or structured document analysis.

These findings highlight the potential of hierar-
chical positional embeddings for structured data
representation, paving the way for further explo-
ration in broader applications.
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Abstract

We investigate the capabilities of the openly
available Llama 3.2 1B language model for
Abstract Meaning Representation (AMR) pars-
ing through supervised fine-tuning, further en-
hanced by reinforcement learning via Group
Relative Policy Optimization (GRPO). Exist-
ing supervised methods for AMR parsing face
limitations due to static loss functions and chal-
lenges in capturing complex semantic phenom-
ena. To address this, our GRPO-based ap-
proach explicitly optimizes fine-grained seman-
tic rewards, including Smatch scores, frame-
argument correctness, and structural validity of
logical operations. Experimental results show
that supervised fine-tuning alone establishes
Llama as a capable English AMR parser, and
subsequent GRPO fine-tuning further improves
its performance. Our final model achieves
higher Smatch scores, consistently respects crit-
ical low-level semantic constraints, and outper-
forms existing parsers on high-level semantic
evaluation metrics across diverse linguistic phe-
nomena.

1 Introduction

Abstract Meaning Representation has become es-
sential in various natural language processing tasks,
such as machine translation (Song et al., 2019; Da-
monte et al., 2019; Urešová et al., 2014), ques-
tion answering (Kapanipathi et al., 2021), dialogue
understanding (Bai et al., 2022a), summarization
(Liao et al., 2018; Ribeiro et al., 2022; Dohare
et al., 2017), and fact-checking (Ribeiro et al.,
2022; Kachwala et al., 2024; Ousidhoum et al.,
2022). Despite its widespread adoption, AMR pars-
ing remains challenging. Groschwitz et al. (2023)
recently demonstrated that parsing accuracy has
stagnated, highlighting persistent difficulties in cap-
turing complex semantic phenomena, even with
advanced models.

While large language models (LLMs) such as the
Llama models (Touvron et al., 2023) have demon-

Figure 1: Comparison of AMR parsing models
(SPRING, Llama-SFT, and our Llama-GRPO) across
various linguistic phenomena measured by the GrAPES
prerequisites metric. Higher scores indicate that the
parser more consistently generates the necessary se-
mantic structures to capture specific phenomena. Our
reinforcement learning-based approach shows consis-
tent improvement over the baselines.

strated impressive performance across various lan-
guage generation tasks, their capability for struc-
tured semantic parsing—particularly AMR pars-
ing—remains unverified. Moreover, it remains
unclear whether advanced reinforcement learning
(RL) techniques like Group Relative Policy Opti-
mization (GRPO), introduced by Shao et al. (2024),
can effectively enhance the performance of LLMs
on such structured prediction tasks by directly opti-
mizing for desired graph properties.

In this paper, we first examine the baseline capa-
bilities of the openly available Llama 3.2 1B model
by supervised fine-tuning (SFT) on the AMR 3.0
dataset (Banarescu et al., 2013). We refer to this
model as Llama-SFT. We then further fine-tune

99

mailto:botondbarta@sztaki.hu


this model using GRPO, incorporating fine-grained
reward signals explicitly designed to encourage
adherence to critical low-level AMR properties,
such as frame-argument correctness and structural
validity of logical operations (AND-OR node cor-
rectness), alongside Smatch and graph parsabil-
ity. We call this enhanced model Llama-GRPO.
We systematically evaluate our models against
publicly available AMR parsing model, SPRING
(Bevilacqua et al., 2021), using standard metrics
(Smatch) and the detailed GrAPES evaluation suite
(Groschwitz et al., 2023).

Our results show that the Llama 3.2 1B model,
after supervised fine-tuning (Llama-SFT), achieves
AMR parsing performance close to open-source
AMR parser models. Critically, when further en-
hanced through GRPO-based reinforcement learn-
ing, our model:

• Achieves higher overall AMR parsing accu-
racy, as measured by Smatch scores,

• Effectively respects the low-level semantic
constraints incorporated into the GRPO re-
ward function,

• Outperforms existing AMR parsers on high-
level semantic evaluations, as demonstrated
by the comprehensive GrAPES metrics (Fig-
ure 1), suggesting improved generalization
across diverse linguistic phenomena.

2 Related Work

Early work in AMR parsing often relied on
transition-based systems (Wang et al., 2015, 2016)
or graph-based approaches (Flanigan et al., 2014),
frequently using specialized features and con-
strained decoding. The advent of neural sequence-
to-sequence models marked a significant shift.
Many modern parsers treat AMR parsing as a trans-
lation task from text to a linearized representation
of the AMR graph (Konstas et al., 2017).

Transformer-based architectures (Vaswani et al.,
2017) quickly became dominant. Models like
SPRING (Bevilacqua et al., 2021), based on BART
(Lewis et al., 2020), demonstrated strong perfor-
mance by leveraging pre-training and specialized
techniques like graph linearization. SPRING em-
ploys bidirectional pre-training and graph-based
regularization during fine-tuning on linearized
AMR graphs. Other parsers, such as those based
on T5 or BART (Raffel et al., 2020; Jascob, 2024;
Lee et al., 2023), have also achieved high results

through large-scale pre-training and task-specific
adaptations.

Despite these advances, as highlighted by
Groschwitz et al. (2023), performance has
plateaued, suggesting limitations in current super-
vised approaches. Challenges in AMR parsing re-
main, particularly in achieving semantic consis-
tency, cross-lingual adaptability, and structured rea-
soning.

3 Methods

Reinforcement learning has been increasingly used
to fine-tune LLMs for various objectives beyond
next-token prediction, such as improving helpful-
ness, harmlessness, or adherence to specific styles
(Ouyang et al., 2022; Bai et al., 2022b). Tech-
niques such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) are commonly used but of-
ten require training a separate critic model, which
can be computationally expensive. GRPO (Shao
et al., 2024) offers a more efficient alternative by
using group-based relative ranking, making RL
fine-tuning more accessible, especially for com-
plex tasks with non-differentiable or noisy reward
signals, as demonstrated in fields like mathemati-
cal reasoning (Shao et al., 2024), computer vision
(Liang, 2025), and speech processing (Togootog-
tokh and Klasen, 2025).

3.1 Group Relative Policy Optimization

GRPO (Shao et al., 2024) is a reinforcement learn-
ing algorithm designed to fine-tune large language
models efficiently by replacing the critic model in
PPO with a baseline estimated from a group of sam-
pled outputs. This eliminates the need for a learned
value function, reducing computational overhead
and memory requirements.

For each query q, GRPO samples a group of
responses {o1, . . . , oG} from the old policy πθold ,
evaluates them using a reward model, and normal-
izes the rewards within the group. The policy is
updated using a clipped importance-weighted ob-
jective, similar to PPO, but the advantage estima-
tion relies on the relative performance within the
sampled group rather than absolute reward values
predicted by a critic. This encourages the policy
to shift probability mass towards outputs that per-
form relatively better within the sampled group
according to the reward function.
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3.2 Our approach
We started with a vanilla Llama 3.2 1B model,
which we fine-tuned using supervised fine-tuning
(SFT). To avoid overfitting we used early stopping
based on the validation loss. The training stopped
after two epochs which resulted in the Llama-SFT
model. After generating AMR graphs with Llama-
SFT, we manually evaluated them and observed
several recurring low-level structural and semantic
errors. These errors primarily fell into two cate-
gories:

• Frame-argument error: Generated frames
sometimes included arguments (e.g., ‘:arg4‘,
‘:arg5‘) that were not defined for that specific
predicate sense in the PropBank frame files
(Palmer et al., 2005). The arguments of each
frame must strictly conform to the roles de-
fined in its sense.

• AND-OR node error: Logical connective
nodes like ‘and‘ and ‘or‘ require their operand
roles (e.g., ‘:op1‘, ‘:op2‘, ‘:op3‘) to be consec-
utive integers starting from 1. We observed
generated graphs violating this (e.g., having
only ‘:op1‘ and ‘:op3‘). A special case exists
where only ‘:op2‘ appears, often used in AMR
3.0 for sentences starting with ’and’ or ’or’;
this specific structure was considered valid.

To address these issues and improve overall qual-
ity, we designed a composite reward function for
GRPO incorporating four signals for each gener-
ated AMR graph:

• Parsability: A binary reward. The gener-
ated AMR graph must be parsable by standard
AMR parsing tools without errors. Graphs
that failed parsing due to structural or syntac-
tic issues were penalized.

• Frame-argument correctness: A score be-
tween 0 and 1 representing the proportion of
frames in the generated graph that adhere to
their PropBank argument definitions. Calcu-
lated as (Number of valid frames) / (Total
number of frames).

• AND-OR node correctness: A score be-
tween 0 and 1 representing the proportion
of ‘and‘/‘or‘ nodes with correctly structured
operands (consecutive from ‘:op1‘, or the spe-
cial ‘:op2‘-only case). Calculated as (Number
of valid AND/OR nodes) / (Total number of
AND/OR nodes).

• SMATCH score: The Smatch F1 score (Cai
and Knight, 2013) comparing the generated
AMR graph against the gold reference AMR
graph. This provides a global measure of se-
mantic similarity.

These four criteria were combined into a single
reward function, where each criterion was given
equal weight. Additionally, we applied quadratic
scaling to the SMATCH score, ensuring that lower
scores received a higher penalty.

4 Dataset

For training, we used the AMR 3.0 dataset
(LDC2020T02) (Banarescu et al., 2013), which
provides a large collection of human-annotated Ab-
stract Meaning Representation (AMR) graphs. We
preprocessed the AMR graphs the following way.
First, we removed wiki tags from the AMR graphs.
Then, we serialized each graph into a single line
using a depth-first approach. During serialization,
new lines within the original graph notation were
replaced with spaces, and consecutive spaces were
compressed into a single space. Finally, we added
spaces around parentheses to ensure consistent tok-
enization.

For evaluation, we used the AMR 3.0 test set
and The Little Prince (TLP) corpus test set, which
provides a smaller, out-of-domain evaluation with
high-quality annotations. We measured the perfor-
mance of the models using Smatch scores (Cai and
Knight, 2013) computed with the smatchpp library
(Opitz, 2023).

4.1 Dataset Statistics

Table 1 provides an overview of the dataset sizes
used in our experiments.

Dataset Number of Sentences

AMR 3.0 (Train) 55,635
AMR 3.0 (Test) 1,898
The Little Prince (test) 143

Table 1: Dataset statistics.

The combination of AMR 3.0 and the TLP
dataset enables a comprehensive evaluation, bal-
ancing broad-domain performance with controlled,
high-quality annotations.
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Figure 2: Evolution of average reward and parsability during GRPO fine-tuning on batches from the training set.

5 Results

We compare our Llama-SFT and Llama-GRPO
models against SPRING. Table 2 shows the main
results on the AMR 3.0 and TLP test sets.

The results show that Llama-SFT achieves a
competitive Smatch score in two epochs, confirm-
ing the adaptability of LLMs to an unseen task.
We observe that one epoch of subsequent GRPO
fine-tuning yields further improvements. Llama-
GRPO achieves a Smatch score of 81.92 on AMR
3.0, a gain of over 2.3 points over Llama-SFT,
and it outperforms SPRING. In addition, GRPO
improves compliance with the targeted low-level
constraints. Frame-argument correctness improves
from 96.5% to over 99% on AMR 3.0 and reaches
99.75% on TLP. Similarly AND-OR node correct-
ness jumps from 96.5% to over 99.6% on AMR
3.0 and achieves perfect compliance on TLP. This
demonstrates the effectiveness of incorporating
these specific structural and semantic properties
directly into the reward function via GRPO.

Figure 2 illustrates the progression of the overall
reward during GRPO training. The reward score
exhibits a smooth and consistent upward trend
throughout the GRPO fine-tuning process. This
indicates that the model has effectively learned to
generate AMR structures that better satisfy these
constraints, validating the utility of GRPO with
these specific reward signals. The learning appears
stable, without drastic fluctuations, suggesting that
GRPO provides a reliable optimization process for
these objectives.

5.1 GrAPES evaluation

According to Groschwitz et al. (2023), Edge Recall
measures the parser’s accuracy in identifying cru-

cial semantic edges for specific phenomena. Pre-
requisites evaluate whether the parser generates
the required graph structure to attempt to recognize
these phenomena. Tables 3 and 4 summarize model
performance accordingly.

From Tables 3 and 4 we see that SPRING demon-
strates higher accuracy in Edge Recall, indicating
slightly better capability in accurately identifying
semantic edges once generated. This difference
in performance for SPRING can potentially be ex-
plained by the AMR-specific adaptation of its tok-
enizer and vocabulary1.

Llama-SFT on the other hand, consistently ex-
cels at Prerequisites, indicating that it more reliably
constructs graph structures necessary for capturing
complex phenomena, even if its edge-level preci-
sion is slightly lower.

Limitations

Our study has several limitations:

• Model Scale: We focused exclusively on the
Llama 3.2 1B model due to resource limita-
tions. Larger models or other LLM archi-
tectures might yield different baseline perfor-
mance and respond differently to GRPO tun-
ing.

• Language Coverage: Our experiments were
conducted solely on English AMR. The appli-
cability and effectiveness of this approach for
other languages remain unexplored.

• Reward Design: While our fine-grained re-
wards proved effective, the specific combina-
tion and weighting could be further optimized.

1The set of possible edge labels is added to the vocabulary.
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Model Smatch++ F1 FRAME-ARG correctness AND-OR correctness

AMR 3.0 TLP AMR 3.0 TLP AMR 3.0 TLP

Llama-SFT 79.58 78.06 0.96491 0.97550 0.96514 0.97887
Llama-GRPO 81.92 78.30 0.99178 0.99758 0.99624 1.00000
SPRING 80.15 81.12 0.99396 0.99703 0.95978 0.98501

Table 2: Comparison of different AMR parsers on AMR 3.0 and TLP datasets based on Smatch++ F1, ARG
correctness, and AND-OR correctness.

Category SPRING SFT GRPO

Pragmatic Coreference 42 61 61
Syntactic Reentrancies 61 56 61
Unambiguous Coreference 55 84 81

Rare Predicate Senses 79 82 91
Rare Edge Labels 55 65 65
Types of Seen NEs 83 83 89
Types of Unseen NEs 64 49 57

Frequent Predicate Senses 79 83 90
Passives 66 78 80
Unaccusatives 75 71 79
Ellipsis 79 82 85
Imperatives 72 67 83

Table 3: Prerequisites scores from GrAPES evaluation.
Best results highlighted in bold. Llama-SFT and Llama-
GRPO are abbreviated as SFT and GRPO respectively.

Category SPRING SFT GRPO

Pragmatic Coreference 31 25 25
Syntactic Reentrancies 46 27 32
Unambiguous Coreference 52 58 55

Rare Edge Labels 20 20 18
Rare Node Labels 61 58 65
Unseen Node Labels 54 35 44
Rare Predicate Senses 30 34 34

Seen Names 84 83 89
Unseen Names 70 56 64
Seen Dates 74 88 91
Unseen Dates 71 82 84
Other Seen Ents 88 79 87
Other Unseen Ents 59 61 64

Types of Seen NEs 82 81 87
Types of Unseen NEs 47 31 39

Frequent Predicate Senses 70 72 79
Passives 59 64 64
Unaccusatives 67 58 65
Ellipsis 42 39 48
Multinode Word Meanings 68 80 78
Imperatives 50 42 59

Table 4: Recall and Edge Recall scores from GrAPES
evaluation. Best results highlighted in bold. Llama-SFT
and Llama-GRPO are abbreviated as SFT and GRPO
respectively.

Exploring other potential reward signals re-
lated to AMR quality could yield further im-
provements.

• Comparison Models: We compared against
the publicly available SPRING model. Com-
parisons against state-of-the-art closed models
or models using proprietary data were not pos-
sible.

• Dataset Contamination: We did not inves-
tigate whether the dataset we used for eval-
uation was included in the pre-training data
of the Llama 3.2 1B model, which could lead
to information leakage that artificially inflates
performance.

6 Conclusion

In this work, we investigated the application of the
Llama 3.2 1B language model to AMR parsing,
enhanced by Group Relative Policy Optimization
(GRPO). We demonstrated that supervised fine-
tuning establishes Llama as a competent baseline
AMR parser. Subsequently, by incorporating fine-
grained reward signals targeting Smatch, graph
parsability, frame-argument correctness, and AND-
OR node validity into a GRPO fine-tuning stage,
we achieved significant improvements.

Our Llama-GRPO model not only outperformed
its supervised counterpart (Llama-SFT) in Smatch
scores, but also showed significantly better per-
formance for crucial low-level semantic and struc-
tural constraints. Furthermore, evaluation using the
GrAPES suite revealed that Llama-GRPO gener-
ated more complete graph structures (higher Pre-
requisites scores) necessary to capture diverse and
complex linguistic phenomena, outperforming both
Llama-SFT and SPRING while achieving competi-
tive recall performance.

These results highlight the potential of combin-
ing moderately sized, openly available LLMs with
efficient reinforcement learning techniques like
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GRPO, guided by carefully designed reward func-
tions, to tackle complex structured prediction tasks
like AMR parsing. This approach allows for direct
optimization of desired output properties beyond
what is easily achievable with standard supervised
learning alone.
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Abstract
This study shows the effectiveness of struc-
ture modeling for transferability in diachronic
syntactic parsing. The syntactic parsing for
historical languages is significant from a hu-
manities and quantitative linguistics perspec-
tive to enable annotation support and anal-
ysis on unannotated documents. We com-
pared the zero-shot transfer ability between
Transformer-based Biaffine UD parsers and
our structure modeling approach. The struc-
ture modeling approach is a pipeline method
consisting of dictionary-based morphologi-
cal analysis (MeCab), a deep learning-based
phrase (bunsetsu) analysis (Monaka), SVM-
based phrase dependency parsing (CaboCha)
and a rule-based conversion from phrase de-
pendencies to UD. This pipeline closely fol-
lows the methodology used in constructing
Japanese UD corpora. Experimental results
showed that the structure modeling approach
outperformed zero-shot transfer from the con-
temporary to the modern Japanese. Moreover,
the structure modeling approach outperformed
several existing UD parsers in contemporary
Japanese. To this end, the structure model-
ing approach outperformed in the diachronic
transfer of Japanese by a wide margin and was
useful to those applications for digital human-
ities and quantitative linguistics.

1 Introduction

Dependency parsing has long been studied as a
core task in natural language processing. In re-
cent years, dependency annotation corpora created
under multilingual unified annotation frameworks
such as Universal Dependencies (UD; Zeman et al.
2018) have been published, enabling the develop-
ment of deep learning-based dependency parsers
that operate across multiple languages.

On the other hand, syntactic structure analysis,
including dependency parsing, is beneficial for hu-
manities research as well as traditional NLP ap-
plications. This is because structure modeling,

which consists of a layered pipeline of NLP tasks,
can preserve low-level linguistic structures such
as phrases required for humanities research. In
contrast, the high zero-shot transfer performance
of recent deep learning-based parsers (Kondratyuk
and Straka, 2019) would also be helpful to support
annotation tasks and quantitative linguistic analy-
sis on unannotated corpora such as historical liter-
ature, which no longer has native speakers.

Thus, this study focuses on the diachronic ap-
plication of UD dependency parsing and compares
structure modeling with end-to-end deep learning
in the context of zero-shot transfer. Specifically,
Japanese UD corpora exist for both contemporary
and Meiji-period (modern) Japanese, allowing us
to investigate the transfer performance from con-
temporary Japanese, which has sufficient training
resources, to modern Japanese. The research ques-
tions regarding the structure modeling in this con-
text are: (1) whether it demonstrates a perfor-
mance advantage and (2) whether it is effective
when considering practical annotation and appli-
cation use cases.

For our structure modeling approach to
Japanese UD parsing (see Figure 1), we first
applied a morphological analysis (MeCab), and
then, we applied deep learning-based phrase
(bunsetsu) segmentation (Monaka) and bunsetsu
dependency parsing (CaboCha). After this, we
employed a rule-based transformation from bun-
setsu dependencies to UD annotation, simulating
actual Japanese UD annotations. This structure
modeling approach closely follows the standard
workflow used for constructing Japanese UD
linguistic resources, involving morphological
annotation, bunsetsu dependency annotation, and
subsequent rule-based conversion into the UD
format. As a comparison, we trained and used a
graph-based Biaffine parser (Attardi et al., 2021),
which is a representative UD parsing method.

The comparison results showed that (1) the
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(The contents of the final draft are as follows)

SUW

LUW
NOUN ADP NOUN ADP NOUN ADP NOUNPOS

final draft of contents follows as

NOUN NOUN ADP NOUN ADP NOUN ADP NOUNPoS

最終 案 の 内容 は 以下 の とおり

Bunsetu
dependency

UD
dependency

Dictionary + CRF
(MeCab)

Deep Learning
(Monaka)

SVM
(CaboCha)

Rule-based

Morphological and Syntactic Structure Analysis Pipeline

nmod

nsubj

nmod

casecasecase
compound

Figure 1: The overview of the task and structural approach. Green solid bars represent bunsetsu boundaries, and
blue dotted bars represent the boundaries of long unit words. The left side of the figure depicts the morphological
and syntactic information of the sentence “最終案の内容は以下のとおり (The contents of the final draft is as
follows).” The right side of the picture shows the analysis pipeline of the structure modeling approach.

structure modeling approach not only outper-
formed deep learning-based zero-shot transfer in
accuracy but also achieved high performance on
contemporary Japanese before transfer. (2) In
practical annotation scenarios, zero-shot transfer
using deep learning alone was impractical due
to the inconsistency of phrase (bunsetsu) struc-
tures, whereas the structure modeling approach
produced reasonable results, preserving morpho-
logical and phrase (bunsetsu) structures.

2 Related Work

2.1 UD Treebanks of Japanese

There are two major UD treebanks for contem-
porary Japanese. UD_Japanese-BCCWJ1 (Asa-
hara et al., 2018; Omura and Asahara, 2018) is
a treebank built on the Balanced Corpus of Con-
temporary Written Japanese (Maekawa, 2008).
UD_Japanese-GSD2 (Tanaka et al., 2016) contains
the sentences from Google Universal Dependency
Treebanks v2.0 (legacy)3. These two Japanese
UD treebanks are annotated with mostly the same
methods and criteria.

UD_Japanese-Modern4 (Omura and Asahara,

1https://github.com/UniversalDependencies/UD_
Japanese-BCCWJ

2https://github.com/UniversalDependencies/UD_
Japanese-GSD

3https://github.com/ryanmcd/uni-dep-tb
4https://github.com/UniversalDependencies/UD_

Japanese-Modern

2017) is a deprecated UD treebank annotated on
Meiroku-zasshi that was published in the Meiji pe-
riod (C.E. 1868-1912). This was the only official
annotated (test set only) UD treebank for historical
Japanese, containing 822 sentences.

2.2 Parsing Methods for UD
For syntactic parsers (not limited to UD parsers),
there are two major approaches, namely graph-
and transition-based parsers. In UD parsing,
graph-based parsers (often called Biaffine Parser;
Dozat et al. 2017; Qi et al. 2018; Che et al. 2018)
won the competitions of the CoNLL shared task in
2017 and 2018 (Zeman et al., 2017, 2018). Their
Biaffine parsers are available as Stanza 5 models.

Because of the success of the graph-based ap-
proach, there have been many investigations per-
formed to improve the parsing performance, for
example, DiaParser (Attardi et al., 2021) extends
the architecture of the Biaffine Parser by exploit-
ing both embeddings and attentions provided by
transformers and achieved high performance.

On the other hand, before the competition,
Straka et al. (2016) provides a transition-based
parser, UDPipe6, which reconstructs parsed trees
based on estimated action sequences applying
word tokens. And another popular NLP tool
spaCy 7 also provides transition-based parsers.

5https://stanfordnlp.github.io/stanza/
6https://github.com/ufal/udpipe
7https://spacy.io/
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In contrast, this paper focuses on structure mod-
eling of UD parsing, including deep learning-
based phrase segmentation.

Multilingual Transfer of Deep UD parsers Bi-
affine parsers have high transfer ability, especially
for low-resource languages. Kondratyuk and
Straka (2019) shows their single Biaffine model
named UDify trained on 75 UD treebanks with
high performances for those low-resource tree-
banks.

UD Parsers for Contemporary Japanese
There are a lot of parsers which support contem-
porary Japanese UD. For example, the spaCy 8

supports Japanese UD parsing. GiNZA (Matsuda,
2020), which is also a spaCy-based parser, trained
specifically for contemporary Japanese.

UD Parser for Modern Japanese For UD pars-
ing methods applied to modern Japanese, Yasuoka
(2020) examined an approach that combines mor-
phological information conversion using the Uni-
Dic designed for modern Japanese with an exist-
ing Japanese UD dependency parser. While this
morphological conversion significantly improves
accuracy, it has been reported that the accuracy
does not reach the level achieved when trained
directly on the UD_Japanese-Modern (Meiroku-
zasshi) corpus. Additionally, this parser has been
released as unidic2ud9. In the unidic2ud reposi-
tory, Yasuoka (2020) provides a few UD annotated
sentences from famous literature written in mod-
ern Japanse (Yukiguni, Maihime, and Koyayori).

3 Bunsetsu Dependency for Syntactic
Structure of Japanese

The left side of Figure 1 shows an example
of Japanese’s morphological and syntactic struc-
ture. In Japanese, bunsetsu dependency relations
(shown in the top dependency tree of Figure 1) are
widely used for representing syntactic structure. A
bunsetsu is the smallest and natural phrase unit for
native Japanese speakers, and syntactic structure
is expressed through the dependency relations be-
tween bunsetsu phrases.

A bunsetsu consists of one or more words.
However, since Japanese lacks a whitespace sep-
aration of words in its writing system, there are
multiple word unit definitions, such as short unit

8https://spacy.io/
9https://github.com/KoichiYasuoka/UniDic2UD

words (SUWs) and long unit words (LUWs) de-
fined by the National Institute for Japanese Lan-
guage and Linguistics (NINJAL). In this study, we
explain bunsetsu structures based on the SUWs
and LUWs, which are commonly used in Univer-
sal Dependencies (UD).

3.1 Bunsetsu (Base-phrase)
As mentioned above, a bunsetsu is a (natural) min-
imal phrase that consists of a Japanese sentence.
An example of bunsetsu boundaries is shown in
Figure 1 as green solid lines. Generally, a bun-
setsu boundary appears after a particle or a se-
quence of particles. This is because Japanese func-
tional words typically follow their content words,
on which they depend. In Figure 1, all LUW noun
(NOUN) and adposition (ADP) pairs are com-
posed into bunsetsu segments.

3.2 Short Unit Word
Short Unit Word (SUW) is a token close to the
granularity of typical Japanese word tokens. A
dictionary (UniDic) was established for SUWs,
enabling high-performance morphological analy-
sis based on UniDic (Den et al., 2008). As shown
in the overview Figure 1, bunsetsu and LUWs are
also composed of SUWs.

3.3 Long Unit Word
The Long Unit Word (LUW) is a lexical unit corre-
sponding to a bunsetsu. Identification of LUW in-
volves identifying bunsetsu and then dividing each
bunsetsu into independent and attached LUWs.
In Figure 1, blue dotted lines represent LUWs’
boundaries, which divide bunsetsu into indepen-
dent and attached LUWs.

4 Structure Modeling Approach for UD
Parsing

In standard Japanese UD annotation (Asahara
et al., 2018; Omura and Asahara, 2018), bunsetsu
dependency information is used as a basis for rule-
based conversion into UD annotation, referencing
the SUWs and LUWs contained within each bun-
setsu.

Therefore, by estimating the SUW, LUW, and
bunsetsu boundaries, along with the dependency
relations between bunsetsu, it is possible to obtain
UD parsing results by applying the same conver-
sion rules.

Figure 1 shows the pipeline of the structure
modeling approach. The pipeline starts from
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a CRF-based SUW analysis (MeCab), and then
the results of SUW analysis are sent to deep
learning-based LUW and bunsetsu analysis (Mon-
aka). Next, all SUW, LUW and bunsetsu infor-
mation are sent to bunsetsu dependency parsing
(CaboCha), and finally, with all the information,
rule-based UD conversion is performed.

4.1 SUW Analysis
For SUW analysis, MeCab 10, which uses the
Conditional Random Field (CRF; Lafferty et al.
2001) with a dictionary, was generally used. The
actual analysis was performed using fugashi11, a
Cython wrapper for MeCab (McCann, 2020). In
the MeCab-based analysis, UniDic was used as
the SUW dictionary. UniDic supports not only
modern Japanese 12, but also various periods of
the Japanese language from old Japanese (Nara-
period; C.E. 710-) onward.

4.1.1 Bunsetsu Analysis (Monaka)
For bunsetsu analysis, the parser named Mon-
aka13 proposed by Ozaki et al. (2024) was used.
Monaka simultaneously predicts bunsetsu bound-
aries, LUW boundaries, and part-of-speech tags of
LUWs from a sequence of SUWs. As described in
the previous section, SUWs can be analyzed us-
ing MeCab, allowing us to perform all necessary
analyses except for bunsetsu dependency parsing.

The method proposed by Ozaki et al. (2024) tar-
gets Japanese from the Heian (C.E. 794-1185) to
Muromachi (C.E. 1336-1573) periods, as stored in
the Corpus of Historical Japanese (CHJ). Because
their method provides publicly available code, we
newly built a one-model bunsetsu and LUW parser
covering both the Heian–Muromachi periods and
contemporary Japanese. Building the model, we
referenced the bunsetsu and LUW information
included as UFeat in UD_Japanese-BCCWJ and
UD_Japanese-GSD. The hyperparameters to train
the model are also the same as the original ones.

4.1.2 Bunsetsu Dependency Parsing
(CaboCha)

For bunsetsu dependency parsing, we used
CaboCha (Taku Kudo, 2002). CaboCha is a bun-
setsu dependency parser based on Support Vector
Machines (SVM). It consists of multiple analysis

10https://taku910.github.io/mecab/
11https://github.com/polm/fugashi
12https://clrd.ninjal.ac.jp/unidic/download_

all.html
13https://github.com/komiya-lab/monaka

layers, including SUW analysis, bunsetsu segmen-
tation, and bunsetsu dependency parsing, allowing
for layer-specific parser customization. The de-
fault SUW analysis layer in CaboCha uses MeCab.

Since CaboCha’s bunsetsu dependency pars-
ing is performed based on the features of SUWs
within each bunsetsu, it is possible to conduct only
bunsetsu dependency parsing by passing SUWs
and bunsetsu information to CaboCha in its des-
ignated format.

4.1.3 Rule-based UD Conversion for
Bunsetsu Dependency

For rule-based UD conversion of bunsetsu de-
pendencies, we employed the method proposed
by Asahara et al. (2018); Omura and Asahara
(2018). This method was used in the creation of
the Japanese UD corpus for the Balanced Corpus
of Contemporary Written Japanese (BCCWJ)14.

In this rule-based conversion, dependencies be-
tween bunsetsu are transformed into dependencies
between SUWs that represent the meaning of the
bunsetsu, such as content words (shown as light
blue solid arrows of UD dependency in Figure 1).
Each SUW within a bunsetsu is then set to de-
pend on the representative SUW of that bunsetsu
(shown as green dotted arrows of UD dependency
in Figure 1).

In Japanese bunsetsu dependency parsing, only
dependency relations between bunsetus are de-
fined; no relation label is assigned (see Figure 1.
However, in the UD framework, dependency rela-
tions must always have labels. Therefore, in this
rule-based conversion, UD dependency labels are
assigned by referencing morphological informa-
tion such as the part-of-speech tags of SUWs and
LUWs.

Although the conversion can be performed us-
ing only SUW morphological information, LUW
morphological information will improve the accu-
racy of the transformation.

5 Evaluation

5.1 Target Corpora

We used UD_Japanese-GSD and UD_Japanese-
BCCWJ, which are contemporary Japanese
UD corpora, for training. For evaluation,
UD_Japanese-Modern (Meiroku-zasshi), a UD

14https://github.com/UniversalDependencies/UD_
Japanese-BCCWJ
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Heian Kamakura Muromachi Contemporary
BCCWJ GSD

Bunsetsu 97.35 97.38 97.86 93.85 97.88
LUW span 99.69 99.44 98.99 97.87 98.84
+ PoS 99.33 99.03 98.00 96.73 98.23

(a) The one-model

Heian Kamakura Muromachi Contemporary
BCCWJ GSD

Bunsetsu 97.03 97.69 97.87 94.04 98.01
LUW span 99.64 99.47 98.95 98.00 99.02
+ PoS 99.29 99.08 98.08 97.09 98.32

(b) Trained on each period

Table 1: The evaluation results of the one-model bunsetsu parser. The results for models trained on each period on
Heian to Muromachi periods are from Ozaki et al. (2024).

corpus from the Meiji-period, and corpora (Yuki-
guni and Maihime) independently created by
Yasuoka (2020), included with unidic2ud, were
used.

5.2 Models
5.2.1 Bunsetsu and LUW
We trained the one-model bunsetsu parser ex-
plained in §4.1.1. We compared models trained
on corpora from each period. Evaluation results
for historical Japanese were from Ozaki et al.
(2024). We newly trained contemporary bun-
setsu parsers for each UD_Japanese-BCCWJ and
UD_Japanese-GSD. These bunsetsu parsers were
trained on each training set of UD treebanks and
tested on their corresponding test sets for each
treebank.

5.2.2 UD
As a deep learning-based parser, we used Dia-
Parser, a graph-based Biaffine parser model (At-
tardi et al., 2021). For word embeddings, we used
Japanese BERT provided by Tohoku University15,
and these embeddings were kept frozen during
training. The models used for comparison are as
follows:

Structure: The structure modeling approach
proposed in this study.

jBERT: A DiaParser model utilizing Japanese
BERT provided by Tohoku University.

UDify: A Biaffine parser model trained on 75
UD treebanks (Kondratyuk and Straka, 2019).

15https://huggingface.co/cl-tohoku/bert-base-
japanese

GiNZA: A transition-based parsing model pro-
vided by spaCy16, trained on BCCWJ. For con-
temporary Japanese, we compared GiNZA as is
(Matsuda, 2020).

Unidic2ud: Unidic2ud17 provides a UDPipe
(Straka et al., 2016) model trained on mod-
ern Japanese (UD_Japanese-Modern (Meiroku-
zasshi)), morphological analysis was performed
using MeCab with modern UniDic.

5.3 Evaluation Method

5.3.1 Bunsetsu and LUW
We used span-based f1-value evaluation (same
as the evaluation used for the original bunsetsu
parser; Ozaki et al., 2024).

5.3.2 UD
To focus solely on the evaluation of dependency
parsing, we compared only dependency by ignor-
ing tokenization errors (AlignedAcc). The eval-
uation metric was the Labeled Attachment Score
(LAS), which is an extraction performance met-
ric including the relationship label between two
words in a dependency relation. Additionally, the
Unlabeled Attachment Score (UAS), which mea-
sures the extraction performance of two words in
a dependency relation, was also used for compar-
ison. The evaluation script used was the one em-
ployed in the CoNLL Shared Task 2018 (Zeman
et al., 2018) 18.

16https://spacy.io/
17https://github.com/KoichiYasuoka/UniDic2UD
18https://universaldependencies.org/conll18/

conll18_ud_eval.py
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Period Contemporary Modern
Corpus BCCWJ GSD Yukiguni Maihime Meiroku-zasshi
Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Structure 92.52 91.32 92.42 91.18 89.29 85.71 92.45 77.36 83.40 63.91
jBERT 90.19 88.82 90.88 89.70 78.18 74.55 75.00 65.38 79.41 57.88
UDify - - 94.37 92.08 83.93 78.57 79.25 58.49 74.99 55.62
GiNZA 87.52 85.89 88.52 87.12 - - - - - -
Unidic2ud - - - - 89.09 87.27 88.46 75.00 (88.20) (72.87)

Table 2: UAS/LAS evaluation results. UDify results in the contemporary Japanese and Meiroku-zasshi are from
their paper (Kondratyuk and Straka, 2019). Other results were evaluated by the parsed outputs. Because Unidic2ud
was trained on Meiroku-zasshi, we show their performances surrounded by parentheses.

Period Contemporary Modern
Corpus BCCWJ GSD Yukiguni Maihime Meiroku-zasshi
Words 98.94 98.68 100. 100. 99.50
UPOS 98.21 96.80 94.64 94.34 87.61
XPOS 98.13 96.65 69.64 79.25 73.13

Table 3: UPOS/XPOS evaluation results.

5.4 Evaluation Results

5.4.1 Bunsetsu and LUW
Table 1 shows the evaluation results of the
one-model bunsetsu parser, which was trained
on the CHJ (Heian (C.E. 794-1185), Ka-
makura (C.E. 1185-1336), and Muromachi (C.E.
1336-1573) periods), UD_Japanese-BCCWJ, and
UD_Japanese-GSD. Compared to the models
trained on each period, the one-model approach
achieved comparable results. Since modern
Japanese (Meiji period) is in between the con-
temporary and Muromachi periods, the one-model
bunsetsu parser is expected to perform well in
modern Japanese.

5.4.2 UD
Dependency Table 2 shows UAS and LAS val-
ues for each corpus. Bold values indicate the high-
est value for each corpus and metric.

The structure modeling approach achieved the
highest performance in BCCWJ and other modern
corpora. The structure modeling approach outper-
formed the existing Japanese UD parser GinZA.
This indicates the structure modeling approach is
effective in improving UD parsing performance.

UDify reported the highest performance on
GSD, however, its performance on Meiroku-
zasshi was the worst. As well as UDify, jBERT
struggled to perform in modern Japanese, de-
spite their strong cross-lingual transfer ability.
This indicates phrase (bunsetsu) or morphological

level transfers are required for diachronic syntac-
tic analysis.

Notably, it demonstrated high transfer perfor-
mance in UAS, whereas LAS for Meiroku-zasshi
(UD_Japanese-Modern) tended to be lower over-
all. This suggests that Meiroku-zasshi was cre-
ated based on a different annotation standard com-
pared to contemporary Japanese, Yukiguni, and
Maihime.

SUW Accuracy Table 3 shows accuracy of
SUW analysis. Because we use the same SUW an-
alyzer (MeCab/unidic2ud), we compared accura-
cies for each corpus. Words, UPOS, and XPOS
values were calculated by the CoNLL Shared Task
2018 evaluation script 19.

The Words value represents tokenization accu-
racy. From modern to contemporary Japanese, to-
kenization has been performed without significant
issues. However, focusing on UPOS, performance
declines in modern Japanese, with particularly low
values observed in Meiroku-zasshi. Since UPOS
represents the accuracy of language-independent
PoS tags in UD, the rule-based conversion from
bunsetsu dependency parsing to UD, which uses
PoS information to estimate dependency labels,
may contribute to the decreased accuracy of de-
pendency labels. This corresponds to the over-
all significantly lower LAS in Meiroku-zasshi and

19https://universaldependencies.org/conll18/
conll18_ud_eval.py
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Figure 2: Comparison with dependency labels of models.

通患 たる に あら ず
tsu-kan taru ni ara zu

N A A V A

nmod

aux
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aux

(a) Gold

通患 たる に あら ず
tsu-kan taru ni ara zu

N A A V A

advcl

aux

aux

aux

(b) Structure

通患 たる に あら ず
tsu-kan taru ni ara zu

N A A A A

advcl

aux

case aux

(c) jBERT

Figure 3: An example of parse results for BERT-based, the structure models. “N” represents nouns, “A” represents
auxiliary verbs, and “V” represents verbs, respectively. The example is picked from Meirokku-zasshi.

suggests that, despite the availability of dictionar-
ies for early modern Japanese, further improve-
ments in SUW performance are necessary.

On the other hand, XPOS represents the accu-
racy of more detailed, language-specific PoS la-
bels in UD, but its values have significantly de-
clined compared to UPOS. This decline is not due
to SUW analyze errors but rather inconsistencies
in XPOS labeling during the annotation process
of the UD corpus. Therefore, improving XPOS
performance requires a normalization process for
XPOS labels.

5.5 Comparison by Dependency Labels

Figure 2 shows the error rate comparison between
jBERT and Structure models for each UD depen-
dency label. We investigated all dependency rela-
tions based on dependency labels. The structure
modeling approach achieves a lower error rate for
most dependency labels, especially for aux depen-
dencies. Because identifying aux relations, bun-
setsu and PoS tags is important, the structure mod-
eling approach can estimate them appropriately,
resulting in the high performance of aux depen-
dencies. However, for dependency labels that rep-
resent case relations between bunsetsu, such as obl
(oblique nominal) and nsubj (nominal subject), the
jBERT model has a slightly lower error rate.

This suggests that the jBERT model may have
a better ability to transfer knowledge for seman-
tic relationships compared to the structure model-
ing approach. It also indicates that incorporating
features from BERT into the structure modeling
approach for bunsetsu dependency parsing could
potentially improve accuracy.

5.6 Case Study

Figure 3 shows an example of parse results for
jBERT and Structure models compared to their
gold annotation. The phrase “通患たるにあらず
(tsu-kan taru ni ara zu: it is not generally a prob-
lem)” consists of two bunsetsu “通患たるに (tsu-
kan taru ni)” and “あらず (ara zu).” In the struc-
ture modeling approach, intra-bunsetsu dependen-
cies are preserved, and the bunsetsu “通患たる
に (tsu-kan taru ni)” is correctly dependent on the
bunsetsu “あらず (ara zu)”, resulting in a valid de-
pendency structure under UD. However, there was
a mismatch in dependency labels between bun-
setsu. Since the PoS tags of the SUW compos-
ing the phrases were also correctly predicted, this
discrepancy in inter-bunsetsu dependency labels is
likely due to differences in annotation standards
between the contemporary and the modern UD
corpora.

On the other hand, in the parsing result using
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the jBERT model, the dependency within the bun-
setsu, such as “ず (zu)” being associated with “に
(ni),” is not preserved. Moreover, despite the fact
that the “に (ni)” related to "tsu-kan" is an aux-
iliary verb, the dependency label is predicted as
"case," which seems to be a confusion with parti-
cles. Additionally, similar to the structure model-
ing approach, “あら (ara)” is treated as modifying
“通患 (tsu-kan)” in the adverbial clause (advcl),
which can be considered a natural result from the
perspective of contemporary Japanese annotation.

6 Conclusion

This study shows the effectiveness of structure
modeling for transfer ability in diachronic syn-
tactic parsing. We compared the zero-shot trans-
fer ability between Transformer-based Biaffine
UD parsers and our structure modeling approach.
The structure modeling approach is a pipeline
method consisting of dictionary-based morpho-
logical analysis (MeCab), a deep learning-based
phrase (bunsetsu) analysis (Monaka), SVM-based
phrase dependency parsing (CaboCha), and a rule-
based conversion from phrase dependencies to
UD, which closely follows the methodology used
in constructing Japanese UD corpora. Experimen-
tal results showed that the structure modeling ap-
proach outperformed zero-shot transfer from the
contemporary to the modern Japanese by a wide
margin. The structure modeling approach outper-
formed several existing UD parsers in contempo-
rary Japanese. Moreover, for other languages as
well, it may be beneficial to adopt an analysis ap-
proach based on an understanding of resource con-
struction methods, such as how UD resources are
created or how parsed trees are transformed into
UD format using head rules. From a case study,
the structure modeling approach can preserve low-
level information such as morphology and phrases
(bunsetsu). On the other hand, the Biaffine parser
has slightly better transfer performances of case
relations. To this end, the structure modeling per-
formed well on diachronic transfer in Japanese.

Limitations

Our structure modeling approach and compared
models use “base” size BERT models; thus, by
using larger models, the conclusion might differ
from that we achieved. Since SUWs, LUWs, and
bunsetsu analysis have been established for his-
torical Japanese, we can easily apply our struc-

ture modeling approach. However, this is a rather
unique case, and it might be harder to apply a sim-
ilar approach to diachronic transfer for other lan-
guages.
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Abstract
We revisit the BARTABSA framework for
aspect-based sentiment analysis with modern
decoder LLMs to assess the importance of ex-
plicit structure modeling today. Our updated
implementation—BARTABSA++1—features ar-
chitectural enhancements that boost perfor-
mance and training stability. Systematic test-
ing with various encoder-decoder architectures
shows that BARTABSA++ with BART-LARGE
achieves state-of-the-art results, even surpass-
ing a finetuned GPT-4O model. Our analysis
indicates the encoder’s representational quality
is vital, while the decoder’s role is minimal, ex-
plaining the limited benefits of scaling decoder-
only LLMs for this task. These findings un-
derscore the complementary roles of explicit
structured modeling and large language models,
indicating structured approaches remain com-
petitive for tasks requiring precise relational
information extraction.

1 Introduction

In this work, we revisit BARTABSA (Yan et al.,
2021a), a pointer network-based method for
aspect-based sentiment analysis (ABSA) that
achieved state-of-the-art performance with the
BART encoder-decoder transformer - considered
small by today’s standards. BARTABSA models
Aspect Sentiment Triplet Extraction (ASTE) (Peng
et al., 2020) as a constrained generation task, using
a pointer network (Vinyals et al., 2015) to explicitly
copy input tokens into strictly structured outputs.

In the meantime, advances in Large Language
Models (LLMs) have transformed natural language
processing (NLP) by demonstrating that implicit
knowledge acquired during pretraining can often
address tasks that previously demanded explicit
structured representations (Brown et al., 2020;
Wei et al., 2022). This shift prompts the ques-
tion: Is explicit structured output modeling still

These authors contributed equally to this work.
1https://github.com/LSX-UniWue/bartabsa-plusplus

relevant in the LLM era, especially in structured
representation-critical tasks like ABSA?

To evaluate this, we employ the methodology
of Rothe et al. (2020), which constructs encoder-
decoder architectures by reusing pretrained en-
coder or decoder checkpoints. We reimplement
BARTABSA using modern libraries and incorpo-
rate architectural enhancements like: (1) fea-
ture normalization to balance embedding spaces
and stabilize training (Zhang and Sennrich, 2019;
Xiong et al., 2020); (2) cross-attention mech-
anisms reusing weights from BART’s decoder
layers (Vaswani et al., 2017; See et al., 2017);
(3) parametrized gating mechanisms replacing
static hyperparameters with learnable weights (See
et al., 2017; Chung et al., 2014; Dauphin et al.,
2017). These techniques allow stable training with
larger models and improve performance, outper-
forming both the original implementation and a
baseline using a finetuned GPT-4O.

With this enhanced framework, we systemati-
cally evaluate different architectural configurations
to examine potential scaling effects of modern-
sized LLMs within structured language modeling.
This research direction is particularly valuable as
it combines the implicit knowledge of modern de-
coder LLMs with the transparency offered by the
explicit copying mechanism of pointer networks—
a property important for interpretable NLP systems.

Experiments with BART (Lewis et al., 2020),
BERT (Devlin et al., 2019), and GPT-2 (Radford
et al., 2019) variants reveal performance hinges on
the encoder, with minimal decoder impact. Coun-
terintuitively, scaling GPT-2 does not yield per-
formance gains, emphasizing the encoder’s pre-
training importance for pointer networks (and other
encoder-decoder architectures).

Our study shows large autoregressive models do
not universally surpass structured approaches in
NLP and contributes to the dialogue on explicit
structure modeling, like pointer networks, in the
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Drivers updated okay but the BIOS update froze the system .
a1 a2 a3o1 o2

s1 Positive s2 Negative s3 Negative

0        1         2  3   4  5    6      7    8    9

Figure 1: An example sentence for ABSA with aspect,
opinion, sentiment and word indices annotated. Adapted
from Yan et al. (2021a).

LLM era. It explores scaling structured generation
with LLM-sized models to merge their implicit
knowledge with structured copying mechanisms.

2 Related Work

2.1 Aspect-Based Sentiment Analysis

Aspect-Based Sentiment Analysis (ABSA) is a
fine-grained approach to sentiment analysis focus-
ing on opinions about specific text elements rather
than general document or sentence sentiment (Liu,
2012). ABSA involves three main components: as-
pect terms, opinion terms, and sentiment polarities.
In Figure 1, the term “Drivers” is characterized
positively by “okay”, whereas “BIOS update” and

“system” are negatively characterized by “froze”.
Aspect Sentiment Triplet Extraction (ASTE), the

focus of this work, extracts (aspect, opinion, sen-
timent) triplets simultaneously. This task captures
complete opinion structures, making it valuable for
applications such as customer feedback analysis
(Peng et al., 2020).

The ABSA field has evolved from specialized
RNN-based architectures (Wang et al., 2016; Tang
et al., 2016) to approaches leveraging pretrained
language models (Li et al., 2019). For ASTE specif-
ically, approaches progressed from pipeline meth-
ods to joint tagging schemes (Xu et al., 2020; Wu
et al., 2020), with influential work reformulating
the task as a structured generation problem using
sequence-to-sequence models (Yan et al., 2021a;
Zhang et al., 2021). This sequence-to-sequence
paradigm established a strong foundation that sub-
sequent research has built upon, including recent
advances with larger language models and hybrid
approaches (Xianlong et al., 2023; Zhang et al.,
2024; Sun et al., 2024).

Our experiments use the refined versions of stan-
dard ABSA benchmark datasets from SemEval
2014-2016 challenges (Pontiki et al., 2014, 2015,
2016): 14lap, 14res, 15res, and 16res, as pro-
cessed by Xu et al. (2020) who filtered out low-
quality examples and duplicates.

2.2 BARTABSA

Following Yan et al. (2021a), each ABSA task
involves transforming an input sentence X =
[x1, . . . , xn] into a structured target sequence Y =
[y1, . . . , ym] using pointer networks (Vinyals et al.,
2015). These allow the model to refer directly to
tokens from the input sequence, facilitating extrac-
tion tasks requiring grounding in exact input spans.

For ABSA, BARTABSA uses these pointers to
copy start and end token indices from the input
sentence into a structured output sequence, paired
with sentiment classification tokens. For instance,
the input “Drivers updated okay but the BIOS up-
date froze the system.” (Figure 1) is converted into
structured outputs pointing to input tokens and sen-
timent classes.

Formally, the output follows a fixed grammar
where each triplet is represented as a 5-tuple:
(asi , a

e
i , o

s
i , o

e
i , s

p
i ) where asi , a

e
i are start and end

indices of the ith aspect term, osi , o
e
i are for the

opinion term, and spi is the sentiment polarity class.
For our example, the structured output sequence
thus becomes:

[(0, 0, 2, 2, POS), (5, 6, 7, 7, NEG), (9, 9, 7, 7, NEG)]

This syntax explicitly encodes the extracted (as-
pect, opinion, sentiment) triplets as structured pre-
dictions, with each span being clearly represented
by its start and end indices in the input sequence.
Given this structured output format, BARTABSA

models ABSA as a sequence generation task, com-
puting the probability of Y given X as:

P (Y |X) =
m∏

t=1

P (yt|X,Y<t) (1)

BART (Lewis et al., 2020) is used as a backbone
to compute P (yt|X,Y<t), with the encoder pro-
cessing the input sequence X into contextualized
embeddings He:

He = BARTEncoder([x1, . . . , xn]) (2)

Decoding involves predicting indices yt and
dereferencing them to tokens ŷt:

ŷt =

{
Xyt if yt is a pointer index
Cyt−n if yt is a class index

(3)

where C = [c1, . . . , cl] is a list of class tokens for
sentiment classification.
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The decoder uses prior dereferenced tokens Ŷt =
[ŷ1, . . . , ŷt−1] to produce the next state:

hdt = BARTDecoder(He, Ŷt) (4)

On top of the BART model, BARTABSA then
uses a pointer network mechanism to generate a
distribution over input tokens X and class tokens
C: This mechanism combines both the initial token
embeddings and the contextualized representations
from the transformer layers:

Ee = BARTTokenEmbed(X) (5)

Ĥe = MLP (He) (6)

H
e
= αĤe + (1− α)Ee (7)

Cd = BARTTokenEmbed(C) (8)

Pt = Softmax([He
;Cd]hdt ) (9)

where Pt represents the common pointer and class
token distribution.

Training uses teacher forcing and negative log-
likelihood; inference can use strategies like greedy
sampling and beam search (Yan et al., 2021a).

3 Methodology

We will combine Yan et al.’s (2021a) BARTABSA

framework, with Rothe et al.’s (2020) encoder-
decoder model construction methodology in Sec-
tion 3.3. This requires us to first reimplement
BARTABSA in Section 3.1, before stabilizing train-
ing with additional features and optimizations in
Section 3.2.

3.1 BARTABSA-R: Our Reimplementation
Yan et al.’s (2021a) original BARTABSA imple-
mentation has limitations for our use case, espe-
cially hindering model extensions: 1) The fastnlp
package2 used is unmaintained, only supporting
older🤗 Transformers versions (Wolf et al., 2020).
2) Data processing and modeling are tightly cou-
pled, with e.g. hard-coded token IDs for mask cre-
ation, complicating further experiments and archi-
tecture adaptations. To resolve these issues, we
reimplement BARTABSA using maintained libraries
like PyTorch (Ansel et al., 2024), Lightning (Falcon
and The PyTorch Lightning team, 2019), and an up-
dated Transformers version (Wolf et al., 2020). We
avoid hard-coded values with tokenizer outputs and
shift attention mask creation to the data pipeline.
We name our reimplementation BARTABSA-R.

2https://github.com/fastnlp/fastNLP

3.2 Extending to BARTABSA++

During the reimplementation of BARTABSA and
preliminary experiments, we identified several is-
sues and potential improvements, detailed also in
Algorithm 1.

3.2.1 Feature Normalization
Our use of some backbone models, like BART-
LARGE, resulted in unstable training, seen through
diverging losses. We traced this instability to dif-
fering scales of output logits (Figure 2), stemming
from concatenating distinct embedding spaces in
the pointer network: classification token embed-
dings (Cd) and the mixed encoder representations
(He). The scale imbalance between the two spaces
destabilized attention calculations.

To address this, we applied an L2 normalization
to both special token embeddings and processed
encoder outputs (lines 6 & 7), equalizing their con-
tributions, thus stabilizing training3.

An RMSNorm (Zhang and Sennrich, 2019) was
also applied to the final decoder output (line 13),
further stabilizing gradient flow.

3.2.2 Additional Attention Mechanism
We introduce an additional attention mecha-
nism motivated by an architectural analysis of
BARTABSA. While exploring component contri-
butions, we discovered that removing the encoder’s
MLP (line 3; Equation (6))—a seemingly auxiliary
component—significantly degrades performance
(a drop of ≈ 4.3 p.P. across datasets). This insight
led us to incorporate an additional processing step
for the decoder’s last hidden states—analogous to
the encoder’s MLP.

Based on previous work on pointer networks by
See et al. (2017), we opted to add a cross-attention
(Vaswani et al., 2017; Bahdanau et al., 2016) on
top that resembles See et al.’s (2017) idea around
context vectors by computing attention scores be-
tween the decoder output Hd ∈ Rm×d (as the
query) and our concatenated encoder representa-
tion Xe ∈ Rn×d (as key and value). Internally, this
cross-attention follows Vaswani et al.’s (2017) for-
mulation for multi-head-attention, instead of Bah-
danau et al.’s (2016) to follow modern transformers
such as BART (Lewis et al., 2020) more closely.

For efficiency and to maintain consistent atten-
tion mechanisms across model variants, we imple-

3Preliminary experiments show, this also solves the insta-
bilities identified by Pfister et al. (2022) when training an mT5
model (Xue et al., 2021) using the BARTABSA framework.
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Algorithm 1 Our BARTABSA++ with improvements (Section 3.2) over the original BARTABSA

algorithm in Yan et al. (2021a). The improvements, marked in red, consist of a parametrized
gating mechanism (Section 3.2.3), additional normalization (Section 3.2.1), and an attention
mechanism on top of the decoder (Section 3.2.2).
Input: X - Input, C - Special Tokens, Ŷt - Remapped Token Indices To Tokens

1: Ee ← BARTTokenEmbed(X)
2: He ← BARTEncoder(X)

3: Ĥe ← MLP(He)

4: γ ← Gating(Ĥe,Ee)

5: H
e ← γĤe + (1− γ)Ee

▷ Parametrized gating mechanism avoiding the need for a hyperparameter α (Section 3.2.3).

6: Cd ← Norm(BARTTokenEmbed(C))

7: H
e ← Norm(H

e
)

8: Xe ← [Cd; H
e
]

▷ L2 normalization to ensure stable training (Section 3.2.1).

9: Hd← BARTDecoder(He, Ŷt)

10: Ĥd← BARTDecoderlast_layer(H
d,Xe)

▷ Reusing BART’s built-in cross-attention mechanism (Section 3.2.2).

11: ω ← Gating(Ĥd,Hd)

12: H
d ← ωĤd + (1− ω)Hd

▷ Parametrized gating mechanism similar to the encoder counterpart (Section 3.2.3).

13: H
d← LayerNorm(H

d
)

▷ RMSNorm to ensure stable training (Section 3.2.1).

14: Pt ← Softmax(Xe ·Hd
)

15: return Pt

ment this attention by reusing the weights from
the pre-trained cross-attention module in the final
decoder layer of the BART model (line 10). This
parameter sharing approach eliminates the need for
additional parameters (Lan et al., 2020) while en-
suring architectural compatibility when extending
our approach to different encoder-decoder frame-
works in Section 3.3.

3.2.3 Parametrized Gating Mechanism

To enhance model flexibility and bypass manual
hyperparameter tuning, we add two learnable gat-
ing mechanisms (e.g. thus α in Equation (7) gets
“learnable”, after the impact of α remained unex-
amined by Yan et al. (2021a)). This modification
eliminates the need to manually tune weighting pa-
rameters during experimentation, while enabling
the model to adaptively determine optimal infor-
mation flow based on the specific input context.
Drawing inspiration from gating mechanisms in re-
current architectures (Chung et al., 2014), their suc-
cessful application in language modeling (Dauphin
et al., 2017) and specifically the Pointer Generator
Mechanism (See et al., 2017), we implement two

distinct gating modules.
The first gate substitutes α in the encoder path

(lines 4 & 5):

γ = σ([Ĥe;Ee]W T
enc + benc) (10)

H
e
= γ ⊙ Ĥe + (1− γ)⊙ Ee (11)

where Ĥe, Ee ∈ Rn×d are MLP-processed en-
coder outputs and token embeddings, with Wenc
and benc being learnable. A decoder-side gate com-
bines cross-attention output Ĥd with original hid-
den states Hd (lines 11 & 12), having its own pa-
rameters.

These mechanisms enable interpolation between
inputs, dynamically adjusting representation con-
tributions.

3.3 Scaling and Extending BARTABSA++
While BARTABSA was originally based on the pre-
trained encoder-decoder transformer BART (Lewis
et al., 2020), recent advances in large language
models (LLMs) prompt the question of its applica-
bility to other models and especially architectures.

To address this question, we follow the method-
ology proposed by Rothe et al. (2020): we adapt
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Figure 2: Heatmap of the un-
trained model’s pointer logit
distribution (Pt). The visual-
ization reveals a strong initial-
ization bias towards the lower
pointer values corresponding
to the special tokens.
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Figure 3: Evolution of gate value distributions over 100 epochs of training. Left:
Encoder gate values remain tightly clustered around the initialization value of 0.5
with minimal deviation (σ 0.03), suggesting rather limited utilization of the gating
mechanism in the encoder. Right: Decoder gate values show significantly higher
variance (σ 0.15) and clear divergence from initialization, indicating that the model
actively leverages the gating mechanism in the decoder to modulate information
flow between attention heads and feedforward components.

Table 1: Performance comparison between literature baselines, our GPT-4O finetune, as well as BARTABSA-R and
BARTABSA++ (using BART-BASE and BART-LARGE). Tuple level (P)recision, (R)ecall, and F1 are reported per
dataset and averaged across them, with standard deviations in parentheses. The best results per column are bolded.

Model 14res 14lap 15res 16res Avg
P R F1 P R F1 P R F1 P R F1 P R F1

Fine-Tuned GPT-4O 74.65 79.38 76.94 61.67 68.39 64.86 61.91 73.40 67.17 71.38 78.60 74.81 67.40 74.94 70.95

Xianlong et al. (2023) 77.38 72.86 75.05 65.11 62.20 64.53 70.23 65.73 67.90 76.37 76.85 76.61 72.27 69.41 71.02

BARTABSA
(Yan et al., 2021a) 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62 63.17 62.31 62.70

Our BARTABSA-R 76.43 73.56 74.94 66.24 59.32 62.53 64.46 60.33 62.30 68.52 68.05 68.26 68.91 65.31 67.01
(BART-BASE) (σ 1.70) (σ 3.41) (σ 2.50) (σ 2.62) (σ 4.18) (σ 3.13) (σ 1.56) (σ 3.26) (σ 2.30) (σ 2.64) (σ 1.83) (σ 1.84) (σ 2.13) (σ 3.17) (σ 2.44)

Our BARTABSA++ 77.76 75.81 76.74 68.27 61.98 64.96 65.33 63.27 64.27 69.82 69.24 69.51 70.29 67.58 68.87
(BART-BASE) (σ 1.04) (σ 1.75) (σ 1.09) (σ 1.29) (σ 1.45) (σ 1.08) (σ 2.08) (σ 1.21) (σ 1.62) (σ 1.27) (σ 1.60) (σ 1.26) (σ 1.42) (σ 1.50) (σ 1.26)

Our BARTABSA-R 79.13 75.79 77.32 56.33 52.09 54.11 64.63 64.18 64.35 74.99 75.13 75.05 68.77 66.80 67.71
(BART-LARGE) (σ 1.92) (σ 4.42) (σ 2.24) (σ 31.54) (σ 29.18) (σ 30.30) (σ 7.51) (σ 8.56) (σ 7.79) (σ 3.34) (σ 4.46) (σ 3.78) (σ 11.08) (σ 11.65) (σ 11.03)

Our BARTABSA++ 80.26 81.43 80.82 70.85 64.94 67.75 67.44 67.63 67.52 76.08 77.10 76.58 73.66 72.77 73.16
(BART-LARGE) (σ 1.21) (σ 1.48) (σ 1.02) (σ 0.73) (σ 1.42) (σ 0.64) (σ 1.39) (σ 1.76) (σ 1.14) (σ 2.32) (σ 1.70) (σ 1.94) (σ 1.41) (σ 1.59) (σ 1.18)

pretrained encoder-only and decoder-only mod-
els into encoder-decoder formats, modifying atten-
tion masks and incorporating new cross-attention
blocks akin to Vaswani et al.’s (2017). The Trans-
formers library (Wolf et al., 2020) offers model
combinations like BERT (Devlin et al., 2019),
ROBERTA (Liu et al., 2019), and GPT-2 (Radford
et al., 2019), sufficing for our experiments.

Our reimplementation and improvements upon
BARTABSA (Sections 3.1 and 3.2) provide the nec-
essary flexibility to reuse pretrained checkpoints as
encoder-decoder models.

4 Experiments

We evaluate our approaches on four popular Se-
mEval ABSA benchmark datasets: 14lap, 14res,
15res, and 16res (Pontiki et al., 2014, 2015,
2016), using the refined version from Xu et al.
(2020) and commonly used tuple-level metrics
(Yan et al., 2021a). Our backbone models are

BART-BASE and BART-LARGE, with full imple-
mentation details in Appendix A.

We compare our results against the original
BARTABSA (Yan et al., 2021a) and the state-of-
the-art by Xianlong et al. (2023), who achieve their
results using a mixture of sequence tagging and
sequence generation.

To assess how the advancing capabilities of
LLMs might impact the ASTE task, we addi-
tionally establish an LLM-based baseline by fine-
tuning OpenAI’s GPT-4O model4 on each ABSA
dataset. Using the prompt template shown in Ap-
pendix B, we train for 3 epochs with consistent
hyperparameters across all datasets. This (method-
ologically) very simple baseline achieves an av-
erage F1 score of 70.95, roughly on par with the
current SOTA results. In particular, the LLM-based
approach exhibits a distinctive pattern of trading

4https://platform.openai.com/docs/models/
gpt-4o, snapshot gpt-4o-2024-08-06
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precision for recall, with significantly higher recall
(74.94) compared to other methods.

4.1 Our Modern Reimplementation (3.1)

We find our reimplementation (BARTABSA-R) of
the BARTABSA framework to perform much bet-
ter than the original implementation by Yan et al.
(2021a) (Table 1). This comes rather unexpected,
as to the best of our knowledge, both codebases
implement the exact same algorithm. To rule out
evaluation issues, we employ the same tuple-level
evaluation script as published by Yan et al., where
a prediction is considered correct only when all
components match the ground truth exactly. Inter-
estingly, we find that the performance discrepancies
vary between the datasets (nearly 10 p.P. for 14res,
and only about 2 p.P. for 16res).

4.1.1 Potential Differences
Whilst we were unable to pinpoint the exact source
for this discrepancy, we validated these findings
through multiple steps: 1) We independently repro-
duced the original results by rerunning the authors’
published code. 2) We thoroughly debugged the
data loaders to confirm that both implementations
receive identical inputs, thereby eliminating data
processing discrepancies as a potential explanation.
3) We maintained consistent hyperparameter set-
tings across both implementations. 4) We used
their evaluation script to rule out issues during eval-
uation.

Given these controls, the performance differ-
ences most likely either stem from undetected is-
sues in their implementation of the algorithm or
simply our use of a modernized tech stack using
a different framework, newer transformers, torch
and CUDA versions as well as a different attention
implementation within the BART models (Ansel
et al., 2024; Dao et al., 2022).

4.1.2 Scaling to BART-LARGE

As a first step toward scaling this approach, we
swap the BART-BASE for a BART-LARGE back-
bone. This gives us mixed results (BART-BASE

vs. BART-LARGE in Table 1): while switching for
the larger backbone mostly improves the scores
(+0.70 F1 on average), it also instabilizes training,
which can be seen from the larger standard devia-
tions (σ 11.03) and even the complete performance
breakdown on “14lap”. As already mentioned in
Section 3.2.1, these instabilities can be mitigated
by using our improvements to the architecture.

Table 2: Model performance and ablation study using
BART-LARGE. (P)recision, (R)ecall, and F1 averaged
across the four datasets, with standard deviations in
parentheses. Red indicates performance decrease com-
pared to our full architecture (described in Section 3.2).

Model Avg
P R F1

Our BARTABSA-R 68.77 (σ 11.08) 66.80 (σ 11.65) 67.71 (σ 11.03)
(-4.89) (-5.97) (-5.45)

No Encoder 67.03 (σ 10.34) 65.39 (σ 10.68) 66.16 (σ 10.41)
Normalization (-6.63) (-7.38) (-7.00)

No Final 73.28 (σ 2.07) 72.64 (σ 2.27) 72.90 (σ 2.01)
RMS-Norm (-0.38) (-0.13) (-0.26)

No additional 71.36 (σ 4.61) 70.78 (σ 4.34) 71.02 (σ 4.36)
Attention (-2.30) (-1.99) (-2.14)

No Decoder 62.20 (σ 17.34) 60.60 (σ 15.98) 61.33 (σ 16.40)
Gating (-11.46) (-12.17) (-11.83)

No Encoder 72.08 (σ 2.75) 71.94 (σ 2.44) 71.98 (σ 2.30)
Gating (-1.58) (-0.83) (-1.18)

Our BARTABSA++ 73.66 (σ 1.41) 72.77 (σ 1.59) 73.16 (σ 1.18)

Surprising: Our reimplementation signifi-
cantly outperforms the literature, but it suffers
instabilities when scaling to larger models.

4.2 Our Improvements (3.2)

Scaling pointer networks to larger models presents
significant challenges, particularly regarding train-
ing stability. During our preliminary experiments
with BART-LARGE, we observed unstable optimiza-
tion dynamics stemming from substantial magni-
tude differences between input token pointer logits
and classification token logits (Figure 2). This is
naturally mitigated by our introduced normaliza-
tion (Section 3.2.1).

Our introduced architectural enhancements
coined BARTABSA++ address these challenges sys-
tematically, as demonstrated by the performance
improvements in Table 1 with an average 1.86
points F1 increase for BART-BASE and +5.45 F1
points for BART-LARGE, highlighting the greater
benefits of our improvements for larger models. In
fact, we find our BARTABSA++ not only outper-
forms our finetuned GPT-4O, but also represents
the new SOTA for the ABSA triplet extraction task
(averaged across the four datasets). To understand
the individual contribution of each component, we
conduct a comprehensive ablation study using the
BART-LARGE model (Table 2), revealing several
key insights. We show our improvements also gen-
eralize, when applying this methodology to other
structured extraction tasks in Appendix D.
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Surprising: Our structured language model-
ing BARTABSA++ significantly outperforms a
much more parameter heavy GPT-4O finetune
and even sets the new state of the art.

4.2.1 Component Analysis
Normalization (3.2.1) The feature normalization
proves crucial for model stability, as removing the
encoder normalization results in a notable perfor-
mance decline (-7.00 F1 points) coupled with sub-
stantially increased variance across runs (σ 10.41
compared to σ 1.18 for BARTABSA++). The ef-
fect of this normalization on the final model output
is also apparent in the comparisons of the value
heatmaps (Figures 2 and 4), which shows a clear
bias towards the prepended special tokens without
the normalization step. This confirms our hypothe-
sis that normalizing representation spaces is essen-
tial for stable optimization. While the final layer
normalization contributes more modestly (-0.26 F1
points when removed), it also helps in stabilizing
training results, almost halving the standard devia-
tion.

Attention Mechanism and Decoder Gating
(3.2.2, 3.2.3) The additional cross-attention
mechanism combined with its corresponding de-
coder gating mechanism also provides a significant
performance improvement. Removing the attention
mechanism alone reduces performance by 2.14 F1
points, while removing only the decoder gating
(but keeping the attention) causes a drastic drop of
11.83 F1 points with extreme instability (σ 16.40).

This indicates that while the additional process-
ing from the attention mechanism is beneficial, it
requires controlled integration through the gating
mechanism to be effective. An analysis of the de-
coder gate values in Figure 3 show considerable
variance during training, confirming that the model
actively uses this mechanism to regulate informa-
tion flow between the original decoder output and
the attention-processed representation.

Encoder Gating (3.2.3) The encoder gating
mechanism has a modest impact (-1.18 F1 points
when removed), which aligns with the observation
in Figure 3 that the encoder gates values remain
closer to their initial value of 0.5 throughout train-
ing.

4.3 Synthetic Encoder-Decoder Models (3.3)
As a first step towards transferring the pointer
methodology to LLMs, we sanity check the com-

Table 3: Performance comparison across different syn-
thetic encoder-decoder models. Models with ++ indicate
the BARTABSA++ architecture.

Model Avg
P R F1

Reimpl. BART++ 70.29 (σ 1.42) 67.58 (σ 1.50) 68.87 (σ 1.26)

Roberta2Roberta 57.70 (σ 23.84) 54.04 (σ 23.87) 55.66 (σ 24.00)
Roberta2Roberta++ 68.92 (σ 6.17) 64.53 (σ 7.75) 66.54 (σ 6.83)

Roberta2GPT2 67.64 (σ 1.96) 61.78 (σ 2.36) 64.50 (σ 2.05)
Roberta2GPT2++ 69.55 (σ 1.98) 65.54 (σ 1.95) 67.44 (σ 1.74)

Bert2Bert++ 66.19 (σ 1.62) 61.27 (σ 1.95) 63.58 (σ 1.63)

Bert2GPT2++ 65.58 (σ 1.82) 57.81 (σ 1.35) 61.38 (σ 1.35)

RobertaLarge2- 03.41 (σ 7.62) 00.95 (σ 2.13) 01.49 (σ 3.33)RobertaLarge++

RobertaLarge2- 69.62 (σ 1.18) 65.27 (σ 2.27) 67.33 (σ 1.57)GPT2Medium ++

binations of BARTABSA++ and the methodology
introduced in Rothe et al. (2020).

4.3.1 Overall
For this, we first take the base models explored in
the original paper (BERT, ROBERTA, and GPT-2)
by Rothe et al. (2020) and evaluate how well the
two methodologies interact (Table 3).

The approach works successfully, with some
combinations like ROBERTA2ROBERTA even
outperforming the original BARTABSA results.
However, none of these synthetic combinations
surpasses our enhanced BARTABSA++ even with
BART-BASE as the backbone.

Our architectural enhancements consistently
improve performance across all synthetic mod-
els, with particularly dramatic stabilization ef-
fects for ROBERTA2ROBERTA (reducing vari-
ance from σ 24.00 to σ 6.83 while improving
F1 by +10.88 points). Generally, ROBERTA

outperforms BERT as an encoder, and pairing a
ROBERTA encoder with a GPT-2 decoder yields
better results than using ROBERTA for both com-
ponents. The only exception is the highly unstable
ROBERTALarge2ROBERTALarge configuration,
which fails to train effectively despite our enhance-
ments.

4.3.2 Scaling to Modern Sizes
In order to expand our analysis to decoder LLMs,
and size ranges which cross the threshold into what
is commonly acknowledged as the LLM regime
(Zhao et al., 2025; Kaplan et al., 2020), we run a
scaling benchmark using only GPT-2 in Table 4.

For this, we use GPT-2 models ranging from
base (137M) to XL (1.6B) for both: the encoder
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Table 4: Performance of different GPT-2 model sizes,
with the pretrained weights being used in the encoder
and decoder part of the synthetic model.

Model Params Avg
P R F1

Our BARTABSA-R 139M 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

GPT2GPT Base 277M 58.92 (σ 2.35) 52.11 (σ 1.81) 55.26 (σ 1.73)
GPT2GPT Medium 810M 60.06 (σ 2.01) 53.99 (σ 2.68) 56.80 (σ 2.19)
GPT2GPT Large 1.78B 59.78 (σ 2.28) 53.84 (σ 1.96) 56.60 (σ 1.76)
GPT2GPT XL 3.61B 59.72 (σ 0.97) 53.38 (σ 3.71) 56.34 (σ 2.45)

Table 5: Impact of random weight initialization on
model performance.

Model Avg
P R F1

Full Pretrained 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

Random Encoder 18.35 (σ 12.57) 13.42 (σ 9.04) 15.45 (σ 10.44)
Random Decoder 65.57 (σ 1.51) 61.57 (σ 2.28) 63.46 (σ 1.88)
Random Both 36.53 (σ 2.57) 27.57 (σ 1.62) 31.38 (σ 1.83)

and the decoder. As the parameters get duplicated,
this creates models with up to 3.6B parameters
overall—including the added cross attention.

We find basically no “scaling effects” at all,
meaning the performance mostly does not increase
with model size increases. Furthermore, the model
itself performs substantially worse than our basic
reimplementation, or the original BARTABSA re-
sults. This draws the applicability of this combina-
tion of methodologies to combine pointer networks
with (large) decoder LLMs into question.

To ensure that the lack of pretraining for the
newly initialized weights isn’t responsible for this
unexpected non-scaling behavior, we conduct ad-
ditional experiments pretraining these models on
the CNN/DailyMail summarization dataset (See
et al., 2017; Hermann et al., 2015) before fine-
tuning on ABSA (Appendix E). These experiments
confirm our findings, showing similar patterns of
non-scaling and instability even after extensive pre-
training.

Negative Result: (Larger) decoder LMs
show no benefit in this structured prediction
framework, and even exhibit slightly negative
scaling effects.

4.3.3 Ablation using Random Initialized
Models

In order to better understand this unexpected find-
ing of non-scaling, we analyze which parts of the
newly crafted encoder-decoder influence the per-
formance the most. We hypothesize that there is

an inherent difference between the encoder and
decoder architecture, especially when either is con-
verted into the other one.

To be able to analyze the impact of the encoder
and decoder separately, we initialize the encoder,
the decoder or both with random weights (except
for the token embeddings) and then train as before
(Table 5). Interestingly, we find that entirely ran-
domizing the decoder and training it from scratch
has a surprisingly small impact on overall model
performance. In contrast, random initialization of
the encoder severely degrades performance. This
is in line with our previous findings: the encoder’s
“token-level representational quality” significantly
outweighs the decoder’s contribution to overall per-
formance (Kasai et al., 2021). Consequently, mod-
els pretrained explicitly as encoders consistently
outperform those in which a decoder is retrained
as an encoder (Pfister and Hotho, 2024; Reimers,
2022).

Confirmation: As identified by Kasai et al.
(2021), encoder-decoder model performance
strongly correlates with encoder representa-
tional strength.

5 Conclusion

In this work, we revisited the BARTABSA frame-
work in the context of modern decoder LLMs.
Our enhanced implementation—BARTABSA++—
demonstrates that explicit structured models remain
highly competitive for tasks requiring precise ex-
traction of relational information, even outperform-
ing a finetuned GPT-4O model.

Our systematic experiments reveal a fundamen-
tal insight: while our architectural enhancements
enable effective scaling with pretrained encoder-
decoder models like BART, this scaling behavior
does not transfer encoder-decoder models based
on decoder-only LLMs. The critical factor appears
to be the encoder’s representational quality at the
token level, which decoder LLMs struggle to match
when repurposed as encoders.

These findings highlight the complementary na-
ture of structured approaches and large language
models in NLP. While LLMs excel at tasks lever-
aging their implicit knowledge, structured pointer
networks seem to be able to provide superior per-
formance and interpretability for precise relational
extraction tasks.
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Limitations

Optimization and Architectural Constraints
Although we employed normalization and gat-
ing mechanisms to mitigate training insta-
bility, certain model configurations, notably
ROBERTA2ROBERTA, still exhibited high vari-
ance across runs.5 Moreover, our decoder LLM
experiments were restricted to GPT-2 variants due
to limitations in the existing implementation in the
🤗 Transformers library. While GPT-2 showed non-
scaling behavior, preliminary experiments by us
suggest that newer decoder-only architectures also
face similar issues, although differences in their
architectures might yield varying outcomes.

Representational Limitations of Decoder-only
Models Our methodology for adapting decoder-
only models into encoders, based on existing work
(Rothe et al., 2020), likely does not fully resolve
fundamental representational constraints for token-
level tasks. Recent adaptations like LLM2Vec
(BehnamGhader et al., 2024) suggest promising
techniques that might overcome these limitations,
though exploring such adaptations was beyond the
scope of our experiments.

Scope of Pointer Networks and Structured
Prediction Our analysis focuses specifically on
encoder-decoder architectures and their compo-
nents, reflecting the typical formulation used in
Pointer Networks. However, our findings indicate
that extending the pointer paradigm to decoder-
only architectures could potentially better leverage
pretrained LLMs for structured prediction tasks,
presenting a valuable direction for future research.

Baseline Limitations Our GPT-4O-based base-
line experiments employed a straightforward
prompt template primarily to provide a compara-
tive reference point close to the previous SOTA.
While adequate for this purpose, the adopted
approach does not explore advanced prompting
methods, chain-of-thought reasoning, or special-
ized instruction-tuning strategies that could further
boost the capabilities of modern LLMs.

Generalizability Although we demonstrate that
structured methods such as BARTABSA++ remain
competitive for ABSA tasks, our results may not
generalize across all structured prediction tasks in

5We observed similar instability when training this config-
uration on the summarization task (Appendix E), suggesting a
potential limitation of the approach by Rothe et al. (2020).

NLP, particularly those involving different struc-
tural characteristics or task-specific constraints.
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A Implementation Details

We train our models using NVIDIA L40 GPUs and
the following key hyperparameters:

Parameter Value

Learning rate 5e-5 with polynomial decay
Batch size 16
Optimizer AdamW (weight decay 0.01)
Gradient clipping 5.0 (norm)
Training epochs 50
Sampling strategy Greedy

For statistical robustness, we run each experi-
ment with five different random seeds (1, 42, 123,
420, 1337) and report means and standard devia-
tions. Model selection for testing is based on val-
idation set F1-Score. We use the same tuple-level
evaluation script as published by Yan et al. (2021a),
where a prediction is considered correct only when
all components match the ground truth exactly.
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B GPT-4o Fine-tuning Prompt Template

For fine-tuning GPT-4o on the ASTE task, we
employ a structured prompt template transform-
ing tuple-based annotations into natural language.
Given the sample:

“The drinks are always well made and
wine selection is fairly priced”

The tuple annotation

(2, 2, 5, 6, POS, 8, 9, 11, 12, POS)

is transformed into:

{
"messages ": [
{

"role": "system",
"content ": "You are an AI trained to

perform aspect -based sentiment
analysis. Identify aspects in
the given text and determine
their associated sentiments and
opinions ."

},
{

"role": "user",
"content ": "Analyze the following

text for aspect -based sentiment:
The drinks are always well made
and wine selection is fairly

priced Identify the aspects and
their associated sentiments ."

},
{

"role": "assistant",
"content ": "Here 's the aspect -based

sentiment analysis:
Aspect: drinks
Sentiment: POS
Opinion: well made

Aspect: wine selection
Sentiment: POS
Opinion: fairly priced"

}
]
}

This structure follows OpenAI’s fine-tuning
specifications, providing context through the sys-
tem message, input text through the user message,
and expected output through the assistant message.
All examples were automatically processed into
this format. During inference, responses are parsed
back into tuple format for consistent evaluation
with the other models.

C Heatmap after Normalization

0 4 8 12 16

Pointer Values

0

4

8

12

Se
qu

en
ce

Po
si

tio
n

Pt Logits

−1

0

1

2

3

4

L
og

it
V

al
ue

Figure 4: Heatmap of the untrained model’s pointer logit
distribution (Pt) with the encoder normalization enabled
(Lines 6 and 7 in Algorithm 1). The visualization shows
no noticeable inherent initialization bias towards the
lower pointer values corresponding to the special tokens,
as was the case in Figure 2

D Generalization to other Tasks

Table 6: Performance comparison between BART-
LARGE baseline and our enhanced BARTABSA++ on
three additional structured prediction tasks.

Task Our BARTABSA-R BARTABSA++
P R F1 P R F1

SSA 57.51 41.76 47.38 61.02 51.51 55.80
(σ 2.72) (σ 12.42) (σ 10.07) (σ 1.73) (σ 3.45) (σ 2.44)

SRE 20.25 29.03 23.85 25.75 35.99 30.01
(σ 11.41) (σ 16.39) (σ 13.45) (σ 1.46) (σ 1.55) (σ 1.52)

DEFT 51.26 37.86 43.36 54.20 41.30 46.73
(σ 0.28) (σ 5.12) (σ 3.46) (σ 3.94) (σ 2.27) (σ 1.96)

To demonstrate the generalization of our archi-
tectural improvements beyond ABSA tasks, we
evaluate our enhanced model on three additional
structured prediction tasks and report those results
in Table 6. To model these tasks appropriately for
pointer networks to solve, the output grammars for
these tasks are natural extensions or modifications
of the previously introduced ABSA output gram-
mar (Section 2.2), adapted to the specific require-
ments of each task. This approach has been proven
effective for related tasks across different languages
(Yan et al., 2021b; Wunderle et al., 2024), and even
in entirely different domains such as mathematical
transformation identification (Wankerl et al., 2025).
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Structured Sentiment Analysis (SSA) extends
ABSA by extracting more comprehensive opinion
structures, including opinion holders, targets, ex-
pressions, and sentiment polarities, with support for
discontinuous spans. We use the combined English
datasets from SemEval 2022 Task 10 (Barnes et al.,
2022): OpeNEREN (hotel reviews) and DSUnis (uni-
versity reviews).

Semantic Relation Extraction (SRE) identifies
relations between entities in scientific abstracts,
while also classifying them into six predefined re-
lation types. We use the manually annotated ACL
RD-TEC 2.0 dataset (QasemiZadeh and Schumann,
2016) from SemEval 2018 Task 7.

Definition Extraction from Free Text (DEFT)
extracts definition terms and their corresponding
definitions from naturally occurring text, requiring
classification of both terms and definitions, as well
as their relationship. We use the dataset from Se-
mEval 2020 Task 6 (Spala et al., 2020), containing
samples from open-source textbooks.

We find: As shown in Table 6, our enhanced
model consistently outperforms the baseline
across all tasks, with particularly notable im-
provements in F1 scores for SSA (+8.42) and
SRE (+6.16), demonstrating generalization of
our architectural changes to a diverse set of
structured prediction tasks.

E Pre-Training Synthetic
Encoder-Decoder Models

To verify that our findings about non-scaling de-
coder LLMs aren’t simply due to insufficient train-
ing of the newly initialized weights, we conduct
additional pretraining experiments using the CNN/-
DailyMail summarization dataset (See et al., 2017;
Hermann et al., 2015). This is the same dataset
used by Rothe et al. (2020) in their original work on
synthetic encoder-decoder models, making it par-
ticularly appropriate for our investigation. As the
dataset contains over 300,000 news articles paired
with human-written summaries, it provides sub-
stantial training data for adapting the models to the
encoder-decoder paradigm.

We pretrain each GPT-2 model for 3 epochs on
the summarization task, measuring Rouge2 scores
throughout training. As shown in Table 7, the re-
sults reveal both training instability and a com-
plete lack of scaling benefits. Most notably, GPT-

Table 7: Rouge2 scores for models pretrained on CNN-
DailyMail summarization dataset for 3 epochs. The
table shows both the best score achieved during training
and the final score after 3 epochs.

Model Best Rouge2 Final Rouge2

BART-BASE 19.65 19.65
ROBERTA2ROBERTA 19.35 19.35

GPT2GPT Base 14.60 2.32
GPT2GPT Medium 4.13 4.13
GPT2GPT Large 14.86 14.77
GPT2GPT XL 11.86 11.76

Table 8: Performance of different pretrained GPT-2
model sizes.

Model Params Avg
P R F1

Our BARTABSA-R 139M 68.91 (σ 2.13) 65.31 (σ 3.17) 67.01 (σ 2.44)

GPT2GPT Base 277M 60.64 (σ 2.38) 53.82 (σ 2.03) 56.98 (σ 1.95)
GPT2GPT Medium 810M 60.61 (σ 2.10) 54.39 (σ 1.94) 57.28 (σ 1.80)
GPT2GPT Large 1.78B 60.73 (σ 2.12) 54.04 (σ 1.85) 57.12 (σ 1.64)
GPT2GPT XL 3.61B 60.45 (σ 2.05) 53.90 (σ 2.10) 56.98 (σ 1.85)

2 Base exhibits dramatic performance degrada-
tion (from a best Rouge2 score of 14.60 to a fi-
nal score of 2.32), while GPT-2 Medium performs
consistently poorly. Even the best-performing
GPT-2 Large only achieves a Rouge2 of 14.86,
substantially below both BART-BASE (19.65) and
RoBERTa2RoBERTa (19.35).

When initializing our pointer networks with
these already pretrained checkpoints (Table 8), we
observe very similar patterns to our non-pretrained
experiments. The lack of scaling benefits persists,
with performance plateauing or even declining as
model size increased.

Confirmation: These results further support
our conclusion that encoder quality is the pri-
mary determinant of performance in encoder-
decoder models, and that decoder-only models
face fundamental limitations when adapted to
serve as encoders, regardless of this additional
pretraining.
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Abstract

Addressing non-factoid question answering
(NFQA) remains challenging due to its open-
ended nature, diverse user intents, and need
for multi-aspect reasoning. These character-
istics often reveal the limitations of conven-
tional retrieval-augmented generation (RAG)
approaches. To overcome these challenges, we
propose TYPED-RAG, a framework for type-
aware decomposition of non-factoid questions
(NFQs) within the RAG paradigm. Specif-
ically, TYPED-RAG first classifies an NFQ
into a predefined type (e.g., Debate, Experi-
ence, Comparison). It then decomposes the
question into focused sub-queries, each focus-
ing on a single aspect. This decomposition
enhances both retrieval relevance and answer
quality. By combining the results of these sub-
queries, TYPED-RAG produces more informa-
tive and contextually aligned responses. Ad-
ditionally, we construct Wiki-NFQA, a bench-
mark dataset for NFQA covering a wide range
of NFQ types. Experiments show that TYPED-
RAG consistently outperforms existing QA ap-
proaches based on LLMs or RAG methods,
validating the effectiveness of type-aware de-
composition for improving both retrieval qual-
ity and answer generation in NFQA. Our code
and dataset are available on https://github.
com/TeamNLP/Typed-RAG.

1 Introduction

Traditional and current question answering (QA)
systems (Rajpurkar et al., 2016; Peters et al., 2018;
Lewis et al., 2020; Ouyang et al., 2022; Zhang
et al., 2024) have primarily addressed factoid
questions—queries seeking specific, verifiable in-
formation that yield concise, objective answers like

“When was Google founded?”. However, real-world
information needs extend far beyond such simple
factual queries.

*These authors contributed equally to this work.

Non-Factoid Question Answering

Factoid Question Answering

When was Google founded?

Google was founded on September 4, 1998.

Which Portuguese wine is worth trying?

Try Touriga Nacional, Vinho Verde, or a Tawny Port for distinct flavors.

Touriga Nacional or Vinho Verde are great choices.

I’m not familiar enough with Portuguese wine to recommend one.

Figure 1: Comparison of factoid question answering
(top) and non-factoid question answering (bottom). Fac-
toid questions typically have a single correct answer,
whereas non-factoid questions may admit multiple valid
answers.

Non-factoid questions (NFQs) represent a fun-
damentally different challenge from traditional fac-
toid questions, as they require elaborate, interpre-
tive responses that integrate multiple perspectives
rather than retrieving single facts (Bolotova et al.,
2022). These questions—encompassing compara-
tive evaluations, personal experiences, and open-
ended discussions—reflect the rich, multifaceted
nature of human information seeking. Figure 1 il-
lustrates the key differences between factoid ques-
tions and NFQs, as well as their example answers.

Despite their prevalence in practical settings
(Yang and Alonso, 2024), current approaches to
non-factoid question answering (NFQA) face sig-
nificant limitations. The core challenge lies in the
inherent complexity and heterogeneity of NFQs,
which vary along multiple dimensions including
question intent, aspect directionality, and degree of
contrast between perspectives.

Existing methods fail to adequately address
this diversity. Type-specific approaches to NFQA
(An et al., 2024)—methods that focus exclusively
on particular NFQ types—struggle to generalize
across the full spectrum of NFQ types, whereas
retrieval-augmented generation (RAG) systems
(Lewis et al., 2020; Izacard and Grave, 2021), de-
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spite improving contextuality, produce overly ho-
mogeneous responses that lack the multi-faceted
depth essential for comprehensive answers. Ul-
timately, the fundamental challenge is adapting
retrieval and generation strategies to the specific
characteristics of each NFQ type.

To address these limitations, we propose TYPED-
RAG, a type-aware decomposition approach that
fundamentally reimagines NFQA within the RAG
paradigm. Our approach integrates question type
classification directly into the RAG paradigm, en-
abling tailored retrieval and generation strategies
for distinct NFQ types. The key innovation lies in
decomposing multi-aspect NFQs into single-aspect
sub-queries, allowing targeted retrieval for each as-
pect before synthesizing a comprehensive response.
This decomposition approach ensures that gener-
ated answers align with user intent while capturing
the full complexity of the question.

In order to assess the performance of TYPED-
RAG, we evaluate it on Wiki-NFQA, a new bench-
mark dataset derived from Wikipedia that encom-
passes a broad spectrum of NFQ types. Our results
demonstrate that TYPED-RAG significantly out-
performs baseline systems, including standard ap-
proaches using LLMs and RAG, in handling NFQ
complexity and delivering nuanced, intent-aligned
answers.

Our main contributions are as follows:

• We propose TYPED-RAG, a novel framework
for type-aware decomposition of non-factoid
questions that enhances RAG-based NFQA by
integrating question type classification with tar-
geted decomposition strategies.

• We develop retrieval and generation strategies
specifically optimized for different NFQ types,
enabling more effective handling of complex and
diverse user queries.

• We release the Wiki-NFQA dataset, providing
a comprehensive benchmark for evaluating QA
systems on non-factoid questions and facilitating
future NFQA research.

• We demonstrate through extensive experiments
that TYPED-RAG significantly outperforms
baseline models, validating the effectiveness of
type-aware decomposition in generating contex-
tually appropriate and high-quality answers.

By addressing the unique challenges of NFQA
through type-aware decomposition, our work
bridges the gap between complex user information

needs and current QA system capabilities, advanc-
ing the development of more adaptive and context-
sensitive QA technologies.

2 Related Work

2.1 Non-Factoid Question Answering (NFQA)
Non-Factoid Question Taxonomy To address
the complexity of real-world QA, prior work has
developed detailed taxonomies for question types
(Burger et al., 2003; Chaturvedi et al., 2014; Bolo-
tova et al., 2022). Unlike factoid questions, which
seek concise factual answers, non-factoid ques-
tions (NFQs) require subjective, multi-faceted re-
sponses (Chaturvedi et al., 2014; Bolotova et al.,
2022). Bolotova et al. (2022) categorized NFQs
into six types: Evidence-based, Comparison,
Experience, Reason, Instruction, and Debate.
Recently, Mishra et al. (2025) emphasized criti-
cal challenges faced by LLM-based QA systems
when handling NFQs, particularly those requiring
in-depth reasoning or nuanced debate, illustrated
through practical examples such as detailed de-
scriptive questions (e.g., “How was the construc-
tion of the Taj Mahal perceived by the citizens of
Agra in the 17th century?”). Their work also high-
lighted specific application contexts where robust
NFQA systems are vital, including voice assistants
like Amazon Alexa (Hashemi et al., 2020) and
web forums frequently hosting user-generated de-
scriptive queries (Bajaj et al., 2016). In contrast
to earlier approaches that target individual NFQ
types, our method provides a unified framework to
handle all categories effectively.

Evaluation Metrics Traditional metrics—such
as ROUGE or BERTScore (Zhang et al., 2020)—
often fall short in capturing the semantic richness
and nuanced quality of NFQA outputs. To over-
come these limitations, Yang et al. (2024) intro-
duced LINKAGE, a listwise ranking framework
that uses an LLM as a scorer to rank candidate
answers against quality-ordered references. LINK-
AGE shows stronger correlation with human judg-
ments and outperforms conventional metrics, high-
lighting its suitability for NFQA evaluation.

2.2 Retrieval-Augmented Generation (RAG)
Retrieval-augmented generation (RAG) improves
the quality of LLM responses by incorporating
external documents, improving factual accuracy
and contextual relevance (Lewis et al., 2020; Izac-
ard and Grave, 2021). However, the quality of
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Figure 2: Overview of TYPED-RAG. Non-factoid questions (NFQs) are first classified by a pretrained Type
Classifier and then processed according to their type. A Multi-aspect Decomposer and Answer Aggregator address
each type’s specific requirements using LLMs with tailored prompts. See Appendix A.4 and Figure 17 for prompt
details and a complete illustration.

RAG outputs critically depends on the retrieval
step: irrelevant or noisy documents can exacer-
bate hallucinations (Huang et al., 2023; Lee and
Yu, 2025). Recent advances apply query rewriting
and multi-hop decomposition to enrich retrieved
contexts (Rackauckas, 2024; Chan et al., 2024),
and adaptive retrieval strategies that assess query-
document relevance before the generation process
(Jeong et al., 2024; Yan et al., 2024; Asai et al.,
2024).

Despite these developments, the application of
RAG to NFQA remains underexplored. For ex-
ample, Deng et al. (2024) proposed a graph-based
multi-hop approach for NFQA, but it neither lever-
ages large-scale pretrained LLMs nor employs dy-
namic retrieval. Likewise, An et al. (2024) inte-
grated logic-based threading with RAG for How-
To questions, yet their method does not generalize
across all NFQ types. Our work bridges this gap
by combining type-specific decomposition with
adaptive retrieval and generation in a single RAG
framework.

3 Method

In this section, we introduce TYPED-RAG, a novel
RAG pipeline designed specifically for non-factoid
question (NFQ) types. Figure 2 visually illustrates
the overall processing mechanisms of the Multi-
aspect Decomposer and the Answer Aggregator
for each NFQ type.

NFQs are classified into one of six types using a
pre-trained Type Classifier (Bolotova et al., 2022).
Subsequently, queries are preprocessed through
the Multi-aspect Decomposer, where each type’s
characteristics and the underlying intent of the
questions are considered. The Multi-aspect De-
composer primarily consists of two modules: the
Single-aspect Query Generator and the Keyword
Extractor. These modules operate selectively based
on the question type and perspective, leveraging
few-shot learning and prompt engineering tech-
niques to effectively transform queries according
to their respective categories. The decomposed
queries are then processed by one or multiple re-
trievers to retrieve highly relevant passages. Op-
tionally, the retrieved passages may be re-ranked
using a reranker to enhance the quality of results.

Based on the retrieved information, the genera-
tor produces the final answers. If multiple candi-
date answers are available, the Answer Aggregator
integrates these candidates to form a unified re-
sponse. This process is structured based on prompt
engineering. Detailed prompt configurations for
each module are presented in Appendix A.4.

As previously discussed, NFQs inherently in-
volve multiple perspectives, making them challeng-
ing to handle effectively using conventional RAG
approaches. Considering these distinct characteris-
tics, we propose a type-aware pipeline specifically
tailored to NFQs, capable of generating responses
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NFQ Type Example of Non-Factoid Question

Evidence-based “How does sterilisation help to keep the money flow even?”

Comparison “what is the difference between dysphagia and odynophagia”

Experience “What are some of the best Portuguese wines?”

Reason
“Kresy, which roughly was a part of the land beyond the so-called Curson Line,

was drawn for what reason?”

Instruction “How can you find a lodge to ask to be a member of?”

Debate
“I Can See Your Voice, a reality show from South Korea, offers what kind of

performers a chance to make their dreams of stardom a reality?”

Table 1: Example non-factoid questions in the Wiki-NFQA dataset, highlighting each NFQ type.

that accurately reflect user intent and address the
inherent complexity of these questions.

The subsequent subsections elaborate on the def-
initions of each NFQ type and the corresponding
detailed processing strategies.

3.1 Evidence-based

Evidence-based type questions aim to clarify the
characteristics or definitions of specific concepts,
objects, or events. These questions require precise
and reliable factual information. These questions
inherently have a single aspect, eliminating the
need for complex contextual reasoning or multi-
aspect decomposition. The intent behind these
questions is to obtain clear and concise explana-
tions grounded in evidence, resulting in responses
consistently centered around a single aspect.

Accordingly, a straightforward RAG approach
is applied to Evidence-based type questions. The
retriever utilizes the original question as a query to
search relevant documents, and the generator then
produces responses based directly on these docu-
ments. It is essential to maintain a clear and con-
cise information flow without considering multiple
perspectives, thereby ensuring straightforward and
accurate answers.

3.2 Comparison

Comparison type questions aim to identify dif-
ferences, similarities, or superiority among two
or more items. These questions can have differ-
ent intentions and must be tailored to the purpose
and targets of the comparison. Comparison type
questions can be broadly classified into two cate-
gories based on intent: related aspects, focusing
on similarities, and contrasting aspects, empha-

sizing differences or superiority. Consequently,
Comparison type questions inherently involve mul-
tiple aspects.

Thus, a Multi-aspect Decomposer is required
for Comparison type questions. Initially, a Key-
word Extractor identifies the purpose of compari-
son (compare_type) and the items being compared
(keywords_list). The purpose of the comparison is
predefined as one of three types: difference, sim-
ilarity, or superior. These types are explicitly ex-
tracted from the question to determine the scope
of the comparison. Detailed prompt templates and
examples used in this process are described in Ap-
pendix A.4.1.

Subsequently, the retriever searches for docu-
ments related to each keyword, eliminates redun-
dant results, and reranks the remaining documents
based on relevance. Finally, the generator syn-
thesizes the information to produce a balanced re-
sponse aligned with the comparison purpose. Col-
lecting and integrating information across various
comparison criteria and perspectives is crucial for
accurately addressing user intent.

3.3 Experience

Experience type questions seek advice, recom-
mendations, or personal insights, with responses
based primarily on individual experiences. These
questions naturally involve multiple aspects, and
answers can vary significantly due to subjective dif-
ferences among respondents. Thus, clearly under-
standing the user’s intent and defining key perspec-
tives is essential to provide informative answers
encompassing diverse opinions and experiences.

Similar to Comparison type questions,
Experience type questions require multi-aspect
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NFQ Type NQ-NF SQD-NF TQA-NF 2WMHQA-NF HQA-NF MSQ-NF Total

Evidence-based 99 130 251 10 22 43 555 (58.73%)
Comparison 5 18 4 0 8 1 36 (3.81%)
Experience 0 20 8 1 10 2 41 (4.34%)
Reason 19 85 23 55 15 21 218 (23.07%)
Instruction 2 21 3 8 4 11 49 (5.19%)
Debate 1 26 7 5 3 4 46 (4.87%)

Total 126 300 296 79 62 82 945

Table 2: Wiki-NFQA dataset statistics by NFQ type.

consideration; however, the focus is not on
comparisons based on specific features or cri-
teria but rather on reflecting broader and more
comprehensive experiences and diverse opinions.
Therefore, Experience type questions require
multi-aspect decomposition.

Initially, the Keyword Extractor identifies the
primary topics that users seek experiences about
and extracts key entities reflecting the question’s
intent. Specific examples of the prompts used in
this process are detailed in Appendix A.4.2. Fol-
lowing this step, the retriever searches for related
documents using these extracted keywords. The re-
trieved documents are then re-ranked according to
their similarity to the extracted keywords. Finally,
the generator produces an optimized response by
synthesizing information that aligns with the user’s
intent and incorporates diverse perspectives. This
ensures the response effectively meets the user’s
expectations.

3.4 Reason/Instruction

Reason and Instruction type questions both aim
to provide information necessary for understanding
phenomena or solving problems, but they differ
significantly in intent and response approach.

The purpose of Reason type questions is to iden-
tify the causes of phenomena or events. These
questions require multi-faceted consideration be-
cause explanations can vary depending on contex-
tual factors and conditions. Different assumptions
and conditions may yield multiple possible expla-
nations, resulting in responses often including con-
trasting or conflicting information.

In contrast, Instruction type questions focus
on procedural steps or methodologies. Although
the procedures or methods can vary based on spe-
cific goals or requirements and thus involve mul-
tiple aspects, the responses tend to align similarly
rather than diverging significantly, unlike Reason

type questions. While various procedures may ex-
ist, their fundamental structure or concepts often
remain interconnected.

For both Reason and Instruction type ques-
tions, a Multi-aspect Decomposer is applied. Ini-
tially, a Single-aspect Query Generator decom-
poses the original query into separate single-aspect
queries. The retriever and generator then pro-
cess each query individually, producing separate
responses. An Answer Aggregator subsequently
integrates these responses to deliver a clear, sys-
tematically organized final answer. Examples of
the prompts used in this process are detailed in
Appendix A.4.3.

3.5 Debate

Debate type questions focus on controversial top-
ics and aim to explore and reflect multiple per-
spectives, especially opposing perspectives. These
questions inherently possess multiple perspectives
and require the inclusion of contrasting arguments
and perspectives, as subjective positions may vary
according to underlying assumptions and perspec-
tives, unlike factual questions.

To effectively respond to Debate type questions,
it is essential to fairly represent the logic of each
opposing perspective and generate unbiased, bal-
anced responses. Thus, a Multi-aspect Decom-
poser breaks down the question into debate topics
and diverse opinions. The Single-aspect Query
Generator then formulates individual queries for
each opinion. The retriever and generator pro-
cess each query separately, producing individual
responses. Finally, an LLM with a debate media-
tor persona (Liang et al., 2024) synthesizes these
diverse perspectives, generating a balanced final
response from a mediator’s perspective. Detailed
prompts applied in the Single-aspect Query Gener-
ator and Debate Mediator processes are outlined in
Appendix A.4.4. This approach ensures responses
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Prompt Template for LINKAGE

Please impartially rank the given candidate answer to a non-factoid question accurately within the
reference answer list, which are ranked in descending order of quality. The top answers are of the
highest quality, while those at the bottom may be poor or unrelated.
Determine the ranking of the given candidate answer within the provided reference answer list. For
instance, if it outperforms all references, output [[1]]. If it’s deemed inferior to all four references,
output [[4]].
Your response must strictly following this format: "[[2]]" if candidate answer could rank 2nd.
Below are the user’s question, reference answer list, and the candidate answer.
Question:{question}
Reference answer list:{reference_answers}
Candidate answer:{candidate_answer}

Figure 3: The LINKAGE prompt template from Yang et al. (2024) used to rank candidate answers in our evaluation
of TYPED-RAG and the baselines.

fairly and transparently reflect diverse perspectives,
enabling comprehensive and balanced information
delivery suitable for Debate type questions.

4 Experimental Setup

4.1 Model

We compare our TYPED-RAG with LLM- and
RAG-based QA systems as baselines. In our ex-
periments, we use a black-box LLM and two open-
weight LLMs with different numbers of parame-
ters: (i) Llama-3.2-3B-Instruct (Llama-3.2-3B), (ii)
Mistral-7B-Instruct-v0.2 (Mistral-7B; Jiang et al.,
2023), and (iii) GPT-4o-mini-2024-07-18 (GPT-4o
mini).

All inputs to the LLMs (including the RAG gen-
erator) are formatted using prompt templates. The
prompt templates used in our experiments are pro-
vided in Appendix A.3.

4.2 Listwise Ranking Evaluation (LINKAGE)

To evaluate non-factoid question answering
(NFQA) systems, we adopt LINKAGE (Yang et al.,
2024), a listwise ranking framework designed for
NFQA. LINKAGE orders each candidate answer
by comparing its quality against a reference list of
answers, defined formally as:

Ri = {ri1 , ri2 , . . . , rin}, (1)

rankci = LLM
(
PL, qi, ci, Ri

)
. (2)

Here, qi is the i-th question, ci is the candidate
answer under evaluation, and Ri is the set of refer-
ence answers {rik} sorted from highest to lowest
quality. The scorer LLM, guided by the LINKAGE

prompt PL, assigns rankci based on each candi-
date’s position within Ri. The complete LINK-
AGE prompt template is shown in Figure 3.

Ranking Metrics To quantify LINKAGE rank-
ings, we employ two complementary metrics:
Mean Reciprocal Rank (MRR) (Voorhees and Tice,
2000) and Mean Percentile Rank (MPR):

MRR =
1

N

N∑

i=1

1

rankci
, (3)

MPR =
1

N

N∑

i=1

(
1− rankci − 1

|Ri|

)
× 100. (4)

MRR measures how close candidate answers rank
to the top of the list, with higher values indicat-
ing better performance. MPR converts each rank
into a percentile, reflecting the candidate’s rela-
tive position within its reference list; higher MPR
scores denote superior overall ranking across all
positions. Together, MRR highlights top-answer
accuracy, while MPR provides insight into perfor-
mance across the entire ranking spectrum.

4.3 Dataset Construction

To test the NFQA methods, we curate the Wiki-
NFQA dataset, a specialized resource tailored for
NFQA. It is derived from existing Wikipedia-based
datasets: Natural Questions (NQ; Kwiatkowski
et al., 2019), SQuAD (SQD; Rajpurkar et al.,
2016), TriviaQA (TQA; Joshi et al., 2017), 2Wiki-
MultiHopQA (2WMH; Ho et al., 2020), HotpotQA
(HQA; Yang et al., 2018), MuSiQue (MSQ; Trivedi
et al., 2022).
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Model Scorer LLM Methods Wiki-NFQA Dataset

NQ-NF SQD-NF TQA-NF 2WMH-NF HQA-NF MSQ-NF

Llama-3.2-3B

Mistral-7B
LLM 0.5893 0.5119 0.6191 0.3565 0.4825 0.4262
RAG 0.5294 0.4944 0.5470 0.4150 0.4530 0.4047
TYPED-RAG 0.7659 0.6493 0.7061 0.4544 0.5624 0.5356

GPT-4o mini
LLM 0.4934 0.4506 0.5380 0.3070 0.3669 0.2917
RAG 0.4187 0.3553 0.4586 0.2859 0.2957 0.2866
TYPED-RAG 0.8366 0.7139 0.7013 0.3692 0.5470 0.4482

Mistral-7B

Mistral-7B
LLM 0.6356 0.5450 0.6363 0.4821 0.5255 0.5081
RAG 0.5635 0.5069 0.6233 0.4789 0.5323 0.4438
TYPED-RAG 0.7103 0.6333 0.6709 0.4747 0.6035 0.4512

GPT-4o mini
LLM 0.4656 0.4222 0.5921 0.3175 0.3965 0.3384
RAG 0.4411 0.3817 0.5450 0.2890 0.3562 0.3079
TYPED-RAG 0.8413 0.7444 0.7767 0.3987 0.6653 0.4929

Table 3: Evaluation on the Wiki-NFQA dataset comparing various language models, scorer LLMs, and methods
using Mean Reciprocal Rank (MRR). Answers were ranked with LINKAGE (Yang et al., 2024) and evaluated by
MRR.

Filtering Non-Factoid Questions Through a
systematic filtering process, we extract non-factoid
questions, then generate high-quality reference an-
swers to ensure the dataset’s suitability for NFQA
evaluation.

We use the nf-cats1 (Bolotova et al., 2022), a
RoBERTa-based pre-trained NFQ category clas-
sifier, to extract NFQs from existing Wikipedia-
based datasets. Since it categorizes questions into
factoid and non-factoid types, we only retain those
classified as non-factoid for further processing. To
ensure a more rigorously curated dataset, we fil-
ter the data using heuristics based on the question
patterns outlined in the NFQ taxonomy proposed
by Bolotova et al. (2022). Table 2 presents the
statistics for the Wiki-NFQA dataset.

Reference Answers Generation Since these
datasets only have a single-grade ground truth an-
swer, we generate diverse reference answers of
varying quality for LINKAGE evaluation, as de-
scribed in Yang et al. (2024). After constructing
the reference answers, we use the GPT-4o-2024-
11-20 to annotate their quality level. Prompt details
about generating reference answers are provided
in Appendix A.1, and A.2.

Examples of the Wiki-NFQA Dataset Table 1
provides examples of questions that represent each
type of NFQ in the Wiki-NFQA dataset.

The Evidence-based type questions require
answers grounded in verifiable sources, while

1https://huggingface.co/Lurunchik/nf-cats

Comparison type questions seek distinctions be-
tween concepts. Experience type questions solicit
subjective opinions or recommendations, while
Reason type questions aim to uncover the ratio-
nale behind events or concepts. Instruction type
questions request procedural guidance, and Debate
type questions involve discussions on controversial
or interpretive topics.

5 Experimental Results

We evaluate TYPED-RAG on the Wiki-NFQA
dataset across all NFQ categories and model config-
urations. As shown in Table 3 (MRR) and Figure
4 (MPR), TYPED-RAG consistently outperforms
both LLM- and RAG-based baselines. These met-
rics demonstrate that our approach not only ele-
vates the ranking of generated answers but also
improves their relative quality. Scorer LLMs uni-
formly rate TYPED-RAG’s responses as more rele-
vant and comprehensive. Representative examples
of TYPED-RAG’s outputs for each non-factoid
question type are provided in Appendix D.

5.1 Impact of Scorer LLMs and Base Models

The performance of all methods depends on the
choice of scorer LLM and base model. Since each
LLM evaluates responses using its own learned
criteria and internal representations, scores from
different scorers should not be compared directly.
Instead, performance comparisons are most mean-
ingful when considering the relative ranking of
methods under the same scorer.
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Figure 4: Comparison of Mean Percentile Rank (MPR) for LLMs, RAGs, and TYPED-RAG across six NFQ
categories in the Wiki-NFQA dataset. Results are shown for two model setups (Llama-3.2-3B and Mistral-7B) and
two scorer LLMs (Mistral-7B and GPT-4o mini); the y-axis displays MPR (%), where higher values indicate better
performance.

As reported in Table 3 and Figure 4, scores gen-
erally decrease when switching from Mistral-7B
to GPT-4o mini as the scorer. This trend likely
stems from GPT-4o mini’s greater sophistication
and stricter evaluation standards, which penalize
even minor inconsistencies or lack of depth. This
pattern holds across all base models and meth-
ods, underscoring that more powerful scorers apply
more stringent criteria. Notably, despite the overall
score reductions, TYPED-RAG retains a clear ad-
vantage over both LLM- and RAG-based baselines,
demonstrating its robustness to changes in scorer
strictness.

5.2 Limitations of RAG and Benefits of
TYPED-RAG

Our experiments also reveal that RAG-based meth-
ods underperform direct LLM-based generation
(see Table 3 and Figure 4). We attribute this
shortfall to the noise introduced by retrieved
factual information, which can hinder response
generation in NFQA tasks. TYPED-RAG ad-
dresses this challenge through a multi-aspect
decomposition strategy that structures retrieval
around the distinct facets of non-factoid ques-
tions. By reducing irrelevant noise and ensur-
ing more focused retrieval, TYPED-RAG consis-
tently outperforms both RAG and LLM-only ap-
proaches—particularly on reasoning-intensive sub-
sets—thereby enhancing the overall quality of gen-
erated answers.

6 Conclusion

In this paper, we introduced TYPED-RAG, a novel
RAG-based framework for non-factoid question
answering (NFQA) that incorporates type-aware
multi-aspect decomposition. By first classifying
each NFQ into a specific category and then decom-
posing it into focused sub-queries, TYPED-RAG
enables targeted retrieval and answer generation
for each aspect. The retrieved sub-responses are
aggregated to produce comprehensive, nuanced an-
swers that better address the diverse requirements
of non-factoid questions.

To support evaluation, we also curated Wiki-
NFQA, a benchmark dataset covering a wide range
of NFQ types. Experimental results on Wiki-
NFQA dataset show that TYPED-RAG consis-
tently outperforms both LLM-only and standard
RAG baselines across all question types and scorer
LLM settings. These findings validate the effec-
tiveness and robustness of type-aware multi-aspect
decomposition in enhancing both retrieval quality
and answer relevance for NFQA.

Future work could explore extending TYPED-
RAG to incorporate more fine-grained question
types and further refine the decomposition strate-
gies. Additionally, applying our approach to other
specific domains or applying fine-tuning meth-
ods and integrating it with more sophisticated re-
trieval mechanisms could further improve the per-
formance and adaptability of NFQA systems.

136



Limitations

Our work is the first to introduce RAG to NFQA,
but it has several limitations.

A key limitation is the absence of a direct com-
parison between TYPED-RAG and existing query
rewriting and decomposition methodologies. Al-
though TYPED-RAG provides a structured ap-
proach to these tasks, its performance relative to
other techniques remains unexplored. Though vari-
ous query rewriting and decomposition techniques
have been proposed to improve retrieval quality,
this study does not empirically evaluate the effec-
tiveness of query reformulation, retrieval relevance,
or computational overhead of TYPED-RAG rela-
tive to these approaches. A systematic comparison
with these methods would provide a clearer under-
standing of TYPED-RAG’s advantages and limita-
tions. Future work should incorporate benchmark
evaluations against these established techniques to
better position TYPED-RAG within the landscape
of query rewriting and decomposition research.

Another limitation of our evaluation setup is that
we use the same model to assess the quality of its
generated responses. This self-evaluation approach
may introduce bias because the model may strug-
gle to distinguish differences in quality among the
answers it produced. To mitigate this issue, future
work could explore using stronger LLMs, human
assessments, or ensemble scoring methods for eval-
uation. Adopting these strategies would improve
the reliability of quality assessments and reduce
potential biases in our evaluation framework.
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A Prompt Details

A.1 Reference List Construction

Prompt Template to Generate the Highest Standard Reference Answer

Given a non-factoid question:"{question}" and its answer:"{ground_truth}"
Use your internal knowledge to rewrite this answer.

Figure 5: Prompt template proposed by Yang et al. (2024) to generate the highest standard reference answer using
LLM’s internal knowledge.

Prompt Template to Generate Diverse Qualities of Reference Answers

Generate three different answers to a non-factoid question from good to bad in quality, each inferior to the golden
answer I give you. Ensure that the quality gap from good to bad is very significant among these three answers. Golden
answer is the reasonable and convincing answer to the question. Answer 1 can be an answer to the question, however, it
is not sufficiently convincing. Answer 2 does not answer the question or if it does, it provides an unreasonable answer.
Answer 3 is completely out of context or does not make any sense.

Here are 3 examples for your reference.
1.Non-factoid Question: how can we get concentration on something?
Golden Answer: To improve concentration, set clear goals, create a distraction-free environment, use time management
techniques like the Pomodoro Technique, practice mindfulness, take regular breaks, stay organized, limit multitasking,
practice deep work, maintain physical health, and seek help if needed.
Output:
Answer 1: Improve focus: set goals, quiet space, Pomodoro Technique, mindfulness, breaks, organization, limit
multitasking, deep work, health, seek help if needed.
Answer 2: Just like and enjoy the work you do, concentration will come automatically.
Answer 3: If you are student, you should concentrate on studies and don’t ask childish questions.

2.Non-factoid Question: Why doesn’t the water fall off earth if it’s round?
Golden Answer: Earth’s gravity pulls everything toward its center, including water. Even though Earth is round, gravity
keeps water and everything else anchored to its surface. Gravity’s force is strong enough to counteract the Earth’s
curvature, preventing water from falling off.
Output:
Answer 1: This goes along with the question of why don’t we fall off the earth if it is round. The answer is because
gravity is holding us (and the water) down.
Answer 2: Same reason the people don’t.
Answer 3: When rain drops fall through the atmosphere CO2 becomes dissolved in the water. CO2 is a normal
component of the Earth’s atmosphere, thus the rain is considered naturally acidic.

3.Non-factoid Question: How do I determine the charge of the iron in FeCl3?
Golden Answer: Since chloride ions (Cl-) each carry a charge of -1, and there are three chloride ions in FeCl3, the total
negative charge from chloride ions is -3. To balance this, the iron ion (Fe) must have a charge of +3 to ensure the
compound has a neutral overall charge. Therefore, the charge of the iron ion in FeCl3 is +3.
Output:
Answer 1: Charge of Fe in Fecl3 is 3. Iron has either 2 as valancy or 3. in this case it bonds with three chlorine
molecules. therefore its valency and charge is three.
Answer 2: If two particles (or ions, or whatever) have opposite charge, then one has positive charge and one has
negative charge.
Answer 3: take a piece of iron. Wrap a copper wire around the iron in tight close coils. run a charge through the wire.

Below are the non-factoid question, and the golden answer.
Non-factoid Question: {question}
Golden Answer: {ground_truth}
Output:

Figure 6: Prompt template proposed by Yang et al. (2024) to generate diverse qualities of reference answers.
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A.2 Reference Answers Annotation

System Prompt for Reference Answers Annotation

Your task is to evaluate the relevance and quality of multiple candidate answers for a given
non-factoid question.
Please evaluate the quality of each answer in a step-by-step manner.
Follow the structured guidelines below to ensure consistency and accuracy in your evaluation.

# Notes on Candidate Answers
Multiple candidate answers can come in two forms:
- Single choice answer: A single string, e.g., `"born again"`.
- Multiple choice answer: A list of strings, e.g., `[‘traffic calming’, ‘aesthetics’]`.
When evaluating multiple choice answers, treat the entire list as a single unit. Do **not** split
them into individual components; instead, evaluate the overall quality as a whole.

# Evaluation Criteria
Assign a label to each candidate answer based on the following criteria:
- 3: The answer provides a comprehensive, accurate, and contextually relevant response that
directly addresses the question.
- 2: The answer is accurate and relevant but lacks depth or comprehensive coverage.
- 1: The answer is somewhat relevant but contains inaccuracies, vagueness, or insufficient detail.
- 0: The answer is irrelevant, incorrect, or fails to address the question meaningfully.
**If there are two or more answers that you think are close in quality, you can give the same label.**

# Response Format
- Assign a label to each answer strictly in the format: `Answer X: [[Y]]`, where `X` is the answer
number, and `Y` is the integer score (0-3).
- Do **not** include any additional comments or explanations outside this format.

Input Prompt Template for Reference Answers Annotation

# Inputs
- Non-Factoid Question: {question}
- Candidate Answers:
{reference_answers}

Figure 7: System prompt (top) and input prompt template (bottom) adapted from Yang et al. (2024) for annotating
the quality level of generated reference answers.

141



A.3 Prompt templates for Baseline Methods

Prompt template for LLM

You are an assistant for answering questions.
Answer the following question.

### Question
{question}

### Answer

Figure 8: Prompt template for LLM method.

Prompt template for RAG

You are an assistant for answering questions.
Refer to the references below and answer the following question.

### References
{reference_passages}

### Question
{question}

### Answer

Figure 9: Prompt template for RAG method.
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A.4 Prompt templates for TYPED-RAG
A.4.1 Comparison

Prompt Template for Keyword Extraction in Comparison Type Questions

You are a query analysis assistant. Based on the query type, apply the relevant prompt to transform
the query to better align with the user’s intent, ensuring clarity and precision.
Determine if the input query is a compare-type question (i.e., compare/contrast two or more things,
understand their differences/similarities.) as a "Query Analyst". If so, perform the following:

1. Identify the type of comparison: "differences", "similarities", or "superiority".
2. Extract the subjects of comparison and represent them as specific, contextualized phrases.

### Output format
{"is_compare": true/false, "compare_type": "", "keywords_list": []}

### Example
Query: "Who is more intelligent than humans on earth?"
Analysis:
{"is_compare": true, "compare_type": "superiority", "keywords_list": ["human intelligence", "the
intelligence of other beings"]}

### Input
Query: {query}
### Output
Analysis:

Figure 10: Prompt template for keyword extraction in Comparison type questions.

Prompt Template for Generating a Response to Comparison Type Questions

You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Refer to the references below
and answer the following question.

The question is a compare-type with a specific comparison type and keywords indicat-
ing the items to compare.
Answer based on this comparison type and the target keywords provided.

### Inputs
Question: {question}
Comparison Type: {comparison_type}
Keywords: {keywords}
References:
{reference_passages}
### Output
Answer:

Figure 11: Prompt template for generating a response to Comparison type questions.
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A.4.2 Experience
Figure 12 shows the prompt template for responding to Experience type questions. The retrieved passages
are subsequently re-ranked based on the extracted keywords. After reranking, we use the prompt template
for RAG (Figure 9) to generate answers.

Prompt Template for Keyword Extraction in Experience Type Questions

You are a query analysis assistant. Based on the query type, apply the relevant prompt to transform
the query to better align with the user’s intent, ensuring clarity and precision.
The input question is an experience-type question (i.e., get advice or recommendations on a
particular topic.). As a "Query Analyst", please evaluate this question and proceed with the
following steps.

1. Identify the topic intended to be gathered from experience-based questions.
2. Extract the key entities in the question, considering the intent of asking about experience, to
facilitate an accurate response.

### Output format
`["Keyword 1", ..., "Keyword N"]` (List of string, separated with comma)

### Example
Question (Input): "What are some of the best Portuguese wines?"
Answer (Output): ["Portuguese wines", "best"]

### Input
Question: {question}
### Output
Answer:

Figure 12: Prompt template for keyword extraction in Experience type questions.

144



A.4.3 Reason & Instruction

Prompt Template for Generating Sub-queries in Reason Type Questions

You are a query analysis assistant. Based on the query type, apply the relevant prompt to transform the query to better
align with the user’s intent, ensuring clarity and precision.
The input query is a reason-type question (i.e., a question posed to understand the reason behind a particular concept or
phenomenon). As a "Query Analyst", please evaluate this query and proceed with the following steps.

1. Break down the original instruction into multiple sub-queries that preserve the core intent but use varied
language and structure. These multiple sub-queries should aim to capture different linguistic expressions of the original
instruction while still aligning with its intended meaning.
2. Create at least 2 to 5 distinct multiple sub-queries.

### Output format
`["sub-query 1", ..., "sub-query N"]` (List of string, separated with comma)

### Input
Query: {query}
### Output
Multiple sub-queries:

Figure 13: Prompt template for generating sub-queries in Reason type questions.

Prompt Template for Generating Sub-queries in Instruction Type Questions

You are a query analysis assistant. Based on the query type, apply the relevant prompt to transform the query to better
align with the user’s intent, ensuring clarity and precision.
The input query is an instruction-type question (i.e., Instructions/guidelines provided in a step-by-step manner).
As a "Query Analyst", please evaluate this query and proceed with the following steps.
1. Break down the original instruction into multiple sub-queries that preserve the core intent but use varied language
and structure.
These multiple sub-queries should aim to capture different linguistic expressions of the original instruction while still
aligning with its intended meaning.
2. Create at least 2 to 5 distinct multiple sub-queries.

### Output format
`["sub-query 1", ..., "sub-query N"]` (List of string, separated with comma)

### Input
Query: {query}
### Output
Multiple sub-queries:

Figure 14: Prompt template for generating sub-queries in Instruction type questions.

Prompt Template for Aggregating Answers to an Original Question

You are an assistant tasked with aggregating answers to a question.
You are provided with the original question and multiple question-answer pairs. These queries preserve the core intent
of the original question but use varied language and structure. Your goal is to review the question-answer pairs and
synthesize a concise and accurate response to the original question based on the information provided.
Using the information from the question-answer pairs, generate a brief and clear answer to the original question.

### Inputs
Original Question: {original_question}
Question-Answer Pairs:
{qa_pairs_text}
### Output
Aggregated Answer:

Figure 15: Prompt template for aggregating answers to an original question. Used by Reason type questions and
Instruction type questions.
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A.4.4 Debate

Prompt Template for Generating Sub-queries in Debate Type Questions

You are a query analysis assistant. Based on the query type, apply the relevant prompt to transform the query to better
align with the user’s intent, ensuring clarity and precision.
The input question is a debate-type question (i.e., invites multiple perspectives). As a "Query Analyst", please evaluate
this question and proceed with the following steps.

1. Extract the debate topic.
2. Identify 2 to 5 key perspectives on this topic.
3. Generate a sub-query reflecting each perspective’s bias.

Ensure each sub-query fits a Retrieval-Augmented Generation (RAG) framework, seeking passages that align with the
viewpoint.

### Output format
{"debate_topic": {topic}, "dist_opinion": [list of perspectives], "sub-queries": {"opinion1": "biased sub-query for
opinion1", "opinion2": "biased sub-query for opinion2", ...}

### Example
Query: "Is Trump a good president?"
Answer:
{

"debate_topic": "Donald Trump’s presidency",
"dist_opinion": ["positive", "negative", "neutral"],
"sub-queries": {

"positive": "Was Donald Trump one of the best presidents for economic growth?",
"negative": "Did Trump’s presidency harm the U.S. economy and leadership?",
"neutral": "Can we assess Trump’s tenure’s strengths and weaknesses?"

}
}

### Input
Query: {query}
### Output
Answer:

Prompt Template for Debate Mediator in Debate Type Questions

You are acting as the mediator in a debate.
Below is a topic and responses provided by n participants, each with their own perspective. Your task is to synthesize
these responses by considering both the debate topic and each participant’s viewpoint, providing a fair and balanced
summary. Ensure the response maintains balance, captures key points, and distinguishes any opposing opinions.
Present the answer *short and concise*, phrased in a direct format without using phrases like "participants in the
debate" or "in the debate."

### Input format
- Debate topic: {debate_topic}
- Participant’s responses:
- Response 1: "{response content}" (Perspective: {perspective 1})
- Response 2: "{response content}" (Perspective: {perspective 2})
- ...
- Response N: "{response content}" (Perspective: {perspective N})

### Output format
A short and concise summary from the mediator’s perspective based on the discussion, phrased as a direct answer
without reference to the debate structure or participants

### Inputs
Debate topic: {debate_topic}
Participant’s responses: {responses}
### Output
Summary:

Figure 16: Prompt templates for generating sub-queries (top) and debate mediator (bottom) in Debate type questions.
We reference the debate mediator prompt from Liang et al. (2024) to ensure that responses objectively aggregate
and present diverse perspectives.
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B Implementation Details

All experiments were conducted using the NVIDIA
A100 (80 GB) GPUs and the OpenAI API.

B.1 LLM
For all experiments involving open-source LLMs,
we employ vLLM (Kwon et al., 2023) to enable
fast and memory-efficient inference.

B.2 RAG
To perform NFQA with our RAG-based QA sys-
tem, the retriever selects five passages that are
then provided to the generator as references. For
Wikipedia-based tasks, we use BM25 on the
Wikipedia corpus preprocessed by Karpukhin et al.
(2020) as the external retrieval index.

B.3 TYPED-RAG
A detailed overview of TYPED-RAG is shown in
Figure 17.

The reranker employed in TYPED-RAG is BGE-
Reranker-Large2 (Xiao et al., 2024).

B.4 LINKAGE Evaluation
For LINKAGE evaluation, we adhere to the orig-
inal settings: nucleus sampling (top_p = 0.95),
a maximum output length of 512 tokens, and a
default temperature of 0.8. The temperature is re-
duced to 0.1 when annotating reference answers.

B.5 Reference Answer Construction on
Wiki-NFQA

To build reference answers for the Wiki-NFQA
dataset, we use three LLMs to capture diverse
styles: (i) GPT-3.5-turbo-16k, (ii) Mistral-7B-
Instruct-v0.23 (Jiang et al., 2023), and (iii) Llama-
3.1-8B-Instruct4. Each model generates three high-
quality responses, totaling nine reference answers.
Additionally, we use GPT-4o-2024-08-06 (Ope-
nAI, 2024) to produce a single, superior reference
answer that is distinct from the other nine.

C Detailed Analysis per Dataset

We conduct a dataset-specific analysis to high-
light TYPED-RAG’s strengths across different
challenge contexts.

2https://huggingface.co/BAAI/
bge-reranker-large

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

NQ-NF, SQuAD-NF, and TriviaQA-NF These
benchmarks feature open-ended non-factoid ques-
tions that often demand explanatory or elaborate
answers. TYPED-RAG delivers substantial gains
in both MRR and MPR, demonstrating its ability to
generate detailed, on-topic responses. For instance,
on SQuAD-NF using the Mistral-7B base model
with a GPT-4o mini scorer, TYPED-RAG achieves
an MRR of 0.7444—significantly outperforming
the LLM-only (0.4222) and RAG-based (0.3817)
baselines.

HotpotQA-NF and MuSiQue-NF These
datasets require multi-hop reasoning, where
answers must synthesize information from
multiple passages. By decomposing questions
into type-specific aspects, TYPED-RAG more
effectively navigates these complex reasoning
chains, yielding notable improvements in MPR
compared to both LLM and RAG methods.

2WikiMultiHopQA-NF Although overall
scores are lower on this particularly challenging
dataset, TYPED-RAG still surpasses LLM-only
and RAG baselines. This result underscores
TYPED-RAG’s robustness even in scenarios
demanding extensive, multi-step inference.
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Figure 17: A detailed overview of TYPED-RAG.
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D Case Study

NFQ Type Example of Question Response of TYPED-RAG

Evidence-based How does sterilisation
help to keep the money
flow even?

The term "sterilisation" is often used in economics
to refer to the act of preventing currency or securities
from affecting the monetary base due to interest rate
differentials. When a central bank engages in open
market operations to buy or sell securities, it may
want to prevent the money flow from being disrupted
by interest rate differentials in different markets.

Sterilisation helps to keep the money flow even
by offsetting the effect of open market operations
on the monetary base. When a central bank buys
securities, it injects cash into the economy and
increases the monetary base. However, if this leads
to an appreciation of the domestic currency, it may
reduce the competitiveness of exports and increase
the cost of imports. To prevent this, the central bank
may sell an equivalent amount of foreign currency
in the foreign exchange market, which reduces the
monetary base and helps to offset the initial effect of
the open market operation.

Similarly, if a central bank sells securities, it
decreases the monetary base and may lead to a
depreciation of the domestic currency, which can
make exports more competitive and imports more
expensive. To prevent this, the central bank may
buy an equivalent amount of foreign currency in
the foreign exchange market, which increases the
monetary base and helps to offset the initial effect of
the open market operation.

In summary, sterilisation is a tool used by central
banks to keep the money flow even and maintain
control over the monetary base, despite open market
operations that may otherwise disrupt the flow of
funds. It allows central banks to implement monetary
policy while minimizing the impact on currency
values and other macroeconomic variables.

Continued on next page
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NFQ Type Example of Question Response of TYPED-RAG

Comparison what is the difference
between dysphagia and
odynophagia

Dysphagia and odynophagia are two distinct
conditions related to swallowing.

Dysphagia is the medical term for difficulty
swallowing. It can be caused by various conditions,
including neurological disorders, stroke, cancer,
or structural problems in the throat or esophagus.
Symptoms of dysphagia include the sensation of
food sticking in the throat or chest, coughing or
choking during eating, and pain or discomfort while
swallowing.

On the other hand, odynophagia is the medi-
cal term for pain while swallowing. It is a symptom
of an underlying condition, such as a sore throat,
inflammation, or infection. The pain can be de-
scribed as sharp or throbbing and may be worsened
by swallowing solid or acidic foods. Odynophagia
can also be a symptom of gastroesophageal reflux
disease (GERD) or eosinophilic esophagitis.

In summary, dysphagia is a condition that
makes it difficult to swallow, while odynophagia
is a symptom of pain while swallowing. A person
with dysphagia may also experience pain while
swallowing, but the primary issue is the difficulty
in moving food from the mouth to the stomach.
Conversely, a person with odynophagia primarily
experiences pain while swallowing, but they may
still be able to swallow relatively normally.

Continued on next page
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NFQ Type Example of Question Response of TYPED-RAG

Experience What are some of the best
Portuguese wines?

Based on the available references in the document,
some Portuguese wines that are often considered
excellent include:
1. The reference 14098516 might be referring to Port
Wine, a fortified wine produced in the Douro Valley
region. Port Wine is known for its sweet and rich
flavors and comes in various styles such as Tawny,
Ruby, and White Port.
2. Reference 5043240 could be referring to Vinho
Verde, a light, slightly effervescent wine from the
Vinho Verde region in the north of Portugal. It is
typically low in alcohol and is often served chilled.
3. The Douro region is also famous for its red wines,
such as those referenced in 2866435. These wines
are known for their robust flavors and are often
blended from a variety of grape varieties.
4. The reference 4891311 might be referring to
Madeira Wine, another fortified wine from the
Madeira Islands. Madeira Wine is known for its
complex flavors and can range from sweet to dry.
5. Lastly, the reference 309483 could be referring
to Dã Wines, which come from the Dã region in
central Portugal. These wines are known for their
elegance and balance, with flavors of red fruit, herbs,
and minerals.

So, based on the given references, some of
the best Portuguese wines include Port Wine, Vinho
Verde, Douro Red Wines, Madeira Wine, and Dã
Wines.

Reason Kresy, which roughly was
a part of the land beyond
the so-called Curson Line,
was drawn for what
reason?

The Curzon Line refers to the boundary proposed
by Lord Curzon, then Viceroy of India, in 1920, as
a potential eastern border for a future independent
Poland. Kresy, or Eastern Borderlands, was the area
of land beyond this proposed border. It was drawn
for various reasons, including historical, ethnic, and
strategic considerations. The area had been part of
the Polish state in the past, and there was a significant
Polish population there. Ethnically, the region was
diverse, with various groups including Poles, Ukraini-
ans, Belarusians, and Jews. Strategically, the region
was important due to its location near the borders
of several neighboring countries and its rich natural
resources.

Continued on next page
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NFQ Type Example of Question Response of TYPED-RAG

Instruction How can you find a lodge
to ask to be a member of?

To find a lodge to inquire about membership,
consider the following steps:

1. Contact the Grand Lodge of your jurisdic-
tion (state or country) for a list of lodges in your
area. You can usually find this information on their
website or by contacting them directly.
2. Research the lodges on the list to learn more about
their history, traditions, and meeting times. This can
be done through their websites, social media pages,
or by contacting them directly.
3. Attend a few meetings as a visitor to get a feel for
the lodge and its members. You may need to request
an invitation from the lodge’s secretary or master.
4. Speak with current members about their experi-
ences and the expectations for new members. This
can help you determine if the lodge is a good fit for
you.
5. Consider your availability and the lodge’s meeting
schedule to ensure you can commit to attending
meetings regularly.

Remember, every lodge is unique, so it’s es-
sential to find one that aligns with your values and
interests. Good luck in your search!

(Note: The references provided do not con-
tain information relevant to finding a lodge to ask to
be a member of.)

Debate I Can See Your Voice, a
reality show from South
Korea, offers what kind of
performers a chance to
make their dreams of
stardom a reality?

Based on the information provided in the references,
"I Can See Your Voice" is a South Korean reality
show that offers singers a chance to audition without
revealing their appearance or singing voice to the
judges initially. This format is designed to evaluate
contestants based on their charisma, rhythm, and
overall performance without any biases influenced by
their physical appearance or singing voice. Therefore,
the show provides an opportunity for talented singers
who might not have been given a chance due to their
looks or voice in their initial auditions to showcase
their abilities and pursue their dreams of stardom.

Table 4: Sample responses of TYPED-RAG across various non-factoid question types.
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Abstract
Aspect sentiment quad prediction (ASQP) fa-
cilitates a detailed understanding of opinions
expressed in a text by identifying the opinion
term, aspect term, aspect category and senti-
ment polarity for each opinion. However, anno-
tating a full set of training examples to fine-tune
models for ASQP is a resource-intensive pro-
cess. In this study, we explore the capabilities
of large language models (LLMs) for zero- and
few-shot learning on the ASQP task across five
diverse datasets. We report F1 scores almost up
to par with those obtained with state-of-the-art
fine-tuned models and exceeding previously re-
ported zero- and few-shot performance. In the
20-shot setting on the Rest16 restaurant domain
dataset, LLMs achieved an F1 score of 51.54,
compared to 60.39 by the best-performing fine-
tuned method MVP. Additionally, we report
the performance of LLMs in target aspect sen-
timent detection (TASD), where the F1 scores
were close to fine-tuned models, achieving
68.93 on Rest16 in the 30-shot setting, com-
pared to 72.76 with MVP. While human anno-
tators remain essential for achieving optimal
performance, LLMs can reduce the need for
extensive manual annotation in ASQP tasks.

1 Introduction

Transformer-based large language models (LLMs)
have gained significant attention due to their ca-
pability to address a broad spectrum of natural
language processing (NLP) tasks, such as text
summarization, translation, reading comprehension
and text classification (Brown et al., 2020; Dubey
et al., 2024). Noteworthy LLMs include Llama-
3.1 (Dubey et al., 2024), Gemma-3 (Gemma et al.,

2025), and Mixtral (Jiang et al., 2024), which are
accessible in various parameter sizes with open
model weights and commercial models like GPT-
4 (Achiam et al., 2023) and Claude 3 (Anthropic,
2024).

Previous research explored zero- and few-shot
scenarios in which the LLM generates outputs with
either none or only a few labelled examples pro-
vided in the prompt (Gou et al., 2023; Zhang et al.,
2024). This eliminates the need for supervised
model training, such as for small language mod-
els1 (SLMs) using annotated datasets (Wang et al.,
2023c). This approach is particularly appealing be-
cause data annotation is often deemed complex and
expensive, both in terms of time or financial cost,
thereby complicating the development of text clas-
sification solutions tailored to specific tasks (Fehle
et al., 2023; Gretz et al., 2023; Li et al., 2023).

An extensively studied task in NLP where
manual annotations pose significant challenges is
aspect-based sentiment analysis (ABSA) (Zhang
et al., 2022). This task facilitates the understand-
ing of customer opinions expressed in reviews or
feedback (Pontiki et al., 2014). Unlike traditional
sentiment classification, which assigns a single sen-
timent label (commonly positive, negative, or neu-
tral) to an entire text document, ABSA requires
annotators to identify all aspects within the text
and determine the sentiment associated with each

1There is no universally accepted definition for categoriz-
ing language models as small or large. As handled by Zhang
et al. (2024), models with fewer than 1 billion parameters are
considered small, while those with 1 billion or more parame-
ters are classified as large.
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one (Zhang et al., 2022).
A prominent subtask of ABSA is aspect sen-

timent quad prediction (ASQP), which provides
exceptionally detailed insights into the author’s
opinions by identifying four sentiment elements
for each opinion: aspect term (a), aspect category
(c), sentiment polarity (p) and opinion term (o)
(Zhang et al., 2021a). Consequently, the annotation
process for training examples is highly demand-
ing, particularly when multiple opinions need to be
annotated within a single text.

Previous research has predominantly concen-
trated on 0- to 10-shot learning, exclusively uti-
lizing the English-language restaurant domain
datasets Rest15 and Rest16 introduced by Zhang
et al. (2021a).

In this study, we extend the analysis to include up
to 50 few-shot examples and evaluate the approach
on a diverse series of five datasets. The datasets
utilized in this work include Rest15 and Rest16,
introduced by Zhang et al. (2021b) and we incor-
porate the OATS dataset by Chebolu et al. (2024),
which consists of hotel reviews from TripAdvisor
and online learning reviews collected from Cours-
era. Finally, we introduce a novel ASQP dataset,
comprising annotated sentences from airline re-
views, which is published as part of this work.

We considered the following research questions:

RQ1: How does varying the number of few-shot
examples (from 0 to 50) impact performance
on the ASQP task?

RQ2: How do LLMs perform on the ASQP task
compared to SLMs trained on annotated ex-
amples?

RQ3: Does self-consistency (SC) prompting
(Wang et al., 2022a), where multiple outputs
are generated from the same prompt and the
most consistent response is selected, improve
performance on the ASQP task?

We employed Google’s Gemma-3-27B (Gemma
et al., 2025) and report the performance for the
smaller-sized Gemma-3-4B. In addition, we report
the LLMs’ performance on the target aspect senti-
ment detection (TASD), which focuses on the iden-
tification of (a, c, p)-triplets. All code and results
of this study is publicly available on GitHub2.

2 Related Work

2.1 Aspect Sentiment Quad Prediction

Patroon features a nice  cigar bar 

and has great staff .

a: cigar bar
c: ambience general
o: nice
p: POS

QUAD #1

a: staff
c: service general
o: great
p: POS

QUAD #2

QUAD #1

QUAD #2

Figure 1: Annotated example for ASQP from Rest16
(Zhang et al., 2021a). One or multiple opinion-
quadruple annotations are assigned to each sentence.

The development of methodologies for address-
ing the ASQP task was strongly influenced by the
work of Zhang et al. (2021a), which introduced
two annotated datasets for the ASQP task: Rest15
and Rest16. An example of such annotations is
illustrated in Figure 1. Both datasets comprise an-
notated sentences derived from restaurant reviews.
The annotations are sourced from the SemEval
Shared Task datasets from 2015 and 2016 (Pon-
tiki et al., 2015, 2016), which originally included
only (a, c, p)-triplets and thus did not include an-
notations for opinion terms.

Since the release of Rest15 and Rest16, gen-
erative methods within a unified framework have
emerged as the state-of-the-art (SOTA) approach
for the ASQP task. Various strategies have been
explored to generate sentiment elements in spe-
cific formats that exploit label semantics. These
include approaches employing structured extrac-
tion schemas (Lu et al., 2022), sequential repre-
sentations of sentiment elements (Gou et al., 2023)
and natural language formats (Gou et al., 2023; Liu
et al., 2021), wherein quadruples are systematically
converted into natural language sentences. Perfor-
mance scores for these methods are presented in
Table 1.

All the aforementioned approaches rely on small
text generation models, such as t5-base (Raffel
et al., 2020), which utilizes an encoder-decoder

2https://github.com/NilsHellwig/llm-prompting
-asqp
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Strategy Method ASQP TASD
Rest15 Rest16 Rest15 Rest16

Zero-shot
learning

gpt-3.5-turbo, 0-shot (uncased) (Gou et al., 2023) 22.87 - - 34.08
gpt-3.5-turbo, 0-shot (Zhang et al., 2024) 10.46 14.02 - -
text-davinci-003, 0-shot (Zhang et al., 2024) 13.73 18.18 - -
ChatABSA, 0-shot (Bai et al., 2024) 27.11 30.42 39.21 41.28

Few-shot
learning

gpt-3.5-turbo, 1-shot (Zhang et al., 2024) 30.15 31.98 - -
gpt-3.5-turbo, 5-shot (Zhang et al., 2024) 31.21 38.01 - -
gpt-3.5-turbo, 10-shot (uncased) (Gou et al., 2023) 34.27 - - 46.51
gpt-3.5-turbo, 10-shot (Zhang et al., 2024) 30.92 40.15 - -
ChatABSA, 1-shot (Bai et al., 2024) 28.13 33.84 37.23 41.92
ChatABSA, 5-shot (Bai et al., 2024) 33.26 31.92 43.00 45.04
ChatABSA, 10-shot (Bai et al., 2024) 32.14 33.26 45.93 47.00

Fine-tuning

TAS-BERT (Wan et al., 2020) 34.78 43.71 57.51 65.89
Extract-Classify (Cai et al., 2021) 36.42 43.77 - -
GAS (Zhang et al., 2021b) 45.98 56.04 60.63 68.31
Paraphrase (Zhang et al., 2021a) 46.93 57.93 63.06 71.97
DLO (Hu et al., 2022) 48.18 59.79 62.95 71.79
MVP (Gou et al., 2023) 51.04 60.39 64.53 72.76

Table 1: Performance on the ASQP and TASD task. F1 scores of both LLM-based and fine-tuned approaches from
related work.

architecture based on the transformer architecture
(Vaswani, 2017). The t5-base model, comprising
223 million parameters, is fine-tuned specifically
for the ASQP task.

2.2 Large Language Models for Aspect-based
Sentiment Analysis

The zero- and few-shot capabilities of LLMs have
been demonstrated across various NLP tasks, e.g.
question answering (Chada and Natarajan, 2021;
Brown et al., 2020), named entity recognition
(Cheng et al., 2024; Wang et al., 2023b), infor-
mation retrieval (Faggioli et al., 2023; Wang et al.,
2022b) or sentiment analysis (Zhang et al., 2024).
In many cases, these models have achieved perfor-
mance scores comparable to fine-tuned approaches,
with few-shot learning often outperforming zero-
shot learning.

In the domain of ABSA, LLMs have been em-
ployed in both zero- and few-shot settings. How-
ever, these efforts were constrained to a maximum
of 10 few-shot examples within the prompt’s con-
text, addressing both ASQP and ABSA tasks with
fewer sentiment elements (Conneau, 2019; Gou
et al., 2023; Zhang et al., 2024).

Zhang et al. (2024) employed OpenAI’s gpt-3.5-
turbo (Brown et al., 2020) for End-to-End ABSA
(E2E-ABSA, focus on (a, p) pairs) and achieved an
F1 score of 54.46 and 63.30 on the Rest14 dataset
(restaurant domain) from Pontiki et al. (2014) for

zero- and 10-shot learning, respectively. A fine-
tuned t5-large model (Raffel et al., 2020) achieved
a slightly higher F1 score of 75.31. Similarly, Wu
et al. (2024) analysed multiple open source LLMs
with less than 10 billion parameters, as well as
commercial LLMs for multilingual E2E-ABSA
in a zero-shot setting. In multilingual ABSA,
applying prompting strategies such as chain-of-
thought (CoT) prompting did not improve perfor-
mance when averaged across the LLMs considered.
However, the best performing LLM, GPT-4o-CoT,
achieved an F1 score of 52.81 which is slightly
below the performance of the most performant fine-
tuned model XLM-R (Conneau, 2019) (68.86). Wu
et al. (2024) also evaluated a self-consistency (SC)
prompting strategy, where the most frequent label
across five generated outputs was selected as the
final label. SC did not lead to an improvement in
the performance.

With regard to the ASQP task, Zhang et al.
(2024) achieved F1 scores below 20 for both Rest15
and Rest16 (see Table 1). Performance was im-
proved to F1 scores above 30 on both Rest15 and
Rest16 by providing 1, 5 or 10 few-shot examples.

Gou et al. (2023) surpassed the performance re-
ported by Zhang et al. (2024) and reported an F1
score of 22.87 (zero-shot) and 34.27 (10-shot) on
the Rest16 dataset, slightly exceeding the perfor-
mance reported by Zhang et al. (2024). Notably,
Gou et al. (2023) presented the sentences to be

155



annotated and few-shot examples in an uncased
format within the prompt, differing from the ap-
proach by Zhang et al. (2024). Furthermore, the
task descriptions were formatted differently, with
Gou et al. (2023) offering descriptions on each of
the four sentiment elements considered in the re-
spective ABSA task. Bai et al. (2024) adopted a
distinct approach (referred to as ChatABSA) to
processing its outputs, leading to performance im-
provements in the zero-shot setting but not in the
few-shot setting. In the prompt, it was stated that
the output should be in the JSON format. Further-
more, predicted aspect terms or opinion terms that
were not explicitly mentioned in the original sen-
tence were systematically set to null.

In summary, previous studies demonstrated that
few-shot learning massively boosts performance in
ABSA tasks but did not exceed the performance of
models fine-tuned on annotated examples.

3 Methodology

We utilized LLMs to tackle the ASQP task across 0-
, 10-, 20-, 30-, 40-, and 50-shot settings on different
datasets. The performance is compared to that
achieved using a dedicated training set to fine-tune
smaller pre-trained language models. Furthermore,
we report performance results for the TASD task.

3.1 Evaluation

3.1.1 Datasets
Table 2 presents an overview of the datasets used in
this study, including Rest15 and Rest16, along with
three additional datasets covering diverse domains.

Rest15 & Rest16: ASQP annotations originate
from Zhang et al. (2021a) and the TASD annota-
tions from Wan et al. (2020). This ensured com-
parability with the performance scores reported in
previous research.

FlightABSA: A novel dataset containing 1,930
sentences annotated for ASQP. Properties of the
annotated dataset are provided in Appendix B.

OATS Hotels & OATS Coursera: We utilized
a subset of two corpora recently introduced by
Chebolu et al. (2024) comprising ASQP-annotated
sentences from reviews on hotels and e-learning
courses. A detailed description of the data pre-
processing for the OATS datasets can be found in
Appendix A.

For the TASD task, we removed the opinion
terms from the quadruples in annotations from
FlightABSA, OATS Coursera and OATS Hotels.

Subsequently, any duplicate triplets (a, c, p) that
appeared twice in a sentence were discarded.

3.1.2 Setting
For evaluation, the test dataset was considered for
all datasets. An LLM was prompted five times with
different seeds (0 to 4) for each combination of
ABSA task (ASQP and TASD), dataset and amount
of random few-shot examples (0, 10, 20, 30, 40 or
50) taken from the training set in order to get five
label predictions. For all seeds, the same few-shot
examples were used; however, they were shuffled
differently for each prompt execution. The average
performance across all five runs is reported.

3.1.3 Metrics
As in previous works in the field of ABSA, we
report the micro-averaged F1 score as well as pre-
cision and recall to assess the model’s performance.
The F1 score is the harmonic mean of precision
and recall. Precision measures the proportion of
correctly predicted positive instances out of all in-
stances predicted as positive (Jurafsky and Martin,
2024, p. 67). Recall quantifies the proportion of
correctly predicted positive instances out of all ac-
tual positive instances in the dataset (Jurafsky and
Martin, 2024, p. 67).

Similar to Zhang et al. (2021a), a quad prediction
was considered correct if all the predicted sentiment
elements are exactly the same as the gold labels.
Recognizing the potential interest in class-level
performance metrics for subsequent research, we
have shared the predicted labels for every evaluated
setting in our GitHub repository, allowing detailed
class-level analysis.

3.2 Large Language Models

We employed Gemma-3-27B3 by Google, which
comprises 27.4 billion parameters (Gemma et al.,
2025). Ollama4 was employed for inference, and
the LLMs were loaded with 4-bit quantization. The
model was chosen for its efficiency in terms of
generated tokens per second, which is a critical fac-
tor given the extensive prompt execution require-
ments. Notably, our study required over 342,720
prompts to be executed, with many few-shot learn-
ing prompts encompassing over a thousand tokens.
For larger models, such as Llama-3.3-70B Dubey
et al. (2024), the required computational costs

3google/gemma-3-27b: https://ollama.com/library
/gemma3:27b

4ollama: https://ollama.com
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Rest15 Rest16 FlightABSA OATS Coursera OATS Hotels
# Train 834 1,264 1,351 1,400 1,400
# Test 537 544 387 400 400
# Dev 209 316 192 200 200
# Aspect Categories 13 13 13 28 33
Language en en en en en
Domain restaurant restaurant airline e-learning hotel

Table 2: Overview of all ASQP datasets considered for evaluation. The datasets cover a range of different numbers
of considered aspect categories and domains.

According to the following sentiment elements definition: 

- The 'aspect term' is the exact word or phrase in the text that
represents a specific feature, attribute, or aspect of a product
or service that a user may express an opinion about, the
aspect term might be 'NULL' for implicit aspect. 
- The 'aspect category' refers to the category that aspect
belongs to, and the available categories includes: […aspect
categories].
- The 'sentiment polarity' refers to the degree of positivity, 
negativity or neutrality expressed in the opinion towards a 
particular aspect or feature of a product or service, and the
available polarities include: 'positive', 'negative' and 'neutral'.
- The 'opinion term' is the exact word or phrase in the text that
refers to the sentiment or attitude expressed by a user
towards a particular aspect or feature of a product or service, 
the aspect term might be 'NULL' for implicit opinion.

Return all sentiment elements with their corresponding
aspect terms, aspect categories, sentiment polarity and 
opinion terms in the following text with the format of [('aspect
term', 'aspect category', 'sentiment polarity', 'opinion term'), 
...].

[…few-shot examples]
Text: It has great sushi and even better service .
Sentiment Elements:

LLM Output:Prompt

Output: Seed 0
Sentiment Elements: [ ('sushi', 'food quality', 'positive', 'great‘) , ('service', 'service general', 'positive', 'better‘) ]

Output: Seed 1
Sentiment Elements: [ ('sushi', 'food general', 'positive', 'great‘) , ('service', 'service general', 'positive', 'better‘) ]

Output: Seed 2
Sentiment Elements: [ ('sushi', 'food quality', 'positive', 'great‘) , ('service', 'service general', 'positive', 'even better') ]

Output: Seed 3
Sentiment Elements: [ ('sushi', 'food quality', 'positive', 'great‘) , ('service', 'service general', 'positive', 'better') ]

Output: Seed 4
Sentiment Elements: [ ('sushi', 'food quality', 'positive', 'great‘) , ('service', 'service general', 'positive', 'even better') ]

Output: Self-consistency majority merge
Sentiment Elements: [ ('sushi', 'food quality', 'positive', 'great‘) , ('service', 'service general', 'positive', 'better') ]

Figure 2: The prompt includes both a task description and specification of the output format. The LLM is run with
five different seeds and in the case of self-consistency prompting, the tuple that appears most often across the five
predictions is incorporated into the final label.

would have been hardly feasible with our resources.
For comparison purposes, we also report perfor-
mance for the smaller-sized LLM, Gemma-3-4B5.

The experiments were conducted on a NVIDIA
RTX A5000 GPU equipped with 24 GB of VRAM.
The LLM’s temperature parameter was set to 0.8
and generation was terminated upon encountering
the closing square bracket character ("]") signify-
ing the ending of a predicted label.

3.3 Prompt
3.3.1 Components
We adopted the prompting framework introduced
by Gou et al. (2023) with some modifications. The
employed prompt is illustrated in Figure 3.1.3 and
an example is provided in Appendix C. The main
components of the prompt include a list of explana-
tion on all considered sentiment elements and the
specification of the output format.

Unlike the prompt by Gou et al. (2023), our
prompt instructed the LLM to pay attention to case

5google/gemma-3-4b: https://ollama.com/library/g
emma3:4b

sensitivity when returning aspect and opinion terms.
Hence, the identified phrases should appear in the
predicted tuple as they do in the sentence, similar to
all supervised approaches mentioned in the related
work section. Therefore, in the prompt, we clearly
stated that the exact phrases should appear in the
predicted label.

Since we executed each prompt with five differ-
ent seeds, we also report the performance when em-
ploying the self-consistency prompting technique
introduced by Wang et al. (2022a). The key idea is
to select the most consistent answer from multiple
prompt executions. We adapted the approach for
ABSA by incorporating a tuple into the merged
label if it appears in the majority of the predicted
labels. As illustrated in Figure 3.1.3, this corre-
sponds to a tuple appearing in at least 3 out of 5
predicted labels.

3.4 Output Validation

Since LLMs such as Gemma-3-27B cannot be
strictly constrained to a fixed output format, we
programmatically validated the output of the LLM.
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For the predicted label, several criteria needed to
be met for the generation to be considered valid:

• Format: The output must be a list of one or
more tuples consisting of strings (quadruples
for ASQP, triplets for TASD).

• Sentiment: The sentiment must be either ’pos-
itive’, ’negative’ or ’neutral’.

• Aspect category: Only the categories consid-
ered for the respective dataset and thus being
mentioned in the prompt should be predicted
as a part of a tuple.

• Aspect and opinion terms: Both must appear
in the given sentence as predicted.

If any of the specified criteria for reasoning or
label validation is not met, a regeneration attempt
was triggered. If the predicted label was still in-
valid after 10 attempts, an empty label ([]) was
considered as the predicted label.

3.5 Baseline Model
We compared the previously mentioned zero- and
few-shot conditions against three SOTA baseline
approaches, which are, the three best-performing
methods for ASQP and TASD on the Rest15 and
Rest16 datasets: Paraphrase (Zhang et al., 2021a),
DLO (Hu et al., 2022) and MVP (Gou et al., 2023).

Paraphrase (Zhang et al., 2021a): Paraphrase
is used to linearize sentiment quads into a
natural language sequence to construct the
input target pair.

DLO (Hu et al., 2022): Dataset-level order is a
method designed for ASQP that leverages
the order-free property of quadruplets. It
identifies and utilizes optimal template orders
through entropy minimization and combines
multiple effective templates for data augmen-
tation.

MVP (Gou et al., 2023): Multi-view-Prompting
introduces element order prompts. The
language model is guided to generate
multiple sentiment tuples, with a different
element order each, and then selects the most
reasonable tuples by a voting mechanism.
This method is highly resource-intensive, as
multiple input-output pairs are created for
each example in the train set, each comprising
different sentiment element positions.

For all three approaches, we conducted training
using the entire dataset and performed training with
only 10, 20, 30, 40, or 50 training examples equally
to the ones employed for the few-shot learning con-
ditions. Training was conducted using five different
random seeds (0 to 4). Moreover, to facilitate com-
parisons across datasets, we trained models using
800 training examples, as this represents the largest
multiple of 100 examples available for all train
sets (900 training examples are not available for
Rest15). The results obtained using the full train-
ing sets of Rest15 and Rest16 were extracted from
the works of Zhang et al. (2021a), Hu et al. (2022),
and Gou et al. (2023).

For all methods, we used the hyperparameter
configurations used by Zhang et al. (2021a), Hu
et al. (2022) and Gou et al. (2023). The only excep-
tion was the 10-shot condition, where batch size
was set to 8 instead of 16, as the limited number of
examples (10) could not form a batch of 16 exam-
ples.

4 Results

The performance scores for the evaluated configu-
rations are shown in Table 3 for the ASQP task and
in Appendix D for the TASD task. Detailed per-
formance scores focusing on individual sentiment
elements are provided in Appendix E. Notably, for
both tasks, we performed t-tests with Bonferroni
correction (padj < .05) to examine whether signifi-
cant differences exist between the F1 scores of the
evaluated conditions (corresponding to the number
of rows in Figure 3). No significant differences
were observed.

Performance gains with an increasing number
of few-shot examples. In most cases, increasing
the number of few-shot examples resulted in in-
cremental improvements in F1 scores across both
ASQP and TASD tasks. The difference between
zero- and few-shot prompting is substantial. For in-
stance, on the Rest16 dataset under the SC prompt-
ing condition, the F1 score improved from 28.96
(0-shot) to 51.10 (50-shot) for the ASQP task. To
further highlight this trend, we provide line plots
(see Figure F) that depict the influence of the num-
ber of few-shot examples on the F1 scores across
all tasks, datasets, and models.

LLM performance slightly lower compared
to SOTA fine-tuned approaches. For both TASD
and ASQP, the performance achieved through zero-
and few-shot prompting did not surpass that ob-
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Method Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Gemma-3-4B

-

0 6.80 7.43 6.26 8.00 8.83 7.31 11.12 13.11 9.66 5.23 5.67 4.86 11.11 14.48 9.02
10 10.95 12.52 9.74 11.25 12.67 10.11 13.02 15.96 11.02 6.67 7.04 6.33 10.53 13.13 8.79
20 16.93 17.94 16.03 18.52 20.06 17.20 11.92 14.00 10.37 9.47 9.59 9.36 14.72 16.02 13.62
30 20.09 20.25 19.95 21.64 23.00 20.43 16.55 18.36 15.08 11.19 11.03 11.35 11.36 11.22 11.54
40 19.40 19.05 19.77 25.42 25.62 25.23 18.34 20.03 16.92 11.26 11.13 11.39 14.01 13.42 14.67
50 24.48 24.62 24.35 24.80 25.46 24.18 22.97 23.93 22.10 11.27 11.61 10.96 16.00 15.87 16.17

SC

0 6.06 28.12 3.40 6.03 28.12 3.38 12.81 45.36 7.46 4.03 25.00 2.19 12.25 52.63 6.93
10 7.86 48.57 4.28 9.63 45.74 5.38 10.53 60.71 5.76 7.42 54.05 3.98 9.80 52.00 5.41
20 18.62 47.67 11.57 20.02 50.00 12.52 8.63 47.46 4.75 10.38 50.88 5.78 14.19 43.88 8.46
30 23.62 51.26 15.35 25.07 54.62 16.27 15.06 46.49 8.98 12.44 46.75 7.17 10.64 26.52 6.66
40 23.44 49.59 15.35 31.13 52.37 22.15 18.23 49.25 11.19 13.62 41.00 8.17 15.12 34.15 9.71
50 30.11 52.34 21.13 27.46 46.97 19.40 26.58 52.50 17.80 14.05 39.09 8.57 16.93 37.26 10.96

Gemma-3-27B

-

0 24.41 22.67 26.44 28.94 27.12 31.01 42.31 39.10 46.10 13.05 11.42 15.22 22.90 22.49 23.33
10 38.19 36.68 39.85 44.35 41.92 47.08 43.04 41.35 44.88 22.07 21.50 22.67 30.47 32.21 28.90
20 36.25 36.99 35.55 49.41 48.53 50.34 42.31 41.72 42.92 24.31 24.56 24.06 36.96 38.61 35.45
30 36.94 37.47 36.43 48.62 48.29 48.96 44.55 44.56 44.54 25.61 26.36 24.90 37.98 40.61 35.67
40 37.19 37.36 37.03 47.82 47.23 48.44 42.52 43.61 41.49 23.30 23.84 22.79 38.38 41.22 35.92
50 39.62 39.65 39.60 47.18 46.52 47.86 44.20 44.05 44.37 23.04 23.26 22.83 39.97 43.41 37.03

SC

0 24.73 23.35 26.29 28.96 27.75 30.29 42.37 39.70 45.42 13.36 11.95 15.14 23.02 22.88 23.16
10 39.95 39.41 40.50 46.23 44.64 47.93 45.24 45.39 45.08 22.31 23.41 21.31 31.41 35.29 28.29
20 36.46 38.70 34.47 51.54 52.83 50.31 43.91 46.17 41.86 26.08 29.28 23.51 39.23 43.84 35.51
30 37.91 41.21 35.09 50.61 51.98 49.31 46.14 48.42 44.07 28.08 33.24 24.30 41.68 48.61 36.48
40 38.54 41.51 35.97 50.03 51.74 48.44 47.16 52.38 42.88 25.86 31.96 21.71 42.12 50.10 36.34
50 41.74 44.57 39.25 51.10 54.55 48.06 48.37 51.95 45.25 25.86 31.96 21.71 43.83 53.39 37.17

MVP
(Gou et al., 2023)

-

10 10.58 12.00 9.46 12.37 14.40 10.84 9.38 11.66 7.84 12.88 14.46 11.62 6.98 8.42 5.97
20 18.71 21.22 16.73 21.49 24.30 19.27 14.27 17.43 12.09 18.85 20.79 17.25 14.30 16.03 12.92
30 24.36 26.54 22.52 27.58 30.83 24.96 22.53 26.82 19.42 21.32 23.25 19.68 20.89 23.17 19.03
40 25.95 27.72 24.40 32.72 33.56 31.94 28.15 32.17 25.03 20.21 22.02 18.68 24.71 27.00 22.78
50 30.20 31.07 29.38 33.32 34.75 32.02 33.12 35.09 31.38 22.07 24.16 20.32 29.91 33.08 27.31
800 50.02 48.99 51.09 58.09 56.31 59.97 57.46 56.23 58.74 30.26 29.91 30.62 53.37 52.41 54.36
Full 51.04 - - 60.39 - - 57.90 56.09 59.83 32.50 32.04 32.97 55.03 54.38 55.69

DLO
(Hu et al., 2022)

10 4.37 4.64 4.13 5.18 5.49 4.91 4.87 6.15 4.03 4.47 5.03 4.02 3.53 3.68 3.41
20 12.06 14.37 10.39 13.84 14.42 13.32 9.75 12.09 8.17 10.79 11.88 9.88 8.16 6.86 10.10
30 18.71 18.16 19.32 24.06 24.71 23.45 16.63 18.13 15.39 17.05 17.73 16.41 17.71 17.54 17.89
40 22.87 21.36 24.60 26.92 25.94 27.98 23.75 26.24 21.69 17.22 18.38 16.22 22.65 23.01 22.33
50 26.63 24.92 28.60 29.57 29.09 30.06 28.74 28.30 29.22 19.08 20.44 17.89 27.20 28.54 25.99
800 49.87 48.59 51.22 59.44 57.73 61.25 57.42 56.03 58.88 30.83 30.37 31.31 54.40 53.39 55.45
Full 48.18 47.08 49.33 59.79 57.92 61.80 58.33 56.67 60.10 32.54 32.03 33.07 55.45 54.39 56.56

Paraphrase
(Zhang et al., 2021a)

10 1.32 1.64 1.11 3.56 4.02 3.23 3.44 4.34 2.85 4.75 5.35 4.26 2.63 3.66 2.06
20 5.48 6.78 4.60 11.14 10.54 11.91 3.48 4.39 2.88 9.51 10.64 8.61 5.34 6.36 4.65
30 9.47 9.54 9.46 7.18 8.44 6.28 3.60 4.55 2.98 11.39 12.84 10.24 5.13 6.48 4.26
40 17.61 17.07 18.19 20.15 20.69 19.67 13.81 15.09 12.78 16.43 17.79 15.26 14.96 15.99 14.08
50 25.55 24.58 26.62 23.50 23.75 23.25 17.98 18.58 17.42 19.38 20.72 18.21 23.09 23.67 22.59
800 46.32 45.61 47.07 56.88 55.65 58.17 54.96 54.10 55.86 30.79 30.63 30.96 53.65 52.57 54.77
Full 46.93 46.16 47.72 57.93 56.63 59.30 57.76 57.37 58.17 32.34 32.06 32.63 53.87 52.61 55.19

Table 3: Performance scores for ASQP. For the Rest15 and Rest16 datasets, performance scores achieved when
employing the full training set ("Full") are taken from Gou et al. (2023), Hu et al. (2022) and Zhang et al. (2021b)
for MVP, DLO and Paraphrase, respectively. The best score achieved by a method is presented in bold.

tained when the entire training set was utilized. For
example, on the Rest16 dataset, Gemma-3-27B
achieved 68.93, which is slightly below the best
F1 score achieved by a fine-tuned approach (MVP:
72.76). However, the best F1 scores achieved by
Gemma-3-27B in the TASD task were often close
to those achieved by fine-tuned approaches em-
ploying 800 or all examples from the training set.
In case only 10 to 50 annotated examples were
used for prompting or training, few-shot prompting
consistently outperformed fine-tuning approaches
across all sample sizes, with only a few exceptions.

Massive performance enhancements achieved
through self-consistency. SC enabled consid-

erable boosts of the F1 score, regardless of the
amount of few-shot examples. However, recall was
occasionally higher without SC. Precision, on the
other hand, was improved with SC in both tasks
and across datasets. For instance, in the case of
Gemma-3-4B, precision was increased in most in-
stances.

The LLM’s parameter size matters. Gemma-
3-4B demonstrated lower performance in terms of
F1 scores for both ASQP and TASD. Across the
five datasets, the F1 scores in the ASQP task were
approximately 10 percentage points lower when
using Gemma-3-4B instead of Gemma-3-27B. For
example, on the Rest15 dataset, the best F1 score
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achieved with Gemma-3-4B was 44.20, while the
best score for Gemma-3-27B was 62.12 on the
TASD task.

Lower performance in identifying opinion
terms compared to other sentiment elements. As
shown in the tables in Appendix E, performance
in identifying sentiment (positive, negative, or neu-
tral) is highly performant, with F1 scores exceeding
90. However, performance in identifying aspect
and opinion terms is comparatively much lower.

5 Discussion

The results demonstrated performance improve-
ments in F1 scores for both ASQP and TASD as the
number of few-shot examples increases, highlight-
ing the gap between zero- and few-shot prompting.
In this chapter, we put the results of this work into
the context of previous research and provide an
outlook on the direction of future work.

New SOTA performance of LLMs. The LLM
zero- and few-shot learning performance scores
reported in previous studies by Gou et al. (2023),
Zhang et al. (2024) and Bai et al. (2024) for the
ASQP task on the Rest15 and Rest16 datasets fall
below those achieved by Gemma-3-27B in both
zero- and 10-shot learning settings. The only ex-
ception is Rest15, where ChatABSA (Bai et al.,
2024) outperformed Gemma-3-27B in zero-shot
learning except for TASD + Rest16. Unlike prior
studies, which have primarily evaluated up to 10-
shot settings, we extended the investigation to a
10- to 50-shot setting for the first time. In this
expanded range, Gemma-3-27B achieved notable
F1 scores exceeding 50 for the ASQP task (e.g.,
Rest16 with SC: 51.54) and surpassing 60 for the
TASD task (e.g., Rest16 with SC: 68.93). Notably,
these substantial gains are also attributed to the use
of SC prompting. Furthermore, this is in contrast to
the work of Wu et al. (2024), whose SC approach
for E2E-ABSA did not lead to an improvement in
performance.

Model size and prompting strategy affect
few-shot performance. Although Gemma-3-27B
achieved competitive results in both ASQP and
TASD, its performance remained slightly below
fine-tuned SOTA approaches such as those by
Gou et al. (2023), Zhang et al. (2021b), and Hu
et al. (2022) when full training sets were employed.
However, in scenarios with limited annotated ex-
amples, few-shot prompting consistently outper-
formed fine-tuning. The parameter size of the

model also influenced performance, with Gemma-
3-27B consistently outperforming its smaller coun-
terpart, Gemma-3-4B.

Directions for enhancing low-resource task
performance. Building on the promising results
of this study, future research could focus on im-
proving low-resource task performance through
advanced prompt engineering techniques. Ap-
proaches such as chain-of-thought prompting (Wei
et al., 2022) or plan-and-solve prompting (Wang
et al., 2023a), which allowed for performance gains
in other NLP tasks, hold significant potential. Fur-
thermore, refining annotation guidelines or repre-
senting labels as natural language text, as proposed
by Zhang et al. (2021b), could contribute to im-
proved outcomes. Bigger LLMs, e.g. with 70B
parameters, may provide additional performance
benefits, given that our 27B model demonstrated
superior results compared to the 4B variant.

Exploring less complex tasks and many-shot
learning. In a broader context, future research
could extend our approach to less complex tasks,
in terms of the amount of considered sentiment ele-
ments, such as E2E-ABSA or aspect category sen-
timent analysis (ACSA) which focuses on aspect
category and the sentiment expressed towards them.
Beyond the low-resource setting considered in this
study, one could explore the so-called "many-shot
in-context learning" paradigm described by Agar-
wal et al. for ABSA, where hundreds or even the
full training set is provided in the prompt. Observ-
ing that our approach achieved performance scores
on the TASD task close to fine-tuned models, future
work could investigate whether further increasing
the number of shots lead to surpassing fine-tuned
approaches.

Limitations

This study evaluated the performance of LLMs on
ASQP tasks across a broad selection of datasets,
few-shot settings, and LLM configurations. How-
ever, a limitation of this work is the selection of
employed LLMs. We only employed LLMs com-
prising 4 or 27 billion parameters. Bigger-sized
models such as Llama-3-70B (Dubey et al., 2024)
or commercial models were not considered due to
their prohibitive computational and financial costs.
In order to evaluate each setting for a considered
LLM, we executed a total of 171,360 prompts. Due
to the amount of tokens in each prompt, the asso-
ciated cost implications are substantial: about 125
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hours (5 days) for Gemma-3-27B and 59 hours (2
days) for Gemma-3-4B. Hence, the time would fur-
ther increase with an even bigger LLM in terms
of parameter size. For commercial models such
as GPT-4, executing all prompts would result in
massive costs.

Finally, we must highlight the issue of potential
data contamination, as it is the case for the previ-
ous studies introduced in the related work section.
Meaning, it cannot be ruled out that the publicly
available annotated datasets used in this study (ex-
cept for FlightABSA) were included in the training
data for both Gemma-3-4B and Gemma-3-27B.

Ethics Statement

All results and code used in this study are publicly
available. The dataset we introduced, FlightABSA,
is available upon request. We want to prevent the
annotated dataset from being available online and
then being inadvertently collected for pre-training
LLMs.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd
Bohnet, Luis Rosias, Stephanie CY Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle.
Many-shot in-context learning. In ICML 2024 Work-
shop on In-Context Learning.

AI Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card, 1.

Yinhao Bai, Zhixin Han, Yuhua Zhao, Hang Gao,
Zhuowei Zhang, Xunzhi Wang, and Mengting Hu.
2024. Is compound aspect-based sentiment analysis
addressed by llms? In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
7836–7861.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Hongjie Cai, Rui Xia, and Jianfei Yu. 2021. Aspect-
category-opinion-sentiment quadruple extraction
with implicit aspects and opinions. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 340–350.

Rakesh Chada and Pradeep Natarajan. 2021. Fewshotqa:
A simple framework for few-shot learning of question
answering tasks using pre-trained text-to-text models.
arXiv preprint arXiv:2109.01951.

Siva Uday Sampreeth Chebolu, Franck Dernoncourt,
Nedim Lipka, and Thamar Solorio. 2024. Oats:
A challenge dataset for opinion aspect target senti-
ment joint detection for aspect-based sentiment anal-
ysis. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 12336–12347.

Qi Cheng, Liqiong Chen, Zhixing Hu, Juan Tang, Qiang
Xu, and Binbin Ning. 2024. A novel prompting
method for few-shot ner via llms. Natural Language
Processing Journal, 8:100099.

A Conneau. 2019. Unsupervised cross-lingual rep-
resentation learning at scale. arXiv preprint
arXiv:1911.02116.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and et al. 2024. The llama 3 herd of models.

Guglielmo Faggioli, Laura Dietz, Charles LA Clarke,
Gianluca Demartini, Matthias Hagen, Claudia Hauff,
Noriko Kando, Evangelos Kanoulas, Martin Potthast,
Benno Stein, et al. 2023. Perspectives on large lan-
guage models for relevance judgment. In Proceed-
ings of the 2023 ACM SIGIR International Confer-
ence on Theory of Information Retrieval, pages 39–
50.

Jakob Fehle, Leonie Münster, Thomas Schmidt, and
Christian Wolff. 2023. Aspect-based sentiment anal-
ysis as a multi-label classification task on the domain
of german hotel reviews. In Proceedings of the 19th
Conference on Natural Language Processing (KON-
VENS 2023), pages 202–218.

Team Gemma, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2025. Gemma 3
technical report.

Zhibin Gou, Qingyan Guo, and Yujiu Yang. 2023. Mvp:
Multi-view prompting improves aspect sentiment tu-
ple prediction. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4380–4397.

Shai Gretz, Alon Halfon, Ilya Shnayderman, Orith
Toledo-Ronen, Artem Spector, Lena Dankin, Yannis
Katsis, Ofir Arviv, Yoav Katz, Noam Slonim, et al.
2023. Zero-shot topical text classification with llms-
an experimental study. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
9647–9676.

161

https://arxiv.org/abs/2407.21783


Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear, 7(1):411–420.

Mengting Hu, Yike Wu, Hang Gao, Yinhao Bai, and
Shiwan Zhao. 2022. Improving aspect sentiment
quad prediction via template-order data augmenta-
tion. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 7889–7900.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Daniel Jurafsky and James H. Martin. 2024. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics,
and Speech Recognition with Language Models, 3rd
edition.

Guangmin Li, Hui Wang, Yi Ding, Kangan Zhou, and
Xiaowei Yan. 2023. Data augmentation for aspect-
based sentiment analysis. International Journal of
Machine Learning and Cybernetics, 14(1):125–133.

Jian Liu, Zhiyang Teng, Leyang Cui, Hanmeng Liu, and
Yue Zhang. 2021. Solving aspect category sentiment
analysis as a text generation task. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 4406–4416.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics, pages 63–70.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao,
Bing Qin, Orphée De Clercq, et al. 2016. Semeval-
2016 task 5: Aspect based sentiment analysis. In In-
ternational workshop on semantic evaluation, pages
19–30.

Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment analy-
sis. In Proceedings of the 9th international workshop
on semantic evaluation (SemEval 2015), pages 486–
495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect

based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 27–35, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Cen Song, Jingquan Guo, and Jun Zhuang. 2020. Ana-
lyzing passengers’ emotions following flight delays-a
2011–2019 case study on skytrax comments. Journal
of Air Transport Management, 89:101903.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Hai Wan, Yufei Yang, Jianfeng Du, Yanan Liu, Kunxun
Qi, and Jeff Z Pan. 2020. Target-aspect-sentiment
joint detection for aspect-based sentiment analysis.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 9122–9129.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609–2634.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023b. Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022a. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Yaqing Wang, Song Wang, Yanyan Li, and Dejing Dou.
2022b. Recognizing medical search query intent
by few-shot learning. In Proceedings of the 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
502–512.

Zhiqiang Wang, Yiran Pang, and Yanbin Lin. 2023c.
Large language models are zero-shot text classifiers.
arXiv preprint arXiv:2312.01044.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Chengyan Wu, Bolei Ma, Zheyu Zhang, Ningyuan
Deng, Yanqing He, and Yun Xue. 2024. Evaluat-
ing zero-shot multilingual aspect-based sentiment

162



analysis with large language models. arXiv preprint
arXiv:2412.12564.

Wenxuan Zhang, Yang Deng, Xin Li, Yifei Yuan, Li-
dong Bing, and Wai Lam. 2021a. Aspect sentiment
quad prediction as paraphrase generation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9209–
9219.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and
Lidong Bing. 2024. Sentiment analysis in the era
of large language models: A reality check. In Find-
ings of the Association for Computational Linguistics:
NAACL 2024, pages 3881–3906.

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and
Wai Lam. 2021b. Towards generative aspect-based
sentiment analysis. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 504–510.

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing,
and Wai Lam. 2022. A survey on aspect-based senti-
ment analysis: Tasks, methods, and challenges. IEEE
Transactions on Knowledge and Data Engineering,
35(11):11019–11038.

A OATS Datasets Preprocessing

Since the OATS corpora, unlike Rest15 and Rest16
Zhang et al. (2021a), include examples where no
quadruples were annotated, we excluded these in-
stances as it is the case for Rest15, Rest16 and
FlightABSA.

Two limitations of the OATS corpora led to a dif-
ferent approach for train-test-validation split. First,
of the 7,188 (OATS Coursera) and 7,834 (OATS
Hotels) training examples, 5,887 and 5,304 respec-
tively included at least one annotated quadruple.
Approaches relying on the training set would re-
quire significant training time when employing
more than 5000 samples (which are also compared
with the LLM’s performance scores). Secondly, the
test set contained only 130 examples with at least
one annotated quadruple. Due to these limitations,
we decided to employ samples from the training set
for our analysis. Hence, we took 2,000 examples
from the training sets and a train-test-validation
split (70:20:10) was applied.

B FlightABSA Dataset

B.1 Data Acquisition

FlightABSA comprises reviews posted on Tripad-
visor on the 20 European airlines with the highest
passenger volumes in 2023, according to the CAPA
Centre for Aviation6. We collected reviews posted
between January 1, 2023 and September 24, 2024.
This period was selected as it follows the lifting
of hygiene measures related to the COVID-19 pan-
demic, which had been a frequent topic in earlier
reviews. A maximum of the first 300 sub-pages
listing the reviews on each airline were crawled.

In total, 15,493 reviews were gathered. Non-
English reviews were filtered out using langde-
tect7, resulting in 15,483 reviews. Named en-
tity recognition (NER) was applied using spaCy
(en_core_news_lg model) (Honnibal and Montani,
2017) to anonymize references to locations, per-
sonal names, and time-related information. Iden-
tified entities were replaced with placeholders
"LOC", "PERSON", and "DATE". Finally, the re-
views were segmented into 52,098 sentences using
the NLTK Tokenizer (Loper and Bird, 2002).

6List of Europe’s top 20 airlines: https://centrefora
viation.com/analysis/reports/europes-top-20-air
line-groups-by-pax-2023-ryanairs-lead-is-set-t
o-endure-68011

7langdetect: https://pypi.org/project/langdetect
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Positive Negative Neutral Total
Aspect Category Explicit Implicit Explicit Implicit Explicit Implicit Explicit Implicit

AIRLINE#GENERAL 203 86 137 94 13 11 353 191
AIRLINE#PRICE 21 12 37 29 - - 58 41
AIRLINE#SERVICE 442 28 178 42 7 2 627 72
AIRPORT#OPERATION#BAGGAGE 14 - 38 1 1 - 53 1
AIRPORT#OPERATION#BOARDING 20 2 18 - - - 38 2
AIRPORT#OPERATION#CHECK_IN 50 - 25 1 4 - 79 1
ONBOARD#CLEANLINESS 24 1 11 - 1 - 36 1
ONBOARD#ENTERTAINMENT 19 1 13 - 4 - 36 1
ONBOARD#FOOD 68 - 67 1 15 1 150 2
ONBOARD#PRICE 5 - 5 1 - - 10 1
ONBOARD#SEAT#COMFORT 42 1 50 4 3 - 95 5
ONBOARD#SEAT#LEGROOM 32 - 21 - 2 - 55 -
PUNCTUALITY#GENERAL 42 18 95 51 1 1 138 70
Total 982 149 695 224 51 15 1728 388

(a) Training set

Positive Negative Neutral Total
Aspect Category Explicit Implicit Explicit Implicit Explicit Implicit Explicit Implicit

AIRLINE#GENERAL 64 19 43 25 4 1 111 45
AIRLINE#PRICE 8 4 7 8 - - 15 12
AIRLINE#SERVICE 105 8 54 13 2 - 161 21
AIRPORT#OPERATION#BAGGAGE 3 - 13 - - - 16 -
AIRPORT#OPERATION#BOARDING 5 - 4 3 - - 9 3
AIRPORT#OPERATION#CHECK_IN 14 - 7 1 - - 21 1
ONBOARD#CLEANLINESS 6 1 2 - 1 - 9 1
ONBOARD#ENTERTAINMENT 4 - 7 - - - 11 -
ONBOARD#FOOD 21 - 26 - 4 - 51 -
ONBOARD#PRICE 1 - - 2 - - 1 2
ONBOARD#SEAT#COMFORT 10 - 16 3 1 - 27 3
ONBOARD#SEAT#LEGROOM 6 - 7 1 - - 13 1
PUNCTUALITY#GENERAL 16 4 18 17 1 - 35 21
Total 263 36 204 73 13 1 480 110

(b) Test set
Positive Negative Neutral Total

Aspect Category Explicit Implicit Explicit Implicit Explicit Implicit Explicit Implicit
AIRLINE#GENERAL 32 16 18 15 1 1 51 32
AIRLINE#PRICE 3 3 4 4 - - 7 7
AIRLINE#SERVICE 61 5 30 7 2 - 93 12
AIRPORT#OPERATION#BAGGAGE 2 - 6 - - - 8 -
AIRPORT#OPERATION#BOARDING 5 - 2 - - - 7 -
AIRPORT#OPERATION#CHECK_IN 6 2 5 - - - 11 2
ONBOARD#CLEANLINESS 2 2 1 1 - - 3 3
ONBOARD#ENTERTAINMENT 2 - 2 - - - 4 -
ONBOARD#FOOD 13 - 7 - 1 - 21 -
ONBOARD#PRICE 1 - 2 - - - 3 -
ONBOARD#SEAT#COMFORT 5 - 12 2 - - 17 2
ONBOARD#SEAT#LEGROOM 5 - 2 - - - 7 -
PUNCTUALITY#GENERAL 4 1 17 6 - - 21 7
Total 141 29 108 35 4 1 253 65

(c) Develop set

Table 4: Overview of FlightABSA. Aspect categories distribution per sentiment polarity and reference type.

B.2 Data Annotation
4,000 sentences were randomly chosen from the
52,098 sentences. We ensure that there is an equal
number of sentences from reviews with 1-, 2-, 3-,
4-, or 5-star ratings in order to achieve, that the
number of aspects expressing positive, negative, or
neutral sentiment is equal to some extent.

We aimed to obtain about 2,000 sentences, ac-
knowledging that some of the 4,000 sentences
might (1) not address any of the considered aspect
categories, (2) not express any sentiment towards
at least one of the considered aspect categories, (3)
not be in English but in another language, or (4)

be incorrectly tokenized by the NLTK tokenizer,
with the annotators identifying multiple sentences
instead of one.

B.2.1 Annotation Task

In line with Zhang et al. (2021a), all opinion expres-
sions were annotated in the format of (a, c, o, p)-
quadruples. Similar to the ASQP datasets Rest15
and Rest16 introduced by Zhang et al. (2021a), a
total of 13 aspect categories were considered for
annotation. These are as follows:
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AIRLINE#GENERAL
AIRLINE#PRICE
AIRLINE#SERVICE
AIRPORT-OPERATION#BAGGAGE
AIRPORT-OPERATION#BOARDING
AIRPORT-OPERATION#CHECK-IN
ONBOARD#CLEANLINESS
ONBOARD#ENTERTAINMENT
ONBOARD#FOOD
ONBOARD#PRICE
ONBOARD#SEAT-COMFORT
ONBOARD#SEAT-LEGROOM
PUNCTUALITY#GENERAL

Reviewers on Tripadvisor are provided with mul-
tiple evaluation criteria and can optionally rate
those on a scale of one to five stars in addition
to submitting a written review. Since we intended
to consider 13 aspect categories, similarly to Zhang
et al. (2021a), we adapted Tripadvisor’s nine cat-
egories and made several modifications. Specifi-
cally, we divided the ’Check-in and boarding’ cat-
egory into two distinct aspects of a parent cate-
gory named ’Airport Operation’ and also added
an attribute ’baggage’, resulting in three attributes
of that parent category. The ’Price’ category was
further refined to separately consider the price of
onboard offers and the airline’s overall pricing.

Since we capture various aspects related to
different aspects of the onboard experience, we
did not include a separate ’Onboard Experience’
category, as it can be found on Tripadvisor.
Instead, we considered an additional category,
PUNCTUALITY#GENERAL. Song et al. (2020) demon-
strated that flight delays have a significant impact
on overall satisfaction with the flight experience.
Lastly, we introduced the AIRLINE#GENERAL cate-
gory to encompass general aspects associated with
the airline.

B.2.2 Data Labelling Process
Annotators were provided with an annotation guide-
line8, adapted from the SemEval-2015 guideline
(Pontiki et al., 2015), with modifications for the
airline domain. Instead of examples from restau-
rant reviews, examples from airline reviews were
provided.

Similar to the approach applied for SemEval-
2015 by Pontiki et al. (2015), annotator A annotated

8Annotation guidelines: https://github.com/NilsHel
lwig/llm-prompting-asqp/blob/main/Guidelines_Fli
ghtABSA.pdf

all 3,700 sentences, while annotator B reviewed
the annotations and, where necessary, proposed a
revised annotation. Both Annotators A and B were
PhD students with prior experience in annotating
datasets for ABSA. The annotation process was
conducted using Google Sheets9.

In 115 out of 4,000 sentences, annotator B sug-
gested a different label than annotator A. Of these
115 proposed revised annotation, 79 were accepted
by annotator A. For the other 36 suggested revi-
sions, it was jointly decided that in 25 cases the
original annotation by Annotator A would be re-
tained and in nine cases, the annotation by annota-
tor B was chosen. For the remaining two sentences,
a consensus was reached on an annotation distinct
from their initially proposed labels.

Of the 4,000 annotated examples, 61 were ex-
cluded since a sentence-splitting error made by the
NLTK tokenizer was identified by the annotators.
1,909 were further excluded as no sentiment was
expressed towards the considered aspect categories.
99 sentences were excluded due to an error where
either sensitive data was not anonymized or parts of
a sentence were anonymized where no anonymiza-
tion was required. Finally, one non-English sen-
tence was excluded. This resulted in a dataset of
1,930 sentences.

B.3 Dataset Properties
The properties of the FlightABSA dataset (training
and test sets) are presented in Table 4. A train-test-
validation split (70:20:10) of the entire dataset was
applied.

Notably, similar to the SemEval datasets, there
is a low representation of neutral opinions and
implicit aspects. Class-imbalance can also be
observed in the aspect categories. For instance,
the category ONBOARD#PRICE appears only 17
times in the overall dataset, while the category
AIRLINE#SERVICE occurs 986 times.

9Google Sheets: https://workspace.google.com/pro
ducts/sheets
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C Prompt

According to the following sentiment elements definition: 

- The 'aspect term' is the exact word or phrase in the text that represents a specific feature, attribute, or aspect of a product or
service that a user may express an opinion about, the aspect term might be 'NULL' for implicit aspect. 
- The 'aspect category' refers to the category that aspect belongs to, and the available categories includes: 'ambience general', 
'drinks prices', 'drinks quality', 'drinks style_options', 'food general', 'food prices', 'food quality', 'food style_options', 
'location general', 'restaurant general', 'restaurant miscellaneous', 'restaurant prices', 'service general'.
- The 'sentiment polarity' refers to the degree of positivity, negativity or neutrality expressed in the opinion towards a particular
aspect or feature of a product or service, and the available polarities include: 'positive', 'negative' and 'neutral'.
- The 'opinion term' is the exact word or phrase in the text that refers to the sentiment or attitude expressed by a user towards a 
particular aspect or feature of a product or service, the aspect term might be 'NULL' for implicit opinion.

Recognize all sentiment elements with their corresponding aspect terms, aspect categories, sentiment polarity and opinion terms in the
following text with the format of [('aspect term', 'aspect category', 'sentiment polarity', 'opinion term'), ...].

Text: highly recommended .
Sentiment Elements: [('NULL', 'restaurant general', 'positive', 'highly recommended')]
Text: How do you rate home ?
Sentiment Elements: [('NULL', 'restaurant miscellaneous', 'positive', 'home')]
Text: Slightly above average wines start at $ 70+ with only one selection listed at $ 30+ .
Sentiment Elements: [('wines', 'drinks quality', 'negative', 'above average'), ('wines', 'drinks prices', 'negative', 'above average')]
Text: The restaurant is a bit noisy but that is something that can be overlooked once you sit down and enjoy a great meal
Sentiment Elements: [('meal', 'food quality', 'positive', 'enjoy'), ('meal', 'food quality', 'positive', 'great'), ('restaurant', 
'ambience general', 'negative', 'noisy')]
Text: Taxan delicious !
Sentiment Elements: [('Taxan', 'food quality', 'positive', 'delicious')]
Text: The hanger steak was like rubber and the tuna was flavorless not to mention it tasted like it had just been thawed .
Sentiment Elements: [('hanger steak', 'food quality', 'negative', 'rubber'), ('tuna', 'food quality', 'negative', 'flavorless')]
Text: Worth the trip from Manhattan .
Sentiment Elements: [('NULL', 'restaurant general', 'positive', 'Worth')]
Text: I would highly recommend .
Sentiment Elements: [('NULL', 'restaurant general', 'positive', 'highly recommend')]
Text: I 'm not sure where the other reviewers ate but it seems as if we visited two different restaurants because my friends and I all 
enjoy Mizu very much ... and we 're repeat customers .
Sentiment Elements: [('Mizu', 'restaurant general', 'positive', 'enjoy')]
Text: We were very pleasantly surprised .
Sentiment Elements: [('NULL', 'restaurant general', 'positive', 'pleasantly surprised')]
Text: Gross food – Wow -
Sentiment Elements:

Figure 3: Example of a prompt employed for the ASQP task. The prompt comprises an explanation on the considered
sentiment elements, output format and annotated examples in the case of few-shot learning.
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D TASD: Performance Scores

Method Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Gemma-3-4B

-

0 17.31 17.44 17.18 25.37 26.27 24.54 31.00 31.97 30.13 15.93 16.09 15.78 25.24 29.10 22.29
10 25.56 27.22 24.09 32.88 36.23 30.10 35.35 39.13 32.25 27.19 27.60 26.80 35.35 41.51 30.78
20 36.20 37.64 34.86 40.47 41.46 39.53 32.39 34.76 30.32 31.10 30.99 31.23 36.02 39.40 33.20
30 37.69 39.89 35.74 42.14 42.62 41.68 35.42 37.02 33.95 34.33 34.35 34.34 38.61 40.98 36.50
40 39.99 41.31 38.77 41.93 42.80 41.14 38.95 40.05 37.92 35.68 35.46 35.94 42.12 43.32 41.02
50 40.64 42.45 39.01 41.05 41.97 40.21 38.93 39.15 38.71 35.44 35.59 35.33 43.29 44.92 41.78

SC

0 20.84 32.82 15.27 29.18 50.00 20.61 36.66 55.34 27.41 18.54 35.88 12.50 28.16 59.49 18.44
10 28.72 51.69 19.88 38.53 64.48 27.47 40.41 63.31 29.68 36.68 63.32 25.82 40.28 72.92 27.82
20 43.16 62.28 33.02 46.22 59.67 37.72 36.06 55.73 26.65 35.93 57.99 26.02 40.17 64.11 29.25
30 41.65 56.73 32.90 47.18 59.71 39.00 39.21 57.04 29.87 41.09 56.23 32.38 42.00 60.66 32.11
40 44.20 58.22 35.62 45.56 55.72 38.53 43.21 57.55 34.59 39.44 51.49 31.97 47.51 61.68 38.63
50 43.29 55.45 35.50 44.27 54.81 37.14 45.23 60.00 36.29 39.37 54.12 30.94 45.52 59.84 36.72

Gemma-3-27B

-

0 29.97 28.91 31.10 45.53 44.38 46.73 51.20 46.88 56.41 29.38 26.67 32.70 38.90 36.84 41.21
10 53.22 54.29 52.19 65.52 66.18 64.87 59.72 58.69 60.79 39.96 39.77 40.16 55.25 55.80 54.72
20 57.95 59.85 56.17 67.00 67.80 66.22 59.33 59.07 59.58 44.84 45.79 43.93 55.77 56.62 54.94
30 60.17 63.48 57.18 67.03 68.26 65.84 60.75 61.02 60.49 45.97 46.89 45.08 58.85 60.88 56.95
40 59.87 63.31 56.78 66.51 68.29 64.82 60.28 61.20 59.40 43.60 45.41 41.93 58.74 61.92 55.87
50 59.77 63.13 56.76 65.44 66.72 64.21 60.01 59.63 60.42 41.52 43.45 39.75 59.09 63.09 55.58

SC

0 30.36 29.41 31.36 45.51 44.49 46.57 51.81 47.55 56.90 29.50 26.95 32.58 38.97 37.12 41.02
10 54.47 56.40 52.66 66.75 68.38 65.19 60.36 59.85 60.87 41.69 43.11 40.37 56.51 57.93 55.17
20 59.06 61.65 56.69 67.82 69.34 66.36 60.79 61.67 59.92 47.28 50.47 44.47 57.26 59.52 55.17
30 61.29 66.07 57.16 68.93 71.84 66.24 62.38 64.39 60.49 49.55 54.70 45.29 60.83 65.33 56.92
40 61.18 65.80 57.16 68.05 71.30 65.08 62.86 65.64 60.30 45.70 51.01 41.39 61.75 67.04 57.23
50 62.12 68.03 57.16 68.53 71.52 65.77 64.60 66.33 62.95 44.80 51.32 39.75 62.97 70.47 56.92

MVP
(Gou et al., 2023)

-

10 25.08 30.30 21.40 17.08 18.13 16.16 19.04 22.53 16.48 31.83 35.26 29.02 21.16 25.90 17.90
20 32.88 36.45 29.96 28.35 30.55 26.50 23.25 27.35 20.23 34.26 37.99 31.19 27.02 33.95 22.45
30 36.34 40.19 33.18 39.04 41.81 36.62 31.06 35.91 27.37 35.44 38.57 32.79 37.06 42.95 32.59
40 41.07 44.05 38.46 41.04 43.80 38.60 37.20 41.33 33.84 36.76 40.06 33.98 41.56 48.19 36.53
50 42.13 45.54 39.20 44.09 46.91 41.58 44.11 47.92 40.87 37.84 41.35 34.88 44.49 51.12 39.40
800 62.54 64.87 60.38 68.22 69.24 67.24 64.61 64.72 64.50 50.61 51.33 49.92 66.67 67.51 65.85
Full 64.53 - - 72.76 - - 68.67 67.84 69.53 50.97 51.42 50.53 69.37 69.58 69.16

DLO
(Hu et al., 2022)

10 15.84 19.23 13.47 13.59 13.27 13.95 16.07 19.02 13.91 22.93 25.45 20.86 18.07 18.84 17.39
20 25.12 23.67 26.77 22.57 19.17 27.52 22.14 26.13 19.21 27.99 30.97 25.53 27.49 27.76 27.31
30 31.12 31.08 31.17 35.07 33.63 36.69 30.64 33.08 28.54 33.00 35.35 30.94 37.17 37.91 36.47
40 38.02 38.34 37.70 39.44 38.79 40.14 36.07 37.29 34.93 33.31 36.03 30.98 40.89 44.19 38.06
50 39.54 40.48 38.65 43.95 44.59 43.33 42.92 42.01 43.89 36.04 39.26 33.32 44.72 49.18 41.02
800 62.48 64.35 60.71 69.98 69.90 70.06 68.22 68.02 68.43 52.74 53.29 52.21 68.46 68.69 68.24
Full 62.95 - - 71.79 - - 68.95 68.60 69.30 52.58 52.79 52.38 68.56 68.41 68.71

Paraphrase
(Zhang et al., 2021a)

10 8.75 10.72 7.38 6.66 7.61 5.93 8.82 10.44 7.64 15.94 17.69 14.51 14.91 18.74 12.39
20 21.09 21.04 21.40 18.05 16.87 19.53 8.60 10.18 7.45 20.38 22.11 18.93 18.84 21.21 17.20
30 21.83 22.03 21.87 17.46 17.18 18.08 12.08 13.27 11.12 22.45 23.51 21.68 25.18 22.47 29.33
40 31.01 33.70 28.76 28.88 29.96 27.90 26.82 30.07 24.23 30.90 34.18 28.20 36.35 38.86 34.36
50 36.92 39.57 34.60 35.87 37.18 34.66 33.57 36.10 31.38 34.26 37.64 31.43 40.10 45.21 36.05
800 61.54 63.54 59.67 69.31 69.37 69.25 67.69 69.41 66.05 51.36 52.58 50.20 67.48 68.80 66.21
Full 63.06 - - 71.97 - - 69.74 70.22 69.26 51.86 52.73 51.02 67.70 68.41 67.01

Table 5: Performance scores for TASD. For the Rest15 and Rest16 datasets, performance scores achieved when
employing the full training set ("Full") are taken from Gou et al. (2023), Hu et al. (2022) and Zhang et al. (2021b)
for MVP, DLO and Paraphrase, respectively. The best score achieved by a method is presented in bold.
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E Element-Level Performance Scores

E.1 ASQP

Sentiment
Element

Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Aspect Term

-

0 61.71 50.99 78.14 68.19 58.76 81.21 61.52 51.71 75.92 52.53 39.63 77.87 60.89 50.83 75.93
10 67.23 60.77 75.26 74.74 68.93 81.63 67.36 62.73 72.75 67.79 59.23 79.24 71.25 67.48 75.47
20 68.63 65.08 72.61 76.95 72.34 82.23 68.67 66.27 71.28 73.32 69.47 77.66 73.27 71.50 75.15
30 66.13 67.20 65.10 75.63 72.36 79.22 71.41 70.31 72.56 73.09 72.19 74.02 71.21 71.86 70.57
40 65.39 65.93 64.86 74.42 71.00 78.19 70.54 70.56 70.57 70.22 69.55 70.93 71.20 71.64 70.80
50 68.27 66.92 69.68 73.17 70.08 76.56 69.46 66.09 73.22 69.09 66.70 71.68 70.99 72.73 69.34

SC

0 62.37 52.20 77.47 69.53 61.19 80.50 61.46 52.24 74.64 54.20 41.62 77.66 60.97 51.33 75.06
10 68.24 62.94 74.51 75.47 70.63 81.03 67.88 65.14 70.85 66.98 61.99 72.85 70.68 70.20 71.17
20 67.82 66.17 69.57 78.13 76.53 79.79 69.23 70.24 68.25 72.63 74.19 71.13 73.47 75.42 71.62
30 65.26 69.82 61.26 76.12 74.32 78.01 71.38 72.15 70.62 70.87 77.02 65.64 70.90 77.66 65.22
40 64.86 68.65 61.46 75.09 73.80 76.42 73.23 77.17 69.67 70.11 79.22 62.89 72.21 78.86 66.59
50 69.03 70.75 67.39 75.00 76.67 73.40 73.03 73.56 72.51 67.42 75.11 61.17 71.63 79.78 64.99

Opinion Term

-

0 64.12 59.70 69.25 69.17 65.11 73.78 63.00 58.85 67.80 30.83 26.73 36.43 42.61 42.85 42.38
10 68.06 65.39 70.97 67.92 64.81 71.36 63.04 61.03 65.19 47.33 44.17 51.00 51.18 54.41 48.31
20 62.76 63.71 61.83 70.73 70.14 71.33 61.73 61.02 62.47 47.97 46.06 50.05 56.42 58.35 54.62
30 60.90 61.24 60.56 70.11 70.23 70.00 62.13 62.58 61.69 49.31 48.30 50.36 55.16 59.18 51.66
40 61.26 60.98 61.56 68.99 68.20 69.81 59.35 61.49 57.35 48.17 47.17 49.23 55.76 60.07 52.03
50 63.26 62.95 63.58 68.97 68.56 69.40 61.84 62.44 61.27 47.76 46.34 49.28 57.11 62.20 52.79

SC

0 64.05 60.62 67.88 70.26 67.29 73.51 62.45 59.15 66.14 30.91 27.35 35.52 42.60 43.37 41.86
10 68.30 67.28 69.35 68.18 66.84 69.57 64.11 64.92 63.32 47.23 47.18 47.29 52.10 58.51 46.95
20 63.27 66.82 60.08 70.01 71.75 68.34 61.55 64.66 58.73 46.83 49.62 44.34 57.39 63.33 52.47
30 60.53 65.07 56.59 71.28 74.16 68.61 62.26 66.01 58.91 48.82 54.29 44.34 56.03 65.44 48.98
40 60.76 64.89 57.12 68.77 70.95 66.71 60.43 67.54 54.67 48.58 56.63 42.53 56.66 66.93 49.13
50 62.69 66.52 59.27 69.30 73.59 65.49 63.12 68.45 58.55 48.52 56.46 42.53 58.53 70.87 49.85

Aspect Category

-

0 53.82 53.13 54.53 58.57 57.32 59.88 82.73 79.26 86.52 48.23 46.06 50.62 62.17 62.17 62.17
10 71.72 72.96 70.52 78.58 78.31 78.86 82.08 80.24 84.00 48.10 48.91 47.31 66.43 70.05 63.17
20 73.97 78.09 70.26 80.83 82.39 79.33 80.98 80.57 81.40 53.07 54.85 51.40 67.80 72.12 63.97
30 74.78 78.37 71.52 80.56 82.92 78.33 79.94 80.85 79.04 54.68 57.68 51.98 71.35 77.40 66.18
40 75.67 78.50 73.04 80.92 83.07 78.89 79.54 81.77 77.44 52.01 54.64 49.63 70.18 75.62 65.48
50 77.11 80.16 74.30 80.81 82.86 78.86 80.49 81.49 79.52 54.07 56.43 51.90 69.45 75.58 64.24

SC

0 53.33 53.37 53.30 58.30 57.47 59.15 82.43 79.66 85.40 48.25 46.80 49.79 62.13 62.50 61.77
10 71.68 74.69 68.91 79.32 80.64 78.04 81.83 83.09 80.60 46.77 50.72 43.39 66.30 72.95 60.77
20 73.11 80.17 67.19 80.98 85.02 77.31 79.00 82.71 75.60 54.23 61.74 48.35 66.85 75.31 60.10
30 72.14 80.32 65.47 79.84 84.84 75.40 78.78 82.96 75.00 54.30 65.69 46.28 70.96 83.67 61.60
40 74.69 82.75 68.05 79.63 85.28 74.67 78.34 86.47 71.60 50.69 64.04 41.94 69.04 81.41 59.93
50 75.67 84.33 68.62 80.51 87.33 74.67 80.17 86.37 74.80 51.00 64.56 42.15 68.36 82.70 58.26

Sentiment Polarity

-

0 87.89 86.85 88.96 90.42 89.55 91.31 91.16 88.64 93.84 85.16 84.25 86.10 88.44 87.78 89.10
10 90.84 91.01 90.67 92.54 92.67 92.41 93.29 92.46 94.13 88.62 89.87 87.41 87.91 92.32 83.92
20 92.24 93.47 91.04 94.07 94.85 93.31 93.34 93.10 93.59 90.43 91.43 89.46 89.77 94.24 85.71
30 91.88 93.87 89.98 94.25 95.28 93.24 94.13 94.57 93.69 89.10 91.56 86.78 89.56 95.17 84.58
40 91.69 93.91 89.57 94.30 95.57 93.07 93.41 94.68 92.18 89.68 91.96 87.51 90.33 95.48 85.71
50 91.58 93.42 89.81 94.21 95.28 93.17 93.21 93.81 92.62 89.72 91.83 87.71 89.60 95.57 84.34

SC

0 87.47 87.24 87.69 90.28 90.05 90.52 90.54 88.73 92.42 85.44 85.02 85.85 88.37 88.06 88.68
10 89.72 91.47 88.03 91.50 93.05 90.00 91.91 93.65 90.22 85.49 91.16 80.49 86.19 94.13 79.48
20 89.98 94.37 85.98 92.62 95.60 89.83 91.16 94.26 88.26 84.39 92.20 77.80 87.18 95.51 80.19
30 87.71 94.65 81.71 91.89 96.23 87.93 91.23 94.97 87.78 81.49 93.95 71.95 85.41 96.44 76.65
40 87.58 94.82 81.37 91.12 95.99 86.72 88.60 95.48 82.64 76.86 92.76 65.61 86.01 96.48 77.59
50 87.85 94.31 82.22 90.98 96.52 86.03 89.97 94.85 85.57 78.46 94.50 67.07 84.31 96.65 74.76

Table 6: Gemma-3-27B: Performance scores at element-level for the ASQP task. The best score achieved with
respect to a sentiment element is presented in bold.

168



Sentiment
Element

Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Aspect Term

-

0 42.65 40.10 45.57 47.24 46.76 47.73 41.88 44.14 39.86 42.38 38.79 46.74 48.45 52.61 44.94
10 44.72 51.77 39.37 43.20 60.32 33.69 46.49 57.73 38.96 58.02 60.39 55.88 50.93 66.01 41.56
20 54.07 63.55 47.08 56.39 68.74 47.84 46.03 59.07 37.73 61.45 66.57 57.11 56.04 70.06 46.73
30 53.00 63.18 45.69 57.79 72.11 48.26 46.91 59.23 38.86 63.85 69.52 59.11 54.14 71.10 43.75
40 50.04 64.61 40.87 55.96 68.92 47.13 48.45 61.49 40.00 66.97 71.39 63.09 59.82 75.44 49.61
50 56.24 67.42 48.26 55.65 71.51 45.60 51.23 61.49 43.93 68.95 74.19 64.40 59.81 76.22 49.24

SC

0 21.48 71.11 12.65 20.03 69.47 11.70 28.19 76.04 17.30 18.56 72.09 10.65 27.60 79.35 16.70
10 12.48 87.18 6.72 13.07 83.33 7.09 15.42 80.00 8.53 12.74 86.96 6.87 19.55 88.89 10.98
20 31.07 85.71 18.97 34.51 85.31 21.63 14.29 82.50 7.82 23.88 90.91 13.75 31.95 89.47 19.45
30 33.85 78.99 21.54 40.71 86.71 26.60 23.69 77.63 13.98 29.15 96.15 17.18 26.80 88.46 15.79
40 32.75 83.74 20.36 46.57 86.12 31.91 27.95 82.56 16.82 36.41 87.01 23.02 39.86 92.50 25.40
50 44.57 83.24 30.43 42.91 84.82 28.72 40.93 82.14 27.25 38.93 86.90 25.09 40.58 97.39 25.63

Opinion Term

-

0 30.92 33.74 28.55 31.50 34.56 28.94 25.50 30.46 21.94 19.31 20.36 18.37 23.71 31.51 19.01
10 34.53 39.54 30.65 37.36 41.95 33.70 30.56 37.51 25.82 19.77 19.99 19.55 22.96 28.93 19.04
20 38.89 41.66 36.48 46.82 50.41 43.72 31.00 36.42 26.98 24.05 23.29 24.89 30.04 33.62 27.15
30 43.28 45.24 41.51 48.23 52.42 44.67 36.58 42.66 32.03 27.39 26.89 27.92 27.15 36.02 21.80
40 44.38 45.72 43.12 52.42 54.53 50.49 36.23 42.56 31.53 27.65 29.06 26.38 29.80 39.22 24.04
50 48.43 50.02 46.94 52.56 55.77 49.70 43.89 49.32 39.54 26.81 28.96 24.98 32.82 42.88 26.60

SC

0 15.73 69.47 8.87 15.38 66.67 8.70 17.77 60.82 10.41 7.44 42.86 4.07 14.81 61.05 8.43
10 13.53 79.71 7.39 17.61 78.49 9.92 14.17 81.48 7.76 12.11 78.38 6.56 12.58 64.00 6.98
20 27.59 67.54 17.34 34.30 81.22 21.74 14.06 74.58 7.76 15.63 68.42 8.82 20.34 60.87 12.21
30 34.91 73.91 22.85 38.27 78.81 25.27 22.97 69.64 13.76 17.73 59.74 10.41 15.74 51.20 9.30
40 36.94 76.69 24.33 46.27 75.85 33.29 27.51 73.28 16.93 19.81 62.65 11.76 19.64 59.12 11.77
50 43.79 74.28 31.05 45.01 74.76 32.20 39.47 77.72 26.46 22.01 62.77 13.35 21.93 58.13 13.52

Aspect Category

-

0 37.64 42.23 33.95 39.84 44.53 36.05 51.54 62.70 43.76 29.56 34.72 25.74 42.32 54.98 34.42
10 45.75 52.79 40.37 52.52 57.49 48.35 55.00 64.50 47.96 37.10 41.08 33.84 54.40 67.51 45.58
20 58.32 62.95 54.33 60.45 64.79 56.66 59.89 67.80 53.64 46.24 49.09 43.72 58.27 67.28 51.39
30 62.24 66.00 58.88 66.41 71.72 61.84 63.17 71.11 56.84 43.71 45.83 41.78 61.57 68.68 55.79
40 65.14 68.71 61.92 68.52 73.06 64.51 67.03 74.69 60.80 42.98 45.90 40.41 63.61 69.91 58.36
50 67.82 71.86 64.21 68.79 74.81 63.66 68.63 74.52 63.60 42.88 46.89 39.50 61.46 70.48 54.49

SC

0 13.13 55.32 7.45 15.42 63.16 8.78 26.89 84.21 16.00 10.23 61.36 5.58 23.38 86.17 13.52
10 13.11 76.92 7.16 20.13 84.78 11.42 17.30 87.27 9.60 11.13 78.38 5.99 19.94 91.78 11.19
20 35.27 85.64 22.21 36.11 82.29 23.13 18.60 88.14 10.40 16.70 81.82 9.30 31.34 85.19 19.20
30 40.83 87.32 26.65 43.83 88.44 29.14 31.48 87.27 19.20 18.67 71.23 10.74 37.43 86.67 23.87
40 41.82 85.78 27.65 52.70 86.33 37.92 36.51 88.46 23.00 22.22 69.57 13.22 43.80 90.58 28.88
50 50.25 86.67 35.39 51.02 84.18 36.60 47.35 89.44 32.20 24.37 67.29 14.88 39.33 85.47 25.54

Sentiment Polarity

-

0 77.70 83.22 72.89 76.66 82.89 71.31 74.38 83.45 67.09 71.14 81.44 63.17 74.19 83.92 66.51
10 77.94 85.50 71.62 80.40 84.25 76.90 77.53 83.91 72.08 78.14 82.50 74.24 78.03 86.94 70.80
20 86.28 89.08 83.66 87.12 89.61 84.76 80.61 85.23 76.48 84.19 85.93 82.54 83.29 90.03 77.50
30 87.57 90.86 84.51 88.53 92.13 85.21 81.46 85.66 77.65 82.60 84.60 80.68 87.91 91.92 84.25
40 88.28 92.00 84.85 89.57 93.21 86.21 83.02 88.82 77.95 84.77 88.48 81.37 90.27 94.20 86.65
50 90.00 93.32 86.91 90.06 94.24 86.24 85.28 89.01 81.86 86.57 90.97 82.59 88.85 94.23 84.06

SC

0 26.33 97.80 15.21 25.85 93.55 15.00 37.30 98.95 22.98 17.70 95.24 9.76 34.88 97.83 21.23
10 18.77 93.85 10.43 25.07 93.33 14.48 22.89 98.15 12.96 15.66 94.59 8.54 27.59 98.55 16.04
20 44.88 96.61 29.23 46.27 95.68 30.52 25.21 100.00 14.43 21.55 92.59 12.20 45.05 95.42 29.48
30 50.38 97.07 34.02 53.02 97.69 36.38 41.31 98.17 26.16 27.80 93.06 16.34 51.55 94.94 35.38
40 51.32 97.14 34.87 64.19 97.88 47.76 46.64 98.43 30.56 33.60 93.33 20.49 57.10 97.71 40.33
50 62.00 97.44 45.47 63.49 97.50 47.07 57.29 95.98 40.83 38.13 94.23 23.90 54.15 95.81 37.74

Table 7: Gemma-3-4B: Performance scores at element-level for the ASQP task. The best score achieved with
respect to a sentiment element is presented in bold.
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E.2 TASD

Sentiment
Element

Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Aspect Term

-

0 60.81 49.78 78.12 68.31 58.42 82.22 59.63 50.21 73.41 53.48 40.24 79.73 61.69 51.08 77.85
10 73.78 67.50 81.37 78.07 74.59 81.90 70.06 65.93 74.74 67.85 58.58 80.62 74.36 69.41 80.09
20 74.38 68.13 81.88 79.88 76.42 83.66 69.52 66.17 73.22 72.83 66.57 80.41 75.68 70.35 81.88
30 75.50 74.29 76.75 77.98 75.74 80.36 71.41 69.07 73.93 73.84 70.11 78.01 75.42 73.19 77.80
40 74.58 75.46 73.73 77.36 76.86 77.88 70.51 69.73 71.33 72.74 72.58 72.92 74.98 74.83 75.15
50 74.09 73.90 74.28 76.40 75.02 77.84 70.55 66.71 74.88 70.82 70.72 71.00 74.22 74.50 73.96

SC

0 61.28 50.30 78.41 68.49 58.78 82.03 59.85 50.49 73.46 53.89 40.70 79.73 61.61 51.29 77.12
10 74.47 68.92 81.00 78.36 75.57 81.37 70.71 67.16 74.64 68.87 61.23 78.69 75.00 70.88 79.63
20 75.63 69.84 82.47 80.13 77.16 83.33 70.18 68.00 72.51 73.23 69.00 78.01 76.32 72.34 80.78
30 76.13 76.06 76.20 78.16 77.11 79.25 73.24 72.56 73.93 76.82 77.35 76.29 75.35 75.87 74.83
40 75.23 76.53 73.99 78.42 79.07 77.78 73.27 73.80 72.75 73.70 76.87 70.79 77.01 78.57 75.51
50 76.25 78.25 74.35 77.97 78.16 77.78 73.85 71.56 76.30 72.93 78.57 68.04 76.61 80.05 73.46

Aspect Category

-

0 56.36 56.46 56.26 72.40 71.76 73.06 82.79 79.14 86.80 49.68 47.86 51.65 67.23 66.23 68.25
10 72.09 74.06 70.22 81.87 81.68 82.07 82.49 81.36 83.64 50.39 51.04 49.75 70.42 71.91 68.98
20 75.99 79.55 72.75 81.52 82.57 80.48 82.08 81.61 82.56 56.17 57.95 54.50 70.32 71.85 68.85
30 78.30 82.86 74.22 83.17 84.46 81.91 81.66 82.29 81.04 56.58 58.16 55.08 74.76 77.29 72.39
40 79.63 84.52 75.28 83.74 85.62 81.94 81.61 82.86 80.40 54.72 57.21 52.44 75.01 78.98 71.42
50 79.19 83.89 74.99 83.74 85.69 81.88 81.03 81.34 80.72 53.54 56.50 50.87 74.50 79.22 70.32

SC

0 56.05 56.23 55.87 72.19 71.71 72.68 82.90 79.34 86.80 49.95 48.36 51.65 67.49 66.89 68.11
10 72.98 76.16 70.06 82.44 83.06 81.83 82.59 82.18 83.00 51.08 53.64 48.76 71.55 73.98 69.28
20 75.72 80.32 71.61 81.57 83.40 79.81 81.85 82.52 81.20 58.54 63.16 54.55 70.61 73.68 67.78
30 78.39 84.60 73.03 83.60 86.81 80.62 80.70 83.37 78.20 58.57 64.99 53.31 75.20 80.42 70.62
40 80.08 86.29 74.71 83.79 87.54 80.35 82.04 85.31 79.00 56.13 62.98 50.62 75.81 81.82 70.62
50 79.02 86.62 72.65 84.51 88.63 80.75 80.99 83.30 78.80 55.14 63.44 48.76 76.12 84.21 69.45

Sentiment Polarity

-

0 87.13 88.58 85.73 89.63 90.49 88.79 92.21 90.18 94.33 87.22 86.55 87.90 90.32 90.21 90.42
10 91.81 93.29 90.37 93.00 94.35 91.68 94.77 94.33 95.21 90.69 91.06 90.34 92.33 93.26 91.42
20 92.01 93.91 90.19 93.73 95.01 92.48 93.92 93.76 94.08 91.16 91.79 90.54 93.34 94.45 92.26
30 92.60 94.87 90.43 93.79 95.02 92.60 93.46 93.58 93.35 90.40 91.46 89.37 93.20 94.65 91.79
40 92.63 95.14 90.25 93.19 94.81 91.62 94.04 94.35 93.74 90.38 92.10 88.73 93.12 95.00 91.32
50 92.58 95.10 90.19 93.74 94.86 92.63 93.17 93.33 93.01 89.62 91.78 87.56 93.25 95.36 91.23

SC

0 87.31 88.92 85.76 89.89 90.91 88.89 92.09 90.35 93.89 87.48 87.17 87.80 90.33 90.33 90.33
10 91.43 93.81 89.16 93.13 94.89 91.43 94.23 94.58 93.89 89.53 92.69 86.59 91.98 93.43 90.57
20 91.90 94.30 89.63 93.28 95.21 91.43 93.33 94.26 92.42 88.27 92.51 84.39 92.62 95.04 90.33
30 91.23 94.97 87.77 93.47 96.14 90.95 92.27 94.15 90.46 86.61 92.76 81.22 92.48 95.25 89.86
40 91.87 95.64 88.39 92.04 95.25 89.05 92.60 95.10 90.22 86.13 92.94 80.24 93.22 95.77 90.80
50 91.34 95.76 87.31 93.05 95.95 90.32 93.38 95.41 91.44 85.03 93.04 78.29 90.68 95.80 86.08

Table 8: Gemma-3-27B: Performance scores at element-level for the TASD task. The best score achieved by a
method is presented in bold.
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Sentiment
Element

Prompting
Strategy

# Few-Shot /
# Train

Rest15 Rest16 FlightABSA OATS
Coursera

OATS
Hotels

F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec

Aspect Term

-

0 45.84 39.99 53.69 45.26 42.39 48.56 45.49 43.74 47.44 43.44 37.18 52.23 47.20 48.69 45.81
10 50.14 57.58 44.43 50.11 60.08 43.04 50.58 57.47 45.21 59.52 56.31 63.16 52.44 65.20 43.89
20 55.31 61.62 50.22 57.18 69.08 48.79 49.27 58.16 42.84 61.42 61.52 61.37 54.01 64.87 46.27
30 53.39 68.48 43.80 57.33 70.06 48.53 48.49 58.97 41.18 63.34 65.75 61.17 54.84 66.20 46.82
40 53.17 68.42 43.51 54.86 69.46 45.36 49.99 59.04 43.36 65.36 67.50 63.37 60.71 71.67 52.68
50 52.79 68.52 42.95 53.91 70.13 43.79 50.44 58.49 44.36 65.39 68.60 62.47 59.33 72.17 50.39

SC

0 49.34 61.60 41.14 46.17 66.16 35.46 49.63 65.25 40.05 45.54 64.97 35.05 45.19 75.40 32.27
10 40.06 89.17 25.83 44.92 81.20 31.05 50.16 76.96 37.20 59.23 87.84 44.67 47.63 82.95 33.41
20 55.90 85.55 41.51 57.42 85.21 43.30 46.03 76.37 32.94 58.72 88.28 43.99 49.84 86.44 35.01
30 50.00 84.96 35.42 55.39 81.33 41.99 46.43 73.71 33.89 64.22 86.13 51.20 52.02 81.46 38.22
40 50.64 82.50 36.53 53.16 79.74 39.87 51.38 73.25 39.57 66.39 82.23 55.67 62.97 86.75 49.43
50 49.87 79.44 36.35 52.37 80.13 38.89 52.80 76.58 40.28 65.84 82.81 54.64 57.02 80.42 44.16

Aspect Category

-

0 41.04 43.15 39.12 51.78 53.50 50.17 57.51 63.16 52.84 30.99 33.11 29.13 40.11 48.67 34.12
10 46.48 49.13 44.10 59.96 63.91 56.47 61.46 68.78 55.56 38.23 39.88 36.74 53.64 64.45 45.94
20 57.59 60.07 55.30 64.90 65.47 64.33 61.61 66.60 57.32 44.36 45.21 43.55 55.32 62.26 49.78
30 61.32 64.58 58.40 69.49 69.43 69.56 64.34 68.59 60.60 45.98 47.03 45.00 60.71 65.74 56.39
40 65.69 68.73 62.92 69.31 69.58 69.10 68.01 72.36 64.16 44.75 45.64 43.93 61.91 66.50 57.93
50 67.06 70.52 63.95 69.71 70.48 68.96 68.88 72.02 66.00 44.53 46.02 43.14 61.05 65.65 57.06

SC

0 34.73 53.64 25.68 45.94 73.02 33.51 51.47 77.20 38.60 26.03 50.30 17.56 34.01 70.90 22.37
10 39.63 67.81 28.00 55.04 84.64 40.78 53.91 82.64 40.00 40.18 69.19 28.31 51.99 93.10 36.06
20 53.80 74.60 42.06 63.78 78.81 53.57 52.21 78.95 39.00 42.51 68.66 30.79 52.86 84.00 38.56
30 58.51 76.89 47.23 68.92 82.67 59.08 56.70 81.04 43.60 46.78 64.26 36.78 59.52 84.62 45.91
40 64.06 81.47 52.77 69.12 80.50 60.57 63.61 83.44 51.40 45.07 59.26 36.36 61.87 80.48 50.25
50 64.51 80.23 53.94 69.44 81.12 60.70 63.70 83.23 51.60 45.99 63.18 36.16 62.01 80.53 50.42

Sentiment Polarity

-

0 79.67 82.20 77.31 78.43 80.79 76.22 80.60 85.85 75.99 75.74 80.89 71.22 74.22 79.75 69.43
10 83.94 87.02 81.08 82.67 85.67 79.87 84.04 88.10 80.34 83.15 85.44 80.98 80.60 87.82 74.48
20 87.49 91.04 84.21 87.58 89.26 85.97 83.09 85.83 80.54 85.21 86.25 84.20 88.41 91.18 85.80
30 87.48 90.70 84.49 88.85 90.25 87.49 83.86 86.30 81.56 85.36 86.99 83.80 90.97 93.45 88.63
40 88.09 91.70 84.77 89.29 91.32 87.37 86.99 90.15 84.06 87.25 89.61 85.02 91.14 93.63 88.77
50 89.02 92.58 85.73 89.42 91.17 87.75 86.95 89.33 84.69 85.67 89.39 82.24 91.16 93.99 88.49

SC

0 62.17 91.57 47.06 60.06 91.26 44.76 70.08 95.76 55.26 50.89 94.08 34.88 56.81 96.07 40.33
10 63.48 96.83 47.21 67.56 95.64 52.22 71.74 98.30 56.48 62.02 96.89 45.61 66.67 96.43 50.94
20 75.21 96.14 61.76 80.44 94.83 69.84 70.92 97.44 55.75 63.46 92.52 48.29 73.21 96.53 58.96
30 79.12 96.23 67.18 83.78 95.53 74.60 73.19 95.29 59.41 73.56 93.26 60.73 79.72 96.96 67.69
40 80.43 95.14 69.66 85.81 94.99 78.25 77.76 94.10 66.26 76.92 94.98 64.63 84.57 96.95 75.00
50 82.82 96.11 72.76 86.21 95.03 78.89 79.31 96.17 67.48 71.92 92.02 59.02 84.62 96.67 75.24

Table 9: Gemma-3-4B: Performance scores at element-level for the TASD task. The best score achieved by a
method is presented in bold.
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Figure 4: Influence of the amount of few-shot examples on the performance of Gemma-3-4B and Gemma-3-27B.
Visualization includes comparison with performance scores of SOTA supervised methods MVP, Paraphrase and
DLO.
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Abstract

This paper evaluates the ability of Large Lan-
guage Models (LLMs) to leverage contextual
information in the form of structured linguis-
tic representations. Specifically, we examine
the impact of encoding both short and long
contexts using Abstract Meaning Representa-
tion (AMR) structures across a diverse set of
language tasks. We perform our analysis us-
ing 8-bit quantized and instruction-tuned ver-
sions of Llama 3.1 (8B), Phi-3, and Mistral 7B.
Our results indicate that, for tasks involving
short contexts, augmenting the prompt with the
AMR of the original language context often de-
grades the performance of the underlying LLM.
However, for tasks that involve long contexts,
such as dialogue summarization in the SAM-
Sum dataset, this enhancement improves LLM
performance, for example, by increasing the
zero-shot cosine similarity score of Llama 3.1
from 66% to 76%. This improvement is more
evident in the newer and larger LLMs, but does
not extend to the older or smaller ones. In ad-
dition, we observe that LLMs can effectively
reconstruct the original text from a linearized
AMR, achieving a cosine similarity of 81% in
the best-case scenario.

1 Introduction

In recent years, Large Language Models (LLMs)
have achieved remarkable success in numerous nat-
ural language processing (NLP) tasks, such as ma-
chine translation, summarization, and both single-
and multi-hop question answering. However, a
critical challenge remains: assessing their ability
to interpret and utilize meaning from structured
representations that encode language in concise
and abstract forms. Structured semantic representa-
tions of text, such as Abstract Meaning Represen-
tation (AMR) structures and Discourse Represen-
tation Structures (DRS), have consistently proven
effective for reasoning with high-level semantics
in text and enhancing performance in challenging

structure-aware NLP tasks, particularly those in-
volving long contexts. For instance, prior work
has demonstrated that encoding AMR structures
via text-graph attention can improve long-dialogue
summarization performance (Hua et al., 2023).

In this paper, we systematically examine the abil-
ity of several prominent LLMs to interpret AMRs.
In addition, we study how AMR-augmented
prompting (See Fig. 23) and AMR-only prompting
(See Fig. 22) affect model performance on down-
stream tasks, that require a deep understanding of
context, compared to context-only, i.e., language-
only prompting. Unlike previous work, which pri-
marily focuses on developing ad-hoc neural archi-
tectures to either improve text regeneration from
AMRs (Zhu et al., 2019) or enhance performance
on downstream tasks (Hua et al., 2023; Yang et al.,
2024), this study evaluates the ability of LLMs
to directly interpret linearized (flattended) AMRs.
Here, AMR-augmented prompting refers to includ-
ing the linearized AMR of the context in the prompt
to evaluate the model’s ability to improve its under-
standing of the original context with support from
the AMR. AMR-only prompting refers to providing
the LLM with only the linearized AMR, without
the original language context, to assess the model’s
ability to infer meaning directly from these seman-
tic representations. Our key contributions are as
follows:

1. We systematically evaluate the instruction-
tuned versions of prominent LLMs on their ability
to directly leverage linearized AMRs in prompts
for both short- and long-context tasks. These tasks
include AMR-to-text generation, single-hop rea-
soning, 2-hop reasoning, dialogue summarization,
natural language inference (NLI), and document-
level natural language inference (DocNLI).

2. We demonstrate that while AMR integra-
tion tends to degrade performance in short-context
tasks, it can enhance performance in long-context
tasks, an observation that is more profound when
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using larger and more recently developed LLMs.
Additionally, in some downstream tasks, LLMs
can work exclusively with linearized AMRs (AMR-
only prompting) to achieve reasonable performance
with few-shot prompting.

3. We show that LLMs can effectively recon-
struct the original context from linearized AMRs,
achieving 81% cosine similarity in the best-case
scenario, highlighting their ability to understand
context from AMRs.

This work provides valuable insights into lever-
aging AMRs to enhance LLM performance on
downstream language tasks, while also identifying
key challenges. We hope that our work will serve as
a guide for comprehensively analyzing other struc-
tured representations, such as Knowledge Graphs
and Discourse Representation Structures, with re-
spect to how they can be interpreted and utilized
by LLMs.

2 Related Work

Existing studies have explored various methods
for generating text from language and knowledge
representation structures, usually by modifying or
improving underlying neural architectures. For in-
stance, approaches like text-graph attention (Hua
et al., 2023) and JointGT (Ke et al., 2021) al-
ter the transformer architecture using structured
cross-attention to better account for graph proper-
ties. Prior studies have also demonstrated enhanced
open-domain dialogue evaluation by fusing graph-
encoded AMRs into LLMs via gating mechanism
(Yang et al., 2024). Others, such as text generation
from knowledge graphs using graph transformers
(Koncel-Kedziorski et al., 2022), use graphical rep-
resentations directly, alleviating the need for graph
linearization. These studies have aimed to enhance
the quality of generated text using AMRs as input
through structure-aware methods, semantic aggre-
gation, and other heuristics.

However, all of these approaches exhibit the
key limitation that the proposed work seeks to ad-
dress. Namely, they focus on modifying model ar-
chitectures or introducing new architectural compo-
nents, such as joint graph-text representations and
heuristic-based conditioning, which can increase
complexity and is less amenable to generalization
across domains, tasks, and structures. In contrast,
we directly evaluate the inherent capability of exist-
ing, general-purpose LLMs to interpret structured
representations like AMR. Moreover, while most

Figure 1: An AMR tree for a hypothesis from the SNLI
dataset, The church has cracks in the ceiling, extracted
using the AMR3-structbart-L model via IBM’s transi-
tion neural parser.

prior studies largely sought to improve the quality
of generated text (Dong and Holder, 2014), the pro-
posed work evaluates the opportunities of AMRs to
represent context for a wide range of downstream
language tasks.

3 Methodology

This section describes AMRs, how they are ex-
tracted from text, and the pipeline for studying their
efficacy in language understanding and reasoning
tasks.

3.1 Abstract Meaning Representation
An Abstract Meaning Representation (AMR)
(Langkilde and Knight, 1998) is a labeled repre-
sentation of sentences as rooted, directed graphs
(See Fig. 1) that capture the semantic meaning of a
sentence by abstracting away from its surface syn-
tax. The most basic AMR takes the form (label /
concept), e.g.

(m1 / |dog < canid|)

The slash (/) is shorthand for a type (or instance)
feature, and in logical notation, this AMR might
be written as instance(m1, dog). This AMR can
represent "the dog," "the dogs," "a dog," or simply
"dog." A concept can be modified using keywords:

(
m1 / |dog < canid|

: quant plural
)

This specification refines the meaning to "the dogs"
or simply "dogs." AMR prioritizes the underlying
semantic meaning conveyed by a sentence rather
than the specific words or syntactic structures used.

In this paper, we use the AMR Annota-
tion Release 3.0 dataset (LDC2020T02), devel-
oped by the Linguistic Data Consortium (LDC),
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Figure 2: Process flow for the analysis tasks.

Figure 3: Linearized AMR for a premise from the SNLI
dataset, This church choir sings to the masses as they
sing joyous songs from the book at a church, extracted
using the AMR3-structbart-L model via IBM’s transi-
tion neural parser.

SDL/Language Weaver, Inc., the Computational
Language and Educational Research (CLEAR)
group at the University of Colorado, and the Infor-
mation Sciences Institute at the University of South-
ern California. This dataset contains a semantic
tree-bank of over 59,255 English natural language
sentences from sources including broadcast conver-
sations, news-wire articles, weblogs, web discus-
sion forums, fiction, and web text. There is a possi-
bility that the AMRs in this dataset were exposed
in the pre-training of many LLMs, which is why
we also employ the AMR3-structbart-L and doc-
sen-conll-amr-seed42 models via IBM’s transition-
based neural parser (Drozdov et al., 2022) to parse
contexts from various datasets into document/multi-
sentence-level AMR structures for further analysis.
Linearized representations of AMRs (See Fig. 3)
were fed to the LLMs. Fig. 2 illustrates a general
process flow for all the analysis tasks in this work.

3.2 Tasks
All tasks were approached using zero-shot, 3-shot,
and 5-shot prompting. For all tasks except con-
text regeneration, prompting was done in 3 ways:
context-only, AMR-augmented, and AMR-only.

3.2.1 Context Regeneration (AMR-to-text)
In this task, we evaluate how well LLMs can regen-
erate the original context given its linearized AMR.

Regeneration is conducted using the LDC2020T02
dataset. Fig. 4 illustrates the prompting strategy
for context regeneration.

3.2.2 Question-Answering (QA)
In this task, we evaluate the effectiveness of AMRs
in enhancing the single-hop and 2-hop reasoning
abilities of LLMs. For single-hop QA, we report
performance on the SQuAD 2.0 dataset (Rajpurkar
et al., 2018). Fig. 5 illustrates the AMR-augmented
prompt used for QA on the SQuAD 2.0 dataset.
For 2-hop reasoning, we report performance on
the HotpotQA dataset (Yang et al., 2018), which
features much longer contexts, as each question in
that dataset is accompanied by 10 documents (2
relevant, 8 irrelevant). Since most of these docu-
ments are distractors, the prompt includes a specific
instruction indicating that some documents in the
context may be irrelevant to the question. Fig. 6
illustrates the AMR-augmented prompt used for
QA on the HotpotQA dataset.

3.2.3 Summarization
In this task, we evaluate the effectiveness of AMRs
in enhancing the dialogue summarization capabil-
ities of LLMs, comparing these summaries to the
gold (expert human-generated) summaries in the
dataset. Fig. 7 illustrates the AMR-augmented
prompt for summarizing conversations in the SAM-
Sum dataset (Gliwa et al., 2019).

3.2.4 Natural Language Inference (NLI)
In this task, we evaluate the effectiveness of AMRs
in enhancing the ability of LLMs to understand
and reason about natural language, specifically, to
determine whether a given claim is supported by
sentences in an evidence document. This involves
identifying if there is an entailment between the
claim (hypothesis) and the supporting evidence
(premise) or if a contradiction exists between them.
We use the SNLI dataset (Bowman et al., 2015),
composed of pairs of short statements, and the Doc-
NLI dataset (Yin et al., 2021), where premises can
span multiple sentences and documents. Fig. 8
illustrates the AMR-augmented prompt for natural
language inference on the SNLI dataset. A similar
prompt was used for DocNLI, with the removal of
the neutral label from the instruction to align with
the binary labels in DocNLI.

Fig. 23 in the Appendix illustrates an example
of a prompt-completion for the 3-shot SNLI entail-
ment prediction task.
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Figure 4: Prompt for regenerating text from AMRs.

Figure 5: AMR-augmented prompt for QA on the
SQuAD 2.0 dataset. For context-only prompting (Fig.
15), the final statement from the canary-colored instruc-
tion block is removed, along with the AMRs from the
examples. For AMR-only prompting (Fig. 16), the
instruction is modified so that the LLM considers the
AMR as the context for reasoning, and the original con-
text is removed from the examples.

4 Experimental Settings

Our analysis pipeline involves converting text into
AMR structures and then prompting LLMs to per-
form tasks using those AMRs, either via AMR-
augmented or AMR-only prompting. The baselines
for these tasks are simply the language-only (i.e.,
context-only) prompting results. In this section, we
will describe the experimental setup for the tasks
outlined in Section 3.2.

4.1 Datasets and Splits

In addition to using the LDC2020T02 dataset,
which contains AMRs of small contexts (sentence-
level AMRs), we also parse contexts from the
SQuAD 2.0, HotpotQA, SAMSum, SNLI, and Doc-
NLI datasets into document-level (multi-sentence)
AMRs using the AMR3-structbart-L and doc-sen-
conll-amr-seed42 models via IBM’s transition-
based neural parser. Note: a document-level AMR
corresponds to a single, continuous document. For
instance, each question in the HotpotQA dataset

Figure 6: AMR-augmented prompt for QA on Hot-
potQA dataset. The context-only (Fig. 19) and AMR-
only (Fig. 20) prompting strategies are similar to those
used in SQuAD 2.0 reasoning.

Figure 7: AMR-augmented prompt for summarizing
SAMSum dataset conversations. The context-only (Fig.
17) and AMR-only (Fig. 18) prompting strategies are
similar to those used in SQuAD 2.0 reasoning.

provides up to 10 documents, which may or may
not be related. This setup results in 10 document-
level AMRs.

We use the test splits of LDC2020T02, SAM-
Sum, SNLI, and DocNLI, and the validation splits
of SQuAD 2.0 and HotpotQA for inference. The
few-shot examples are curated from the training
splits of these datasets. We also conduct a fine-
tuning experiment for SAMSum summarization
using its training and validation splits.

4.2 Models

For all tasks, we generate responses truncated at
the first occurrence of a newline character using
8-bit quantized versions of Llama-3.1-8B-Instruct
(Llama3.1) (Grattafiori et al., 2024), Phi-3-mini-
128k-instruct (Phi3) (Abdin et al., 2024), and
Mistral-7B-Instruct-v0.1 (Mistral) (Jiang et al.,
2023). Table 1 outlines the mapping of models
to their respective tasks.
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Figure 8: AMR-augmented prompt for natural language
inference on SNLI dataset. The context-only (Fig. 21)
and AMR-only (Fig. 22) prompting strategies are simi-
lar to those used in SQuAD 2.0 reasoning. The 3-shot
examples for SNLI included 1 example of each label,
while the 5-shot examples included 2 examples each
of entailment and contradiction, and 1 neutral example.
For DocNLI, due to an imbalance in the test set (with
more examples of contradiction than entailment), we
included one more example of contradiction than entail-
ment in the few-shot prompts.

We also experiment with rank-32 LoRA (Hu
et al., 2021) fine-tuning of the 8-bit quantized
Llama3.1 model for the SAMSum summarization
task. We then compare the performance of this
fine-tuned model against few-shot summarization.

4.3 Evaluation Metrics

Listed below are the evaluation metrics used for
each task, according to their output types.

AMR-to-text and Summarization For these
tasks, we report the ROUGE-1, ROUGE-2,
ROUGE-L, BLEU, and cosine similarity scores
comparing the expected response to the generated
response averaged across all samples. The cosine
similarity between the all-MiniLM-L6-V2 (Wang
et al., 2020) embeddings of the expected response
and the generated response averaged across all sam-
ples is reported as the cosine similarity score.

Question Answering We report F1-score for all
question answering tasks. The F1 is calculated
for each sample based on the number of com-
mon tokens between the expected and generated
responses, then averaged across all samples. This

Task Llama3.1 Phi3 Mistral
Regeneration Yes Yes Yes

Summarization Yes Yes Yes
1-hop QA Yes Yes Yes
2-hop QA Yes No No

SNLI Yes Yes Yes
DocNLI Yes No No

Table 1: Mapping models to the tasks for which they
will be used. Only Llama3.1 is employed for 2-hop QA
and DocNLI due to its ability to handle long contexts
efficiently, which the other models lack.

is operationalized as:

Precision =
count of common tokens

count of tokens in generated response

Recall =
count of common tokens

count of tokens in generated response

F1 = 2× Precision × Recall
Precision + Recall

We also report cosine similarity score for this task.
For SQuAD 2.0, we select the best possible match
from the available answer choices for scoring.

Natural Language Inference For SNLI and
DocNLI, we report the macro F1-score of the gener-
ated answers compared to the labels; contradiction,
neutral, entailment for SNLI and contradiction, en-
tailment for DocNLI. The macro F1-score averages
the F1-scores across all classes, thereby accounting
for label imbalance and providing a more compre-
hensive measure of classification performance as
compared to accuracy.

5 Results

All scores presented in the charts and tables are
expressed as percentages. For each task, except
for AMR-to-text, we present the results of the best
performing model in the main paper and report the
remaining results in the Appendix.

For all the zero-shot experiments except AMR-
to-text, 5 different transformer seeds were used to
compute 90% confidence intervals. Similar perfor-
mance was recorded across all seeds for zero-shot
experiments, resulting in narrow confidence inter-
vals. For all the few-shot experiments except AMR-
to-text, 5 distinct sets of examples were curated
from the training set to determine 90% confidence
intervals. All the scores presented in the results and
tables are averaged across different seeds and sets,
if applicable.
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Figure 9: LDC2020T02 AMR-to-text Cosine Similarity.

5.1 LDC2020T02

Fig. 9 illustrates that Llama3.1 outperforms Phi3
and Mistral in regenerating the original contexts
from the linearized LDC2020T02 AMRs using few-
shot prompting. While Phi3 achieves the best zero-
shot regeneration cosine similarity score (74%), it
becomes the worst performer with few-shot prompt-
ing. With 5-shot prompting, Llama3.1 attains a
cosine similarity score of 81%. Using more than
3 in-context learning examples yields diminishing
returns, as indicated by the marginal improvement
when transitioning from 3-shot to 5-shot prompting.
Detailed results for this task, including additional
regeneration metrics, are provided in Table 2 in the
Appendix.

5.2 SAMSum

Figure 10 illustrates how Llama3.1’s zero-shot sum-
marization cosine similarity score improves from
66% to 76% with AMR-augmented prompting,
compared to context-only prompting. In the few-
shot setting, although the confidence intervals for
context-only and AMR-augmented prompting over-
lap, both the average and maximum cosine similar-
ity scores are higher for AMR-augmented prompt-
ing than for other prompting strategies. This pro-
vides strong evidence that AMRs can enhance the
ability of LLMs, particularly larger and more recent
models, to infer information from long contexts, es-
pecially lengthy dialogues, and to retain key pieces
of information. However, increasing the number
of few-shot examples beyond 3 yields diminishing
returns for both context-only and AMR-augmented
prompting, and it even degrades performance with
AMR-only prompting.

While Llama3.1’s performance improved with

Figure 10: Llama3.1 SAMSum summarization Cosine
Similarity with 90% confidence intervals.

AMR augmentation, Phi3 and Mistral did not ex-
hibit similar gains (Table 4). Mistral was the best
performing model for this task by a small margin,
despite being worse than Llama3.1 in all the other
tasks. Rank-32 LoRA fine-tuning of Llama3.1
achieved a cosine similarity score of 75% with a
context-only input prompt, which increased to 76%
with an AMR-augmented input prompt. This indi-
cates that, although LoRA fine-tuning of Llama3.1
was not any better than few-shot prompting for
SAMSum summarization, it benefited marginally
from AMR augmentation.

5.3 SQuAD 2.0

Fig. 11 illustrates that Llama3.1’s single-hop rea-
soning F1-score declines with AMR-augmented
prompting compared to context-only prompting
(e.g., from 59% to 52% with 3-shot prompting).
However, both Llama3.1 (Fig. 11) and Mistral
(Table 3) demonstrate a remarkable understand-
ing of AMRs in 3-shot single-hop reasoning, as
indicated by how closely their 3-shot AMR-only
performance approaches the best possible 3-shot
performance for this task. Including over 3 exam-
ples in the prompt results in only marginal perfor-
mance improvements with context-only prompting.
However, with AMR-augmented and AMR-only
prompting, performance deteriorates as the number
of few-shot examples increases to 5. For instance,
Llama3.1 achieved a 48% F1 score with AMR-only
3-shot prompting, which dropped significantly to
26% with AMR-only 5-shot prompting. Detailed
results for this task, including results from other
models, are provided in Table 3 in the Appendix.
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Figure 11: Llama3.1 SQuAD 2.0 QA F1-score with
90% confidence intervals.

Figure 12: Llama3.1 2-hop HotpotQA F1-score with
90% confidence intervals.

5.4 HotpotQA

Fig. 12 shows that AMR-augmented prompting
in Llama3.1 does not outperform context-only
prompting for 2-hop reasoning on the HotpotQA
dataset. Additionally, across all prompting scenar-
ios, increasing from 3-shot to 5-shot prompting has
insignificant impact on performance. Although this
is a long-context task, the individual documents
within the context are small, resulting in multiple
AMRs of these small documents being stacked to-
gether in the input prompt. This explains why the
observations regarding the effectiveness of AMRs
here differ from those in the SAMSum dataset,
where AMRs were derived from long conversa-
tions and proved more effective in improving task
performance.

5.5 SNLI

Unlike the other tasks, for natural language infer-
ence on the SNLI dataset, Phi3 was the best per-

Figure 13: Phi3 SNLI Macro F1-score with 90% confi-
dence intervals.

forming model by a significant margin, achieving
an 82% macro F1-score with context-only 5-shot
prompting. Fig. 13 shows that AMR-augmented
prompting in Phi3 yields a significantly better zero-
shot macro F1-score (39%) compared to context-
only prompting (27%), which is only slightly better
than AMR-only prompting (25%). However, with
the addition of few-shot examples in the prompt,
context-only prompting achieves the highest macro
F1-score. Detailed results for this task, including
results from other models, are provided in Table 5
in the Appendix.

5.6 DocNLI

The DocNLI experiment was conducted on approx-
imately 13k examples from the DocNLI test split,
which had an 8:5 label imbalance in favor of contra-
diction. This experiment aimed to further validate
observations from prior experiments regarding the
utility of AMRs in long-context tasks. Fig. 14
illustrates that AMR-only prompting achieves the
highest zero-shot macro F1 score of 20%. However,
with 3 few-shot examples, context-only prompting
achieves a macro F1 score of 51%, outperform-
ing the other prompting methods. Both AMR-only
and context-only prompting result in a performance
decline with 5 few-shot examples, while the AMR-
augmented prompting macro F1 score increases.
These results are not only inconsistent with the
SNLI experiment outcome but also deviate from
the trends observed in other long-context tasks.

6 Conclusion

In this study, we investigated the ability of LLMs to
interpret and leverage AMRs. Our findings demon-
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Figure 14: Llama3.1 DocNLI Macro F1-score with 90%
confidence intervals.

strate that AMR-augmented prompting, where the
AMR of the context is included alongside the origi-
nal context, significantly improves zero-shot long-
dialogue summarization for Llama3.1 and notice-
ably improves sentence-level natural language in-
ference for Phi3. The improvement from AMR-
augmented prompting is more significant in SAM-
Sum summarization with Llama3.1, the largest and
most recently developed model among those used
in this study, compared to other models and tasks.
While AMRs did not enhance performance in other
tasks, there was still some evidence that LLMs can
extract meaningful information from AMRs. This
was particularly evident in some of the AMR-only
experiments, where the models achieved reason-
able performance using AMRs alone. Addition-
ally, we conducted rank-32 LoRA fine-tuning of
Llama3.1 on the SAMSum summarization task,
which produced results better than zero-shot but
not as effective as few-shot prompting for both
context-only and AMR-augmented approaches.

Overall, the experiments suggest that AMRs can
assist LLMs in understanding long-term dependen-
cies, key ideas, and events in long texts, as demon-
strated by the zero-shot and few-shot SAMSum
summarization experiments. However, including
linearized AMRs in the prompt appears generally
ineffective for tasks involving short contexts.

7 Limitations

In this work, we aimed to provide a comprehensive
analysis of the impact of linearized AMRs on LLM
performance. However, how these LLMs interpret
AMRs after full fine-tuning on AMR-augmented
and AMR-only tasks remains unclear, as it was out-

side the scope of this study. The only fine-tuning
conducted in this study (LoRA fine-tuning of the 8-
bit quantized Llama3.1) proved less effective than
few-shot prompting. Moreover, the DocNLI long-
context task was evaluated on only a partial test
set. To establish confidence in the results for this
task, the full test split of DocNLI should be eval-
uated. Another limitation of this work is that the
HotpotQA experiments did not incorporate Chain-
of-Thought prompting (Wei et al., 2023), which is
the most commonly used prompting technique for
achieving strong performance on this dataset. This
omission is justified, however, given that Chain-of-
Thought prompting tends to work well only with
models larger than those used in this study.

Our results demonstrate that AMRs improve per-
formance on long-context tasks such as dialogue
summarization but degrade performance on short-
context tasks like single-hop QA. However, we
have not conducted a detailed analysis to iden-
tify the underlying causes. Further investigation
is needed to uncover task-specific factors that con-
tribute to these outcomes.

8 Future Work

There are numerous directions for extending this
work. For instance, approaches such as prompt tun-
ing through soft prompts (Lester et al., 2021), syn-
thetic AMR generation and AMR enrichment (Ji
et al., 2022), or adapter-based parameter-efficient
fine-tuning (Houlsby et al., 2019) can be explored
alongside full fine-tuning of LLMs on AMR-
augmented and AMR-only tasks. This study uti-
lized only one of the most recently developed
LLMs; analyzing other newer models as large as
Llama3.1 or larger could help reinforce the observa-
tions presented in this paper. Additionally, explor-
ing how AMRs or other structured representations
impact retrieval augmented pipelines would be an
interesting avenue for future research. It would also
be interesting to observe how the findings of this
paper change when the models are 4-bit quantized.

The analysis presented in this work can also be
extended to other structured semantic representa-
tions using similar tasks. In particular, evaluating
Discourse Representation Structures (DRS) and
Knowledge Graphs (KG) would be valuable, given
the wide range of tasks for which these representa-
tions are continuously being explored.
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Figure 15: Context-only prompt for QA on the SQuAD
2.0 dataset.

Figure 16: AMR-only prompt for QA on SQuAD 2.0
dataset.
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A Appendix

Figure 17: Context-only prompt for summarizing SAM-
Sum dataset conversations.

Figure 18: AMR-only prompt for summarizing SAM-
Sum dataset conversations.

Figure 19: Context-only prompt for QA on HotpotQA
dataset.

Figure 20: AMR-only prompt for QA on HotpotQA
dataset.
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Table 2: LDC2020T02 AMR-to-text full results.

Model # Examples Cosine similarity ROUGE-1 ROUGE-2 ROUGE-L BLEU
Llama3.1 0 73 55 20 43 6

3 80 63 28 51 11
5 81 64 30 52 12

Phi3 0 74 55 21 43 6
3 75 56 22 45 7
5 76 57 23 45 8

Mistral 0 69 51 18 40 5
3 77 59 23 46 7
5 77 59 25 47 9

Table 3: SQuAD 2.0 QA full results. 5-shot prompting was only conducted for the best performing model
(Llama3.1).

Model # Examples Prompt F1 Cosine similarity
Llama3.1 0 Context-only 55 66

3 Context-only 59 68
5 Context-only 59 68
0 AMR-augmented 49 63
3 AMR-augmented 52 62
5 AMR-augmented 49 60
0 AMR-only 18 38
3 AMR-only 48 60
5 AMR-only 26 45

Phi3 0 Context-only 46 56
3 Context-only 47 58
0 AMR-augmented 38 46
3 AMR-augmented 40 53
0 AMR-only 20 40
3 AMR-only 22 42

Mistral 0 Context-only 35 47
3 Context-only 51 61
0 AMR-augmented 27 37
3 AMR-augmented 49 60
0 AMR-only 17 35
3 AMR-only 41 55

Table 4: SAMSum summarization full results. 5-shot prompting and LoRA fine-tuning were only conducted for
the model that demonstrated improved performance with AMR-augmented prompting compared to context-only
prompting (Llama3.1).

Model # Examples Prompt Cosine similarity ROUGE-1 ROUGE-2 ROUGE-L BLEU
Llama3.1 0 Context-only 66 29 8 21 2

3 Context-only 78 42 17 34 7
5 Context-only 78 43 17 34 7

LoRA Context-only 75 41 16 33 7
0 AMR-augmented 76 37 12 28 4
3 AMR-augmented 79 41 17 32 8
5 AMR-augmented 79 43 18 34 9

LoRA AMR-augmented 76 43 17 34 7
0 AMR-only 60 28 5 19 1
3 AMR-only 79 41 17 32 8
5 AMR-only 67 32 8 22 2

Phi3 0 Context-only 71 28 6 20 1
3 Context-only 72 31 8 23 2
0 AMR-augmented 70 26 5 19 1
3 AMR-augmented 70 25 6 18 1
0 AMR-only 59 22 2 14 0
3 AMR-only 55 18 2 12 0

Mistral 0 Context-only 76 36 12 27 5
3 Context-only 80 47 22 38 12
0 AMR-augmented 77 38 14 29 6
3 AMR-augmented 77 45 20 36 11
0 AMR-only 66 30 6 21 1
3 AMR-only 66 34 8 25 2
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Table 5: SNLI entailment prediction full results. 5-shot prompting was only coducted for the best performing model
(Phi3).

Model # Examples Prompt Accuracy Macro-F1
Llama3.1 0 Context-only 47 8

3 Context-only 56 52
0 AMR-augmented 42 15
3 AMR-augmented 56 54
0 AMR-only 37 12
3 AMR-only 44 39

Phi3 0 Context-only 77 27
3 Context-only 82 80
5 Context-only 83 82
0 AMR-augmented 67 39
3 AMR-augmented 79 79
5 AMR-augmented 76 76
0 AMR-only 50 25
3 AMR-only 52 52
5 AMR-only 55 55

Mistral 0 Context-only 48 50
3 Context-only 52 54
0 AMR-augmented 49 50
3 AMR-augmented 34 20
0 AMR-only 33 20
3 AMR-only 33 12

Figure 21: Context-only prompt for natural language
inference on SNLI dataset.

Figure 22: AMR-only prompt for natural language in-
ference on SNLI dataset.
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Figure 23: An example of a prompt-completion for the
AMR-augmented 3-shot SNLI entailment prediction
task using Llama3.1.
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Abstract

We study whether incorporating symbolic rules
can aid large language models in dependency
parsing. We consider a paradigm in which
LLMs first produce symbolic rules given fully
labeled examples, and the rules are then pro-
vided in a subsequent call that performs the
actual parsing. In addition, we experiment with
providing human-created annotation guidelines
in-context to the LLMs. We find that while
both methods for rule incorporation improve
zero-shot performance, the benefit disappears
with a few labeled in-context examples.

1 Introduction

Dependency parsing is a classic task in natural lan-
guage processing, requiring systems to parse com-
plex linguistic structures. Standard approaches to
dependency parsing train neural models on large
amounts of labeled data (human-created parses),
which either cast parsing as a word-by-word clas-
sification task (Covington, 2001), a sequence-to-
sequence generative task (Li et al., 2018; Lin et al.,
2022a), or a graph-based structure prediction task
(Dozat and Manning, 2017).

One limitation of neural parsing methods is the
requirement for large amounts of labeled data,
which is often unavailable for low-resource lan-
guages. While Universal Dependencies (de Marn-
effe et al., 2021) currently includes over 150 lan-
guages, many of these languages have less than
one thousand labeled tokens worth of data. Cross-
lingual transfer has been proposed as a method
to overcome these limitations (Guo et al., 2016;
Schuster et al., 2019), but faces challenges due to
differences in linguistic structure across languages
(Ahmad et al., 2019; Wu and Dredze, 2020).

Recent work has investigated the use of large
language models (LLMs) as an approach for pars-
ing tasks (Li et al., 2023; Bai et al., 2023; Lin

et al., 2023; Blevins et al., 2023; Tian et al., 2024).1

LLMs are pretrained on huge multilingual corpora,
and can potentially leverage cross-lingual informa-
tion for effective parsing, even on rarer languages.
Generally, this research has found that LLMs are
effective zero-shot parsers on common languages
such as English and Chinese and can also be effec-
tive on rare languages through in-context learning.
However, in-context learning quickly grows ineffi-
cient and expensive with many examples.

We explore an alternate paradigm for depen-
dency parsing on low-resource languages with
LLMs. In our system, the LLM first acts as a
descriptive linguist, observing labeled examples
and producing linguistic rules. Then, the rules are
provided in another LLM call where parsing is
performed. We consider several techniques for pro-
viding context to the LLM during rule generation.

We hypothesized that explicitly producing sym-
bolic rules could help improve the robustness of
LLM-based parsing. We find that incorporating the
LLM-generated rules offers clear improvements
over the zero-shot setting, but worse performance
than few-shot prediction. Furthermore, our best
LLM-based setting underperforms state-of-the-art
approaches across languages. We explore a num-
ber of failure cases and suggest future methods that
could be used to address them. Our code and full
results are available on GitHub.2

2 Related Work

Recent work has explored the potential of large
language models for syntactic parsing. Some work
has finetuned language models on dependency pars-
ing as a sequence-to-sequence task (Hromei et al.,
2024) or proposed statistical methods to automati-
cally extract dependencies from language models

1While this work largely focuses on constituency parsing,
we assume it shares similarities with dependency parsing.

2https://github.com/michaelpginn/
ai-researcher-project
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(Chen et al., 2024). The most similar work explores
prompting-based methods for LLM parsing, that
do not require training. Lin et al. (2023) evalu-
ates LLMs on zero-shot parsing for English and
Chinese. Tian et al. (2024) proposes similar strate-
gies for constituency parsing in English. Ezquerro
et al. (2025) benchmarks dependency parsing per-
formance across four languages and many LLMs.
However, using LLMs to parse rare languages re-
mains unexplored.

3 Data

We use data from Universal Dependencies (UD)
(de Marneffe et al., 2021) for eight languages with
differing geographic regions, linguistic features,
and resource availability. We use the pre-defined
train/eval/test splits from UD when available, and
otherwise produce our own splits which are reused
across experiments. We also remove examples with
non-projective dependencies, which can pose is-
sues for transition-based parsers. We summarize
our languages and splits in Table 1.

Language (code) Train Dev Test
Bambara (bam) 697 149 150
Bhojpuri (bho) 220 47 48
Cantonese (yue) 620 133 133
Erzya (myv) 1429 306 307
Kiche (quc) 655 141 141
Komi Zyrian (pcm) 438 94 94
Nigerian Pidgin (pcm) 6352 826 797
Yoruba (yor) 182 39 40

Table 1: Languages used in this study, and the number
of train, development, and test instances for each lan-
guage. All data comes from Universal Dependencies
(de Marneffe et al., 2021).

4 Experimental Conditions

4.1 Baseline
As a baseline, we simply prompt the LLM to gener-
ate dependency parses for a given example. Details
about prompts are given in Appendix A. We use
a truncated form of the CONLL-U format3 where
each tab-separated line gives an ID, a word, the ID
of the word’s head, and the dependency relation
type. All of our main experiments use GPT-4o4.

In addition, we use a baseline setting where
we specify the list of allowed dependency relation

3https://universaldependencies.org/format.html
4Specifically the GPT-4O-2024-08-06 checkpoint

types (obtained by collecting all relation types from
the training data). We refer to this setting as LA-
BELS.

4.2 Symbolic Rules
Dependency parsing is a symbolic task equivalent
to forming directed edges on a graph.5 In this
study, we seek to understand whether symbolic
knowledge can be extracted and leveraged for this
task. In particular, symbolic rules and heuristics
can be used by LLMs simply by providing the rules
in-context, unlike traditional neural parsers. We
consider three settings for incorporating rules.

Rule Writing In the RULE WRITING setting, we
first provide five labeled examples6 to the LLM and
prompt it to generate rules. The rules are specified
by predicting part-of-speech categories of words,
and then by writing dependency rules. For a hypo-
thetical English example, the LLM might predict
the categories:

Det: the
Noun: dog , cat
Verb: chases
Punct: .

Then, the LLM writes dependency rules by extract-
ing the dependency relations from provided exam-
ples. The predicted rules for the prior example
might look like the following:

Noun -> Det (det)
Verb -> Noun (nsubj)
Root -> Verb (root)
Verb -> Noun (obj)
Verb -> Punct (punct)

Finally, the generated rules are provided as-is in
a subsequent prompt to the LLM for performing
parsing.

Word Contexts We note that other than the pre-
diction of word categories, these rules are largely
just descriptive analysis of observed examples. In
the WORD CONTEXTS setting, we eliminate the
need for identifying part-of-speech categories, and
instead just record the contexts that a word can
occur in, consisting of the type and head of a de-
pendency relation pointing to the word. For exam-
ple, in the previous example, we might have the
following contexts, listed as "(head, relation type)":

5With some restrictions, of course
6We select relevant examples using the method described

in subsection 4.3
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the:
(dog , det)
(cat , det)

dog:
(chases , nsubj)

chases:
(root , root)
...

We collect these contexts from the examples in the
training dataset. Since some words may occur in
a huge number of contexts, we sample up to two
contexts for a given word and relation type. These
contexts are less generalized than the rules of the
prior section, but more accurate, as they do not
require predicting part-of-speech categories.

Guidelines Dependency parsing is typically con-
ducted by human annotators, and as such there
already exist detailed parsing guidelines for many
languages. In theory, these guidelines should be
sufficient for someone with a baseline knowledge
of the language’s vocabulary and syntax to per-
form accurate parsing. In the GUIDELINES setting,
we provide these guidelines directly to the LLM,
avoiding the potential error of LLM-based rule ex-
traction. The human guidelines should be highly
accurate and relevant to the task at hand, thus we
expected this setting to have clear benefits.

We scrape guidelines from the appropriate Uni-
versal Dependencies webpage, convert to mark-
down, and remove links. An excerpt from the pro-
cessed Kiche guidelines is given in Appendix B.

4.3 In-context examples
Prior research has indicated that providing in-
context examples is vital to enabling LLMs to per-
form tasks in rare languages (Lin et al., 2022b;
Cahyawijaya et al., 2024; Ginn et al., 2024). Thus,
we compare the four settings described previously
(LABELS, RULE WRITING, WORD CONTEXTS,
GUIDELINES) across a zero-shot setting, a three-
shot setting, and a five-shot setting. This compari-
son allows us to measure the effects of these strate-
gies compared to the effect of increasing in-context
examples.

As in Ginn et al. (2024), we select relevant ex-
amples to the target sentence by choosing the sen-
tences in the training set with the highest chrF++
score, computed using the target sentence as the
reference. This ensures that the in-context exam-

ples have high substring overlap with the target
example, and are more likely to be relevant for
parsing.

5 Experimental Results

We report our results on the development set, us-
ing GPT-4o, in Figure 1. We average UAS and
LAS scores over languages; full results are avail-
able in our GitHub repo. Generally, we observe
a clear trend where providing symbolic informa-
tion helps in the zero-shot setting, but the benefit
decreases with increased in-context examples. At
the five-shot setting, any benefits from symbolic
knowledge are effectively nullified. Next, we an-
alyze the effects of the various settings. We also
perform additional variational experiments on the
use of labels and chain-of-thought prompting in
Appendix D.

Effect of Rule Writing We observe a large bene-
fit to both UAS and LAS in the zero-shot setting,
and a smaller benefit in the three-shot setting. Re-
call that the rules were written using five relevant
examples. Thus, it is not terribly surprising that
performance is similar when using the rules ver-
sus using the examples directly. In fact, the simi-
lar performance indicates that the LLM can effec-
tively compress the relevant information from the
in-context examples into symbolic rules, providing
the same benefit with far less text.

While this is less encouraging for improving
absolute performance, it could be useful for im-
proving efficiency. For example, an LLM could
be used to write rules about many similar groups
of sentences ahead of time, and the relevant rules
could be selected during inference, drastically re-
ducing the length (and thus, speed and cost) of the
parsing prompt.

We perform manual qualitative examination of
rules in Bambara. We observe two common failure
cases.

First, in some cases the LLM produced overly-
specific part-of-speech categories that prevented
the correct relation from being predicted. For ex-
ample, in one case the correct root verb was "ye".
However, in the provided examples, "ye" was only
ever used as an auxiliary verb, leading the LLM
to predict that "ye" was a member of a category
named AUX. Because the LLM failed to iden-
tify that auxiliary verbs were the same category
as verbs, it then failed to predict "ye" as the root of
the sentence, instead choosing a random noun as
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Figure 1: UAS (left) and LAS (right) scores for LLM-based dependency parsing, averaged across eight languages,
across different numbers of in-context examples and different strategies for incorporating symbolic knowledge. We
find that in the zero-shot setting, symbolic knowledge can provide clear improvements, but the margin disappears
with sufficient in-context examples. The BASELINE setting is a zero-shot setting with no information provided at all.

the root.
Second, the LLM sometimes produced correct

rules which could produce multiple possible parses
for the target sentence. For example, one instance
began with the sentence "n na kònò to n bolo!".
The LLM correctly identified "n" and "kònò" as a
pronoun and noun, respectively, and produced the
correct rules PRONOUN -> PARTICLE (CASE) and
NOUN -> PARTICLE (CASE). The LLM predicted
a case relation from "kònò" to "na", rather than
the correct relation from "n" to "na", both of which
were allowed under the specified rules. This reveals
a limitation of this sort of dependency rule: by not
specifying word ordering, ambiguous situations
arise with multiple valid parses. We explore one
solution to this issue in Appendix C

Effect of Word Contexts The inclusion of word
contexts (scraped directly from training data) had
comparable performance to the LLM-written rules,
with the highest LAS scores of any setting. Be-
cause this setting does not require an initial LLM
call (unlike the rule writing setting), it drastically
reduces the total cost of inference, while meeting or
exceeding the performance of the RULE WRITING

strategy.
A possible interpretation is that the only relevant

information extracted by symbolic rules is the con-
texts in which particular words occur. Generalized
symbolic rules over word categories do not seem
to be particularly helpful by comparison.

We run paired bootstrap resampling (Koehn,
2004) to test the significance of the improvements

of WORD CONTEXTS over the LABELS setting.
We report the average significance score for the
zero, three, and five-shot settings in Table 2. The
results reinforce our qualitative observations.

Shots Confidence
0 98.0%
3 61.3%
5 43.9%

Table 2: Paired bootstrap resampling score for the
WORD CONTEXTS setting versus the LABELS setting,
ran with 1000 iterations and test sets of 20 items.

Effect of Guidelines We expected GUIDELINES

to be the most effective setting, as they provide
the information that was used by human annotators
to produce the labeled examples. However, we
observe that while the GUIDELINES setting does
provide small benefits over LABELS in the zero-
and three-shot settings, it underperforms the RULE

WRITING and WORD CONTEXTS strategies by a
good margin.

There are two possible interpretations of this re-
sult. One possibility is that while the guidelines
provide sufficient information to perform parsing,
the LLM failed to understand and apply this infor-
mation. This would align closely with the results of
Aycock et al. (2025), which finds that LLMs strug-
gle to utilize language reference materials when
performing translation with rare languages.

The other possibility is that the guidelines do
not actually provide sufficient information to per-
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Method bam bho yue myv quc kpv pcm yor
mBERT 82.8 / 78.9 69.9 / 61.0 73.3 / 66.4 76.8 / 67.2 84.1 / 77.4 63.3 / 48.1 91.7 / 88.8 62.5 / 51.6
XLM 84.0 / 79.8 72.2 / 62.7 76.0 / 70.4 79.6 / 69.8 82.3 / 74.7 67.3 / 53.9 93.7 / 90.9 64.9 / 53.2
UDPipe 2 92.4 / 90.2 76.9 / 68.0 75.8 / 70.2 77.6 / 69.1 88.6 / 84.1 74.9 / 65.6 93.0 / 89.7 76.0 / 69.5
LLMs w/ labels and contexts, 5-shot
GPT-4o 69.3 / 61.7 67.4 / 55.5 71.8 / 65.1 54.7 / 44.5 81.0 / 72.7 49.5 / 37.7 73.0 / 68.2 54.2 / 45.5
Gemini 76.0 / 70.6 67.9 / 56.3 68.4 / 63.0 77.4 / 69.6 87.7 / 82.9 75.0 / 65.9 72.8 / 68.6 59.1 / 48.9
Cmd R+ 54.3 / 47.9 60.9 / 52.7 51.9 / 45.8 47.8 / 36.1 69.7 / 61.1 46.8 / 34.3 50.9 / 46.2 41.2 / 32.3
Llama 3.1 41.5 / 34.1 58.9 / 50.4 37.8 / 31.6 35.8 / 25.5 54.6 / 44.6 38.6 / 26.4 38.9 / 32.0 39.5 / 32.2

Table 3: Test set results on various state-of-the-art methods and LLMs using our best method from the preceding
section. Scores are reported as UAS / LAS.

form parsing. Certainly, these guidelines do not
include complete bilingual dictionaries, so an LLM
which cannot translate words in the target language
would likely struggle to apply more sophisticated
grammar rules. This could be studied in future
work by also providing word-by-word translations
alongside guidelines. However, it may also be the
case that the UD guidelines do not specify all of
the information needed for parsing, assuming some
knowledge of the grammar of the language.

6 Baseline Comparison

6.1 Baselines

We consider the following baseline models, which
represent the common approaches used for depen-
dency parsing and often are around the state-of-the-
art, depending on the dataset.

Transition Parser We use a neural transition-
based parser following the approach of Covington
(2001); Nivre (2003); Jurafsky and Martin (2025).
The parser predicts actions to form arcs between
words, processing words in the sentence one-by-
one and using a stack to retain words until they
have been fully processed. In order to potentially
benefit from crosslingual transfer, we finetune our
classifier using two pretrained multilingual model,
mBERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020).

UDPipe We use UDPipe 1 (Straka and Straková,
2017), a pipeline that performs tokenization,
lemmatization, tagging, and parsing, with train-
able components for each step.7 We train models
using the default hyperparameters.

6.2 Results

We report results in Table 3. While the various
settings for LLM inference were similar in the five-

7We chose not to use UDPipe 2 as it proved impossible to
replicate the necessary development environment

shot setting, we select the WORD CONTEXTS set-
ting to compare, as it performed best in the zero-
and three-shot settings. We run this setting with the
following LLMs:

• GPT-4o, as in the development experiments
(OpenAI, 2024)

• Gemini 2.0 Flash (Gemini Team, 2024)

• Command R+8, a 104B parameter model
specifically designed for low-resource mul-
tilingual tasks

• Llama 3.1 7b (Dubey et al., 2024), using the 8-
bit quantization and the MLX (Hannun et al.,
2023) checkpoint

We observe that for most languages, the LLM-
based method underperforms or matches tradi-
tional neural SOTA methods. Of the four models
tested, Gemini performs best on average. While
the paradigms studied here can certainly improve
performance over the zero-shot setting, they are not
sufficient to beat the best prior approaches.

7 Conclusion

We studied methods for performing dependency
parsing on low-resource languages with large lan-
guage models (LLMs) that incorporate (symbolic)
rules. We compared using LLM-written rules, ex-
tracting contexts that words appear in, and provid-
ing human-readable annotation guidelines. Overall,
we found that these methods provide benefits in
the zero-shot setting, but with sufficient in-context
examples, their benefit was minimal. We evalu-
ated several LLMs against state-of-the-art base-
lines, finding that the LLMs were unable to beat
the best prior models.

8https://docs.cohere.com/docs/command-r-plus
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A Prompts

A.1 Parsing

The base prompt used across experiments is given
below.

You are predicting the
dependency parse for a
sentence in $language.

You will be given a sentence
word -by-word , with each word
on a new line. Below is an

example in English:

1 The
2 dog
3 chases
4 the
5 cat
6 .

You are to predict the
dependency parse for this
sentence. For each token ,
you should predict the
following:
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1. The index of the token 's
head according to its
dependency relation , or "0"
if it is the root

2. The type of dependency
relation

You should output the
dependency parse using the
original format , with two
additional columns (
separated by tabs) for the
head and relation type. For
the example above , you
should produce the following
:

1 The 2 det
2 dog 3 nsubj
3 chases 0 root
4 the 5 det
5 cat 3 obj
6 . 3 punct

Do not output any additional
text. Only produce the
dependency parse following
the above format.

Please gloss the following
example in $language:

$target_example

For any settings with the label list included, we add
the following:

The allowed dependency
relations are the following:
$label_list

For settings with few-shot examples, we add the
following:

Below are some fully glossed
examples in $language.

$examples

A.2 Rule Writing

The base prompt for writing rules is:

You are writing dependency
grammar rules given a small

number of examples. You will
be provided with parsed

sentences written word -by-
word with each word on a new
line. An example in English
is given below:

1 The 2 det
2 dog 3 nsubj
3 chases 0 root
4 the 5 det
5 cat 3 obj
6 . 3 punct

The first column is the ID of
the word. The third column
is the ID of the head for
the word. The fourth column
is the type of dependency
relation. From this sentence
, you should first infer
categories for each of the
words and output them.
Please output "Categories :"
followed by your inferred
categories , as in the
following example:

Categories:
Det: the
Noun: dog , cat
Verb: chases
Punct: .

You should omit duplicate words
, and words may belong to
multiple categories.

Then , write dependency grammar
rules using the convention "
Head -> Dependent (relation
type)", based on the
observed rules in the data.
Print all of the rules ,
seeking to find a minimal
set of rules that explains
the data , and starting with
"Rules :". Do not repeat
rules. The rules from the
previous example are given
below.
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Rules:

Noun -> Det (det)
Verb -> Noun (nsubj)
Root -> Verb (root)
Verb -> Noun (obj)
Verb -> Punct (punct)

You are writing rules for
$language. Please use the
following examples to
produce the analysis , making
sure to include both the

Categories and Rules
sections.

$examples

B Example Guidelines

An excerpt from the Kiche guidelines is given be-
low.

#### Nouns

- Most nouns are not inflected
for number , although animate
nouns can be, in this case

they are annotated with `
Number=Plur `.

- There is a subset of nouns
used relationally , these are
called relational nouns and
are used where adpositions

would be used in other
languages.

- They are marked with the
feature `[NounType ]()=
Relat `.

- The lemmas are: _ech_ , _uk '
_, _umal_ , _wach_ , _ib '_,
_onojel_ , _wi '_, _pam_ ,
_ij_ , _xe '_, _xo 'l_ ,
_tukel_ , _tzalaj_ , _naqaj_
.

- Relational nouns are also
used for:

- Reflexive , _ib '_
- Introducing the agent in

a passive , _umal_

#### Verbs

- Transitive verbs have
polypersonal agreement which
is indicated through

layered features `Person[obj
]`, `Number[obj]`, `Person[
subj]`, `Number[subj]`.

- Finite verbs have `Aspect `
but no `Tense `.

- The imperfective or
incompletive is annotated
with `Aspect=Imp `.

- The perfective or
completive is annotated
with `Aspect=Perf `.

- Incorporated movement is
indicated through the
feature `Movement `:

- Movement away from is
marked with `Movement=Abl
`, this is the morph _\-e
'-_

- Movement towards is marked
with `Movement=Lat `, this
is the morph _\-l-_

- There are two principle
valency changing processes:
Passive and antipassive.
Both produce verbs with only
set B agreement.

- In the passive , annotated
with `Voice=Pass `, the
object is promoted to
subject and the subject is
demoted to oblique.

- In the antipassive ,
annotated with `Voice=
Antip `, the subject
agreement is maintained
and the object is demoted
to oblique.

...

C Directional Rule Writing

In section 5, we identified an issue where multiple
rules could apply to an example, and there was no
way to disambiguate which rule to use. One trivial
solution is to also specify an ordering between the
head and dependent. We experiment with this idea,
prompting the LLM to produce rules of the form:

Noun -> Det (det , left)
Verb -> Noun (nsubj , left)
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Root -> Verb (root , none)
Verb -> Noun (obj , right)

In addition to the relation label, the LLM sim-
ply labels whether the dependent occurs to the left
or right of the head. We report results for this
variation of rule writing on the development set in
Table 4. We observe very small improvements in
most languages.

For the preceding example, the LLM now cor-
rectly identifies the rule PRONOUN -> PARTICLE

(CASE, RIGHT) which should resolve the ambigu-
ity. Unfortunately, the LLM now predicts the in-
correct relation "nsubj", with no clear reason why
(as this does not follow from the rules). Evidently,
the inclusion of directions in the rules is not a clear
benefit, but introduces other forms of error.

D Variational Experiments

Effect of Labels All of our main settings in-
clude a list of allowed relation labels in the prompt.
While it is intuitive why this would be beneficial,
we also provide empirical validation. In Figure 2,
we report the results of zero-shot prediction with
and without labels, across the baseline setting and
the setting with guidelines included. We see a small
improvement from including labels in not only the
Labeled Attachment Score (LAS), but also the Un-
labeled Attachment Score (UAS). As providing
labels is inexpensive, we use this setting for all
main experiments.

Base Guidelines
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0.30
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Figure 2: UAS (left) and LAS (right) scores for the zero-
shot setting, comparing results when the list of allowed
relation labels is included in the prompt versus when it
is omitted. In both the base and GUIDELINES setting,
we see a small improvement from including labels.

Effect of Chain-of-Thought Another applica-
ble technique is chain-of-thought (CoT) prompting,
where the LLM is prompted to produce step-by-
step explanations of its thought process (Wei et al.,

2022). CoT has proven effective on multistep rea-
soning problems, and thus is a good fit for the
task of understanding and applying the informa-
tion from in-context examples and in-context rules.
We add CoT to the base five-shot setting as well
as the five-shot setting with guidelines. We report
these results in Figure 3. Unfortunately, adding
CoT seems to worsen performance in both settings.
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Figure 3: UAS (left) and LAS (right) dev set scores for
the five-shot setting, evaluating the effect of adding
chain-of-thought prompting. In both the base and
GUIDELINES setting, we see a clear detriment from
CoT.
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Rules bam bho yue myv quc kpv pcm yor mean
Base 61.7 53.4 59.6 39.9 72.7 38.3 71.7 50.7 56.0
+ order 63.5 53.6 59.7 38.0 73.1 38.5 72.1 52.2 56.3

Table 4: LAS scores across languages for the RULE WRITING setting. In the base setting, rules were written as
"Head -> Dependent (relation type)" without any notion of word order. In the + ORDER setting, rules additionally
included whether the dependent was to the left or right of the head.
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Abstract

Large language models (LLMs) have advanced
document-level relation extraction (DocRE),
but DocRE is more complex than sentence-
level relation extraction (SentRE), facing chal-
lenges like diverse relation types, coreference
resolution and long-distance dependencies. Tra-
ditional pipeline methods, which detect rela-
tions before generating triplets, often prop-
agate errors and harm performance. Mean-
while, fine-tuning methods require extensive
human-annotated data, and in-context learning
(ICL) underperforms compared to supervised
approaches. We propose an iterative reflection
framework for DocRE, inspired by human non-
linear reading cognition. The framework lever-
ages explicit and implicit relations between
triplets to provide feedback for LLMs refine-
ment. Explicit feedback uses logical rules-
based reasoning, while implicit feedback recon-
structs triplets into documents for comparison.
This dual-process iteration mimics human se-
mantic cognition, enabling dynamic optimiza-
tion through self-generated supervision. For the
first time, this achieves zero-shot performance
comparable to fully supervised models. Ex-
periments show our method surpasses existing
LLM-based approaches and matches state-of-
the-art BERT-based methods1.

1 Introduction

DocRE aims to identify entity pairs and their se-
mantic relations within long contexts, playing a
vital role in various downstream NLP applications.
LLMs have made significant progress in classi-
cal information extraction tasks (Xu et al., 2024).
Recent studies leverage their strong instruction-
following abilities and rich intrinsic knowledge to
enhance DocRE performance (Ozyurt et al., 2024;
Sun et al., 2024; Li et al., 2023).

*Corresponding authors.
1The authors are non-native English speakers, and AI as-

sistants were used to polish certain sections of the paper, but
were not used in research or coding.

However, DocRE is more challenging than Sen-
tRE due to the diversity of relation types, coref-
erence resolution and long-distance dependencies
within the document. Consequently, many Sen-
tRE methods (Wadhwa et al., 2023; Wan et al.,
2023) cannot be directly applied to DocRE. To ad-
dress these challenges, existing methods typically
adopt a linear pipeline framework (Wei et al., 2024),
which sequentially detects relations and generates
triplets. However, this often leads to error propaga-
tion, degrading downstream performance. Based
on the linear framework, these methods primarily
rely on two paradigms: supervised methods requir-
ing costly human annotations, and ICL approaches
that underperform their supervised counterparts.

Existing linear frameworks do not align with the
human cognitive process, which is iterative and
conflict-driven rather than linear. The DocRE task
inherently mirrors this process: when extracting
relations from documents, humans naturally re-
read ambiguous parts and resolve conflicts (aligned
with the Construction-Integration Model (Kintsch,
1988) and Cognitive Dissonance Theory (Festinger,
1957)), and distinguish at both explicit and im-
plicit levels (as per Dual Process Theory (Evans,
2003)). These theories suggest that text compre-
hension involves dynamic re-evaluation of earlier
content when conflicts or missing information arise,
not only emphasizing the iterative nature of human
reading cognition, but also highlighting that the
main driver of this iteration is the resolution of con-
flicts between knowledge. However, existing linear
DocRE models violate these theories by process-
ing documents unidirectionally without iterative
verification, leading to suboptimal performance.

This disconnect becomes evident when consider-
ing the demonstrated success of the self-correction
mechanism in other NLP domains (Pan et al.,
2024), whose potential for DocRE remains strik-
ingly underexplored. The absence of such reflective
capabilities in existing approaches not only violates
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Reconstruct Document
Task: Given ..., your task is to reconstruct the triplets into a 

coherent paragraph...

Instructions:

1. For each relation triplet, use the subject, relation, and object 

to create a natural language sentence that describes the 

relationship.

2. Pay close attention to the direction of the relation...

3. The paragraph should only contain these sentences and 

should not include any extra context or information not directly 

related to the triplets.

4. Ensure that the paragraph is coherent and logically 

structured, with proper flow between sentences.

5. The entities should be referenced by their full names as 

given in the triplets...

Triplets:{Extracted Triplets T}

Relation Types and Descriptions:[{'rel': {Relation Name R}, 

'description': {Relation Description RD}}]

Entities:[{'entity': {Entity Name E}, 'entity type': {Entity Type 

ET}}]

Reconstructed paragraph:

Comparison
Given an original document ... and a document reconstructed from 

previously extracted relation triplets, your task is to compare two 

documents... 

Here is an example, please output according to the format of the 

example.

Original document:{Example Original Document ED}

Reconstructed document:{Example Reconstructed Document ED'}

Entities:{Example Entities List EL}

Missing information:

Zest Airways, Inc. and Zest Air’s country are Philippines.

Missing triplets:

{'sub': 'Zest Airways, Inc.', 'rel': 'country', 'obj': 'Philippines'}

{'sub': 'Zest Air', 'rel': 'country', 'obj': 'Philippines'}

Now refer to the example above and compare the following two 

documents:

Original document:{Original Document D}

Reconstructed document:{Reconstructed Document D'}

Entities:[{'entity': {Entity Name E}, 'entity type': {Entity Type 

ET}}]

Missing information:

Implicit Relation (Connection Inferred through Semantic Reasoning or Contextual Analysis)

Inference 
{'sub': 'Philippines', 'rel': 'legislative body', 'obj': 'Philippine Senate'} → {'sub': 'Philippine Senate', 'rel': 'applies to 

jurisdiction', 'obj': 'Philippines'}

{'sub': 'Philippine Legislature', 'rel': 'part of', 'obj': 'Philippines'} → {'sub': 'Philippines', 'rel': 'has part', 'obj': 

'Philippine Legislature'}

{'sub': 'Pantabangan', 'rel': 'located in the administrative territorial entity', 'obj': 'Nueva Ecija'} + {'sub': 'Nueva 

Ecija', 'rel': 'country', 'obj': 'Philippines'} → {'sub': 'Pantabangan', 'rel': 'country', 'obj': 'Philippines'}

One-to-one
At most one of the following triplets is correct, please select the unique 

correct triplet and only output the triplet you believe to be the correct one.

{'sub': 'second Philippine Commission', 'rel': 'country', 'obj': 'Philippines'}

{'sub': 'second Philippine Commission', 'rel': 'country', 'obj': 'the United 

States'}

The unique correct triplet:

Mutual Exclusion Constraint
At most one of the following triplets is correct, please 

select the unique correct triplet and only output the triplet 

you believe to be the correct one.

{'sub': 'Philippines', 'rel': 'legislative body', 'obj': 

'Philippine Legislature'}

{'sub': 'Philippines', 'rel': 'has part', 'obj': 'Philippine 

Legislature'}

The unique correct triplet:

Directionality Constraint
At most one of the following triplets is correct, 

please select the unique correct triplet and only 

output the triplet you believe to be the correct one.

{'sub': 'American', 'rel': 'country', 'obj': 'Tennessee'}

{'sub': 'Tennessee', 'rel': 'country', 'obj': 'American'}

The unique correct triplet:

Explicit Relation (Logical Connection between Triplets)

Entity Type
The subject of the 'head of government' relation can only be of type 

['LOC'], and the object can only be of type ['PER'].

Document:{Original Document D}

Entities:[{'entity': {Entity Name E}, 'entity type': {Entity Type ET}}]

{'sub': 'Ethiopia', 'rel': 'head of government', 'obj': 'Derg'} Object entity 

type is incorrect!

Please select the correct subject or object from the given entities list, 

modify the triplet and output the modified version. The modified triplet:

Few-shot
Your task is to identify all the 

unique knowledge triplets of 

'country' for a given context…

Context: {Example Document 1}

Relation: (country <==> 

Congressmen <==> United 

States)

Context: {Example Document 2}

Relation: (country <==> 

Supreme Court <==> United 

States)

Context: {Example Document 3}

Relation: (country <==> 

Tennessee <==> United States)

······

Context: {Original Document D}

Relation: 

Large Language Models

Initial 

Extraction Extracted 

Triplets

Implicit 

Feedback

Extracted 

Triplets

Explicit 

Feedback

LLMs

Figure 1: Overview of our framework, which consists of three modules: 1) Initial Extraction. 2) Obtain feedback
on implicit relations between triplets through reconstruction (indicated by the red arrow). 3) Obtain feedback on
explicit relations between triplets through logical rules-based inference and filtering (indicated by the green arrow).

cognitive theories but also limits their ability to
handle the diverse relation types and coreference
resolution of document-level understanding.

To bridge these gaps, we introduce an iterative re-
flection framework grounded in cognitive theories.
By integrating self-supervised feedback signals,
this framework circumvents the resource-intensive
demands of supervised methods. To achieve com-
parable performance to supervised methods, we
further draw on cognitive theories to introduce ex-
plicit and implicit relations between triplets, provid-
ing the corresponding self-supervised and low-cost
rules-based feedback for LLMs refinement.

Specifically, our iterative reflection framework
for ICL-based DocRE employs the self-correction
mechanism, where LLMs follow an iterative
extraction-verification-feedback-correction process

to mitigate error propagation through constant error
detection and correction. We define the implicit
relation as a connection between triplets that is
not explicitly stated but can be inferred through
semantic reasoning or contextual analysis. Feed-
back on implicit relations is generated by recon-
structing the extracted triplets into a document and
comparing it with the original. In contrast, the ex-
plicit relation represents a direct logical connection
between triplets. Feedback on explicit relations
is provided through logical rules-based inference
and filtering. By emphasizing and analyzing the
relations between triplets, our method enhances
contextual understanding and improves extraction
accuracy, better handling the complex DocRE task.
The overall framework is illustrated in Figure 1.

Our main work and contributions are as follows:
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• Inspired by human non-linear reading cogni-
tion, we propose cognitive mirroring, a self-
supervised iterative reflection framework for
general-domain ICL-based DocRE that elimi-
nates the need for supervised fine-tuning. To
the best of our knowledge, this is the first
exploration of self-correction in DocRE, en-
abling iterative extraction correction through
feedback to mitigate error propagation.

• Drawing insights from the Dual Process The-
ory, we introduce the concepts of explicit and
implicit relations between triplets. Triplet-
centric explicit feedback is based on supple-
mentary logical rules, while implicit feed-
back is generated through reconstruction. By
jointly analyzing explicit logical relations and
their interactions within the document and se-
mantics, LLMs can better understand and rea-
son through complex contexts, which is more
suitable for the challenging DocRE task.

• Extensive experiments on DocRED and Re-
DocRED datasets show our method surpasses
existing LLM-based approaches and matches
SOTA BERT-based methods.

2 Related Work

Human Cognitive Science Cognitive theories
provide key insights into dual-process iteration.
Construction-Integration Model (Kintsch, 1988)
highlights reading as a dynamic process, where
readers iteratively revise their understanding in re-
sponse to conflicts or missing information. This
aligns with the Cognitive Dissonance Theory (Fes-
tinger, 1957), which emphasizes the importance of
resolving contradictions through reflective correc-
tion. Dual-Process Theory (Evans, 2003) suggests
that human cognition involves both fast, intuitive
processing (System 1) and slower, controlled rea-
soning (System 2). These theories inform our ap-
proach, integrating non-linear iteration and dual-
relation analysis to enhance DocRE.
LLMs for DocRE Recent studies have explored
approaches to harness the potential of LLMs for
DocRE. For instance, (Sun et al., 2024) proposes a
framework that employs zero-shot learning by gen-
erating synthetic data through a chain-of-retrieval
prompt. Since DocRE involves many relation types
and the output of LLMs is uncontrollable, (Li et al.,
2023) combines LLMs with a natural language in-
ference module to generate triplets, thus improving
performance. REPLM (Ozyurt et al., 2024) intro-

duces an in-context few-shot method leveraging
pre-trained models, where triplets are generated
based on relations and filtered according to the joint
probabilities of entity pairs. Both DiVA-DocRE
(Wu et al., 2024a) and AutoRE (Xue et al., 2024)
first identify the relation types present in the docu-
ment. AutoRE extracts the head entities for each
relation before generating the complete triplets,
while DiVA-DocRE incorporates active and pas-
sive voice information during extraction. However,
these methods either require additional fine-tuning,
or exhibit suboptimal performance when relying
solely on ICL. Furthermore, decomposing DocRE
into multiple steps may lead to error propagation,
where errors in earlier stages negatively impact the
performance of subsequent stages.
LLMs with Self-Correction Mechanism The self-
correction mechanism for LLMs has demonstrated
success across diverse tasks, including hallucina-
tion detection (Dhuliawala et al., 2024; Xue et al.,
2023), mathematical reasoning (Zheng et al., 2024;
Wu et al., 2024b; Jiang et al., 2024; Xue et al.,
2023), question answering (Shinn et al., 2023; Zhao
et al., 2023), dialogue generation (Madaan et al.,
2023) and code optimization (Chern et al., 2023).
However, applying this mechanism to DocRE re-
mains underexplored. Metacognitive prompting
(MP) (Wang and Zhao, 2024) enhances natural lan-
guage understanding through structured self-aware
evaluations by drawing on intrinsic knowledge and
new insights. However, MP has only been prelimi-
narily explored in the biomedical domain and does
not involve iterative learning for LLMs. STAR (Ma
et al., 2024) employs self-correction for data opti-
mization and augmentation, while SRVF (Li et al.,
2024) mitigates the bias of LLMs toward relation
types through supervised feedback. Chem-FINESE
(Wang et al., 2024) proposes a self-validation mod-
ule for chemical entity extraction, employing con-
trastive loss to reduce excessive copying during
extraction. However, these methods require ad-
ditional fine-tuning and have not been extensively
explored in DocRE. In this study, we propose a self-
correction framework for general-domain DocRE
that requires no supervised fine-tuning and enables
iterative error correction, bridging the gap between
the self-correction mechanism and DocRE.

3 Methodology

As illustrated in Figure 1, the proposed framework
generates feedback for iterative modification of
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LLMs by analyzing explicit and implicit relations
between triplets. Specifically, the framework con-
sists of three phases: 1) initial extraction, 2) triplet-
centric implicit feedback through reconstruction,
and 3) explicit feedback based on logical rules.

3.1 Task Formulation

DocRE aims to predict relations between entity
pairs that may appear across multiple sentences in
a document. Given a document D with entities
E = {ei}, the goal is to identify relation triplets
(r, es, eo), where r ∈ R, es, eo ∈ E, and R is the
set of predefined relation types, es and eo respec-
tively denote the subject entity and the object entity.
Each entity may be mentioned multiple times.

3.2 Initial Extraction

We build upon the REPLM framework (Ozyurt
et al., 2024), which generates triplets for each re-
lation in the relation list and filters these triplets
by calculating the joint probabilities of subject-
object pairs. Finally, the framework aggregates
predictions from multiple retrieved demonstrations
to obtain the final predictions.

3.3 Triplet-Centric Implicit Feedback

Implicit Relation We define implicit relations be-
tween triplets as the connections that are not di-
rectly reflected in explicit expression but can be
inferred through semantic reasoning or contextual
analysis. These relations encompass the mutual in-
fluence of triplets on each other when they serve as
context, as well as semantic connections between
triplets within a document that cannot be clearly
represented by formal definitions. For instance,
in the text It meets at Legislative Hall in Dover,
Delaware, convening on the second Tuesday of Jan-
uary of odd years, the triplets (Legislative Hall, lo-
cated in the administrative territorial entity, Dover)
and (Legislative Hall, located in the administra-
tive territorial entity, Delaware) do not explicitly
state the geographical relation between Dover and
Delaware. However, contextual inference reveals
that Dover is a location within Delaware, establish-
ing an implicit relation between these two triplets.
Although the relation is not explicitly stated, it is
inferred by semantic reasoning.

Drawing on cognitive science principles of hu-
man reverse verification, our framework generates
feedback on implicit relations between triplets by
leveraging extracted triplets to reconstruct a docu-
ment and comparing the reconstructed document

with the original document at a fine-grained level.
For DocRE, the reconstruction process serves as

a representation of extraction quality, where better
extraction results yield smaller discrepancies be-
tween reconstructed and original documents. This
comparative analysis enables error identification
through two primary mechanisms: 1) detection of
missing content when original document elements
are absent in the reconstructed version, indicating
potential extraction failures, and 2) identification
of semantic contradictions in the reconstructed doc-
ument, revealing extraction errors.

The rationale for employing document-level
comparison rather than direct triplet-document
comparison is twofold. First, LLMs excel at under-
standing and processing unstructured data, making
document-level comparison more effective for iden-
tifying discrepancies. Second, reconstructing all
extracted triplets into a single document facilitates
the integration and analysis of implicit relations be-
tween triplets, whereas direct comparison typically
examines triplets in isolation, potentially overlook-
ing contextual information.

3.4 Triplet-Centric Explicit Feedback

Explicit Relation Our method defines explicit rela-
tions as logical connections between triplets, which
can be inferred and filtered through rules to iden-
tify which triplets have not been extracted, which
extracted triplets are incorrect, or which are con-
tradictory to each other. These analyses provide
feedback for LLMs to correct their predictions. The
rules-based module we implement comprises five
principal categories:

Inference We follow MILR (Fan et al., 2022),
a logic-enhanced framework designed to enhance
DocRE by mining and injecting logical rules. It
mines logical rules from annotations based on fre-
quencies. For example:

father (x, y) ∧ spouse (y, z)→ mother (x, z)

has part (x, y)→ part of (y, x)

We utilize inference rules to identify missing or
incorrectly extracted triplets.

One-to-one For certain relation types, a subject
can maintain the relation with only one object. For
instance, a city can only belong to one country, and
a person can only have one date of birth. If the ex-
tracted triplets contain the following two triplets, it
can be determined that at most one of these triplets
is correct, since Beibu Gulf Economic Rim can only
belong to one country. Then, LLMs are guided
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to select the most plausible triplet based on the
document and relation description.

(Beibu Gulf Economic Rim, country, China)

(Beibu Gulf Economic Rim, country, Vietnam)

Mutual Exclusion Constraint This constraint
prohibits entities from simultaneously maintain-
ing mutually exclusive relations. For instance, the
following two triplets, Lansing is the capital of
Michigan and Michigan is a direct subdivision of
Lansing are logically contradictory, as they attempt
to establish both contains administrative territorial
entity and capital of relations between the same en-
tity pair. Such mutually exclusive relations cannot
coexist, ensuring that at most one of the conflicting
triplets can be correct. The framework identifies
these contradictions and guides LLMs to select.

(Lansing, contains administrative territorial entity, Michigan)

(Lansing, capital of, Michigan)

Directionality Constraint This constraint em-
phasizes the significance of relation directionality
between entities, prohibiting reversals that result in
logical inconsistencies. For example, consider the
triplet (ITS, developer, SpaceX), which indicates
that SpaceX is the developer of ITS. This relation
is inherently unidirectional, reversing the triplet to
(SpaceX, developer, ITS) creates a logical contra-
diction, as ITS cannot be the developer of SpaceX
if SpaceX is already the developer of ITS. Conse-
quently, at most one of the following two triplets
can be correct, and the framework identifies such
directional violations and guides LLMs to select.

(ITS, developer, SpaceX)

(SpaceX, developer, ITS)

Entity Type To mitigate the directional errors
exhibited by LLMs, we comprehensively redefined
the relation descriptions of datasets to emphasize
not only the directionality of relations but also the
potential content of the subject and object entities.
Meanwhile, we also consider type constraints for
both the subject and object of each relation. For
example, the subject of the head of government re-
lation must be of type location, and the object must
be of type person, indicating that object is the head
of government of subject. Triplets violating these
type constraints are identified as erroneous and
used as feedback for LLMs refinement. Examples
of relation descriptions and entity type constraints
are presented in Appendix A.

By iteratively generating feedback based on

both explicit and implicit relations between triplets,
LLMs can continuously optimize the extraction
results and improve performance. Our method is
not only suitable for DocRE that requires complex
text processing and judgment but also helps mit-
igate error propagation by constantly identifying
and correcting errors.

The method can be implemented with only the
definition of relations and logical rules, without
the need for any oracle labels. For initial extrac-
tion, we adopt the five-shot prompts from REPLM
(Ozyurt et al., 2024). During iterations, we employ
one-shot prompts for reconstructing and identify-
ing unextracted triplets, while maintaining zero-
shot prompts for other steps. This implementation
avoids the issue raised by (Huang et al., 2024),
regarding sub-optimal prompts for generating ini-
tial responses, while providing more informative
instructions about the task in the feedback prompts.

The full prompts of entire framework are pre-
sented in Appendix B.

4 Experiments

4.1 Datasets and Evaluation Metric

We conduct experiments on DocRED (Yao et al.,
2019) and Re-DocRED (Tan et al., 2022), two
large-scale crowd-sourced benchmark datasets tai-
lored for DocRE. Due to the absence of ground
truth labels in the test set of DocRED, we perform
evaluations only on the dev set. Further details are
provided in Appendix C.

Our evaluation employs the strict Micro F1 met-
ric, where a prediction is considered correct only
when it precisely identifies both the subject and
object entities along with their relation. It’s impor-
tant to highlight that within the datasets, multiple
entity mentions may refer to the same underlying
entity. Therefore, predictions matching any alias
of the annotated entity are accepted as correct. To
ensure a rigorous and valid evaluation, regardless
of the number of aliases an entity possesses, it will
only be counted once in the triplet alignment evalu-
ation. All incorrect predictions are flagged as false
positives. This approach ensures a precise and sta-
tistically valid evaluation, lending robust credibility
to our results.

4.2 Implementation

We employ GPT-3.5-Turbo, GPT-4o, ChatGLM3-
6B, and LLaMA3-8B as our backbone LLMs. To
obtain deterministic outputs, we set a low temper-
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ature, such as 0.001, while keeping all other pa-
rameters at their default values. The total API cost
for GPT-3.5-Turbo and GPT-4o used in our explo-
ration and experiments is approximately $1,000.
ChatGLM3-6B is deployed on an NVIDIA Tesla
P100 PCI-E 16GB GPU, and LLaMA3-8B is de-
ployed via Ollama.

In the REPLM framework (Ozyurt et al., 2024),
L = 5 is set to obtain five sets of in-context demon-
strations, each of which is used to extract triplets in-
dividually before aggregation. In our experiments,
we set L = 1 to initially extract triplets only once,
while keeping all other parameter configurations
identical to those in the REPLM framework.

4.3 Baselines

We compare our framework with both BERT-based
and LLM-based methods on the datasets. The
BERT-based baselines, recognized for achieving
SOTA performance, leverage BERT family pre-
trained models as encoders. The LLM-based base-
lines incorporate techniques such as supervised
fine-tuning and chain-of-thought (CoT) to enhance
relation extraction performance. All the baselines
we selected for comparison are shown in Table 1
with detailed descriptions provided in Appendix D.

5 Results and Discussion

5.1 Main Results

Due to the iterative framework involving repeated
extraction and cost constraints, the main results of
our method are based on a single run, as presented
in Table 1. From these results, we can draw the
following conclusions.

Our framework demonstrates significant per-
formance improvements across two datasets.
Specifically, our method achieves SOTA perfor-
mance with a micro F1 score of 69.58 on the
DocRED dev set using GPT-4o, surpassing previ-
ous BERT-based methods by 1.45 and prior LLM-
based methods by 2.11. On the Re-DocRED dev
set, where SOTA methods were not evaluated, our
method outperforms all LLM-based methods, in-
cluding those with fine-tuning. On the Re-DocRED
test set, our method significantly outperforms re-
cent LLM-based methods and narrows the perfor-
mance gap with SOTA methods. Although it does
not achieve SOTA performance on the Re-DocRED
test set, the results after two iterations show signifi-
cant improvements over the initial extraction across
both datasets. For example, on the Re-DocRED

dataset, the performance improvement is 24.77 on
the dev set and approximately 22.72 on the test set,
both based on GPT-4o, demonstrating the effective-
ness of our method.

Our framework outperforms the self-
consistency method. The results in (Huang
et al., 2024) reveal that some self-correction
methods do not outperform self-consistency. As
shown in Table 1, REPLM (Ozyurt et al., 2024)
uses five sets of in-context demonstrations to
extract five times and filters triplets based on
the probabilities of entity pairs. This can be
considered as a self-consistency method that
establishes five reasoning paths. In contrast, our
method achieves better performance with only
two iterations. Specifically, based on GPT-4o, our
method reaches an F1 score of 69.58 after two
iterations, compared to REPLM’s 67.47. This
demonstrates that our method not only surpasses
self-consistency in performance but also achieves
higher efficiency with lower resource demands.
We provide detailed token usage statistics for
DocRED’s 998 documents (calculated using
OpenAI’s tiktoken) in Appendix E, demonstrating
the practical advantages of our framework.

Our framework is applicable to a wide range
of LLMs and demonstrates enhanced perfor-
mance with more powerful models. To validate
the adaptability and robustness of our method for
DocRE across different LLMs, we conduct experi-
ments with four representative LLMs: ChatGLM3-
6B, LLaMA3-8B, GPT-3.5, and GPT-4o, cover-
ing both open-source and closed-source models,
as well as varying model sizes. The results con-
firm the applicability of our method across different
LLMs and its effectiveness in handling the DocRE
task. Whether for the initial extraction or after two
iterations, GPT-4o consistently outperforms GPT-
3.5, followed by LLaMA3-8B and ChatGLM3-6B.
Although LLaMA3-8B starts with relatively low
F1 scores, its performance improves significantly
after two iterations, surpassing that of ChatGLM3-
6B. While ChatGLM3-6B and LLaMA3-8B do not
outperform fine-tuned LLM-based baselines, our
zero-shot self-supervised method substantially nar-
rows the performance gap. Iterative improvements
further validate the effectiveness of our approach.
In addition, more powerful LLMs exhibit greater
performance gains through iteration. For example,
on the DocRED dev set, the F1 score of GPT-3.5 in-
creased by 19.45, while GPT-4o improved by 23.17.
This shows that our framework not only adapts ef-
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Method PLM DocRED Re-DocRED
dev test

BERT-based
JMRL-DREEAM (Qi et al., 2024) RoBERTalarge 67.61 - 78.61
DREEAM (Ma et al., 2023) RoBERTalarge 67.41 - 81.44
DocRE-CLiP (Jain et al., 2024) BERTbase 68.13 - 81.55
LLM-based
GenRDK (Sun et al., 2024) LLaMA2-13B-CHAT 42.50 39.90 41.30
DiVA-DocREGT (Wu et al., 2024a) LLama3-7B 55.48 61.99 61.40

REPLM (Ozyurt et al., 2024)
GPT-3.5 59.66 41.07† 40.30†

GPT-4o 67.47 41.67† 41.48†

AutoRE (Xue et al., 2024) Vicuna-7B - 54.29 53.84
Our Framework

Initial Extraction

ChatGLM3-6B 21.30 18.18 18.29
LLama3-8B 9.40 6.97 6.71

GPT-3.5 43.13 39.32 37.71
GPT-4o 46.41 40.02 40.55

Iteration 2

ChatGLM3-6B 43.71 34.99 35.38
LLama3-8B 53.86 43.83 43.01

GPT-3.5 62.58 58.48 56.95
GPT-4o 69.58 64.79 63.27

Table 1: Results on the DocRED and Re-DocRED datasets. Shown: Micro F1 scores. The results of all baseline
methods are taken from their papers, while † denotes results reproduced using the official code provided by the
methods. For each dataset, the best result is in bold, while the second-best result is underlined.

fectively to various LLMs but also benefits more
significantly from stronger model capabilities.

5.2 Analysis on Relation Density
Since our method considers explicit and implicit re-
lations between triplets, and the relations between
triplets are intuitively closely related to the rela-
tion density, we conduct experiments to evaluate
its effectiveness on datasets with varying relation
densities. Documents in each dataset are arranged
in descending order of relation density and divided
into two equally sized subsets: one with high rela-
tion density and the other with low relation density.
We define relation density as the ratio of the num-
ber of triplet facts to the number of entity pairs.
Formally, relation density is computed as follows:

relation_density =
tn

epn
(1)

epn =
en ∗ (en− 1)

2
(2)

where tn and en represent the number of triplets
and entities annotated in the document, respec-

tively, and epn is the number of entity pairs.

Our method demonstrates superior perfor-
mance improvements on datasets with high re-
lation density. As shown in Table 2, across
both datasets, the performance improvements after
two iterations are greater for high relation density
datasets compared to low relation density datasets.
Although the initial F1 scores on high relation den-
sity datasets are lower due to the increased com-
plexity of extraction in such datasets, they surpass
those of low relation density datasets after two itera-
tions on the dev sets of DocRED and Re-DocRED.
Notably, on these dev sets, the performance on
low relation density datasets even surpasses that of
baseline methods, though it remains slightly lower
on Re-DocRED test set. This indicates that our
method effectively captures relational information
and performs better when the relations between
triplets are more tightly connected, particularly
in scenarios requiring complex relational parsing
within document-level context. For datasets with
lower relation density, methods such as informa-
tion summarization could be employed to increase
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Dataset DocRED Re-DocRED
dev dev test

Overall F1 46.41 69.58 (+23.17) 40.02 64.79 (+23.12) 40.55 63.27 (+21.79)
High Relation Density F1 45.98 70.63 (+24.65) 39.41 65.09 (+25.68) 39.29 63.04 (+23.75)
Low Relation Density F1 46.85 68.53 (+21.68) 40.63 64.50 (+23.87) 41.81 63.50 (+21.69)

Table 2: Analysis on relation density. For each set, the left column displays the micro F1 scores of the initial
extraction, while the right column shows the F1 scores after two iterations. The values in parentheses represent the
increase in the F1 scores after two iterations. All these results are based on GPT-4o.

Figure 2: Impact of iteration number on DocRED dev
set.

density, which can be explored in future work.

5.3 Impact of Iteration Number

The number of interactions refers to the frequency
with which the LLMs receive feedback and im-
prove the extraction results. The zeroth iteration
represents the initial extraction. Given the high cost
of API calls, we randomly sample 50 documents
from the DocRED dev set and conduct 10 itera-
tions. For the entire DocRED dev set, we perform
5 iterations using both GPT-3.5 and GPT-4o. As
illustrated in Figure 2, our results indicate that the
model reaches its performance peak during the sec-
ond or third iteration, after which the performance
fluctuates around the peak.

The diminishing returns in performance improve-
ments in subsequent iterations may be attributed to
several factors. First, the reconstruction of implicit
relations faces the following challenges: 1) Certain
triplets involve deep semantic understanding and
multi-step reasoning, such as identifying hierarchi-
cal relations among entities, are inherently difficult

for the model to detect. 2) Entities with low fre-
quencies are less likely to be identified by LLMs.
3) Previous research (Wadhwa et al., 2023) has in-
dicated that evaluating LLM-based methods should
not rely exclusively on exact matches to target
triplets. LLMs can generate outputs that are seman-
tically proximate but fail to meet exact-matching
criteria. Specially, t is a triplet in the annotations
and t′ is a semantically similar triplet generated by
the LLMs that does not satisfy the exact-matching
requirement, the reconstructed document will con-
tain the corresponding semantic content. Conse-
quently, t will not be considered unextracted, and
t′ will not be identified as an incorrect triplet to re-
move. 4) Issues with the directionality of relations
may also confuse the semantics of reconstructed
documents. Additionally, performance bottlenecks
may arise due to logical reasoning based on rules,
which can lead to logical loops.

The observed performance degradation during
iterations can be attributed to two main factors: 1)
Reconstruction and logical rules-based inference
may identify unextracted triplets that are not in-
cluded in annotations, resulting in a decrease in
precision. 2) Incorrect triplets introduced by re-
construction and logical inference can affect the
selection of LLMs during subsequent filtering with
one-to-one, mutual exclusion, and directionality
constraints, resulting in a decrease in recall.

5.4 Ablation study

Figure 3 illustrates the performance improvement
process of two datasets during two iterations, start-
ing from initial extraction. As shown, both the
reconstruction module for implicit relations and
the module for explicit relations contribute to per-
formance enhancements to varying degrees. As
mentioned above, although rules-based inference
and filtering may form a closed loop, and recon-
struction may introduce incorrect triplets, the syner-
gistic combination of both modules yields superior
performance in the second iteration compared to
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Figure 3: Ablation study. All the results are based on
GPT-4o.

the first. This indicates the effectiveness of both
modules within the overall framework.

A detailed case study of a complete iteration
process is presented in Appendix F.

6 Conclusion

Inspired by human non-linear reading cognition,
we propose an iterative reflection framework for
ICL-based DocRE that validates both explicit and
implicit relations between triplets. The framework
initiates with preliminary extraction and then estab-
lishes an iterative extraction-verification-feedback-
correction procedure. Explicit relational feedback
is based on logical rules-based reasoning, while
feedback on implicit relations is generated by
reconstructing the extracted triplets into a docu-
ment and comparing it with the original. This
dual-process mechanism mimics human cognition,
enabling self-supervised optimization without re-
liance on annotated data. Extensive experiments
demonstrate that our framework not only narrows
the performance gap with SOTA BERT-based meth-
ods, but also performs better in complex DocRE
task. Additionally, it helps mitigate error propa-
gation by continuously identifying and correcting
errors. Furthermore, our method explores the appli-
cation of the self-correction mechanism in DocRE,
offering a more efficient and convenient solution.
It provides new insights and directions for the ap-
plication of LLMs in DocRE and offers a valuable
reference for future exploration.

Limitations

Due to cost constraints and limitations in
biomedicine domain knowledge, we have not
yet conducted experiments on CDR, GDA and

DocGNRE datasets, nor have we explored the per-
formance on multilingual datasets. Additionally,
we have not compared multiple prompt variants.
We have not explored the impact of using few-shot
prompts in all modules or considered the influ-
ence of the order of in-context learning demon-
strations, instructions, and relation descriptions in
the prompts on experimental results, nor have we
accounted for the impact of factors like demonstra-
tions quality. These limitations will be explored in
our future work.

Moreover, the generation of Triplet-Centric Ex-
plicit Feedback in our framework currently relies
on manually defined logical rules. Although our
framework only requires low-cost domain-specific
rule definitions, either for general or specialized do-
mains, this dependence still introduces some level
of manual effort. We will explore the automatic in-
duction or learning of more detailed, accurate, and
dataset-specific logical rules to further enhance the
performance and generalizability of our method.

Ethics Statement

All documents and models used in this study were
obtained from open-source sources, ensuring trans-
parency and accessibility. Our framework pro-
vides an effective solution for DocRE using LLMs,
without requiring additional training or fine-tuning.
This makes it easier to deploy and use in prac-
tice. However, we acknowledge the potential risk
of misuse, particularly regarding the extraction of
personal or sensitive information. To mitigate this
concern, we only use public benchmark datasets
DocRED and Re-DocRED for evaluation. These
datasets do not involve personal privacy. We also
advocate not applying our framework to extract or
analyze any private data without user authorization.

Moreover, we recognize that LLMs may inherit
implicit biases from their training data. Although
our framework can identify triplets, biased or un-
intended outputs may still occur, especially when
analyzing sensitive relation types or entities. We
advocate for the careful and responsible use of such
models and encourage further research to identify,
evaluate and mitigate these potential biases.
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A Relation Descriptions and Entity Type
Constraints

Table 5 presents examples of relation descriptions
and entity type constraints for DocRED and Re-
DocRED datasets.

B Prompts

The initial extraction prompts follow REPLM
(Ozyurt et al., 2024). Other prompts are presented
from Table 6 to Table 12.

C Datasets

Our framework is evaluated on two English DocRE
benchmark datasets, DocRED and Re-DocRED.
More statistical information is listed in Table 3.

DocRED A large-scale human-annotated dataset
derived from Wikipedia and Wikidata, plays a key
role in DocRE. It features a comprehensive anno-
tation schema that includes entity mentions, types,
relational facts, and supporting evidence. With
96 predefined relation types, DocRED presents a
rich and challenging environment, requiring multi-
sentence reasoning for its relational facts. The
dataset consists of three sets: a train set with 3053
documents, a dev set with 998 documents and a
test set with 1000 documents. Since the test set
lacks a ground truth file, evaluations are typically
conducted on the dev set.

Re-DocRED While DocRED is a widely recog-
nized benchmark, its annotations are incomplete,
leading to false negatives. To address this, (Tan
et al., 2022) introduces Re-DocRED, a revised ver-
sion that supplements positive instances missing
in DocRED. Re-DocRED includes a test set with
500 documents and a dev set with 500 documents,
ensuring a more comprehensive and accurate as-
sessment for DocRE task.

Dataset Split #Doc. #Rel. #Ent. #Facts.

DocRED
train 3053

96
59493 38180

dev 998 19578 12323
test 1000 19539 -

Re-DocRED
train 3053

96
59359 85932

dev 500 9684 17284
test 500 9779 17448

Table 3: Statistics on datasets, where Doc. (resp. Rel.
or Ent.) abbreviates documents (resp. relations or enti-
ties).

D Baselines

D.1 BERT-based Baselines

JMRL-DREEAM (Qi et al., 2024) A rule-
enhanced DocRE framework that jointly models
document-level relation extraction and logical rules
in an end-to-end fashion. JMRL integrates the neu-
ral DocRE backbone (DREEAM) with a parameter-
ized rule reasoning module that simulates logical
inference. To effectively align the predictions from
both components, the framework incorporates a
residual connection mechanism and an auxiliary
loss, enabling a better reconciliation between neu-
ral predictions and symbolic reasoning.
DREEAM (Ma et al., 2023) A memory-efficient
model that incorporates evidence-guided supervi-
sion into attention mechanisms. DREEAM lever-
ages evidence data to supervise the computation of
entity-pair-specific context embeddings, encourag-
ing higher attention weights on informative tokens
without introducing additional trainable parame-
ters. To address the lack of annotated evidence,
they further propose a self-training strategy that
learns entity resolution (ER) from automatically
generated evidence on large-scale unlabeled data.
DocRE-CLiP (Jain et al., 2024) A knowledge-
enhanced framework that reformulates DocRE
as link prediction over a knowledge graph en-
riched with document-derived reasoning and ex-
ternal knowledge from Wikidata. It combines logi-
cal, intra-sentence, and co-reference reasoning with
path-based interpretability.

D.2 LLM-based Baselines

GenRDK (Sun et al., 2024) A zero-shot document-
level relation triplet extraction framework that em-
ploys a chain-of-retrieval and denoising strategy to
steer LLMs in understanding relations and gener-
ating high-quality synthetic data. Their model is
fine-tuned with LLaMA2-13B-CHAT.
DiVA-DocREGT (Wu et al., 2024a) A Discrimina-
tive and Voice-Aware (DiVA) paradigm for DocRE.
It first identifies the relation types present in the
document and then extracts subject and object enti-
ties leveraging both active and passive voice infor-
mation. They report results in three distinct experi-
mental settings: DevZ , a zero-shot setting where
ChatGPT is used to generate triplets; DevFT ,
where LLama3-7B is fine-tuned to generate triplets;
and DevGT , which uses ground-truth relations to
guide triplet generation.
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REPLM (Ozyurt et al., 2024) A method for in-
context few-shot relation extraction leveraging pre-
trained language models. For each relation in the
relation list, REPLM generates candidate triplets
and filters them by calculating the joint probabil-
ities of subject-object pairs. Final predictions are
obtained by aggregating the outputs from multiple
retrieved in-context demonstrations.
AutoRE (Xue et al., 2024) An end-to-end model
that integrates LLMs with QLoRA (Dettmers et al.,
2023) under a novel relation extraction paradigm
named RHF (Relation-Head-Facts). It first identi-
fies the relation types present in the document, then
extracts the corresponding head entities for each re-
lation, and finally generates complete triplets based
on the identified relations and heads.

E Analysis of Token Usage

Since the iterative reflection framework requires
repeated calls to LLMs, it naturally raises concerns
about increased computational cost and runtime.
To quantify this, we provide detailed token usage
statistics for two iterations of the 998 documents in
DocRED (calculated using OpenAI’s tiktoken) in
Table 4.

Process Token
Initial Extraction 3347715

Iteration 1

Reconstruct Document 893874
Compare Two Documents 6807872

Correct Triplet Entity Type Errors 187762
Inference 1358232

One-to-one Filtering 88264
Mutual Exclusion Constraints 203190

Directionality Constraints 46679

Iteration 2

Reconstruct Document 1010179
Compare Two Documents 6941132

Correct Triplet Entity Type Errors 33732
Inference 1365856

One-to-one Filtering 47000
Mutual Exclusion Constraints 49056

Directionality Constraints 8635

Table 4: Detailed token usage statistics for two itera-
tions of DocRED dataset (calculated using OpenAI’s
tiktoken).

Notably, we observe decreasing token usage in
later iterations for entity type correction, one-to-
one filtering, mutual exclusion constraints and di-
rectionality constraints, demonstrating the frame-
work’s increasing efficiency. While iterative calls
inherently require more tokens than single-pass
methods, our analysis shows comparable costs to
self-consistency approaches while achieving supe-
rior performance. As shown in Table 1, our method

is applicable to all LLMs and using smaller open-
source models (e.g., ChatGLM3-6B, LLama3-8B)
can significantly reduce API costs while maintain-
ing effectiveness.

F Case Study

Table 13 to Table 19 present the case of a complete
iteration process.
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Relation Description Subject Types Object Types

head of government
Object is the head of government of subject. Subject can be a town, city, municipality, state, country,
or other governmental body.

LOC PER

country Object is the sovereign state of subject. Subject is not a person. LOC, ORG, MISC LOC, MISC

place of birth
Object is the most specific known birth location of the subject. Subject refers to the person, animal,
or fictional character. Object refers to the most specific known location of birth (e.g., a hospital,
city, or even a particular building or place).

PER LOC

place of death
Object is the most specific known death location of subject. Subject refers to the person, animal, or
fictional character.Object refers to the most specific known location of death (e.g., a hospital, city,
or specific place within a city).

PER LOC

father Object is the father of subject. PER PER
mother Object is the mother of subject. PER PER
spouse Subject has object as their spouse (husband, wife, partner, etc.) PER PER

country of citizenship Object is a country that recognizes subject as its citizen. PER, MISC LOC, MISC
continent Object is the continent of which subject is a part. LOC, ORG, MISC LOC

head of state
Object is the official with the highest formal authority in subject. Subject refers to the country or
state where the object holds the highest formal authority. Object refers to the official (such as the
president, monarch, or prime minister).

LOC, ORG PER

position held Subject currently or formerly holds object position or public office. PER ORG, MISC

child
Object is the offspring (son or daughter) of subject. Subject refers to the parent. Object refers to the
offspring (son or daughter) of the subject, regardless of age.

PER PER

member of sports team
Object is the sports team or club that subject currently or formerly represents. Subject refers to
the individual (e.g., an athlete or player). Object refers to the sports team or club that the subject
currently or formerly represented.

PER ORG, LOC, MISC

educated at
Object is the educational institution attended by subject. Subject refers to the individual. Object
refers to the educational institution (e.g., university, school, or college) that the subject attended.

PER ORG, LOC

composer
Object is the person(s) who wrote the music for subject. Subject refers to the musical work (e.g.,
song, score, composition, etc.). Object refers to the person(s) who composed or wrote the music for
the subject.

MISC PER

member of political party
Object is the political party of which subject is or has been a member. Subject refers to the politician.
Object refers to the political party that the subject is or has been a member of.

PER, ORG, MISC ORG, LOC

employer
Object is the person or organization for which subject works or worked. Subject refers to the
individual (e.g., employee, worker). Object refers to the person or organization that the subject
works for or has worked for in the past.

PER ORG, MISC, LOC

Table 5: Examples of relation descriptions and entity type constraints for DocRED and Re-DocRED datasets.

Reconstruct Extracted Triplets into a Document
Task: Given a set of relation triplets, a list of relation types with descriptions, and all entity
mentions for each entity in the relation triplets, your task is to reconstruct the triplets into a coherent
paragraph. The paragraph should rephrase the content of the triplets into natural language, while
carefully maintaining the direction of the relations between entities. The paragraph should not
contain any additional content or explanations.

Instructions:
1. For each relation triplet, use the subject, relation, and object to create a natural language sentence
that describes the relationship.
2. Pay close attention to the direction of the relation. For example, if the triplet is {’sub’: ’Hampshire
County’, ’rel’: ’located in the administrative territorial entity’, ’obj’: ’West Virginia’}, the sentence
should reflect that Hampshire County is located in West Virginia, not the other way around.
3. The paragraph should only contain these sentences and should not include any extra context or
information not directly related to the triplets.
4. Ensure that the paragraph is coherent and logically structured, with proper flow between
sentences.
5. The entities should be referenced by their full names as given in the triplets (e.g., "Washington
Place," "William Washington House," etc.).

Triplets: [Extracted Triplets List T]
Relation Types and Descriptions: [{’rel’: [Relation Name R], ’description’: [Relation Description
RD]}]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]
Reconstructed paragraph:

Table 6: Prompt for reconstructing extracted triplets into a document.
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Compare Reconstructed Document with Original Document and Identify Missing Triplets
Given an original document, all entity mentions of each entity in the document, target relation type
with description and a document reconstructed from previously extracted relation triplets, your task
is to compare two documents and indicate which information about [Relation Name R] relation type
in the original document is not in the reconstructed document. Then identify all missing triplets
of [Relation Name R] relation type, which means [Relation Description RD]. You can consider
whether each pair of entities in the entity list has a [Relation Name R] relation.

Here is an example, please output according to the format of the example.
Original document: [Example Original Document ED]
Reconstructed document: [Example Reconstructed Document ED’]
Entities: [{’entity’: [Example Entity Name EE’], ’entity type’: [Example Entity Type ET’]}]
Missing information: [A Text about Missing Information MI]
Missing triplets: [Missing Triplets List MT]

Now refer to the example above and compare the following two documents:
Original document: [Original Document D]
Reconstructed document: [Reconstructed Document D’]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]
Missing information:

Table 7: Prompt for comparing reconstructed document with original document and identifying missing triplets.

Correct Triplet Entity Type Errors
Given a target relation type list, a document, and all entity mentions of each entity in the document,
your task is to modify the triplet where either the subject or the object entity type is incorrect (the
subject or object will be specified after the triplet). Please select the correct entity from the given
entity list and modify the triplet accordingly. Please modify only the subject or object, or both the
subject and object that entity type is incorrect. Do not change any other part of the triplet. Only
output the modified triplet.

Relation Type and Description: {’rel’: [Error Triplet’s Relation Name ETR], ’description’:
[Error Triplet’s Relation Description ETRD]}
The subject of the [Error Triplet’s Relation Name ETR] relation can only be of type [Subject Type
List ST], and the object can only be of type [Object Type List OT].

Document: [Original Document D]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]

Triplet where either subject or object, or both subject and object entity types are incorrect:
[Error Triplet and ’Subject entity type is incorrect!’, ’Object entity type is incorrect!’ or ’Both
subject and object types are incorrect!’]
Please select the correct subject or object from the given entities list, modify the triplet and output
the modified version.
The modified triplet:

Table 8: Prompt for correcting triplet entity type errors.
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Inference
Given a target relation type list, a document, and all entity mentions of each entity in the document,
please extract all valid given relation types between any two given entities in the document. Each
line outputs an extracted relation triple, and the format of each triplet is: {’sub’: subject entity, ’rel’:
relation type, ’obj’: object entity}. Each relation triplet should be output only once.

Relation Types and Descriptions: [{’rel’: [Relation Name R], ’description’: [Relation Description
RD]}]
Document: [Original Document D]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]
All relation triplets extracted from the document in the previous iteration will be scored and
reordered based on the degree and logical rules of the subject and object entities, with higher scores
given to the higher order. Here are the reordered triplets extracted from the previous iteration:
[Reordered Triplets List RT]

Through logical reasoning, the following triplets may have been incorrectly extracted: [In-
ferred Incorrectly Extracted Triplets List IIET]
Based on all the relation triplets extracted in previous iterations and logical reasoning, the
following triplets may still not have been extracted: [Inferred Unextracted Triplets List IUT]

Please refer to the above feedback and extract the triplets of the target relation types again from the
original document. All relation triplets extracted from the document:

Table 9: Prompt for inference.

One-to-one Filtering
Given a document, all entity mentions in the document, and the relation description, your task is to
select the unique correct triplet from the previously extracted triplets. Please only output the triplet
you believe to be the correct one.

Document: [Original Document D]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]
Relation Type and Description: {’rel’: [Two Triplets’ Relation Name TTR], ’description’: [Two
Triplets’ Relation Description TTRD]}

The previously extracted triplets: [Two Contradictory Triplets T1 and T2]
The unique correct triplet (Choose from the two triplets above. Do not modify the content of
triplets):

Table 10: Prompt for one-to-one filtering.
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Mutual Exclusion Constraints
Given a document, all entity mentions in the document, and the relation description, your task is to
select the unique correct triplet from the previously extracted triplets. Please only output the triplet
you believe to be the correct one.

Document: [Original Document D]
Entities: [{’entity’: [Entity Name E], ’entity type’: [Entity Type ET]}]
Relation Type and Description: [{’rel’: [Two Mutual Exclusion Relation Name MER], ’descrip-
tion’: [Two Mutual Exclusion Relation Description MERD]}]

The previously extracted triplets: [Two Mutual Exclusion Triplets T1 and T2]
The unique correct triplet (Choose from the two triplets above. Do not modify the content of
triplets):

Table 11: Prompt for mutual exclusion constraints.

Directionality Constraints
Given a document and the relation description, your task is to select the unique correct triplet from
the previously extracted triplets. Please pay attention to the direction of the relation, which is [Two
Triplets’ Relation Description TTRD] and only output the triplet you believe to be the correct one.

Document: [Original Document D]
Relation Type and Description: {’rel’: [Two Triplets’ Relation Name TTR], ’description’: [Two
Triplets’ Relation Description TTRD]}

The previously extracted triplets: [Two Contradictory Triplets T1 and T2]
The unique correct triplet (Choose from the two triplets above. Do not modify the content of
triplets):

Table 12: Prompt for directionality constraints.
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Initial Extraction
F1: 0.235 Precision: 0.385 Recall: 0.169

{’sub’: ’VivoTab RT LTE’, ’rel’: ’follows’, ’obj’: ’VivoTab RT 3 G’} ×
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’follows’, ’obj’: ’VivoTab RT LTE’} ×

{’sub’: ’VivoTab RT 3 G’, ’rel’: ’followed by’, ’obj’: ’VivoTab RT LTE’} ×
{’sub’: ’VivoTab RT’, ’rel’: ’followed by’, ’obj’: ’VivoTab RT 3 G’} ✓

{’sub’: ’VivoTab’, ’rel’: ’series’, ’obj’: ’Vivo’} ✓
{’sub’: ’VivoTab’, ’rel’: ’subclass of’, ’obj’: ’Vivo’} ✓

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab RT 3 G’} ✓
{’sub’: ’VivoTab Note 8’, ’rel’: ’follows’, ’obj’: ’VivoTab Smart’} ×
{’sub’: ’VivoTab Smart’, ’rel’: ’follows’, ’obj’: ’VivoTab Note 8’} ×

{’sub’: ’VivoTab’, ’rel’: ’follows’, ’obj’: ’VivoTab RT’} ×
{’sub’: ’VivoTab RT LTE’, ’rel’: ’follows’, ’obj’: ’VivoTab Smart’} ×

{’sub’: ’Windows 8.1’, ’rel’: ’follows’, ’obj’: ’Windows 8’} ✓
{’sub’: ’VivoTab RT’, ’rel’: ’followed by’, ’obj’: ’VivoTab Note 8’} ×

{’sub’: ’VivoTab’, ’rel’: ’followed by’, ’obj’: ’VivoTab Note 8’} ×
{’sub’: ’VivoTab Smart’, ’rel’: ’followed by’, ’obj’: ’VivoTab Note 8’} ×

{’sub’: ’VivoTab RT LTE’, ’rel’: ’followed by’, ’obj’: ’VivoTab Smart’} ×
{’sub’: ’VivoTab’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓

{’sub’: ’VivoTab’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓
{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab Note 8’} ×

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab RT LTE’} ✓
{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab Smart’} ✓

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab RT’} ✓
{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’Asus WebStorage’} ×

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’Windows 8.1’} ×
{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’Windows 8’} ×

{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab’} ×

Table 13: Initial Extraction.
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Reconstructed Document
The VivoTab RT LTE follows the VivoTab RT 3 G, while the VivoTab RT 3 G is followed by the
VivoTab RT LTE. The VivoTab RT is followed by the VivoTab RT 3 G, and the VivoTab RT LTE is
followed by the VivoTab Smart. The VivoTab Note 8 follows the VivoTab Smart, and the VivoTab
Smart is followed by the VivoTab Note 8. The VivoTab follows the VivoTab RT and is followed
by the VivoTab Note 8. The VivoTab is part of the Vivo series and is a subclass of Vivo. Asus is
both the manufacturer and developer of the VivoTab, which has several components including the
VivoTab RT 3 G, VivoTab Note 8, VivoTab RT LTE, VivoTab Smart, VivoTab RT, Asus WebStorage,
Windows 8.1, and Windows 8. Additionally, Asus produces the VivoTab. Windows 8.1 follows
Windows 8.

Original Document
VivoTab is a series of Microsoft Windows hybrid tablet computers designed by Asus . It is a sub -
series of the Vivo series by Asus . The name is derived from the Latin word ẗo live änd , along with
Asus ’s Transformer series of convertible devices running Windows , is a primary competitor to
the Microsoft Surface . The family is made up of the VivoTab , VivoTab RT , VivoTab RT 3 G ,
VivoTab RT LTE , VivoTab Smart , and later on the VivoTab Note 8 . All of the tablets come with
Windows 8 ( or Windows 8.1 on the Note 8) , a 3-year subscription to Asus WebStorage . They
have high definition screens advertise ultra - portability and extended battery life , and the ability
detachable tablets . VivoTab RT has an MSRP of 599USD(32GB)and 699 ( 64 GB )

Table 14: Reconstructed document and original document. The content highlighted in red in the reconstructed
document does not align with the original document and corresponds to incorrect triplets. Meanwhile, the content
highlighted in red in the original document does not appear in the reconstructed document, representing triplets that
have not been extracted.
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Comparsion
F1: 0.432 Precision: 0.462 Recall: 0.407

Add:
{’sub’: ’VivoTab RT LTE’, ’rel’: ’follows’, ’obj’: ’VivoTab RT’} ×

{’sub’: ’VivoTab RT’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓+
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓+
{’sub’: ’VivoTab RT LTE’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓+
{’sub’: ’VivoTab Smart’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓+
{’sub’: ’VivoTab Note 8’, ’rel’: ’series’, ’obj’: ’VivoTab’} ×

{’sub’: ’VivoTab RT’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab RT LTE’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab Smart’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab Note 8’, ’rel’: ’manufacturer’, ’obj’: ’Asus’} ✓+

{’sub’: ’VivoTab RT’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab RT LTE’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab Smart’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓+
{’sub’: ’VivoTab Note 8’, ’rel’: ’developer’, ’obj’: ’Asus’} ✓+

{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab RT’} ×
{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab RT 3 G’} ×
{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab RT LTE’} ×
{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab Smart’} ×
{’sub’: ’Asus’, ’rel’: ’product or material produced’, ’obj’: ’VivoTab Note 8’} ×

{’sub’: ’VivoTab RT’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} ×
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} ×
{’sub’: ’VivoTab RT LTE’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} ×
{’sub’: ’VivoTab Smart’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} ×
{’sub’: ’VivoTab Note 8’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} ×

Table 15: Compare reconstructed document and original document to identify unextracted triplets.

Inference
F1: 0.456 Precision: 0.473 Recall: 0.441

Add:
{’sub’: ’Windows 8.1’, ’rel’: ’follows’, ’obj’: ’Windows 8’} ⇒

{’sub’: ’Windows 8’, ’rel’: ’followed by’, ’obj’: ’Windows 8.1’} ✓+

{’sub’: ’VivoTab RT’, ’rel’: ’followed by’, ’obj’: ’VivoTab RT 3 G’} ⇒
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’follows’, ’obj’: ’VivoTab RT’} ✓+

{’sub’: ’VivoTab RT LTE’, ’rel’: ’followed by’, ’obj’: ’VivoTab Smart’} ⇒
{’sub’: ’VivoTab Smart’, ’rel’: ’follows’, ’obj’: ’VivoTab RT LTE’} ×

Table 16: Inference based on logical rules to identify unextracted triplets.

One-to-one
F1: 0.460 Precision: 0.481 Recall: 0.441

{’sub’: ’VivoTab RT’, ’rel’: ’followed by’, ’obj’: ’VivoTab RT 3 G’} ✓
{’sub’: ’VivoTab RT’, ’rel’: ’followed by’, ’obj’: ’VivoTab Note 8’} × (Delete)

Table 17: Delete incorrect triplets based on one-to-one filtering.
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Mutual Exclusion Constraint
F1: 0.491 Precision: 0.553 Recall: 0.441

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab RT’} ✓
{’sub’: ’VivoTab’, ’rel’: ’follows’, ’obj’: ’VivoTab RT’} × (Delete)

{’sub’: ’VivoTab’, ’rel’: ’has part’, ’obj’: ’VivoTab Note 8’} ×
{’sub’: ’VivoTab’, ’rel’: ’followed by’, ’obj’: ’VivoTab Note 8’} × (Delete)

{’sub’: ’VivoTab RT’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓
{’sub’: ’VivoTab RT’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} × (Delete)

{’sub’: ’VivoTab RT 3 G’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓
{’sub’: ’VivoTab RT 3 G’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} × (Delete)

{’sub’: ’VivoTab RT LTE’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓
{’sub’: ’VivoTab RT LTE’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} × (Delete)

{’sub’: ’VivoTab Smart’, ’rel’: ’series’, ’obj’: ’VivoTab’} ✓
{’sub’: ’VivoTab Smart’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} × (Delete)

{’sub’: ’VivoTab Note 8’, ’rel’: ’series’, ’obj’: ’VivoTab’} ×
{’sub’: ’VivoTab Note 8’, ’rel’: ’subclass of’, ’obj’: ’VivoTab’} × (Delete)

Table 18: Delete incorrect triplets based on mutual exclusion constraints.

Directionality Constraint
F1: 0.505 Precision: 0.591 Recall: 0.441

{’sub’: ’VivoTab RT 3 G’, ’rel’: ’follows’, ’obj’: ’VivoTab RT LTE’} × (Delete)
{’sub’: ’VivoTab RT LTE’, ’rel’: ’follows’, ’obj’: ’VivoTab RT 3 G’} ×

{’sub’: ’VivoTab RT LTE’, ’rel’: ’follows’, ’obj’: ’VivoTab Smart’} × (Delete)
{’sub’: ’VivoTab Smart’, ’rel’: ’follows’, ’obj’: ’VivoTab RT LTE’} ×
{’sub’: ’VivoTab Note 8’, ’rel’: ’follows’, ’obj’: ’VivoTab Smart’} ×

{’sub’: ’VivoTab Smart’, ’rel’: ’follows’, ’obj’: ’VivoTab Note 8’} × (Delete)

Table 19: Delete incorrect triplets based on directionality constraints.
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Abstract
Event-keyed summarization (EKS) requires
summarizing a specific event described in a
document given the document text and an event
representation extracted from it. In this work,
we extend EKS to the cross-document setting
(CDEKS), in which summaries must synthe-
size information from accounts of the same
event as given by multiple sources. We intro-
duce SEAMUS (Summaries of Events Across
Multiple Sources), a high-quality dataset for
CDEKS based on an expert reannotation of the
FAMUS dataset for cross-document argument
extraction. We present a suite of baselines on
SEAMUS—covering both smaller, fine-tuned
models, as well as zero- and few-shot prompted
LLMs—along with detailed ablations and a hu-
man evaluation study, showing SEAMUS to be
a valuable benchmark for this new task.

1 Introduction

Providing useful information about events re-
quires the ability not only to extract relevant, user-
specified information from documents, but also to
present that information in a readable form. Draw-
ing on this observation, Gantt et al. (2024) re-
cently proposed event-keyed summarization (EKS),
a task that entails summarizing a particular event,
given a document and an event representation ex-
tracted from it. EKS thus seeks to satisfy both
requirements—reconciling the specific information
needs of IE end users with the more generic outputs
of traditional summarization models—in order to
communicate precise information about a single
event in a contextualized and readable form. EKS
can thus be viewed as event-centric controllable
summarization (Fan et al., 2018), where the con-
trolled attributes are the event and roles of interest.

However, adequately understanding a particu-
lar event often requires synthesizing information
across multiple sources—evidenced in part by the
rapidly growing interest in retrieval augmented gen-
eration (RAG; Lewis et al., 2020b). Accordingly,

Source
___A____________B___
_____________________
__________C__________
___D_________________
_______E________F____

Report Summary
_____________________
_____________________

Report
___A_________________
_________D______E____
_____________________

Cross-Doc Summary
_____________________
_____________________

Roles Report Source

Role1

Role2

…
RoleN

… …

-

A A, B

C

D, E D, E, F

Event

Figure 1: Schematic illustration of the SEAMUS report
and cross-document event-keyed summarization tasks.
Letters represent event arguments.

this work extends EKS to the cross-document set-
ting (CDEKS), drawing on—and enhancing—the
FAMUS dataset for cross-document argument ex-
traction (CDAE) to do so (Vashishtha et al., 2024).
We summarize our contributions as follows:

1. We collect and release an expert reannotation
of the FAMUS CDAE dataset, correcting the
existing crowdsourced annotations.

2. Based on (1), we collect and release SEA-
MUS, an expert-annotated dataset of single-
and cross-document event-keyed summaries—
the first ever dataset for CDEKS.1

3. We present a suite of baselines on SEAMUS
using both smaller, fine-tuned models and
prompted LLMs, showing CDEKS to be chal-
lenging relative to single-document EKS.

4. We conduct fine-grained ablations and a hu-
man evaluation, detailing CDEKS demands as
a task as well as models’ current capabilities.

2 Background

FAMUS (Vashishtha et al., 2024) is a dataset of
1https://github.com/wgantt/SEAMuS
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short English Wikipedia passages (reports) paired
with much longer, genre-diverse English source
documents cited by those reports.2 FAMUS sup-
ports two tasks: (1) Source Validation (SV), where
the goal is to determine whether a candidate source
document is valid for—i.e. describes the same
event as—an event identified in a provided re-
port; and (2) Cross-Document Argument Extrac-
tion (CDAE), which entails extracting arguments
for an identified event from both the report and a
valid source document. SEAMUS builds on the
FAMUS CDAE data, which contains 1,265 report-
source document pairs (split 3:1:1 across train, dev,
and test), and annotates arguments of the same tar-
get event for each document in a pair using a subset
of the FrameNet ontology restricted to frames de-
noting events, states, or processes (Baker et al.,
1998). A single, maximally “informative” men-
tion is annotated for each argument, where proper
names > nominal expressions > pronouns (see Li
et al., 2021b). In both report and source texts, argu-
ments may be distributed across sentences.

Event-Centric Summarization In introducing
EKS, Gantt et al. (2024) released MUCSUM, an
EKS dataset based on the classic MUC-4 template
filling dataset (Sundheim, 1992). MUCSUM con-
tains abstractive event-keyed summaries for each
event template in MUC-4, written so as to faith-
fully express the role of each template argument,
plus any minimal additional context required for
the summary to act as a standalone account of the
event. Gantt et al. present baselines on MUCSUM,
and also conduct a human evaluation of model out-
puts, which inspires our own (§5).

Other event-centric summarization research has
focused on timeline summarization (TLS), which
constructs chronological lists of events, often with
timestamps and usually based on multiple docu-
ments (Allan et al., 2001; Chieu and Lee, 2004;
Li et al., 2021a; Rajaby Faghihi et al., 2022, i.a.).
Beyond TLS, S Hussain et al. (2022) use ex-
tracted event-related keywords to condition single-
document summarization, and integrate an event-
oriented attention mechanism into BART to encour-
age models to cover all events discussed. Addition-
ally, Vallurupalli et al. (2022) introduce the POQue
dataset, which has annotations that characterize
the subevent structure of complex events in stories
and the changes undergone by their participants.
Among these annotations are process summaries,

2All documents are from MegaWika (Barham et al., 2023).

which give high-level descriptions of a complex
event, and change summaries, which describe the
changes experienced by a participant as a result.

Multi-Document Summarization CDEKS is
an event-centric multi-document summarization
(MDS) task. Work on MDS has pursued a variety
of goals, including synthesizing reviews (Gane-
san et al., 2010; Chu and Liu, 2019, i.a.), summa-
rizing dialogues (Kraaij et al., 2005; Chen et al.,
2021, i.a.), distilling news articles (notably, via
DUC3 and TAC4), and generating reports (May-
field et al., 2024). Event-centric MDS datasets
include MultiNews (Fabbri et al., 2019) and Di-
verseSumm (Huang et al., 2024), which focus on
new stories, but SEAMUS is most similar to Auto-
hMDS (Zopf, 2018) and WCEP (Gholipour Gha-
landari et al., 2020) in being built on Wikipedia
articles and their sources.

CDEKS departs from all of these, however, in re-
sponding to an explicit information need. It is thus
an event-centric form of query-oriented MDS (Ma
et al., 2020), where a query expressing the kind of
information to be summarized is provided as addi-
tional input. But whereas queries from prior work
are given in natural language—e.g. article titles
(Liu and Lapata, 2019) or web searches (Pasunuru
et al., 2021)—ours are structured event represen-
tations, drawing on the IE tradition of leveraging
event ontologies to encode information needs, and
enabling extraction-to-summarization pipelines.

Our Work We summarize three key differences
between prior work and our own. We focus on:

1. Synthesizing information about a single event
across multiple sources. Both multi-event (e.g.
TLS) and single-source (e.g. EKS) summa-
rization have their place, but many practical
information needs depend on the rich under-
standing of an individual event that is attain-
able only via cross-source synthesis.

2. Responding to a specific event-centric infor-
mation need, not generically summarizing
event-related content (contra S Hussain et al.,
2022; Vallurupalli et al., 2022).

3. Leveraging detailed, structured event repre-
sentations to achieve (1) and (2)—not short,
unstructured queries like web searches (Pa-
sunuru et al., 2021) or topics (Allan et al.,
2001; Rajaby Faghihi et al., 2022, i.a.).

3https://duc.nist.gov/
4https://tac.nist.gov/publications/index.html
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3 Annotation

Annotation of SEAMUS was divided into two
phases. In the first phase, abstractive report sum-
maries were written for each event in FAMUS (see
§2) based only on its report document, and were
then annotated for event arguments (§3.1). In the
second phase, abstractive cross-document sum-
maries were written for each event based jointly
on its report and source documents, and were then
annotated for event arguments as in the first phase
(§3.2). In both phases, annotators were instructed
to amend spurious, missing, or otherwise incorrect
argument annotations in the report or source doc-
ument before writing their summary. Thus, both
phases involve (1) correcting existing FAMUS ar-
gument annotations; (2) writing a summary based
on the corrected annotations; and (3) annotating ar-
guments in the summary. The phases differ only in
the documents on which the summaries are based
(report only vs. report and source). All annotations
were performed by authors of this work.5

3.1 Phase 1: Report Summaries

Similar to the summaries in MUCSUM (§2), the
report summaries in SEAMUS are concise sum-
maries of a single event as recounted in a single
document (a FAMUS report) that aim to faithfully
represent the role of each participant and to provide
the minimum additional context needed to serve as
an accurate, standalone account of the event. Al-
though the FAMUS report documents are already
relatively short (typically, 2-3 sentences), they of-
ten discuss multiple events.6 Thus, the report sum-
maries are further distilled descriptions focused on
just one event from the report.

Three authors completed the Phase 1 annotation,
with each summary and its arguments singly anno-
tated. Items from the train split were randomly and
evenly divided among these three authors; items
from the dev and test splits were similarly divided
between two of them. All items were provided in
JSON files containing the following information
for each example: (1) a unique example ID, (2)
the FAMUS report text; (3) the FAMUS-annotated
frame, trigger, and arguments of the target event
from the report; and (4) definitions of the annotated
frame and roles as given in FrameNet. Annotators

5Appendix E has additional details and agreement results.
6E.g. for reports in the SEAMUS train split, the MegaWika

dataset (Barham et al., 2023), from which the reports are taken,
has an average of 21.4 FrameNet frames annotated.

Report Cross-Doc

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 21.8 24.6 30.5 34.5
Avg. Sentences 1.0 1.0 1.2 1.2
Avg. Arguments 3.1 3.5 4.1 4.6

Table 1: Summary statistics for the SEAMUS report
and cross-document summaries. See Table 7 for more.

were provided with detailed instructions written
by the first author and completed a 10-example
practice task before beginning the main annotation.
Consistent with FAMUS, both the corrected re-
port arguments and the report summary arguments
were annotated as single, maximally informative
mentions (see §2). Annotators were encouraged to
use the same mentions in their summaries as were
annotated in the (corrected) report arguments, but
were permitted to alter them in the summary in or-
der to preserve clarity or naturalness. Annotations
were validated to ensure that (1) they were shorter
than the report they summarized and (2) the num-
ber of arguments for a given role matched between
each report and its summary. All initially invalid
annotations were then corrected.

3.2 Phase 2: Cross-Document Summaries

The cross-document summaries are intended as en-
riched versions of the report summaries, synthe-
sizing details about the target event from both the
report and the target event’s source document.

Five of the authors completed the Phase 2 an-
notation, with all summaries and arguments singly
annotated as in Phase 1. Items from all three splits
were randomly and evenly distributed to the five
annotators. Given the complexity of the Phase 2
task, annotation was performed in two parts, us-
ing adapted versions of Vashishtha et al.’s (2024)
interface for FAMUS CDAE annotation.7

In Part A, annotators corrected FAMUS argu-
ment annotations in the source documents and then
wrote the cross-document summary based jointly
on the report and source texts and their corrected
arguments. Annotators were encouraged to use the
most informative mention of an argument across
both the report and source documents, but again
were allowed to make alterations for clarity.

In Part B, annotators annotated arguments in the

7Interface source code was obtained from Vashishtha et al.
Screenshots are shown in Appendix E.
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Event: Clemency

Cross-Document Summary

Source
Blogger Lashing: Saudi Rejects Criticism of Badawi Case (BBC Article)

Report
Sigmar Gabriel (Wikipedia Excerpt)

Report Summary

…During a 2015 visit to King 
Salman of Saudi Arabia, Gabriel 
launched an unusual public effort to 
persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 
grant him clemency, amplifying 
Germany's political voice in a region 
in which its influence had largely 
been limited to economic issues in 
years past. He had been urged by 
MPs and human rights organizations 
to take up Badawi's case before his 
trip…

During a 2015 visit to King Salman 
of Saudi Arabia, Gabriel tried to 

persuade Saudi authorities to free 
imprisoned writer Raif Badawi and 

to grant him clemency.

…Saudi Arabia has expressed "surprise and dismay" at international media reports criticising 
the flogging of a Saudi blogger for insulting Islam….

Raif Badawi was sentenced to 1,000 lashes and 10 years in jail last year….Mr Badawi's case 
has prompted international protests and was raised by several governments. Germany's 
economic affairs minister and vice-chancellor, Sigmar Gabriel, currently on a visit to Saudi 
Arabia, was urged by MPs and human rights organisations to take up Mr Badawi's case while in 
Riyadh. Before going into a meeting with King Salman, Mr Gabriel said “the harshness of this 
sentence, especially the corporal punishment, is something unimaginable for us and of course it 
weighs on our relations”….
Mr Badawi established the Liberal Saudi Network, a now-closed online forum that sought to 
encourage debate on religious and political matters in 2008. In 2012, he was arrested and 
charged with "insulting Islam through electronic channels”….

During a 2015 visit, Sigmar Gabriel tried to persuade Saudi authorities, including King Salman, 
to grant Raif Badawi clemency for insulting Islam through electronic channels.

: Executive_Authority          : Offender         : Crime          : Time          : Place

Figure 2: An example from our SEAMUS dataset. Report documents (bottom left) are Wikipedia passages that
describe some event (top right) and that cite a longer (non-Wikipedia) source article (bottom right) as evidence, with
event arguments annotated in both documents. SEAMUS features simple summaries of these events based on only
the report (top left) as well as enriched, cross-document summaries based on both the report and its source, which
typically contain additional information about the event (here, the CRIME). Appendix A has further examples.

summaries from Part A. As in Phase 1, all annota-
tors were provided with detailed instructions and
completed a 10-example practice annotation before
doing the main task. Summary argument annota-
tions were again validated for length and to ensure
that they featured as many arguments for a given
role as the maximum number annotated for that
role between the report and source texts.

Summary statistics for both the report and cross-
document summaries can be found in Table 1
and an example is shown in Figure 2. Both
types of summary average roughly a sentence in
length, though cross-document summaries tend to
be longer and to have more arguments—consistent
with the richer information they provide.

4 Experiments

4.1 Overview

Tasks We present experiments on both the report
(§4.2) and cross-document (§4.3) summarization
tasks. In the report task (single-document EKS),
both the report and its annotated event are pro-
vided as input. The cross-document task (CDEKS)
is analogous, but also includes the corresponding
source document and its event annotation as input.
Next, in §4.4, we briefly discuss some ablations on
the input inspired by similar ones from Gantt et al.

(2024), with full results in Appendix F. Finally,
§4.5 evaluates the impact of degraded argument
extractions on summary quality.

Models We benchmark SEAMUS using models
of two types. First, we consider several classic pre-
trained encoder-decoder models widely used for
summarization: BART (Lewis et al., 2020a), PE-
GASUS (Zhang et al., 2020), and T5 (Raffel et al.,
2020), fine-tuning the large versions of all three on
the SEAMUS training data. Second, we consider
some of the latest proprietary LLMs, evaluated
in both the zero- and few-shot settings: GPT-4o8,
GPT-4o Mini (GPT-4O M in Table 2)9, Claude
3 Haiku (CLAUDE H)10, and Claude 3.5 Sonnet
(CLAUDE S)11. For the few-shot examples, we use
the three examples from the train split whose frame
matches that of the target example. Finally, we also
give results for a report baseline (RB) that treats
the report text itself as the predicted summary.

Metrics We report several standard summariza-
tion metrics, including ROUGE-1 (R1), ROUGE-2
(R2), and ROUGE-LCS F1 scores (RL; Lin, 2004),

8https://openai.com/index/hello-gpt-4o/
9https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/
10https://www.anthropic.com/news/claude-3-haiku
11https://www.anthropic.com/news/

claude-3-5-sonnet
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Report Cross-Document

Model S R1 R2 RL BS CR A F R1 R2 RL BS CR A F

RB - 56.2 46.1 48.4 91.6 52.6 99.1 98.7 48.5 33.3 39.3 89.6 31.0 99.3 93.1
GPT-4O M ZS 62.2 42.3 51.3 93.2 58.5 86.0 75.8 51.8 29.9 39.0 91.3 39.0 81.5 88.9

FS 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
GPT-4O ZS 64.0 45.2 53.0 93.2 61.4∗ 83.9 74.8 58.0∗ 36.4 45.8 92.2∗ 41.3∗ 86.6 88.4

FS 72.5† 56.6† 62.3† 94.4 69.6† 94.7 81.6 61.2† 40.7† 49.4† 92.7† 42.7† 90.6 88.5
CLAUDE H ZS 64.8 46.2 54.7 93.4 58.8 84.9 77.6 57.7 36.9∗ 46.5 92.1 36.2 90.4 91.4

FS 71.7 55.9 61.1 94.3 63.2 94.8 82.5 59.4 39.5 48.6 92.1 37.2 91.0 90.5†

CLAUDE S ZS 67.4∗ 48.1∗ 56.5∗ 93.8∗ 61.1 93.0∗ 80.6∗ 56.7 34.8 45.3 91.9 35.2 93.4∗ 91.7∗

FS 72.2 54.6 61.3 94.5† 65.7 95.9† 83.9† 57.9 38.1 47.4 92.1 37.3 95.1† 90.4
BART FT 74.5 61.7 66.4 94.6 69.9 91.6 79.3 63.8 45.5 53.0 92.6 45.0 85.6 85.3
PEGASUS FT 75.2 62.5 67.0 94.7 70.0 96.1 82.2 63.7 46.2 53.2 92.5 43.7 93.9 90.5
T5 FT 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 44.7 92.5 90.2

Table 2: Report and Cross-Document summarization results on SEAMUS. Best overall results are bolded; ∗ and †

denote best zero- and few-shot results, respectively. S=setting; RB=report baseline; ZS=zero-shot; FS=few-shot;
FT=fine-tuned. See §4.1 for an explanation of metrics; higher is better for all. See Tables 10 and 11 for 95% CIs.
Best A and F results exclude RB, for reasons explained in Appendix F.
as well as BERTScore F1 (BS; Zhang et al., 2019).

Given EKS’s focus on producing summaries that
recover specific pieces of information—as repre-
sented by an event’s roles—we report several other
metrics that evaluate this. First, we report CEAF-
REE F1 (CR; Du et al., 2021a), a form of argument
F1 that allows us to compare arguments extracted
from a predicted summary against those in a refer-
ence summary, aligning arguments based on exact
match.12 Following Gantt et al. (2024), we train
the event extraction model of Xia et al. (2021)13

on SEAMUS and use it to extract arguments from
the predicted summaries, constraining extraction
to arguments that fill roles of the target event only.

The summaries in SEAMUS also make claims
about these arguments that reflect their role in the
target event. To evaluate these claims’ fidelity
to the text, we report AlignScore (A; Zha et al.,
2023), a learned metric that provides a score in
[0, 1] that indicates how well a claim (here, a sum-
mary) is supported by a given context (the report
for the report task, and the concatenated report and
source for the cross-document task). We also re-
port FACTSCORE (F; Min et al., 2023), which uses
LMs to (1) decompose a generation into a set of
atomic facts, and (2) determine the % of these facts
supported by a given knowledge source, where F
is the average % supported over all examples. We
use as knowledge sources the contexts used for A.

4.2 Report Summarization
Setup As input for BART, PEGASUS, and T5,
we provide the full report text concatenated with
a linearized representation of the annotated report

12Appendix F reports a soft match variant of this metric.
13https://hub.docker.com/r/hltcoe/lome

event that contains the frame name, the event trig-
ger, and the role names, each followed by a list
of the arguments annotated for that role. We train
each model against a standard conditional language
modeling objective w.r.t. the gold report summaries
for a maximum of 30 epochs, using a patience of
5 epochs, with dev R1 as the stopping criterion.14

For inference, we use beam search decoding with a
beam size of 5 and a max of 256 new tokens.

For the Claude and GPT models, our system
prompt asks the model to analyze and summarize
a specific event. The user prompt provides more
detailed task instructions, followed by the full re-
port text, and a description of the target event that
includes (1) the frame name and definition from
FrameNet; (2) the trigger; and (3) a bulleted list,
where each item includes a role name, its defini-
tion, and the arguments annotated for that role. In
the few-shot setting, we format the three few-shot
examples (see §4.1) the same way, but with the
target summary shown at the end of each. We set
temperature to 0.7 and the max new tokens to 256,
leaving other API defaults unchanged.15

Results are shown in the left half of Table 2.
First, we find that T5 obtains the best performance
across all metrics, followed by PEGASUS and
BART, with T5 exhibiting particularly strong re-
sults for CR, indicating its ability to accurately
recover event arguments in its summaries. Second,
the LLMs almost universally outperform the report
baseline (RB)—even in the zero-shot setting (ZS),
where Claude Sonnet generally obtains the best re-
sults. Third, adding just three few-shot examples

14Details on training and input formats are in Appendix B.
15Appendix C has further details on models and prompts.
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Report Cross-Document

Model p R1 R2 RL BS CR A F R1 R2 RL BS CR A F

T5

0.0 76.6 64.4 68.9 95.0 74.2 98.2 85.0 64.1 46.4 52.8 92.6 46.3 92.5 90.2
0.1 75.6 62.8 67.8 93.9 71.4 97.6 84.7 62.8 45.3 51.8 91.5 47.2 92.0 89.9
0.2 74.0 61.7 66.2 93.6 69.6 98.0 84.6 62.0 44.3 50.7 91.4 43.5 89.3 88.0
0.3 72.1 60.0 64.7 93.3 67.5 98.2 83.0 60.0 42.8 49.3 91.0 43.3 87.3 89.0
0.4 70.3 57.5 62.1 92.9 66.4 95.8 83.2 58.4 40.9 47.8 90.8 44.4 87.4 86.8
0.5 68.3 55.2 60.6 92.6 63.2 96.3 83.5 56.6 39.1 46.3 90.4 43.1 87.3 88.0

CLAUDE H (FS)

0.0 71.7 55.9 61.0 94.3 63.2 94.8 82.9 57.7 36.9 45.7 92.1 36.2 91.0 90.5
0.1 67.5 51.5 56.7 93.7 59.4 94.8 83.6 57.2 37.3 45.4 91.8 37.1 82.5 88.9
0.2 65.6 48.8 55.1 93.5 55.1 94.7 83.2 56.2 37.0 45.1 91.7 37.8 79.4 88.6
0.3 64.7 47.8 54.1 93.3 52.8 94.6 84.1 56.0 36.2 44.9 91.5 32.7 82.2 89.2
0.4 64.1 47.2 54.1 93.3 52.2 95.0 83.1 54.5 34.3 43.1 91.3 31.4 85.0 89.0
0.5 63.1 46.8 54.0 93.1 52.3 94.7 83.8 54.3 34.6 43.3 91.3 33.1 86.4 89.2

GPT-4O M (FS)

0.0 72.0 55.4 61.0 94.3 66.8 94.1 83.3 57.5 36.9 45.7 92.1 39.8 88.5 89.8
0.1 69.2 52.8 59.5 94.0 64.0 94.5 81.8 58.8 38.2 46.2 92.1 42.2 74.5 90.6
0.2 67.6 50.8 57.0 93.7 59.8 94.2 84.3 56.6 36.2 45.1 91.2 39.4 75.2 89.8
0.3 66.9 50.1 57.0 93.7 59.3 94.9 81.8 56.4 36.2 44.5 91.8 37.8 77.2 90.2
0.4 65.2 48.1 54.9 93.4 56.7 93.8 84.2 54.8 34.0 42.8 91.6 36.6 77.8 90.6
0.5 65.1 47.5 54.8 93.4 55.2 95.4 82.7 54.2 33.2 42.6 91.4 34.4 80.9 90.8

Table 3: Performance of three models from Table 2 when the argument annotations for each role in the report event
(Report) or additionally in the source event (Cross-Document) are corrupted with probability p (see §4.5).

(FS) yields major gains over the zero-shot setting
for all LLMs on all metrics. Even here, however,
few-shot results still trail the best fine-tuned results
(T5) by sizable margins on most metrics.

4.3 Cross-Document Summarization

Setup The setup for the cross-document task is
similar to that of the report task, but adds the source
text and its annotated event to the input alongside
the report text and its event. As the source texts
are full web articles, most are long (e.g. dev texts
average almost 62 sentences and over 1,500 words).
While this is no obstacle for the LLMs, the smaller
models do not support contexts of this size. Thus,
to enable a fair comparison across models, we ap-
ply a sentence retriever to the source, using the
report text as a query to select the top k most
relevant sentences to use as context.16 We con-
sider k ∈ {3, . . . , 10} and selected the maximum
value such that ≥ 95% of the resulting dev set con-
texts would fit untruncated in the input, yielding
k = 7. We experimented with the dense retrievers
all-mpnet-base-v2 (based on MPNet; Song et al.,
2020) and e5-large-v2 (Wang et al., 2022), but
obtained our best results with BM25 (Robertson
et al., 2009), which we use in all experiments.17

We use the same training and inference settings
from §4.2; see Appendices B, C for further details.

16This approach can also be justified by the fact that typi-
cally only a small portion of the source concerns the event.

17Models were evaluated on recall of annotated arguments
in the retrieved contexts for the dev set for fixed k. At k = 7,
BM25 recovered ∼ 76% of annotated source arguments.

Results are shown in the right half of Table 2
and are qualitatively similar to those for the report
task, with the fine-tuned models generally showing
the best overall numbers (R1,2,L, CR) or nearly so
(BS), although GPT-4o obtains the highest scores
on BS and Claude Sonnet on A and F. Once again,
nearly all models outperform the report baseline
across the board (ZS and GPT-4o Mini excepted).
Finally, we note that results on most metrics are
much lower in absolute terms compared to the
corresponding results from §4.2, testifying to the
greater difficulty of the cross-document task.

4.4 Input Ablations

Following Gantt et al. (2024), Appendix F consid-
ers ablations on the input for both tasks, in which
we omit the annotated events (TEXT ONLY) or the
texts (EVENT ONLY), and condition summary gen-
eration on the resulting ablated inputs. We also
present a novel third ablation that omits the argu-
ments, but leaves in information about the frame
and roles (TEXT+SCHEMA). Consistent with Gantt
et al., we find that both the text and the full event
annotations are needed to obtain the best results
(Tables 8 and 9), indicating that the SEAMUS tasks
are not reducible to standard summarization (TEXT

ONLY), structure-to-text (EVENT ONLY), or even
a hybrid objective (TEXT+SCHEMA). Moreover, if
some results in Table 2 (e.g. R{1,2,L}) appear high,
these ablations show that this is due in large part to
access to gold event structures. We next turn to the
case of imperfect event extractions.

223



4.5 Impact of Extraction Quality

Setup §4.2 and §4.3 use gold event structures in
the input to facilitate fair cross-model comparisons.
But in real-world scenarios, one rarely has access to
gold arguments, and certainly not in the extraction-
to-summarization pipelines CDEKS aims to sup-
port. It is thus essential to understand models’ tol-
erance to noise in the extracted events.

To probe robustness to extraction errors in a con-
trolled manner, we apply variable amounts of noise
to the gold event annotations and evaluate model
performance on the resulting inputs. Concretely,
for each role R of each event, we edit R’s argu-
ments with probability p. If a role is selected for
editing, we then make one of the following edits
with equal probability:

1. INSERT: A new (incorrect) span from the text
is added to the argument list for R.

2. DELETE: An argument span is removed at
random from the argument list for R.

3. REPLACE: An argument span is replaced at
random with an incorrect span from the text.

For the cross-document task, we apply these edits
to the event annotations for both the report and the
source. We sample the edits to be made uniformly
and then prompt an LLM (GPT-4o) to apply them
by supplying in a prompt: (1) the text (report or
source), (2) the (JSON-formatted) report or source
event annotations, and (3) instructions for the edits
to be made, generated automatically by populating
templatic statements based on the edits sampled.
The LLM is free to select an appropriate new span
to be used for the INSERT and REPLACE operations.
We consider p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, using the
same sampled edits for all models for a given p.

We evaluate one fine-tuned model (T5) and one
model each from the Claude (Claude Haiku) and
GPT (GPT-4o Mini) families. For T5, we use
the same checkpoint as presented in Table 2. For
Claude Haiku and GPT-4o Mini, we use few-shot
prompts similar to those used in the FS setting in
Table 2, but with two key changes. First, we alter
the task instructions to say that the event annota-
tions for the target example may contain errors,
and that the model must correct these errors when
generating its summary by consulting the text(s).
Second, we show the model how to do this by sub-
stituting noised versions of the event annotations
in the few-shot examples while leaving their asso-
ciated texts and summaries unchanged.

p Summary

0.0 The gradual accumulation of partially decayed plant material
in a bog functions as a carbon sink.

0.1 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.2 The gradual accumulation of decayed plant material
in a bog acts as a carbon sink.

0.3 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

0.4 The gradual accumulation of decayed plant material,
including peat, in bogs functions as a carbon sink.

0.5 The gradual accumulation of decayed plant material
in a bog functions as a carbon sink.

Table 4: Example outputs from GPT-4o Mini on the
cross-document task as role annotations are corrupted
with probability p. In many cases (as here), we find
minimal degradation in quality from p = 0 to p = 0.5.

Results for both tasks are in Table 3. For all
models, we observe (near-)monotonic drops in per-
formance for most metrics as p increases. While
performance drops are sizable in some cases, they
are arguably less radical than we might expect,
given the destructiveness of the changes at p = 0.5,
where roughly half of all roles contain extraction
errors. This is especially evident in the results
for Claude Haiku and GPT-4o Mini on the cross-
document task, where (e.g.) R1,2,L scores decrease
by only about 3 points from p = 0 to p = 0.5, BS
by less than 1, and F showing no drop at all. Fur-
ther, losses on CR (the most explicit measure of
extraction ability) are only ∼5 points for GPT-4o
Mini and ∼3 points for Claude Haiku.

These findings are confirmed by manual inspec-
tion of model outputs, where we often see relatively
little degradation in summary quality (Table 4).
This suggests an intriguing strength of this task
relative to traditional event extraction: the ability
to counteract extraction errors post-hoc by using
imperfect event extractions as a query to locate rele-
vant passages in the input and then leveraging those
passages to avoid analogous errors in the summary.

5 Human Evaluation
Setup Lastly, we conduct a human evaluation
of the reference and model-generated summaries.
We focus our evaluation on the cross-document
task, comparing the summaries generated by mod-
els presented in Table 2 (excluding RB). For the
GPT and Claude models, we use the FS (few-shot)
summaries only, owing to their superiority over the
ZS results. We randomly sampled 30 test set ex-
amples and presented the 7 model-generated sum-
maries for these examples, along with the refer-
ences, to 3 human raters—all English-speaking
NLP researchers who did not participate in other
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Figure 3: Histograms of summary quality scores (1-5, higher is better) from our human evaluation (§5). The bottom
right plot (red) aggregates scores across all three raters; each of the other plots (blue) shows a single rater’s scores.

parts of this work. Each rater provided a single
quality score for each summary based on the or-
dered list of attributes used by Gantt et al. (2024):
factuality, adequacy, coherence, relevancy, and flu-
ency. Scores were given from 1 (low) to 5 (high),
with half points allowed. Each rater thus provided
30×(7+1)×1 = 240 judgments. Raters were not
shown which model produced which summary, and
summary presentation order was randomized.18

Results Four sets of histograms of scores for each
model (and the reference) are shown in Figure 3.
The bottom right set (red) shows scores aggregated
across annotators, while the other three (blue) each
show scores of a single rater. For all raters, scores
are consistently high across models and the refer-
ence, with modes of ≥ 4 for each. Comparing pref-
erences across raters, however, we see significant
variability: GPT-4o achieved the highest average
score for one rater (top right, 4.28); GPT-4o Mini
for the second (bottom left, 4.57); and PEGASUS
for the third (top left, 4.23).

Looking at intra-rater distributions, however, it’s
unclear how robust these preferences are. Using
Wilcoxon rank-sum tests to evaluate pairwise dif-
ferences in each rater’s scores for a given pair of
models, we find that some of these preferences
are reliable at α = .05 (e.g. GPT-4o > T5 with
p = .016 for the first rater), but none holds up
when applying the Bonferroni correction for multi-
ple comparisons. We take these results to indicate
that our baselines are fairly effective at producing

18See Appendix D for further details.

good summaries, and that while they may some-
what differentiate themselves on individual met-
rics19, the best models on a more holistic picture
may come down to user preference, and there may
not be definitive bests even at this scope. This plu-
rality of solid modeling options is encouraging, and
suggests flexibility in the application of CDEKS to
a range of use cases.

6 Conclusion

This work has extended the task of event-keyed
summarization (EKS) to the cross-document set-
ting (CDEKS). To enable this, we provided an ex-
pert reannotation of the FAMUS CDAE dataset,
yielding high-quality event argument annotations
on all 1,265 examples. We then leveraged these
improved annotations to construct SEAMUS—a
collection of single- (report) and cross-document
summaries on top of FAMUS, further annotating
the summaries themselves for event arguments (§3).
We benchmarked SEAMUS on a diverse set of
baselines, including smaller fine-tuned models, as
well as zero- and few-shot prompted LLMs (§4.2,
§4.3). We then presented more detailed analysis,
conducting a comprehensive set of input abalations
(§4.4), assessing the impact of degraded event ex-
traction on summary quality (§4.5), and finally con-
cluding with a human evaluation of summary qual-
ity (§5). We release SEAMUS, along with our
baseline results, to facilitate further work on EKS
in both the single- and cross-document settings.

19See our discussion of argument recovery in Appendix F.
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Limitations

One limitation of this work is SEAMUS’s size:
1,265 examples is sufficient for fine-tuning smaller
models and for conducting prompting experiments
with larger ones, but is likely insufficient for sub-
stantive fine-tuning of very large models.

A second limitation is that the cross-document
setting considers only two documents per exam-
ple. This constraint was imposed by the choice of
the FAMuS dataset as the basis for SEAMUS, as
cross-document argument annotations in the former
were provided only for pairs of report and source
texts. Future work expanding the set of source
texts would be valuable, and would allow both for
richer summaries and for more robust evaluation
of models’ ability to accurately synthesize infor-
mation across possibly differing accounts of events
(cf. Huang et al. (2024)), as information conflicts
are more common outside of Wikipedia citations.

We note, however, that addressing either limita-
tion may require relaxing data quality standards—
relying on crowdsourcing or LLM-powered anno-
tation techniques—as scaling our annotation proce-
dure to many more examples or source documents
would demand considerable resources. It was only
thanks to the above restrictions that we were able
to provide expert annotations for SEAMUS.

Finally, while the experiments in §4.5 offer a
helpful picture of the impact of event extraction
quality on cross-document event-keyed summaries,
further experiments on the outputs of actual event
extraction systems would likely provide a better
one. Much of the difficulty of deploying CDEKS
in practical settings undoubtedly lies in the devel-
opment of an effective document-level event ex-
tractor, as evidenced by the ongoing challenges
documented by much prior work in this domain
(Du et al., 2021b; Chen et al., 2023b; Gantt et al.,
2023; Vashishtha et al., 2024, i.a.)

Ethics

As the report and source texts in SEAMUS are the
same as those in the FAMuS dataset, and as the
summaries in SEAMUS are simply distillations
of (parts of) these texts, we do not believe our
dataset introduces any novel risks as a resource.
Nonetheless, these texts do discuss real people,
places, and institutions, and models trained on this
data may thus be liable to make untrue claims about
them or otherwise misrepresent them. We intend
SEAMUS for academic use only, as a benchmark

to evaluate systems for single- and cross-document
event-keyed summarization.
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A Additional Examples

Below, we show a few examples of the report sum-
maries and their corresponding cross-document
summaries to illustrate how the latter typically pro-
vide greater detail about an event of interest relative
to the former. We note, however, that this is not
always the case: sometimes the source document
offers no additional information about the event
beyond what is contained in the report.

Example 1

• Frame: CAUSE TO RESUME

• Report: Areva renewed a uranium deal with
Niger in January 2008.

• Cross-Doc: On January 13, 2008, French
state-controlled nuclear reactor maker Areva
CEPFi said it had renewed a uranium mining
deal with the state of Niger and would invest
over 1 billion euros.

Exmaple 2

• Frame: SMUGGLING

• Report: A woman pled guilty to possession
and attempting to smuggle 89 grams of heroin
out of Thailand.

• Cross-Doc: Scot Sandra Gregory pled guilty
to possession and attempting to smuggle 89
grams of heroin out of Thailand in 1993 and
did her time in Thai jails.

Exmaple 3

• Frame: HOSTILE ENCOUNTER

• Report: The plot of Reign of Shadows in-
volves players returning to the dark side of the
moon of Luclin to face the snake-like Shissar
race led by Emperor Ssraeshza.

• Cross-Doc: The plot of Reign of Shadows in-
volves players returning to the heart of the
dark side of the moon of Luclin to face the
snake-like Emperor Ssraeshza and his unyield-
ing throngs of insidious zealots and enslaved
minions to take back the ancient citadel of Vex
Thal and end their march.

B Training and Evaluation

Models and Hardware The BART, T5, and
PEGASUS models were all trained on a single
NVIDIA Quadro RTX 6000 GPU using CUDA
version 11.7. Results reported with these models
are based on single runs with a fixed random seed.
We fine-tune the following pretrained checkpoints
available from HuggingFace:

• t5-large
• facebook/bart-large
• google/pegasus-large

Libraries Models were developed using Python
3.11.9. We used the following libraries for model
training, inference, and evaluation:

• accelerate (0.34.2)
• bert-score (0.3.13)
• bm25s (0.2.1)
• datasets (3.0.1)
• deepspeed (0.15.1)
• editdistance (0.8.1)
• evaluate (0.4.3)
• metametric (0.1.2)
• numpy (1.26.4)
• rouge-score (0.1.2)
• sentence-transformers (3.1.1)
• spacy (3.7.5)
• torch (2.0.1+cu117)
• transformers (4.45.1)
• tokenizers (0.20.0)

Metrics We use the implementations of ROUGE
(R1,2,L) and BERTScore (BS) provided by the
HuggingFace evaluate library. We implement
CEAF-REE (CR) and its soft-match variant (see
Tables 8, 9) using the metametric package (Chen
et al., 2023a). We use the implementation of Align-
Score released by the metric’s authors (Zha et al.,
2023).20. Lastly, for FActScore, we use the few-
shot examples from Wanner et al. (2024) for decom-
position and use Llama3.1-8B Instruct (Touvron
et al., 2023; Dubey et al., 2024) for both atomic
fact decomposition and verification.

Hyperparameters BART, T5, and PEGASUS
were all trained for a maximum of 30 epochs with
a patience of 5 epochs, using ROUGE-1 (R1) F1

score on the dev set as the evaluation criterion. We
use the Adam optimizer (Kingma and Ba, 2014)
with default hyperparameters (β1 = 0.9, β2 =
0.99o, ϵ = 1e−8, η = 0.001) for all models. For
inference, we use beam search decoding with a
beam size of 5 and set the maximum tokens to 256.

20https://github.com/yuh-zha/AlignScore
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Input Formats Below, we show in greater detail
the input format for BART, PEGASUS, and T5 for
the report and cross-document results reported in
Table 2 and Table 3. (Note: these input formats
were also used to obtain the BART, PEGASUS,
and T5 results in the TEXT+EVENT rows in Ta-
ble 8 and Table 9.) Here, ⟨B⟩ and ⟨E⟩ denote the
model’s start-of-sequence and end-of-sequence to-
kens, respectively (if applicable), and ⟨S⟩ denotes
a special token used to delineate information per-
taining to a particular event role. Other text set
between angle brackets (⟨. . .⟩) denotes a variable
placeholder. We add spaces between separators and
adjacent text to improve readability below; they are
not present in the actual input.

The input format for the report task is:

⟨B⟩ Report: ⟨Report Text⟩ ⟨E⟩ ⟨B⟩
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩
⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg
1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩
⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨E⟩

The input format for the cross-document task
is:

⟨B⟩ Report: ⟨Report Text⟩ ⟨S⟩ Source:
⟨Source Text⟩ ⟨E⟩ ⟨B⟩ Report Event:
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ Trigger ⟨S⟩
⟨Trigger⟩ ⟨S⟩ ⟨Role 1 Name⟩ ⟨S⟩ ⟨Arg
1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ ⟨Role N Name⟩ ⟨S⟩
⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩ Source Event:
Frame ⟨S⟩ ⟨Frame Name⟩ ⟨S⟩ ⟨Role 1

Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩; . . . ⟨S⟩
⟨Role N Name⟩ ⟨S⟩ ⟨Arg 1⟩; ⟨Arg 2⟩;
. . . ⟨S⟩ ⟨E⟩

The ablation settings presented in Table 8
and Table 9 (TEXT ONLY, EVENT ONLY,
TEXT+SCHEMA) do not fundamentally change this
overall structure, but merely omit parts of it (e.g.
TEXT+SCHEMA omits all ⟨Arg N⟩).

C LLMs

GPT All GPT models were accessed through the
OpenAI Chat API21, via the OpenAI Python SDK
(openai 1.50.2). As noted in §4, we set tempera-
ture to 0.7 and set the maximum output tokens to
256 (consistent with the fine-tuned models) for all
experiments reported in this paper and leave the

21https://platform.openai.com/docs/
api-reference/chat

other API defaults unchanged (n = 1, top_p is
not set, and we use no frequency penalty, presence
penalty, or logit bias). For GPT-4o, we used model
version gpt-4o-2024-08-06. For GPT-4o Mini,
we used model version gpt-4o-mini-2024-07-18.
Results reported throughout the paper are based on
a single generation per prompt.

Claude All Claude models were accessed
through the Anthropic Messages API22 via the An-
thropic Python SDK (anthropic 0.34.2). As with
the GPT models, we set temperature to 0.7 for all
experiments in this paper and leave the other de-
faults unchanged (we do not set top_p or top_k,
as recommended, and we do not set any stop se-
quences). For Claude 3.5 Sonnet, we used model
version claude-3-5-sonnet-20240620. For
Claude 3 Haiku, we used model version
claude-3-haiku-20240307. Results reported
throughout the paper are based on a single gen-
eration per prompt.

Prompts We use the same prompts for all LLMs.
Complete prompts will be available in the public
GitHub repository for this work. Here, we pro-
vide prompt templates used to obtain the results in
Table 2 and Table 3, for both tasks (report or cross-
document) and for both the zero- (ZS) and few-shot
(FS) settings. Text set between angle brackets ⟨. . .⟩
denote placeholders.

We use the same system prompt for both tasks:

You are an expert intelligence briefer.
Your task is to analyze a specific, im-
portant event based ONLY on certain in-
formation, and to compile a concise sum-
mary of that event to be presented to a
high-ranked decision maker.

For the report task in the zero-shot (ZS) setting,
the user prompt has the following structure:

The Report text below describes a sit-
uation. The Report Template provides
specific details about the same situation.
Focus ONLY on information relevant to
the Situation Type.

Please write a short, accurate summary
that is one sentence long and that is based
ONLY on the provided information. DO
NOT include any extraneous details. DO
NOT use more than one sentence.

22https://docs.anthropic.com/en/api/messages
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Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary:

The few-shot (FS) user prompt for the report task
had the following structure:

The Report text below describes a sit-
uation. The Report Template provides
specific details about the same situation.
Focus ONLY on information relevant to
the Situation Type.

Please write a short, accurate summary
that is one sentence long and that is based
ONLY on the provided information. DO
NOT include any extraneous details. DO
NOT use more than one sentence.

Here are a few examples to show you
how to complete the task:

Example 1
————-
Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary: ⟨summary text⟩
Example 2
————-
⟨ same format as above ⟩
Example 3
————-
⟨ same format as above ⟩
Now here is the target example for you
to complete:

Target
———
⟨same format, but with summary

text omitted⟩

The zero-shot user prompt for the cross-document
task had the following structure:

The Report text below describes a situa-
tion, and the Report Template provides
specific details about the same situation.
The Source text provides additional con-
text about this situation, and the Source
Template provides additional details. Fo-
cus ONLY on information relevant to the
Situation Type.

Please write a short, accurate summary
that is preferably one sentence long
(and no more than two sentences long)
based ONLY on the provided informa-
tion. DO NOT include any extraneous
details. TRY to use one sentence and DO
NOT use more than two.

Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Report: ⟨Report Text⟩
Report Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Situation Type: ⟨Frame Name⟩ (⟨Frame
Def⟩)
Source: ⟨Source Text⟩
Source Template:

- ⟨Role 1⟩ (⟨Role 1 Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

- . . .

- ⟨Role N⟩ (⟨Role N Def⟩): ⟨Arg 1⟩;
⟨Arg 2⟩; . . .

Summary:

The few-shot user prompt for the cross-document
task (not explicitly shown) follows exactly the same
structure as the few-shot prompt for the report task,
but naturally uses the cross-document example for-
mat in lieu of the report format.
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D Human Evaluation

Full instructions for the human evaluation, along
with a JSON file containing the items that were
rated, are provided in our GitHub repo (https://
github.com/wgantt/SEAMuS).

E Data & Annotation

E.1 License

We release SEAMUS and our code under a CC-
BY-SA-4.0 license. As noted in the Ethics section,
we intend SEAMUS for research use only, not for
commercial purposes.

E.2 Additional Summary Statistics

Additional summary statistics—about the report
and source texts are shown in Table 7

E.3 Inter-Annotator Agreement

As we note in §3, there was no redundancy in the
SEAMUS annotation process: corrections to the
FAMuS arguments, writing of summaries, and an-
notation of summary arguments were performed
by a single annotator for each example. However,
annotators did conduct a 10-example practice anno-
tation for both the report and cross-document tasks.
Thus, to give some (limited) sense of the inter-
annotator agreement, Table 5 and Table 6 present
pairwise comparisons of annotators’ annotations on
these 10 items for the report and cross-document
tasks (respectively) using the reference-based met-
rics from Table 2 (plus the edit distance version
of CR, CRsoft; see Appendix F). We treat anno-
tations produced by annotators in the P column
as “predictions” to be evaluated against the “refer-
ence” annotations produced by annotators in the R
column. Two important notes:

1. Because all of these metrics are F1 scores, the
distinction between P and R is moot and re-
versing P and R for any given pair would
yield the same results. In both tables, we re-
port results for all unordered annotator pairs,
as well as the average across all pairs.

2. Because these were practice annotations, none
of them were included in the final SEAMUS
dataset. We would thus expect the numbers
reported here to be an underestimate of the
level of agreement on the main task, had we
had redundancy.

P R R1 R2 RL BS CR CRsoft

A1 A2 67.1 44.5 52.6 93.4 72.7 86.9
A1 A3 72.4 53.9 63.1 94.4 76.4 86.5
A2 A3 77.2 60.5 62.5 94.7 75.9 89.6

Avg. 72.2 53.0 59.2 94.2 75.0 87.7

Table 5: Inter-annotator agreement on the 10 practice
examples from the SEAMUS report summary annota-
tion, as given by the reference-based metrics we report
in §4, treating annotator P ’s responses as predictions
and R’s responses as references (the reverse is equiva-
lent, since these metrics are symmetric).

P R R1 R2 RL BS CR CRsoft

A1 A2 64.8 42.4 53.3 94.0 40.5 56.6
A1 A3 64.7 43.8 51.6 93.0 50.6 65.0
A1 A4 45.8 22.7 33.0 90.7 49.8 65.2
A1 A5 69.0 48.1 58.8 94.6 46.8 62.8
A2 A3 77.7 66.8 72.4 94.9 50.6 65.6
A2 A4 55.4 33.9 40.8 91.2 50.7 66.8
A2 A5 72.0 56.1 64.9 94.1 50.6 66.9
A3 A4 55.4 33.2 41.9 90.7 51.8 69.0
A3 A5 71.0 57.2 61.8 93.6 52.6 69.8
A4 A5 48.2 27.2 37.3 90.7 52.8 69.6

Avg. 62.4 43.1 51.6 92.8 49.7 65.7

Table 6: Inter-annotator agreement on the 10 practice ex-
amples from the SEAMUS cross-document summary
annotation, as given by the reference-based metrics we
report in §4, treating annotator P ’s responses as pre-
dictions and R’s responses as references (the reverse is
equivalent, since these metrics are symmetric).

Report Source

Train Dev Train Dev

Examples 759 253 759 253
Avg. Words 59 60 1,084 1,511
Avg. Sentences 2.0 2.0 44.7 61.5
Avg. Arguments 3.1 3.5 3.8 4.2

Table 7: Summary statistics for the SEAMUS report
(left) and source documents, which are the same as those
in the FAMUS dataset, albeit with slightly different
arguments due to our corrections of the original FAMUS
argument annotations.
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E.4 Annotation Interface

Here, we include screenshots of the annotation in-
terface used to complete the Phase 2 annotation.23

As noted in §3, the interface was adapted from
Vashishtha et al.’s (2024) annotation interface for
the FAMUS cross-document argument extraction
task (cf. Figures 5 and 6 in Appendix A of their
paper). Tasks were run via Turkle, an open-source
tool with similar functionality to Amazon Mechan-
ical Turk.24

In the first part of the Phase 2 annotation, the
existing (crowdsourced) FAMUS argument anno-
tations for the source text were reviewed and cor-
rected, and the cross-document summaries were
written jointly on the basis of these corrected an-
notations and the corrected report text argument
annotations from Phase 1 (see Figure 4). The inter-
face was pre-populated with (a) the corrected report
text arguments from Phase 1 (in the “Report Text”
tab, highlighted); the report summary from Phase 1
(in the “Report Summary” field); and (c) the uncor-
rected source text arguments (in the “Source Text”
tab). The source text arguments were reviewed and
corrected by toggling to the “Source Text” tab and
making any necessary edits to the existing selec-
tions. The cross-document summaries were then
written in the “Combined Summary” field. The UI
for selecting, adding, and removing arguments was
unchanged relative to Vashishtha et al.’s implemen-
tation. The major differences here are the addition
of the “Report Summary” and “Combined Sum-
mary” fields, and the inability to alter the selected
FrameNet frame for annotation.

In the second part, arguments were annotated on
the summaries written in the first part (Figure 5).
The interface is similar to the interface for the first
part of the Phase 2 annotation, except that the “Re-
port Summary” and “Combined Summary” fields
have been removed, and a new tab (“Summary
Text”) containing the cross-document summary to
be annotated was added. Summary arguments were
annotated by toggling to this tab and making argu-
ment selections in the same way as before. Here,
the corrected argument annotations for both the re-
port text and for the source text were pre-populated
for each task under their respective tabs, allowing
annotators to toggle between these for reference in

23Recall that the Phase 1 annotation, which involved correct-
ing the FAMUS report text argument annotations and writing
the report summaries, was done in JSON files.

24https://github.com/hltcoe/turkle-client

Figure 4: Interface for source text argument correction
and cross-document summary writing (the first part of
the Phase 2 annotation).
annotating the summary arguments.

As can be seen in both Figure 4 and Figure 5,
details about the frame for the target event, includ-
ing the frame name, its definition, as well as role
names and their definitions, were provided as in the
original FAMUS interface. Instructions were also
accessible at any time via the dropdown shown at
the top of the screen.

E.5 Annotation Instructions
Annotation instructions for both phases are avail-
able on our GitHub repo (https://github.com/
wgantt/SEAMuS).

E.6 Annotator Demographics
The full set of annotators consists of six students
(five graduate and one undergraduate) pursuing
degrees in Computer Science (3), Linguistics (2),
and Cognitive Science (1), all of whom are fluent
English speakers. Only one was financially com-
pensated for the annotations (at a rate of $15 per
hour), as this person initially became involved with
the project through a university job board posting
for the task, whereas the others were members of
the lab from which the project originated. The
project, and the intended use of their annotations,
was clearly explained to all participants in meetings
before they began any annotation.
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Figure 5: Interface for annotation of arguments on the
cross-document summaries (the second part of the Phase
2 annotation).

F Additional Results

F.1 Main Results

Table 10 and Table 11 contain 95% confidence
intervals of the results in Table 2 based on non-
parametric bootstraps (n = 1, 000).

F.2 Input Ablations

Here, we include the full results of the ablations on
the inputs introduced briefly in §4.4, which were
inspired by similar ones conducted by Gantt et al.
(2024). In the TEXT ONLY setting, we omit in-
formation about the target event entirely and in-
clude only the text in the input—either the report
for the report task, or both the report and source
for the cross-document task—effectively reduc-
ing the problem to standard summarization. In
the EVENT ONLY setting, we omit the text(s) and
include only information about the target event—
either the report event annotations for the report
task, or both the report and source event annota-
tions for the cross-document task—making this
ablation similar to structure-to-text tasks, such as
AMR-to-text (Pourdamghani et al., 2016)). In the
TEXT+SCHEMA setting, we omit the argument an-
notations, but leave in information about the frame
and its roles. For the fine-tuned models, we include
just the names of the frame and its roles. For the
LLMs, we additionally include the definitions of
the frame and roles as given in FrameNet. Finally,
TEXT+EVENT is the name we assign to the unab-
lated setting, used to obtain the results in Table 2
and Table 3, where both the text(s) and the full
event annotations are present in the input. For all

ablation settings, BART, PEGASUS, and T5 are
fine-tuned on the ablated inputs using the same set-
tings for training and inference as are described in
§4. For the GPT and Claude models, the examples
provided in the few-shot setting are also ablated in
the way called for by each ablation.

Report Results for the report task are in Table 8.
Here and in the cross-document results to follow
(Table 9), we include a variant of CEAF-REE (CR)
that we dub CRsoft, which aligns and scores pre-
dicted arguments against reference arguments us-
ing normalized levenshtein distance rather than ex-
act match—enabling a more nuanced comparison
of different models’ ability to recover event argu-
ments in the summaries they produce.

Across all models and most metrics, we see sig-
nificant drops in performance when ablating any
component of the input. Notably, a number of mod-
els, especially the LLMs, fall to numbers near or
below those of the report baseline (RB) on a variety
of metrics.

There are, however, some unsurprising excep-
tions here. First, in many cases, results on CR and
CRsoft in the EVENT ONLY ablation are markedly
stronger than the report baseline, and are even
competitive with the results in the unablated set-
ting (TEXT+EVENT) for most of the zero-shot-
evaluated LLMs. This echoes a similar finding
by Gantt et al. (2024), who note that “the docu-
ment [is not] needed to generate some string that
contains all the [event] template’s arguments.” If
this is correct, we would expect to see strong CR
scores in the EVENT ONLY setting, even though
the summaries may be poorer overall (as reflected
in other metrics).

An intriguing, related observation is that
whereas the fine-tuned models look dominant
against the LLMs on CR in the unablated setting,
this advantage sharply diminishes when we turn
to CRsoft. This is likely explained by the fact that
the fine-tuned models are able to learn the conven-
tions adopted by annotators in selecting argument
spans, whereas the (prompted) LLMs do not—even
though they may still be generating outputs with
approximately correct spans that are nonetheless
harshly penalized by an exact match.

A second exception is the results on AlignScore
(A) and FActScore (F) in the TEXT ONLY setting,
which are competitive with—and in some cases
superior to—the results in the unablated setting
across models. Recall that both A and F here eval-
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uate how well the report summary is supported by
the report text. It is thus intuitively possible, and
evidently quite feasible, to generate a summary that
is adequately supported by the text without relying
at all on the event annotations—which is exactly
what is demanded by the TEXT ONLY setting. This
is once again consistent with findings from Gantt
et al. (2024) on the NLI-based family of metrics
MENLI (Chen and Eger, 2023), which are broadly
similar to AlignScore and FActScore: “[event] tem-
plates are not needed to generate some summary
that is entailed by the document.”

We also note that, for the fine-tuned models, we
obtain A scores in the TEXT+SCHEMA ablation
that are comparable (T5) or higher than (BART,
PEGASUS) those of the unablated setting. This
makes sense, inasmuch as the TEXT+SCHEMA set-
ting contains a superset of the inputs of the TEXT

ONLY setting, though it is unclear why we do not
find a similar pattern with the LLMs.

Finally, note that the report baseline, which treats
the report text itself as the summary, should in
theory achieve perfect A and F scores, and thus
does not really represent a fair comparison with
the other models (note: this is also true for the
cross-document setting). That it does not is surely
a reflection of the fact that both metrics rely on
outputs from imperfect models. Such flaws of LM-
based metrics must not be overlooked.

Cross-Document results on the cross-document
task are shown in Table 9 and follow a pattern
that is qualitatively very similar to that of the
report results above. We consistently find that
the best results are obtained in the unablated set-
ting (TEXT+EVENT) for most metrics, with the
same exception regarding CR/CRsoft in the EVENT

ONLY setting as we found for the report task. Cu-
riously, however, the findings on A are more com-
plicated here: whereas we continue to see the
strongest results on this metric in the TEXT ONLY

and TEXT+SCHEMA ablations for the fine-tuned
models, with the LLMs, we instead see our best re-
sults in the unablated setting—following the trend
of other metrics.

F.3 Argument Recovery by Role

Table 12 and Table 13 show CR and CRsoft results
(respectively) on the cross-document task broken
down by role for the 20 roles with highest support
(number of annotated arguments) in the SEAMUS
training split.

Comparing the tables reveals an interesting di-
chotomy. For CR, no model is consistently dom-
inant across all roles, with fine-tuned models col-
lectively obtaining the best results on 12 of the 20
and few-shot prompted models obtaining the best
results on the remaining 8. The CRsoft results, by
contrast, heavily favor GPT-4O, which achieves
the best scores on 13 roles. Here, the fine-tuned
models are top-performing on only 4 roles.

We believe the same factor discussed in sub-
section F.2 explains this dichotomy: whereas CR
requires exact span match—and thus will tend to
favor models able to learn span boundary conven-
tions through fine-tuning—CRsoft does not, and
rewards spans proportional to their edit distance
from the reference. Thus, CRsoft reveals the LLMs
(and GPT-4O above all) to be effective in produc-
ing summaries that recover the correct arguments,
albeit with more lexical modifications relative to
the reference.

G Use of AI Assistants

GitHub Copilot was used as a coding assistant
for parts of model development and data analysis,
though its suggestions were carefully reviewed by
the authors. AI assistants were not used for other
parts of this work (writing, brainstorming, etc.).
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Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 56.15 46.05 48.37 91.57 52.58 62.56 99.11 98.73

GPT-4O M

TEXT ONLY ZS 49.96 28.18 39.23 91.31 34.59 53.13 95.74∗ 83.11
EVENT ONLY ZS 53.11 34.04 43.67 91.51 52.13 77.37 60.98 53.42
TEXT+SCHEMA ZS 53.29 31.60 42.91 91.28 38.24 56.92 79.07 76.38
TEXT+EVENT ZS 62.18 42.32 51.26 93.17 58.48 78.71 86.04 75.80
TEXT+EVENT FS 71.98 55.35 61.03 94.34 66.80 83.66 94.06 83.32

GPT-4O

TEXT ONLY ZS 51.52 29.90 40.90 91.50 33.75 52.06 94.49 84.00∗

EVENT ONLY ZS 56.39 38.34 46.34 91.93 59.35 83.35 70.66 57.14
TEXT+SCHEMA ZS 56.57 37.19 47.08 92.00 42.37 61.50 81.66 73.05
TEXT+EVENT ZS 63.95 45.21 52.95 93.18 61.39∗ 82.60∗ 83.87 74.78
TEXT+EVENT FS 72.54† 56.59† 62.34† 94.40 69.61† 87.27† 94.72 81.58

CLAUDE H

TEXT ONLY ZS 50.41 30.39 40.53 91.11 32.35 51.46 93.10 83.77
EVENT ONLY ZS 55.03 36.37 45.71 91.79 54.36 78.25 72.15 56.29
TEXT+SCHEMA ZS 57.67 38.51 47.68 92.08 41.36 59.10 83.24 77.05
TEXT+EVENT ZS 64.75 46.19 54.67 93.44 58.75 78.92 84.87 77.57
TEXT+EVENT FS 71.73 55.86 61.05 94.29 63.21 80.95 94.82 82.54

CLAUDE S

TEXT ONLY ZS 46.98 22.83 36.24 90.78 25.68 45.88 91.31 82.41
EVENT ONLY ZS 55.66 36.89 46.21 92.13 56.38 78.54 72.15 60.37
TEXT+SCHEMA ZS 57.33 36.18 46.98 92.30 41.71 61.46 88.93 77.85
TEXT+EVENT ZS 67.38∗ 48.11∗ 56.52∗ 93.84∗ 61.07 81.35 92.96 80.59
TEXT+EVENT FS 72.16 54.64 61.29 94.54† 65.66 83.68 95.89† 83.86†

BART

TEXT ONLY FT 57.13 43.53 50.46 91.77 46.27 58.59 97.42 84.64
EVENT ONLY FT 58.34 40.96 48.51 91.83 59.82 75.34 51.17 52.41
TEXT+SCHEMA FT 62.23 49.43 55.55 92.59 52.92 65.83 95.01 83.34
TEXT+EVENT FT 74.46 61.68 66.42 94.57 69.88 82.72 91.59 79.25

PEGASUS

TEXT ONLY FT 60.33 46.19 52.44 92.13 45.95 60.40 97.45 85.20
EVENT ONLY FT 59.69 41.97 49.46 91.90 57.14 74.34 53.93 53.43
TEXT+SCHEMA FT 63.28 49.79 55.91 92.71 53.69 66.28 96.94 84.33
TEXT+EVENT FT 75.18 62.53 66.96 94.70 70.00 82.68 96.08 82.23

T5

TEXT ONLY FT 58.38 45.25 51.81 91.96 49.70 60.75 98.88 87.85
EVENT ONLY FT 63.14 45.62 52.47 92.67 64.00 80.08 68.42 62.63
TEXT+SCHEMA FT 65.82 51.90 58.46 93.11 56.18 68.42 97.92 82.93
TEXT+EVENT FT 76.64 64.44 68.90 95.02 74.20 85.22 98.15 85.02

Table 8: Input ablation results for the report summarization task. Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.
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Model Ablation Setting R1 R2 RL BS CR CRsoft A F

Report Baseline - - 48.52 33.28 39.31 89.58 31.00 42.04 99.29 93.12

GPT-4O M

TEXT ONLY ZS 37.56 16.93 26.97 88.98 21.86 40.48 73.58 91.60
EVENT ONLY ZS 52.45 31.15 40.04 91.17 37.48 66.51 69.97 75.00
TEXT+SCHEMA ZS 41.88 20.40 30.32 89.72 24.04 44.76 76.64 89.12
TEXT+EVENT ZS 51.87 29.90 39.10 91.31 38.99 64.13 81.46 88.89
TEXT+EVENT FS 57.48 36.99 45.74 92.08 39.78 62.93 88.48 89.79

GPT-4O

TEXT ONLY ZS 41.59 19.28 30.70 89.48 21.60 42.04 69.09 92.06
EVENT ONLY ZS 54.03 33.98 42.13 91.51 41.75∗ 69.63∗ 81.02 80.55
TEXT+SCHEMA ZS 49.87 27.04 37.76 90.86 25.80 48.53 85.44 89.75
TEXT+EVENT ZS 57.97 36.42 45.89 92.22∗ 41.34 68.04 86.61 88.41
TEXT+EVENT FS 61.17† 40.62† 49.38† 92.67† 42.72† 69.27† 90.62 88.45

CLAUDE H

TEXT ONLY ZS 47.27 25.48 36.49 90.23 22.64 43.20 84.29 92.59
EVENT ONLY ZS 53.35 33.01 42.94 91.39 38.64 66.08 77.70 76.83
TEXT+SCHEMA ZS 51.79 30.45 41.04 90.87 26.38 48.02 87.10 90.87
TEXT+EVENT ZS 57.72∗ 36.88∗ 46.35∗ 92.05 36.22 60.03 90.37 91.36
TEXT+EVENT FS 59.42 39.40 48.56 92.13 37.20 59.70 90.99 90.50†

CLAUDE S

TEXT ONLY ZS 44.13 20.08 32.73 89.88 19.93 40.24 87.26 92.30
EVENT ONLY ZS 53.51 33.51 42.73 91.53 39.78 66.17 84.12 81.91
TEXT+SCHEMA ZS 51.37 29.33 40.06 90.94 28.05 49.07 88.64 89.33
TEXT+EVENT ZS 56.77 34.75 45.27 91.91 35.24 59.47 93.41∗ 91.71∗

TEXT+EVENT FS 57.95 38.05 47.53 92.09 37.32 59.31 95.09† 90.39

BART

TEXT ONLY FT 48.57 30.30 39.70 89.99 27.12 44.43 90.06 86.87
EVENT ONLY FT 56.37 37.04 45.14 91.21 39.12 62.90 56.01 68.10
TEXT+SCHEMA FT 51.67 35.12 44.15 90.42 32.31 49.47 94.45 90.52
TEXT+EVENT FT 63.77 45.50 52.98 92.59 44.97 66.36 85.55 85.27

PEGASUS

TEXT ONLY FT 50.85 33.44 42.51 90.29 30.22 47.46 97.63 91.80
EVENT ONLY FT 58.52 38.41 46.46 91.42 39.98 64.06 67.05 75.80
TEXT+SCHEMA FT 51.21 34.18 43.11 90.28 30.15 47.04 97.99 92.72
TEXT+EVENT FT 63.66 46.24 53.18 92.51 43.73 64.51 93.85 90.48

T5

TEXT ONLY FT 49.18 33.15 41.39 89.94 30.98 46.58 98.75 91.60
EVENT ONLY FT 59.96 40.55 47.51 91.84 45.30 68.85 73.73 78.98
TEXT+SCHEMA FT 53.06 35.64 44.93 90.64 31.87 50.14 94.11 91.30
TEXT+EVENT FT 64.14 46.36 52.79 92.56 44.67 65.66 92.48 90.19

Table 9: Input ablations on the cross-document summarization task.Best overall results are in bolded. ∗ and †

denote best zero- and few-shot results, respectively. See §4.1 for an explanation of metrics. See Appendix F for an
explanation of the settings.
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Report

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [60.0, 64.5] [39.3, 45.2] [48.7, 54.0] [92.8, 93.6] [52.8, 60.5] [80.5, 86.9] [72.8, 78.6]
FS [69.8, 74.0] [52.5, 58.1] [58.5, 63.5] [94.0, 94.7] [60.7, 68.8] [93.4, 95.8] [80.8, 85.8]

GPT-4O ZS [61.6, 66.3] [42.4, 48.2] [50.5, 55.5] [92.8, 93.6] [54.2, 62.3] [83.0, 88.8] [71.2, 78.0]
FS [70.3, 74.9] [53.6, 59.8] [59.6, 65.0] [94.0, 94.8] [62.7, 70.5] [92.6, 95.4] [78.4, 84.5]

CLAUDE H ZS [62.7, 67.2] [43.5, 49.1] [52.4, 57.3] [93.1, 93.9] [52.5, 60.4] [81.5, 87.7] [74.1, 80.1]
FS [69.4, 73.9] [52.7, 58.7] [58.5, 63.6] [93.9, 94.7] [58.1, 66.5] [93.3, 96.1] [79.6, 85.2]

CLAUDE S ZS [65.1, 69.6] [45.3, 50.8] [54.1, 59.0] [93.5, 94.2] [55.0, 63.3] [90.8, 94.8] [77.6, 83.5]
FS [69.8, 74.4] [51.7, 57.5] [58.8, 53.8] [94.2, 94.9] [60.7, 68.6] [94.8, 96.7] [80.8, 86.5]

BART FT [71.9, 76.6] [58.7, 64.6] [63.7, 69.1] [93.3, 94.1] [64.3, 72.1] [89.2, 93.9] [76.1, 82.2]
PEGASUS FT [72.9, 77.5] [59.5, 65.4] [64.2, 69.5] [93.3, 94.1] [65.4, 72.4] [94.4, 97.5] [79.4, 85.0]
T5 FT [74.3, 78.9] [61.4, 67.3] [66.1, 71.5] [93.6, 94.4] [69.7, 76.9] [97.4, 98.8] [82.4, 87.5]

Table 10: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the report results
given in Table 2.

Cross-Document

Model S R1 R2 RL BS CR A F

GPT-4O M ZS [49.9, 53.7] [27.8, 32.0] [37.0, 41.0] [91.0, 91.6] [35.9, 42.2] [78.5, 84.1] [86.7, 90.7]
FS [55.2, 59.7] [34.3, 39.5] [43.4, 47.8] [91.7, 92.4] [35.6, 42.9] [86.0, 90.6] [87.7, 91.6]

GPT-4O ZS [55.7, 60.0] [33.8, 38.9] [43.5, 48.1] [91.8, 92.6] [36.4, 43.5] [83.8, 89.0] [86.0, 90.6]
FS [59.0, 63.3] [38.1, 43.1] [47.1, 51.5] [92.3, 93.0] [38.0, 45.3] [88.4, 92.8] [86.3, 90.5]

CLAUDE H ZS [55.6, 59.7] [34.3, 39.2] [44.0, 48.7] [91.7, 92.4] [32.8, 39.9] [88.1, 92.3] [89.7, 92.9]
FS [57.0, 61.5] [36.7, 42.1] [46.0, 50.9] [91.8, 92.5] [33.4, 40.4] [89.0, 92.9] [88.8, 92.2]

CLAUDE S ZS [54.7, 58.9] [32.4, 37.2] [43.1, 47.7] [91.6, 92.3] [31.1, 37.9] [91.7, 95.0] [89.6, 93.4]
FS [55.6, 60.4] [35.4, 40.8] [45.2, 49.9] [91.7, 92.5] [33.9, 41.5] [94.1, 96.0] [88.5, 92.2]

BART FT [61.5, 66.1] [42.7, 48.4] [50.5, 55.6] [91.5, 92.2] [41.3, 49.1] [82.3, 88.6] [82.6, 87.7]
PEGASUS FT [61.2, 66.0] [43.1, 49.0] [50.4, 55.8] [91.3, 92.1] [40.9, 48.4] [91.7, 95.6] [88.7, 92.3]
T5 FT [61.5, 66.4] [43.6, 49.2] [50.2, 55.3] [91.3, 92.2] [40.3, 48.4] [90.1, 94.4] [88.2, 91.9]

Table 11: 95% confidence intervals [low, high] from a non-parametric bootstrap (n = 1000) of the cross-document
results given in Table 2.

Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 39.13 40.69 34.17 37.25 42.07 44.32 47.09
PLACE 499 33.33 38.49 25.00 26.12 27.42 33.11 38.56
AGENT 240 34.67 32.89 27.40 23.13 42.38 32.43 39.74
THEME 94 49.12 44.07 43.33 35.09 40.00 39.44 39.34
ENTITY 65 29.27 35.90 35.00 35.90 30.00 35.90 41.03
PATIENT 53 41.18 30.30 50.00 34.29 43.75 51.61 48.48
GOAL 49 36.84 50.00 37.84 27.03 30.00 40.91 45.00
EVENT 43 14.81 20.69 20.69 7.14 18.75 25.00 6.45
CAUSE 42 6.45 24.24 11.43 12.12 31.25 10.81 26.67
EXPERIENCER 39 38.10 70.00 70.00 54.55 52.17 38.46 54.55
VICTIM 39 41.38 53.33 48.28 34.48 31.25 37.50 32.26
GOODS 38 26.67 75.00 0.00 28.57 50.00 50.00 14.29
PROTAGONIST 38 26.67 37.50 37.50 40.00 40.00 37.50 50.00
SOURCE 30 66.67 77.78 55.56 63.16 63.16 50.00 66.67
TOPIC 26 13.33 13.33 0.00 14.29 15.38 13.33 0.00
SPEAKER 25 50.00 50.00 66.67 50.00 50.00 70.59 58.82
ADDRESSEE 22 33.33 60.00 16.67 40.00 60.00 40.00 33.33
STIMULUS 21 15.38 30.77 33.33 33.33 46.15 33.33 50.00

Table 12: CR F1 results on test set cross-document summaries for the top 20 roles with highest support (#
arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with GPT and Claude models
are from the few-shot (FS) setting. Best results for each role are bolded.
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Role Support GPT-4O M GPT-4O CLAUDE H CLAUDE S BART PEGASUS T5

TIME 523 57.37 65.22 49.22 50.52 60.54 61.40 65.43
PLACE 499 44.84 53.39 37.46 37.67 46.93 47.67 52.15
AGENT 240 65.40 67.47 59.78 50.16 66.72 57.99 62.06
THEME 94 73.21 73.96 69.22 72.96 71.75 64.71 68.59
ENTITY 65 66.33 76.13 63.16 60.07 63.34 63.12 69.44
PATIENT 53 76.28 73.52 74.41 68.62 70.88 73.28 73.36
GOAL 49 50.53 66.30 50.19 45.42 47.30 53.63 60.30
EVENT 43 52.75 63.52 52.76 42.95 45.97 52.09 35.38
CAUSE 42 47.66 52.99 39.41 42.03 43.23 43.87 49.82
EXPERIENCER 39 68.83 91.48 82.86 69.44 56.03 60.99 61.06
VICTIM 39 62.13 74.79 71.75 60.13 65.62 60.53 55.89
GOODS 38 42.77 79.33 33.35 50.68 61.94 57.46 24.39
PROTAGONIST 38 60.13 72.52 54.02 66.03 66.57 67.63 61.24
SOURCE 30 78.00 84.13 60.54 65.55 66.80 55.03 69.62
TOPIC 26 19.06 19.06 17.75 20.42 21.70 35.80 12.96
SPEAKER 25 58.21 61.41 71.85 64.91 64.92 73.03 66.28
ADDRESSEE 22 44.60 89.49 40.21 52.63 63.63 73.95 41.94
STIMULUS 21 38.61 70.46 54.55 66.70 53.39 74.75 57.65

Table 13: CRsoft (distinct from CR; see §F.2) F1 results on test set cross-document summaries for the top 20 roles
with highest support (# arguments) in the SEAMUS training split (which has 3,004 total arguments). Results with
the GPT and Claude models are from the few-shot (FS) setting. Best results for each role are bolded.
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Abstract
This work explores transfer learning from sev-
eral synthetic languages to English. We investi-
gate the structure of the embeddings in the fine-
tuned models, the information they contain, and
the capabilities of the fine-tuned models on sim-
ple linguistic tasks. We also introduce a new
synthetic language that leads to better transfer
to English than the languages used in previ-
ous research. Finally, we introduce Tiny-Cloze
Benchmark — a new synthetic benchmark for
natural language understanding that is more in-
formative for less powerful models. We use
Tiny-Cloze Benchmark to evaluate fine-tuned
models in several domains demonstrating that
fine-tuning on a new synthetic language allows
for better performance on a variety of tasks.

1 Introduction

Large language models (LLMs) are becoming in-
creasingly powerful and useful. However, the role
of data properties in model training and what ex-
actly models learn from the training data remains
to a large extent out of the scope of most LLM
papers. Yet surprisingly pre-training a model on a
simple algorithmic task can lead to improvements
in natural language modelling (Min et al., 2023).
Such insights can be used to improve the construc-
tion of data sets for language models. Therefore,
exploring the mechanisms of knowledge transfer is
an important open question.

Scaling language models is a popular way to
improve their performance1. However, as the de-
tailed analysis in Villalobos et al. (2022) shows, the
amount of data, especially high-quality text data, is
limited and will become the main bottleneck in the
coming years.

Such circumstances motivate research into more
data-efficient learning algorithms and a better un-
derstanding of the mechanisms of generalization

1For a detailed review of the other ways to increase LLM
generalization potential we address the reader to Budnikov
et al. (2024)

and transfer learning (Surkov and Yamshchikov,
2024). After all, humans are exposed to orders of
magnitude less data than modern frontier models,
yet demonstrate strong performance across many
domains and outperform machines in some areas,
even considering recent algorithmic advances.

Inspired by this, Huebner et al. (2021) demon-
strate that training RoBERTa (Liu et al., 2019)
on language acquisition data, together with some
tweaks to model architecture and training, leads to
6000× gains in data efficiency. Similarly, Eldan
and Li (2023) achieve significant model compres-
sion while retaining the ability to produce fluent
and coherent English by using a generated dataset
of stories for children, i.e. with small vocabulary
and simple plots. And Gunasekar et al. (2023) find
that filtering for or generating data with higher ed-
ucational value is also very helpful.

Thus, there is a growing body of evidence that
the choice of data matters a lot and simply scrap-
ing the data from the web is suboptimal. However,
there is a limited understanding of what properties
of the data are important in different training stages.
Papadimitriou and Jurafsky (2020) show that pre-
training the LSTM (Hochreiter and Schmidhuber,
1997) on structured but not linguistic data, such as
MIDI music, Java code, or even nested parenthe-
ses, reduces its perplexity when testing on Spanish.
Sinha et al. (2021) find that removing all word or-
der information from the pre-training phase does
not significantly affect the final performance, given
a fine-tuning phase with the correct word order. Kr-
ishna et al. (2021) sample the training data from a
completely artificial language consisting of random
n-grams and observe that pre-training objectives
that require processing this information somehow,
such as copying sentences in the right order, still
improve the performance of the model on summa-
rization tasks compared to a randomly initialized
version.

However, research in this area currently tends to
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focus on reporting surprising observations rather
than explaining them. Papadimitriou and Jurafsky
(2020) illustrate such observations using Figure 1.

Figure 1: Perplexity on various types of input (Papadim-
itriou and Jurafsky, 2020).

This work attempts to build up on those obser-
vations and make a small further step studying the
mechanisms of transfer learning.

In this paper, we address the following research
questions:

• How do different synthetic pre-training
datasets influence the complexity and transfer
performance of language models on English
tasks?

• What structural properties of the learned em-
beddings reflect the characteristics of the pre-
training data?

• To what extent do synthetic pre-training lan-
guages affect the encoding of linguistic fea-
tures in embeddings, as measured by linear
probes?

Our contributions are summarized as follows:

• We introduce a new synthetic language,
flat_shuffle, combining shuffle-based and
bracket-based patterns, and compare it with
existing synthetic datasets.

• We propose a transfer-learning-based measure
to quantify language complexity and similar-
ity via fine-tuning dynamics.

• We analyze the structure of embeddings
through singular value spectra and clustering
to assess their effective dimensionality.

• We employ linear probes to examine the lin-
guistic information captured in embeddings
fine-tuned on different synthetic languages.

• We present the Tiny-Cloze Benchmark, a syn-
thetic NLU benchmark generated with GPT-4,
demonstrating the benefits of synthetic pre-
training.

First, as can be seen in the diagram above, dif-
ferent pre-training datasets, even if they all are
unrelated to the target task, lead to different final
performance. This suggests that some datasets are
inherently more complex or more similar to the
target language. We introduce a new synthetic "lan-
guage" by combining ideas from the previous work
and use it, as well as two existing synthetic datasets,
to pre-train the models. We then fine-tune them on
English using three different fine-tuning pipelines.
We also provide an algorithm to assess the impact
of the pretraining data on the resulting model pa-
rameters.

Second, since one of the settings for transfer
learning involves fine-tuning only the embeddings,
they are the natural target for investigation. We
investigate the structure of the learned embeddings,
namely the spectrum of their singular values to un-
derstand the effective dimensionality of the data,
and the KMeans clustering of to check how uni-
formly the embeddings are distributed. To check
what information is contained in the embeddings,
we train linear probes to predict certain features of
the words given their embeddings. Linear probes
are a popular interpretability technique, but to our
knowledge they have not been used to study the
embeddings of models pre-trained on different
datasets and fine-tuned to the same task.

Finally, we evaluate the performance of these
models in natural language understanding. Since
existing NLU datasets such as GLUE (Wang et al.,
2018) and MMLU (Hendrycks et al., 2020) are
designed for more powerful models, we use GPT-4
(OpenAI, 2023) to generate a similar benchmark
consisting of 12 different subtasks2.

2 Related work

One way of understanding the pre-training of lan-
guage models is that we transfer some linguistic
knowledge from a task with lots of available data

2To facilitate reproducibility and further research, we
publish our code and data https://github.com/msh2481/
language_transfer
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to a downstream task (Han et al., 2021). The recent
findings suggest that this is not the only relevant
effect, and sometimes not even the most important
one.

Papadimitriou and Jurafsky (2020), mentioned
above, pre-trained an LSTM on structured but
not linguistic data and found that adapting such a
model to Spanish by fine-tuning only its input and
output embeddings gave better perplexity than start-
ing with a randomly initialised model. Their results
and experimental setup established a framework
that has been used in subsequent work, including
this one. Ri and Tsuruoka (2022) improved these
results replacing LSTM with a Transformer and
changing the synthetic pre-training languages. Pa-
padimitriou and Jurafsky (2023) used GPT-2 (Rad-
ford et al., 2019). Chiang and Lee (2022) introduce
a family of Shuffle languages. Artetxe et al. (2019)
used a similar technique to combine a task-specific
corpus in English with a corpus in the target lan-
guage unrelated to the task.

Such transfer also works in the opposite direc-
tion, from natural language to other domains. Lu
et al. (2021) get performance comparable to train-
ing from scratch on different modalities by fine-
tuning only the input and output embeddings of
the pre-trained GPT-2. They also try different fine-
tuning approaches, tuning the layer norm parame-
ters and the last Transformer block in addition to
the input and output embeddings.

Mehta et al. (2021) show that pre-training moves
the model parameters into a flat basin of the loss
landscape and suggest it as a reason why pre-
trained models are less prone to catastrophic for-
getting during fine-tuning. Neyshabur et al. (2020)
also observe this and also show that models fine-
tuned from the same checkpoint stay in the same
basin. However, past data alone is almost never
enough to predict unseen data, unless one makes
some assumptions, i.e. "inductive bias". A useful
inductive bias can be injected into the model by
pre-training on data that has it. McCoy et al. (2020)
use pre-training on natural languages with certain
properties by model-agnostic meta-learning (Finn
et al., 2017) to find which biases are needed to
quickly acquire these languages. Wu et al. (2021)
design synthetic datasets requiring deduction, in-
duction, and abduction and pre-train on them to
extract inductive bias for general mathematical rea-
soning. Lindemann et al. (2023) pre-train models
to simulate finite state transducers given their de-

scription and achieve better generalization in NLP
tasks with similar structure.

3 Synthetic Languages

In this paper we report a series of experiments with
several synthetic languages. Following hyperpa-
rameter choices from Papadimitriou and Jurafsky
(2023), for each of the languages described below,
we use a sequence length of 512, a vocabulary size
of 500, and generate 2 · 106 sequences so the total
size of the dataset is approximately 109 tokens in
each case.

We focus on three synthetic languages: nested,
the k-Dyck nested bracket language; flat, the
shuffle Dyck language with no nesting; and
flat_shuffle, a block-wise shuffled variant of
the flat language.

3.1 nested

Papadimitriou and Jurafsky (2020) used a stack-
based grammar to generate sequences, where each
token occurs twice and two pairs of tokens either
do not intersect or one is nested in another. In other
words, a balanced bracket sequence with multiple
types of brackets.

Ri and Tsuruoka (2022) suggested using differ-
ent tokens for opening and closing brackets, and
found improved performance. We chose to imple-
ment this version, and save a synthetic language
with 250 tokens for open brackets and 250 tokens
for closing ones.

Tokens are generated sequentially, and on each
step, a random decision is made whether to open a
new bracket or to close an existing one. If the stack
of open brackets is empty or there is not enough
space before the end of the sequence, there is only
one option. In other cases, an opening bracket is
chosen with a probability of 0.4, and then the type
of bracket is sampled uniformly.

Example word from nested:
<23 <42 <15 15> 42> 23> <56 56>

3.2 flat

This language is similar to the previous one. The
only difference is that the nesting property can be
violated.

In terms of sampling, it means that when a
bracket should be closed, now there is more than
one possibility. We select the bracket to close uni-
formly from all currently open ones.

Example word:
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<23 <42 <15 42> 23> <56 15> 56>

3.3 flat_shuffle

The flat_shuffle language extends flat by par-
titioning bracket type IDs into contiguous blocks
of size eight, such that each segment of 16 tokens
is sampled exclusively from one block, yielding
a permutation of those brackets within the seg-
ment. While the languages described above are
each based on a single rule, this extension intro-
duces additional structure to the data, which we
hypothesize can improve model performance.

We suggest to use an idea of shuffle languages
from Chiang and Lee (2022) as an extra pattern
because it was orthogonal to the bracket balancing
essence of the previous datasets. The combined
dataset is based on flat, but each consecutive
group of 16 tokens has a range of 8 bracket types
assigned to it, and all brackets on this segment
are sampled only from these types. That is, each
such group is a permutation of the corresponding
brackets.

It adds two interesting properties to the task of
next token prediction. First, in the middle of the
line the model has to look at previous tokens to
guess the range of bracket types to predict the next
token. Second, the model can guess increasingly
more accurately by remembering which tokens
were already used if we are close to the end of
the permutation. In particular, the last token in
each permutation can be predicted with certainty.
Surprisingly, even small Transformer models were
able to capture this pattern and indeed predicted
the last token with close to zero loss.

Example word (purple and green parts represent
two blocks, [16, 20) and [36, 40)):
<16 <18 16> <17 <19 18> 17> <38 38> <36 19>

<39 39> <37 36> 37>

4 Methodology

Some languages, both synthetic and natural, are
more complex than others. For example, it is
much easier to understand the concept of balanced
bracket sequences than to learn Assyrian language.
Moreover, some languages can be understood more
easily if the learner already knows another lan-
guage. For instance, humans need less effort to
learn a language from the same language family,
and large language models can be fine-tuned for a
similar downstream task using much less data than
was used for their pre-training.

One approach to formalize this intuition of com-
plexity and similarity is the Chomsky hierarchy of
languages (Chomsky, 1956). It formally defines
several classes of grammars, each one strictly more
general than the previous one, and the properties
of these classes are very well understood. For ex-
ample, nested is a context-free language, while
flat is context-dependent. However, for languages
from the same class, we need some other tool to
find more fine-grained differences. We propose a
transfer-learning based approach to quantify those.

An important observation is that transfer learn-
ing between languages is not symmetric, and it
allows us to estimate both (relative) complexity
and similarity of two languages. If languages are
similar, transfer learning should go well in both
directions. However, if one language is more com-
plex than another, at least in the sense of having
strictly more patterns, one would expect transfer
learning to be much easier from the hard language
to the easy one. So, assuming that we have some
operationalization f(A,B) of "difficulty of transfer
learning from language A to language B", we can
take 1

2(f(A,B) + f(B,A)) to mean dis-similarity
of A and B and 1

2(f(B,A) − f(A,B)) to mean
complexity of A relative to B.

Our proposed way to operationalize this notion
of "difficulty" is to just use perplexity of the model
pre-trained on language A and then fine-tuned to
language B, with some of the weights frozen. By
varying the subset of the weights allowed to be fine-
tuned we can get a more complete picture, i.e. for
some pair of languages just tuning the embeddings
might already be enough, which would mean that
they share most of the structure.

A more practically-oriented way to compare syn-
thetic languages is to see which of them better
prepare models to learning English. To test this
we take models pre-trained on each of the syn-
thetic languages, fine-tune them to English, and
check their language understanding capabilities
with cloze questions.

Finally, we study the structure of the embeddings
in terms of effective dimensionality and number
of clusters, and then explore what English word
features are learned by models fine-tuned from each
of the synthetic languages.

5 Experiments

For all experiments, we used the TinyStories-8M
model (Eldan and Li, 2023).
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5.1 Transfer Learning

We used three levels of trainable weight subsets:
E: Only input and output embeddings are tuned;
EL: E plus the affine parameters of LayerNorms;
ELT: EL plus the entire last Transformer layer;
For pre-training, we waited until convergence

that was close to the theoretical lower bounds of
loss or just long stagnation, which took 40K to
100K steps. The batch size was 8, and the sequence
length was 512 tokens, so we used 160M to 400M
tokens for pre-training. For fine-tuning, at each
stage, we used a fixed amount of 12500 steps, the
batch size was again 8, and the sequence length
was 512 for bracket datasets and 128 for English
(TinyStories), which means 51M and 13M tokens
correspondingly. The learning rate was 10−3 for
pre-training and [10−2, 2 ·10−2, 10−3] for the three
stages of fine-tuning.

Table 1 below presents the results of fine-tuning
in both directions on certain pairs of languages.

The first row shows that flat is more complex
than "nested". The second row demonstrates that
flat_shuffle is more complex than flat. Indeed,
fine-tuning in the direction flat_shuffle→ flat
→ nested achieves relatively good performance
already with the first stage of fine-tuning. The other
experiments show that English is more complex
than all synthetic languages used here, but it is also
quite different, as the model needs more flexibility
to adapt from English to flat or flat_shuffle.

5.2 Cloze Tests

To assess how well the models understand language
in general, a different benchmark is needed. Since
the models studied are too small for reliable ques-
tion answering, reasoning, and other high-level
cognitive skills, the test should be as simple as
possible, ideally just measuring perplexity on some
texts. There are existing datasets for natural lan-
guage understanding, such as GLUE (Wang et al.,
2018) and MMLU (Hendrycks et al., 2020), but
they focus on more complex tasks.

Instead, we used GPT-4 (OpenAI, 2023) to gen-
erate Tiny Cloze Benchmark — a set of cloze3

infilling questions in simple English. There are the
following 12 subtasks, each with 10 cloze ques-
tions: ’synonyms and antonyms’ — the model
chooses one of two antonyms to correctly fill the
gap in the sentence; ’Logical relations’ — the
model chooses a correct conjunction between two

3https://en.wikipedia.org/wiki/Cloze_test

parts of the sentence; ’Subject-verb agreement’ —
the model chooses one of two verbs that corre-
sponds to the given subject in the sentence; ’Prepo-
sitions’ — the model chooses a correct preposition
in the sentence; ’Conjunctions’ — a task similar to
’Logical relations’ but with different conjunctions;
’Temporal understanding’ — filling in a correct
temporal conjunction; ’Spatial understanding’ —
filling in a word based on spatial understanding of
the sentence; ’Quantitative reasoning’ — filling in
the number into the sentence; ’Emotions’ — filling
the correct emotional adjective into the sentence;
’Narrative understanding’ — filling one noun rele-
vant for the narrative sentence; ’Ethics’ — filling a
noun for an ethical statement. You can find detailed
examples of the tasks in Appendix.

Each cloze question consists of a prompt with
a cloze marker, a correct answer, and an incor-
rect answer. For each question, the difference be-
tween log-probabilities of the correct and incor-
rect answers is measured and then averaged across
each subtask. We measure the difference in log-
likelihoods rather than accuracy, because it pro-
vides more information per sample, which is im-
portant given the relatively small size of our bench-
mark.

Here is an example question from the temporal
understanding subtask:

[ "She ate breakfast # she went to
school", "before", "after", ]

For each of the synthetic languages, we used
two models, one in which only the embeddings
were fine-tuned on English (E), and another with
all three stages of fine-tuning applied (ELT). We
compared them with the model of the same archi-
tecture (8M parameters) trained on English from
scratch and also to a four times larger model with
33M parameters trained on English from scratch to
see which metrics can be improved.

As shown in Table 2, there are two interesting
observations. First, models with all three stages of
fine-tuning are better, predictably, than their coun-
terparts having only the embeddings tuned, but
this difference is more pronounced in flat and
flat_shuffle. Second, Table 2 again shows the
familiar pattern nested <flat <flat_shuffle
<scratch, which proves the superiority of the in-
troduced flat_shuffle dataset.
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Language pair L1 → L2 →
L1 L2 L2E L2EL L2ELT L2Full L1E L1EL L1ELT L1Full

nested flat 4.4 4.1 4.1 3.8 3.5 3.3 3.3 3.3

flat flat_shuffle 2.5 2.4 2.2 2.0 3.8 3.8 3.7 3.8

flat_shuffle English 2.4 2.3 2.0 1.2 2.8 2.6 2.1 2.0

nested English 2.8 2.7 2.4 1.2 3.8 3.5 3.3 3.3

flat English 2.7 2.6 2.4 1.2 4.3 4.2 3.8 3.8

Table 1: Pretraining on L1 and transferring to L2 and vice versa. Values are negative log-likelihoods in nats. "E", "L",
and "T" indicate which layers were fine-tuned and stand for embeddings, LayerNorms, and (the last) Transformer
block respectively. Columns ending in "Full" correspond to models trained from scratch on the respective language
(i.e., no synthetic pretraining). We use the absolute difference of 0.2 nats per token as a threshold for "close
performance".

nested E nested

ELT

flat E flat ELT flat

shuffle E

flat

shuffle

ELT

scratch

8M

scratch

33M

synonyms and
antonyms

0.24 0.18 0.22 0.13 0.31 0.25 0.25 0.28

single - plural 0.08 0.15 0.19 0.50 0.03 0.33 0.58 0.71
logical relations -0.08 -0.30 -0.44 -0.18 -0.13 -0.08 -0.04 0.09
subject-verb agreement 0.54 0.45 0.46 0.36 0.14 0.26 0.83 0.98
prepositions 0.43 0.52 0.51 0.53 0.40 0.48 0.94 1.12
conjunctions 0.46 0.43 0.45 0.38 0.36 0.49 0.63 0.82
temporal understanding -0.13 -0.02 -0.14 0.04 0.09 0.36 0.44 0.73
spatial understanding 0.13 0.30 0.40 0.48 0.06 0.37 0.64 0.71
quantitative reasoning -0.06 0.00 -0.14 -0.01 -0.14 -0.04 -0.04 -0.06
emotions -0.08 0.03 0.05 0.07 0.20 -0.01 0.61 0.77
narrative understanding -0.07 -0.04 0.03 0.07 0.04 0.04 0.17 0.27
ethics 0.32 0.17 0.34 0.22 0.27 0.30 0.25 0.51
Average 0.15 0.16 0.16 0.22 0.14 0.23 0.44 0.58

Table 2: Results on the Tiny-Cloze benchmark. Values show differences in log-likelihoods (in nats) between
correct and incorrect answers. Fine-tuning on flat_shuffle gives the highest average score across three synthetic
languages.

5.3 Dimensionality and Clusters

We hypothesize that models pretrained on more
complex languages will exhibit a slower decay in
the singular value spectrum, reflecting higher ef-
fective dimensionality required to encode richer
structure.

The embedding dimension of the model used
is d = 256, and human intuition, as well as
many visualization techniques, work poorly for
256-dimensional vectors. We hypothesize that the
singular value spectrum reflects the encoding com-
plexity of the pre-training language: languages re-
quiring richer structure will exhibit a slower decay
in the spectrum tail, indicating higher effective di-

mensionality in the embeddings. Therefore, we
employ two quantitative approaches.

First, for an n× d matrix of embeddings E, we
consider its singular values (after zeroing out the
mean of each column), or equivalently, the spec-
trum of the covariation matrix A = ETE. The
motivation behind this is that if all embeddings
were contained in a k-dimensional subspace, and
E had a rank k, then only k of the singular val-
ues would be nonzero. For real data, it is not the
case, as all singular values are nonzero, but still,
some directions have much larger variance than
others, and the model is more likely to use features
corresponding to those dimensions.
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As we see in Figure 2, in models pre-trained on
synthetic datasets, the spectrum is dominated by
the first few dimensions. In particular, before fine-
tuning, most of the interesting information about
brackets is described by two axes: open-close and
low-to-high bracket type id. While they learn more
diverse features during fine-tuning on English, as
described in the next sections, they still don’t use
the embedding space very efficiently. An inter-
esting observation is how the tail of the spectrum
behaves for models trained on different datasets:
the spectrum of flat decays to zero slower than the
one of nested, but the shape is similar, while the
spectrum of flat_shuffle crosses flat at some
point and behaves more similarly to the spectrum
of the model trained on English from scratch.

Another interesting property is how the embed-
dings are clustered. To quantify it, we run k-means
clustering for the embeddings varying the number
of clusters and compare the plots of unexplained
variance (Figure 3). Again, after pre-training on
a synthetic language, the models have only two
clusters: open and close brackets, and even after
fine-tuning, the first few splits explain the major-
ity of variance. Looking at the tail behavior, we
observe a similar pattern: English is followed by
flat_shuffle, then by flat and nested.

Figure 2: Spectrum of bracket embeddings

The scratch provides a reference for the em-
beddings on English. We can clearly see that
flat_shuffle embeddings are characteristically
different from flat and nested embeddings both
in terms of the spectrum and in terms of the clusters

Figure 3: Clustering of bracket embeddings

they form.

5.4 Linear Probes for Word Features

We train all probes on embeddings obtained from
embedding-only (E) fine-tuned models to isolate
the impact of embedding space structure.

Now that we know something about the structure
of the embedding space, a natural question to ask
is how this structure is used. In other words, what
information about a word can one extract from the
embedding of the corresponding token?

Preliminary experiments showed that clusters
of features correspond to properties like "noun",
"3rd person verb", "adjective or adverb", etc. We
hypothesize that embeddings from more complex
synthetic pretraining (e.g., flat_shuffle) better
capture such linguistic features. Consequently, we
extract part of speech tags using NLTK. Given the
limited vocabulary of TinyStories, capabilities of
NLTK POS tagger should be good enough for our
purposes. Initially, there were more than 30 unique
tags in the dataset, but many of them were very
rare. After filtering out all tags with less than 200
occurrences, the following tags remained: CD —
cardinal digit; IN — preposition or subordinating
conjunction; JJ — adjective; NN - singular noun;
NNP – proper noun; NNS – plural noun; RB –
adverb; VB – base form verb; VBD - past tense
verb; VBG - gerund; VBN - past participle. We use
this notation in Table 3.

We added a feature indicating the frequency of
the token in the training corpus because typically
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the direction with the most variance in the embed-
ding space roughly corresponded to frequency. We
also added another boolean feature that is one if the
token starts with a whitespace and zero otherwise.

For each of the models and each of the features,
we trained a ridge regression (for frequency) or a
logistic regression (for all other variables, as they
are Boolean) on 80% of the embeddings and then
evaluated their R2 score or ROC-AUC on the re-
maining 20%. See Table 3 for the results.

All probes in all models perform better than ran-
dom, so every model learns at least something re-
lated to these word features. The embeddings of the
model trained on English from scratch predictably
outperformed the others, but the quality of other
embeddings turned out to be on average the same.
Perhaps the difference in effective dimension be-
tween the models is used not for these relatively
simple single-word features, but for more complex
ones.

6 Conclusion

We introduced a new synthetic language
flat_shuffle, and the model pre-trained on it
was shown to outperform the models based on the
languages from previous work.

Investigation of the structure of the embeddings
leads to a hypothesis that the reason behind the
superior performance of some synthetic languages
is that they require more structured embeddings,
which causes the intermediate layers to be adapted
to work with such embeddings, and in turn allows
effectively using a higher dimension subspace of
the embedding space during fine-tuning, which
gives more flexibility.

Also, we haven’t observed direct transfer of
structure from synthetic languages to English, i.e.
English tokens weren’t splitted by the model into
"opening" and "closing" ones. So it seems that
models are working in a reservoir computing style
where the computations for an unrelated task are
adapted to the task at hand in arbitrary ways. At
the same time, it means that the models are not
strictly limited by the complexity or structure of
the original task in transfer learning, and as long
as they have enough complexity of computations,
they can use it to adapt to the new task.

7 Limitations

The experiments reveal several interesting patterns
about transfer learning between synthetic and nat-

ural languages. However, our approach has some
important limitations.

First, we only used English as the target natural
language. It would be interesting to see if the pat-
terns we observed hold for other natural languages,
especially those with different grammatical struc-
tures.

Second, even our most complex synthetic lan-
guage, flat_shuffle, was simple enough to be
learned by a model with 8 million parameters. Per-
haps with better synthetic data and correspondingly
more capable models we would observe qualita-
tively new phenomena.

Ethics Statement

This paper complies with the ACL Ethics Policy.
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nested flat flat_shufflescratch

frequency 0.84 0.85 0.85 0.93
start_space 0.70 0.70 0.70 0.89
pos_tag_CD 0.66 0.63 0.63 0.80
pos_tag_IN 0.76 0.79 0.71 0.87
pos_tag_JJ 0.60 0.58 0.60 0.73
pos_tag_NN 0.63 0.62 0.63 0.76
pos_tag_NNP 0.64 0.65 0.63 0.79
pos_tag_NNS 0.67 0.67 0.68 0.84
pos_tag_RB 0.69 0.63 0.64 0.84
pos_tag_VB 0.71 0.69 0.68 0.79
pos_tag_VBD 0.75 0.71 0.67 0.89
pos_tag_VBG 0.71 0.70 0.73 0.89
pos_tag_VBN 0.72 0.68 0.72 0.87
Average 0.70 0.68 0.68 0.84

Table 3: ROC-AUC for the linear probes on embeddings from models fine-tuned on English using embedding-only
(E) mode.
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A Appendix

Here are the examples of the Tiny Cloze benchmark
for particular tasks. One example for each task:

• ’synonyms and antonyms’:
"The box was incredibly light, almost
as if it were #.", "empty", "full"

• ’single plural’:
They # to the store every Saturday.",
"go", "goes"

• ’logical relations’:
"The dog barked loudly, # everyone
woke up", "and", "but"

• ’subject-verb agreement’:
"The dog in the yard # every morning",
"barks", "bark"

• ’prepositions’:
"The cat is sleeping # the
chair","under","above"

• ’conjunctions’:
"She went to the store # she needed
milk.", "because", "although"

• ’temporal understanding’:
"It’s usually dark outside # the sun
rises", "before", "while"

• ’spatial understanding’:
"The cat is under the #.", "table",
"sky"

• ’quantitative reasoning’:
"There are 5 apples. If I eat 2, there
will be # left", "3", "4"

• ’emotions’:
"When he lost his keys, he was really
#.", "frustrated", "excited"

• ’narrative understanding’:
"After the long journey, the traveler
was # and fell asleep quickly.",
"tired", "hungry"

• ’ethics’:
"Cheating to win a game is #
acceptable", "never", "always"
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Abstract
In the large language model (LLM) revolution,
embedding is a key component of various sys-
tems, such as retrieving knowledge or mem-
ories for LLMs or building content modera-
tion filters. As such cases span from English
to other natural or programming languages,
from retrieval to classification and beyond, it
is advantageous to build a unified embedding
model rather than dedicated ones for each sce-
nario. In this context, the pre-trained multi-
lingual decoder-only large language models,
e.g., BLOOM, emerge as a viable backbone
option. To assess their potential, we propose
straightforward strategies for constructing em-
bedders and introduce a universal evaluation
benchmark. Experimental results show that our
trained model is proficient at generating good
embeddings across languages and tasks, even
extending to languages and tasks for which no
finetuning/pretraining data is available. We also
present detailed analyses and additional evalua-
tions. We hope that this work could encourage
the development of more robust open-source
universal embedders.

1 Introduction

Embeddings, which transform discrete text or code
sequences into continuous vectors, are widely used
in many fields (Li et al., 2022; Neelakantan et al.,
2022). They have recently gained broader attention
by manipulating knowledge and memories for large
language models (LLMs) and LLM-based agents
(Peng et al., 2023; Song et al., 2022; Wang et al.,
2023). In such scenarios, their usages are inevitably
coupled with different languages and tasks. This
brings a demand for robust and universal embed-
ders, where one single model can be applied across
diverse tasks and languages, encompassing both
natural and programming languages.

The common approach to building effective em-
bedders is finetuning pretrained language models

*Correspondence. Code: github.com/izhx/uni-rep
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Figure 1: The performance comparison of finetuned
BLOOM models on our compiled universal embedding
benchmark, details refer to Table 2.

through contrastive learning on pairs of sentences
(Neelakantan et al., 2022; Wang et al., 2022a). In
practice, BERT-style pretrained transformer en-
coders are de facto standard choices, deriving pow-
erful open-source models like E5 (Wang et al.,
2022a), BGE (Xiao et al., 2023) and GTE (Li et al.,
2023). However, these encoders have encountered
difficulties in constructing universal embeddings
because there are currently no available encoders
that simultaneously support multiple natural lan-
guages and programming languages.

A possible solution is to use multilingual large
language models (mLLM), such as BLOOM (Scao
et al., 2022) series. These models adopt a decoder-
only architecture and are pretrained on meticu-
lously curated, large-scale, multilingual corpora,
ROOTS (Laurençon et al., 2022), by the next token
prediction objective. They are not only skilled in
English but also excel in other languages, includ-
ing natural ones such as Chinese and programming
languages like Python, showing their wide-ranging
language abilities.

Therefore, one major question arises: is it fea-
sible to derive universal embedders from mLLMs?
To study this inquiry, we examine two scenarios:
(1) Task versatility: we explore strategies of data
compositions that enable the model to adapt effec-
tively to a variety of embedding tasks. (2) Multilin-
guality: we investigate the process of obtaining em-
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beddings across multiple languages using limited
data, especially considering that some of them are
hard to acquire suitable training data. By synthesiz-
ing insights from above cases, we evaluate whether
mLLMs can be trained to generate high-quality
embeddings across both languages and tasks.

In practice, we construct embedders by conven-
tional methods (detailed in §2.1) based on BLOOM
(Scao et al., 2022) models.1 For task versatility, in
line with prior works (Wang et al., 2022a; Muen-
nighoff, 2022), we categorize all embedding tasks
into symmetric and asymmetric types and combine
datasets from both sides for training (§2.3). Regard-
ing multilinguality, we employ parameter-efficient
fine-tuning to maximally preserve the modeling
abilities of various languages (§2.2). For evalua-
tion, we select 5 languages (4 natural, 1 program-
ming) and compile a universal embedding bench-
mark (§3.1). All models are trained with mono-
lingual data and evaluated on the benchmark (as
shown in Figure 1), which helps us to analyze the
performance of different languages, e.g., densely,
lessly or not pretrained ones, more effectively.

Through extensive experiments, we find that:
• Combining datasets of both symmetric and

asymmetric types can achieve task versatility
across languages.

• For pretrained languages, mLLMs can pro-
vide high-quality embeddings, even when fine-
tuning occurs with data exclusively from other
languages.

• mLLMs show some extent generalizations to
languages that are not pretrained, and the per-
formance can be greatly improved by finetun-
ing on data of these unseen languages.

We believe that mLLMs are feasible and show great
potential in building universal embedders.

Additionally, we provide various detailed anal-
yses (§3.3, §3.4, §4), e.g., scaling the model size,
and the model performance in additional bench-
marks such as MTEB (Muennighoff et al., 2023)
and CodeSearchNet (Husain et al., 2019), to better
understand the model behaviors. We hope that our
findings could foster the development and research
of more powerful universal embedders.

2 Method

Figure 2 shows our method and evaluation. For
clarity, the details of embedding model are not

1Recently released Qwen1.5 is another viable option, we
list the experiments in Appendix A.1.
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Figure 2: The outline of our main evaluation process.
We finetune BLOOM to generate embeddings by [EOS]
with contrastive loss on monolingual data, and analyze
performance by multilingual tests from various tasks.
The solid lines in the graph show English as an example.

presented. Next, we describe this model design.

2.1 Embedding Model
Our model design mainly follows the standard prac-
tice of previous work (Muennighoff, 2022; Nee-
lakantan et al., 2022). Given a text or code input x,
we append special tokens, [BOS]t and [EOS]t, to
the start and end of x respectively, where t repre-
sents the input type.2 We take the last token state
from the model output, i.e., the representation of
[EOS]t, as the embedding e of the input text x.

The contrastive learning objective involves pos-
itive and hard-negative examples (Reimers and
Gurevych, 2019). For each positive pair (x, x+) in
trainset, where x+ is the sequence similar or rel-
evant to x, we build the training instance {x, x+,
x−1 , . . . , x−N} with N negative examples x− from
the data (§2.3). We optimize the InfoNCE (Chen
et al., 2020) contrastive loss:

L = − log
exp(fθ(x, x+))

exp(fθ(x, x+)) +
∑N

j=1 exp(fθ(x, x−
i ))

(1)

where fθ(x, y) = cos(ex, ey)/τ denotes the func-
tion that computes the cosine similarity between
two embeddings ex, ey of inputs x, y parameter-
ized by θ of the model. τ is the temperature hyper-
parameter which is set to 0.05 in our experiments.

2.2 Parameter Efficient Fine-Tuning for
Multilinguality

In finetuning, extensive parameter optimization can
lead to catastrophic forgetting, causing models to
lose their ability to model languages not included
in the fine-tuning data (Mao et al., 2022). This is a

2We set two input types, i.e., query and document. If not
specified, the input is encoded as query by default. We only
use the document type in retrieval tasks.
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Language Asymmetric #train Symmetric #train

Natural mMarco-google 499,184 SNLI + MNLI 281,230
Java CodeSearchNet 454,451 BigCloneBench 450,862

Table 1: Statistics of training data used in each language.
The SNLI+MNLI is translated to other languages by
GPT-3.5-turbo API.

significant concern, especially for languages where
paired data for contrastive learning are scarce. In
such cases, we depend on the inherent capability
of model to acquire qualified embeddings, making
the prevention of catastrophic forgetting essential
to maintain multilingual performance.

Parameter Efficient Fine-Tuning presents a so-
lution to balance these two aspects (Badola et al.,
2023), which enhances performance on target tasks
while limit the updates to parameters. Therefore,
we employ it to maximize multilingual perfor-
mance, focusing on popular methods like Bitfit
(Ben Zaken et al., 2022) and LoRA (Hu et al.,
2021). In order to explore the model potential as
much as possible, we use data from a single lan-
guage in finetuning, which has demonstrated strong
competitiveness (Wang et al., 2022b).

2.3 Data Composition for Task Versatility

Downstream embedding tasks can be categorized
into two types: symmetric and asymmetric (Wang
et al., 2022a; Su et al., 2023). To ensure the versa-
tility, we use both types data (Table 1).

Asymmetric Data Query-to-passage/document
retrieval is a typical asymmetric embedding task,
focusing on capturing semantic relevance between
texts (Muennighoff, 2022). The model is trained
to maximize the similarity of vectors between a
query and its most relevant candidate. Consistent
with previous studies, we select the MSMARCO
passage ranking (Nguyen et al., 2016) and its trans-
lated version mMARCO (Bonifacio et al., 2021).

Symmetric Data Natural language inference is
an exemplary symmetric task that aligns well with
the requirements of contrastive learning, where the
semantic similarity between texts is gauged based
on the similarity of their embeddings. The training
instances comprise sentences with at least one en-
tailment (positive) and one contradiction (negative).
We utilize two classic English datasets, i.e., SNLI
(Bowman et al., 2015) and MNLI (Williams et al.,
2018), and translate them into other languages.

For programming languages, clone detection fo-
cuses on the similarity between codes, where Big-
CloneBench (Svajlenko et al., 2014) is used as the
symmetric. However, it is hard to find a suitable
dataset that measures code to code relevance3. As a
compromise, we use CodeSearchNet (Husain et al.,
2019) which match codes and their comments.

3 Main Experiments

To assess the viability of converting mLLMs into
universal embedding models, we conduct two parts
of experiment. The first part aims to evaluate the
potential of the LMs and validate employed strate-
gies on the compiled benchmark (§3.1). We expand
to broader open evaluations in the second part (§4).

3.1 Design of Controlled Experiments
The universal embedding encompasses two dimen-
sions: (1) multilingual, including both natural and
programming languages; (2) multitask, addressing
both symmetric and asymmetric embedding tasks.
Conducting comprehensive evaluations and analy-
ses can be quite complex and challenging, given the
significant variations in task scope and difficulty
across different languages. Therefore, to facilitate
research and comparison, we initially focus our ex-
periments on a limited set of languages and tasks.

Evaluation benchmarks. For both symmetric
and asymmetric task categories, we select two
benchmarks each. One is in-domain, which is the
corresponding evaluation of training data. For the
asymmetric (resp. symmetric) part of natural lan-
guages, it is devset of mMarco (resp. testset of
STS Benchmark 4 (Cer et al., 2017)). The other
is an out-of-domain evaluation, which is MIRACL
multilingual retrieval (Zhang et al., 2022) devset
(resp. MASSIVE (FitzGerald et al., 2022) testset)
for the asymmetric (resp. symmetric) of natural
languages. The out-of-domain asymmetric (resp.
symmetric) testset for code is xCodeEval/nl-code-
search (Khan et al., 2023) (resp. GoogleCodeJam
(Zhao and Huang, 2018)).

Evaluation languages. Java is only one choice
for code experiments as the training and evaluation
data are hard to find for other languages. For natu-
ral ones, we list all languages shared by mMarco,
MIRACL and BLOOM pretraining in Table 10. We

3Sedykh et al. (2023) introduced a code-to-code search
dataset based on StackOverflow but it is not public yet.

4The STS-B data are originated from SNLI. We use the
translated version from hf.co/datasets/stsb_multi_mt .
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Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

Asym

en 43.85 39.93 43.64 31.43 47.60 41.29 75.00 72.00 63.77 68.51 57.74 67.40 59.43 55.96 53.70 49.97 52.67 54.35
zh 39.91 42.04 41.94 28.93 49.24 40.41 75.05 72.68 65.32 68.57 58.54 68.03 57.48 57.36 53.63 48.75 53.89 54.22
ar 39.60 36.76 46.23 32.70 50.09 41.08 75.12 72.82 65.73 69.85 56.93 68.09 57.36 54.79 55.98 51.27 53.51 54.58
id 40.00 35.25 42.19 38.90 48.40 40.95 75.01 71.70 65.73 71.88 57.87 68.44 57.51 53.47 53.96 55.39 53.14 54.69

java 15.36 19.40 20.44 13.52 53.00 24.35 72.27 72.32 62.84 68.37 54.76 66.11 43.82 45.86 41.64 40.95 53.88 45.23

Sym

en 5.94 9.46 4.87 5.80 42.33 13.68 79.41 76.23 68.88 73.92 56.05 70.90 42.67 42.85 36.87 39.86 49.19 42.29
zh 5.15 7.25 6.76 6.88 43.13 13.83 78.84 76.64 68.76 73.60 56.94 70.96 42.00 41.95 37.76 40.24 50.03 42.40
ar 5.89 8.19 8.57 7.38 42.86 14.58 78.64 76.01 70.39 74.90 55.77 71.14 42.27 42.10 39.48 41.14 49.32 42.86
id 7.51 4.69 10.28 8.38 36.15 13.40 78.41 75.62 68.71 76.17 54.60 70.70 42.96 40.16 39.50 42.28 45.37 42.05

java 0.00 0.02 0.00 0.02 1.57 0.32 32.67 39.43 23.27 33.51 73.34 40.44 16.33 19.72 11.64 16.77 37.45 20.38

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Multilingual 43.02 41.69 46.74 38.73 49.01 43.84 77.22 74.88 69.15 74.66 60.64 71.31 60.12 58.28 57.95 56.70 54.82 57.57

Table 2: Main Results on BLOOM-1b1. The socre of the asym (or sym) is the macro average of an in-domain test
and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of asym and sym.

select English, Chinese, Arabic and Indonesian for
main experiments as they are from different lan-
guage families and with different ratio in ROOTS.

Implementation details. We finetune BLOOM
models by LoRA (Hu et al., 2021) with r of 64. We
append special tokens to the vocabulary, initialize
their embeddings randomly, and update them as
well. We use AdamW optimizer with learning rate
(lr) 5e-5 and a cosine learning rate schedule, with
warmup of 10% steps, and decay final lr down to
10% of the peak lr. We use GradCache (Gao et al.,
2021a) to scale up the batch size to 1024 for the all
that combine both asymmetric and symmetric data.
And that of asym and sym is 512 to keep similar
optimization steps. For each instance, we sample
7 negative examples from the hard negatives.5 All
training are conducted on 8 A100-80GB GPUs in
BF16 with FlashAttention2 (Dao, 2024).

3.2 Results
Table 2 shows the results of controlled experiments.
It is intuitive that, for each setting in every lan-
guage, the in-domain trained models consistently
perform the best (except the symmetric Java evalu-
ation). Referencing these scores (on the diagonal),
we explore the potential of Multilingual LM on the
unified embeddings. For simplicity, we index the
table by a {train (row) → eval (column)} format,
e.g., asym-en→sym-zh is 72.00. We can also omit
part of it to refer to a set of results.

Task versatility For each setting, we can ob-
serve that: (1) sym models achieve poor results

5Since most examples from NLI datasets have only one
contradiction sentence as the hard negative, we randomly
sample 6 sentences to serve as the negative.

on asymmetric tasks (sym→asym are much lower
than asym→asym); (2) asym models show compa-
rable performance on symmetric tasks as the sym
ones (asym→sym are close to sym→sym); (3) the
all (i.e., models trained on both types data) exhibit
a slight decrease in asymmetric task (all→asym
are slightly lower than asym→asym), but symmet-
ric performance is improved (all→sym are better
than asym→sym), resulting in the best overall score
(all→all are higher than asym/sym→all). In all
(natural and programming) languages, combining
symmetric and asymmetric data improves task gen-
eralization, demonstrating that task versatility can
be achieved across languages.

Multilinguality Focusing on all→all, lower
right part of Table 2, we have: (1) on the column
view, for one language, the performance from other
languages (except Java) trained models are close
to each other and reasonably less than that of this
language; (2) on the row view, the averaged scores
for each language trained models (except Java) are
also similar. On all→sym, we can also consider
the above two statements to be valid with Java. The
models are not only performant in the source lan-
guage, but also effective in others. It indicates that
we can train mLLM to generate good embed-
dings for a language without paired data.

Exception on Java The exception results of Java
could be possibly attributed to the unsatisfactory
training data. First, the asymmetric data, i.e., Code-
SearchNet, is easier than mMARCO. On asym-
metric Java evaluation, natural language models
could achieve comparable results to the asym-java
model, but, on asymmetric natural language eval-
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Model en de es fr ru ja zh ar id

en 43.85 19.40 39.99 39.40 17.53 27.06 39.93 43.64 31.43
de 39.53 35.08 36.70 36.50 21.31 29.10 36.93 41.87 31.66
es 41.75 20.88 41.82 40.23 18.50 26.92 39.94 45.06 34.64
fr 41.56 21.05 39.88 41.90 18.51 27.42 40.11 44.93 33.95
ru 36.33 22.13 32.56 33.35 31.61 29.69 27.07 40.47 28.38
ja 36.28 21.17 30.36 30.60 22.26 38.65 34.26 36.83 26.81
zh 39.91 18.48 35.53 35.68 16.44 26.36 42.04 41.94 28.93
ar 39.60 21.49 38.29 36.87 19.58 26.15 36.76 46.23 32.70
id 40.00 21.59 38.70 37.47 19.90 26.77 35.25 42.19 38.90

Table 3: Results of language generalization experiments
in asym→asym setting, with language codes in bold
included in the BLOOM pre-training, while the ones in
italic are not. Language information refer to Table 10.

0 10 20 30 40 50 60
(a) monolingual (x to x) score

en 30.0%
zh 16.2%
ar   4.6%
id   1.2%
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en 30.0%
zh 16.2%
ar   4.6%
id   1.2%
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(c) monolingual - crosslingual averaged
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zh 16.2%
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Figure 3: The plot of monolingual score (a), crosslingual
averaged score (b), and their difference (c) of natural
language evaluations on all→all setting. The lower
the ratio of a language in pre-training, the lower its
performance, and the more significant the improvement
brought by training data.

uations, the latter is substantially weaker than the
former. Thus, hard-pairs of asymmetric data would
be beneficial. Second, the symmetric data (Big-
CloneBench) seem to be insufficient as it is limited
to only a few hundred contest problems, which
is smaller than the tens of thousands of semantic
groups in NLI data. A wide-coverage large-scale
dataset might be helpful.

3.3 Analysis
In this subsection, we further analyze multilingual
performance and mechanism.

How language pretraining ratio affect perfor-
mance? To explore the relationship between the
performance of each language and its pretraining
ratio in mLLM, we focus on natural languages in
all→all setting and present the monolingual per-
formance, cross-lingual average performance, and
the differences between them in Figure 3. From En-
glish to Indonesian, we observe decreases in both
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Figure 4: Visualization of 100 examples from Code-
SearchNet Python, where Chinese texts are translated by
GPT-3.5-turbo. Gold and pink markers represent paral-
lel sequences in different languages. Before finetuning,
(a), embeddings are separated by language, especially
English and Chinese. After English finetuning, (b), the
parallel sequences are well aligned to each other.

monolingual and cross-lingual performance as well
as an increase in their difference, indicating that
models have poorer representation capabilities for
language with lower pretraining ratios and larger
gaps to rich-pretraining languages, regardless of
whether fine-tuning is applied or not.

Can model generalize to not pretrained lan-
guages? The BLOOM models are not pretrained
with some commonly used languages such as Ger-
man and Japanese. To investigate such scenario,
we extend to more languages and focus on the
asym→asym setting. Table 3 displays the results
of three languages that are not covered by ROOTS,
i.e., German (de), Russian (ru) and Japanese (ja).
First, the models trained on pretrained languages
(e.g., en) are capable on them (e.g.,, en→de has
a small gap with de→de). Second, for an unpre-
trained language, with its fine-tuning data, mLLM
not only exhibits excellent performance in this lan-
guage itself but also acquires a certain level of
multilingual embedding ability (it also achieves
considerable scores on other languages). Overall,
mLLM achieves promising generalization.

Does performance correlate to language fami-
lies? It is also interesting to investigate whether
there is a connection between language family
and performance. Focusing rows of three Indo-
European languages (en, fr, es) and one Sino-
Tibetan language (zh) in Table 3. The results
show that the models trained on Indo-European lan-
guages indeed exhibit similar performance trends,
while the model trained on zh shows significant
differences on es, fr and ar, which indicates that
the language family is one potential factor. We
also provide a better visualization of the results in
Appendix Figure 5 .
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Model en zh ar id java

en-1b1 60.31 56.46 55.55 52.08 53.92

Scaling model size

en-3b 61.93+1.62 58.51+2.05 58.25+2.70 54.56+2.48 56.28+2.36

en-7b1 63.47+3.16 60.01+3.55 60.06+4.51 56.86+4.78 56.73+2.81

Full parameter tuning

en-1b1 61.55+1.24 58.98+2.42 56.53+0.98 51.68-0.4 53.53-0.39

Table 4: Results of English data trained models of scal-
ing and ablation experiments in all→all setting.

What contributes to the multilinguality? To ex-
plore why monolingual fine-tuning can also lead to
satisfactory performance in other languages, we vi-
sualize the embeddings before and after fine-tuning
using umap (McInnes et al., 2018). We select the
top 100 text-code pairs from the CodeSearchNet
test set, translate the text into Chinese, and ob-
tain embeddings using the model trained on En-
glish. As shown in Figure 4, before finetuning,
the embeddings of each language are distributed
separately. After finetuning, all embeddings are
distributed according to semantics (the text-code
pair and Chinese translation are clustered together).
This indicates that monolingual contrastive learn-
ing align embeddings in the shared semantic space
across languages, thereby improving performance
in other languages, consistent with the finding of
Wang et al. (2022b).

3.4 Scaling and Ablation on English

In this subsection, we take English data as an ex-
ample to explore scaling and ablation of LoRA.

Scaling model size All previous experiments are
conducted on BLOOM-1b1. Here, we extend the
experiments to the 3b and 7b1 models. As shown
in Table 4, the performance gradually increases as
model size increases. Additionally, for a language,
the smaller the pre-training ratio, the greater the
improvement brought about by scaling.

LoRA v.s. full parameter tuning The impact
of data combination has been reflected in Table 2.
Now we conduct the ablation of LoRA by compar-
ing with the full-parameter finetuned model. In Ta-
ble 4, although full parameter fine-tuning resulted
in performance improvement in English, Chinese,
and Arabic, it shows a decrease in Indonesian and
Java, two languages with smaller proportions of
pre-training. To ensure better performance across
multiple languages, we opt for LoRA.

4 Extended Evaluations

The second part experiment consists of evaluations
on more tasks and domains (§4.1), as well as di-
verse languages of multilingual (§4.2) and cross-
lingual (§4.3) tests. We evaluate BLOOM models
(1b1, 3b, 7b1) finetuned on English data.

4.1 Task and Domain Evaluation

Our method improves task generalization.
The MTEB benchmark (Muennighoff et al., 2023)
compiles a variety of embedding datasets for differ-
ent tasks and domains. We evaluate the generaliza-
tion on MTEB English subset, which is currently
one of the most comprehensive benchmark for En-
glish embeddings. Table 5 shows the results of the
English MTEB. Compared to decoder-only models
trained only on asymmetric data (SGPT series), our
model significantly improves the performance on
symmetric tasks (classification, clustering, STS).
We acknowledge that there is still room to go com-
pared to the best models, which are densely trained
on diverse datasets. As our goal is to build a unified
model for various languages, the score on English
is already competitive enough.

mLLM can generalize to unseen domains. To
assess the domain generalization, we focus on a
more challenging scenario, a Chinese multi-domain
retrieval benchmark (Long et al., 2022) which has
nearly no overlap with the training and finetuning
data. Table 6 presents the results. Our model is
on par with the in-domain continue pre-trained and
finetuned model (Karpukhin et al., 2020) (DPR-2),
which highlights the remarkable domain general-
ization ability of mLLM.

4.2 Multilingual Evaluation

mLLM outperforms supervised code models.
In main experiments (§3.2), Java is the only pro-
gramming language evaluated. Now we expand the
evaluations to all languages in CodeSearchNet (Hu-
sain et al., 2019), as shown in Table 7. Our models
(1b1, 3b, and 7b1) are better than supervised base-
lines of code (Feng et al., 2020; Guo et al., 2021),
demonstrating that our approach is a promising so-
lution in building text and code unified embeddings.
In addition to python, our models has large margins
to OpenAI APIs in others. This is reasonable given
their pre-training on large-scale code-text pairs.

Scaling can benefit unseen languages. We now
extend the symmetric evaluation with languages
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Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

Table 5: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

Model Dataset Backbone E-commerce Entertainment video Medical
MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k

DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769

text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675

en-all-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
en-all-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
en-all-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

Table 6: Results on Multi-CPR (Long et al., 2022). “In-Domain” indicates that the adopted training dataset is from
the corresponding domain. “BERT-CT” notes that the BERT model is continuing pre-trained with domain corpus.

Go Ruby Python Java JS PHP Avg.

CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24

en-all-bloom-1b1 80.96 72.43 98.49 83.09 75.11 77.77 81.31
en-all-bloom-3b 81.04 76.30 98.45 84.34 77.22 79.58 82.82
en-all-bloom-7b1 81.66 79.02 98.14 84.88 78.55 79.92 83.70

Table 7: Results on CodeSearchNet (Husain et al., 2019).
Scores of CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and OpenAI API cpt-code
are taken from Neelakantan et al. (2022).

that are not included in the BLOOM pre-training
(that of the asymmetric refer to Table 3). We con-
duct experiments on the multilingual testset of STS-
17 (Cer et al., 2017). Following the STS evaluation
protocol of MTEB, we use the Spearman correla-
tion between the cosine similarity of the sentence
embeddings and the human-annotated scores (from
1 to 5) as the metric. Table 8 compares the results
of our models with baselines. For languages in-
cluded in the BLOOM pre-training, our models
are the best. For the unseen language (marked
italic), our models do not give competitive perfor-
mance. Nonetheless, parameter scaling leads to
the increase of language capabilities, resulting in
improvement scores.

Model ar en es ko

LASER2 67.47 76.73 79.67 70.52
LaBSE 69.07 79.45 80.83 71.32
paraphrase-multilingual-MiniLM-L12-v2 79.16 86.87 85.56 77.03
paraphrase-multilingual-mpnet-base-v2 79.1 86.99 85.14 83.41
sgpt-bloom-7b1-msmarco 76.42 87.07 86 66.89
multilingual-e5-base 74.52 87.83 86.74 79.95

en-all-bloom-1b1 81.31 89.85 86.36 61.43
en-all-bloom-3b 81.67 90.77 86.60 66.12
en-all-bloom-7b1 83.41 91.60 87.72 66.53

Table 8: Spearman correlation between embedding co-
sine similarity and labels on STS17 multilingual testset.
Language codes in italic are not included in the BLOOM
pre-training. Reference results are from MTEB.

4.3 Cross-lingual Evaluation

Scaling aligns unseen languages with English.
In Table 8, it is evident that parameter scaling
can enhance monolingual performance for unseen
languages. We now investigate whether this find-
ing still holds for cross-lingual tasks and inquire
whether unseen languages are aligned with En-
glish. We evaluate on the BUCC bi-text mining
task (Zweigenbaum et al., 2016), which aims to
find parallel sentences, often translations, from two
monolingual corpora (French / Chinese / German
/ Russian and English). For fair comparisons, we
adopt the setting and baselines of MTEB (Muen-
nighoff et al., 2023). Table 9 shows the F1 scores
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Model fr-en zh-en de-en ru-en

LASER2 98.39 97.7 99.21 97.62
LaBSE 98.72 99.16 99.35 97.78
multilingual-e5-base 97.59 98.3 99.13 97.20
paraphrase-multilingual-mpnet-base-v2 96.89 97.56 98.59 96.44
paraphrase-multilingual-MiniLM-L12-v2 94.99 95.63 97.11 95.06
sgpt-bloom-7b1-msmarco 97.06 97.96 54.00 45.30

en-all-bloom-1b1 97.76 97.70 38.61 23.67
en-all-bloom-3b 98.29 98.82 71.18 66.92
en-all-bloom-7b1 98.52 98.77 90.11 83.74

Table 9: BUCC F1 scores from MTEB. Languages in
italic are not included in the BLOOM pre-training. Base-
line results are retrieved from MTEB.

on the BUCC testset. Similar to the multilingual re-
sults, on the pre-trained language pairs (i.e., fr-en
and zh-en), our models are comparable with the
state-of-the-art approach, LABSE (Feng et al., 2022).
On the half-covered language pairs (de-en and
ru-en), there are consistent improvements with the
model size growth, demonstrating that the embed-
ding spaces of unseen languages are aligned to that
of English. Hence, we can affirmatively answer the
research question posed earlier.

5 Related Work

Text and sentence embeddings are useful for many
downstream tasks and applications (Karpukhin
et al., 2020; Gao and Callan, 2021). Early studies
start from similar ideas of word vectors (Hill et al.,
2016; Lin et al., 2017; Pagliardini et al., 2018), also
shift to neural networks (Conneau et al., 2017) then
pre-trained transformers (Cer et al., 2018; Reimers
and Gurevych, 2019; Ni et al., 2022). The sub-
sequent work mainly focus on using contrastive
loss to supervise or improve representation learn-
ing (Zhang et al., 2020; Giorgi et al., 2021; Kim
et al., 2021; Gao et al., 2021b; Yan et al., 2021;
Cheng et al., 2023), translation augmentation (Wi-
eting et al., 2020; Zhang et al., 2021), large-scale
pre-training (Yang et al., 2021; Neelakantan et al.,
2022; Wang et al., 2022a), and prompt (Su et al.,
2023). As most of them are under specific tasks,
Muennighoff et al. (2023) compile MTEB with
diverse tasks, domains, and languages for evalua-
tions. Recently, embeddings have gained attention
and a batch of large-scale pretrained models have
emerged, such as E5 (Wang et al., 2022a), BGE
(Xiao et al., 2023), GTE (Li et al., 2023), UAE
(Li and Li, 2023). Most of them are targeted to
and evaluated on English, while we explore the
languages beyond English.

Pre-trained transformer encoders, i.e., BERT

(Devlin et al., 2019), or that of T5 (Raffel et al.,
2020) are currently the mainstream for embed-
ding models, which are computation-effective than
encoder-decoders (Ni et al., 2022). GPT-style
decoder-only models (Radford et al., 2018) are
promising alternatives, since they have theoreti-
cally stronger representations (Dong et al., 2021;
Su, 2023). Pioneering GPT-based studies show
impressive performance on both text and code
(Neelakantan et al., 2022), especially for semantic
search (Muennighoff, 2022). We continue this line,
exploring the unified embeddings across multiple
natural and programming languages. A concur-
rent work (Wang et al., 2024) fine-tune Mistrial-7B
(Jiang et al., 2023) with data from diverse source
and carefully crafted instructions, showing state-of-
the-art performance on English MTEB. Taking into
account a more general scenario with various lan-
guages, we do not use complex prompts, but only
a set of special symbols for asymmetric inputs.

Multi- and cross-lingual text embeddings fol-
low the developments of English ones, from cross-
lingual word embeddings (Ruder et al., 2019) to
RNNs (Artetxe and Schwenk, 2019) and transform-
ers (Chidambaram et al., 2019; Yang et al., 2020;
Reimers and Gurevych, 2020; Feng et al., 2022).
To learn models without enough supervisions,
translation information (Artetxe and Schwenk,
2019; Chidambaram et al., 2019; Goswami et al.,
2021; Feng et al., 2022) and multilingual pre-
trained encoders (Reimers and Gurevych, 2020;
Liu et al., 2021) are explorated to improve embed-
dings (Chen et al., 2024). However, such BERT-
like multilingual encoders do not support code,
which is currently one of the crucial requirements.
Therefore, we shift our focus to pre-training de-
coder models that can simultaneously support natu-
ral languages and programming languages, aiming
to evaluate and analyze the potential of construct-
ing universal embeddings from them.

6 Conclusion

We propose the development of unified embed-
dings models (universal embedders) for various
tasks across multiple natural and programming lan-
guages based on multilingual decoder-only mod-
els. To evaluate the potential, we present straight-
forward strategies to construct embedding mod-
els from them, and design a universal embedding
benchmark for evaluation and analysis. Through
extensive experiments, we demonstrated the ver-
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satility of embedders constructed from mLLMs,
showing their capabilities cross languages and
tasks. The models can generate reasonably good
embeddings for languages that have not been fine-
tuned or pre-trained, and the quality can be signifi-
cantly improved with the corresponding fine-tuning
data. These characteristics strongly indicate the
great potential of mLM for building universal em-
bedders. Additionally, we provide various analyses
and extended evaluations to reveal the interesting
properties of the model. We hope that our work
could inspire more open-source high-quality uni-
versal embedders.

Limitations

This work suffers from three primary limitations.
Firstly, we only evaluate the BLOOM and Qwen1.5
models as they are currently the only open-source
decoder-only models available for multiple natural
and programming languages. We hope that in the
future, there will be more model options to consider.
Secondly, we train the model using only monolin-
gual data. We have chosen to focus on monolingual
fine-tuning for a clearer analysis, which helps us
to fully analyze the intrinsic characteristics of dif-
ferent languages and the performance relationships
between them. We left mixed-language training as
future work. Thirdly, there were some anomalies
in the training and evaluation for the code. We
are committed to finding higher-quality data to en-
hance code evaluations.
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en English Indo-European Germanic 30.04
es Spanish Indo-European Italic 10.8
fr French Indo-European Italic 12.9
hi Hindi Indo-European Indo-Iranian 0.7
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ja Japanese Japonic - -
ru Russian Indo-European Balto-Slavic -

Table 10: Languages shared by mMarco and MIRACL.
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Figure 5: The plot of English (en), French (fr), Spanish
(es), Chinese (zh) from Table 3, where en, fr and es
are all in the Indo-European family and with similar
performance trends. While the zh trained model shows
differences to Indo-European ones in es, fr, and ar.
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A Appendix

A.1 Experiments on Qwen1.5

Qwen1.5 models are recently released multilingual
LLMs, we conduct the main experiments on the
Qwen1.5-0.5B to examine the multilingual perfor-
mance (Table 11) and evaluate 0.5B, 1.8B and 4B
English finetuned models on MTEB English (Ta-
ble 12). In Table 11, Qwen1.5-0.5B is comparable
to BLOOM-1b1 or even better on English (en),
Chinese (zh), and Java. But it performs poorly in
Arabic (ar) and Indonesian (id). In MTEB English,
as shown in Table 12, the Qwen1.5 models are
significantly better than BLOOM models.

A.2 Additional Design Analysis

We now conduct the ablation analysis to identify
the contributions of different design aspects of our
approach. We hope that this analysis can help build-
ing more robust decoder-based embedding models.
Table 13 presents the MTEB-English performance
of BLOOM-560M models finetuned in different
experimental settings.
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Setting Eval → Asym Sym All

Train ↓ Lang en zh ar id java avg. en zh ar id java avg. en zh ar id java avg.

BLOOM-1b1

All

en 42.97 37.96 42.85 32.09 50.70 41.31 77.65 74.95 68.26 72.06 57.14 70.01 60.31 56.46 55.55 52.08 53.92 55.66
zh 38.92 40.48 41.08 28.46 49.79 39.75 77.68 75.00 68.39 71.58 58.27 70.18 58.30 57.74 54.73 50.02 54.03 54.96
ar 38.43 36.21 45.55 32.33 49.07 40.32 77.76 75.12 69.74 73.58 57.21 70.68 58.09 55.67 57.65 52.95 53.14 55.50
id 39.48 34.08 41.41 38.20 48.58 40.35 77.69 74.13 68.78 75.39 56.82 70.56 58.58 54.11 55.09 56.79 52.70 55.45

java 14.62 20.31 21.97 15.02 51.56 24.70 72.60 72.24 62.74 68.12 76.12 70.37 43.61 46.28 42.36 41.57 63.84 47.53

Qwen1.5-0.5B

All

en 42.42 38.36 24.66 20.41 52.63 35.70 79.23 75.33 52.96 61.09 60.28 65.78 60.82 56.85 38.81 40.75 56.46 50.74
zh 40.03 41.02 24.71 17.68 53.25 35.34 78.82 75.79 52.89 60.48 61.23 65.84 59.42 58.41 38.80 39.08 57.24 50.59
ar 36.32 33.34 37.64 22.85 52.25 36.48 76.85 73.43 62.32 63.02 58.77 66.88 56.59 53.38 49.98 42.94 55.51 51.68
id 38.22 34.97 29.67 34.54 53.81 38.24 77.32 73.68 54.96 69.85 60.44 67.25 57.77 54.32 42.32 52.20 57.12 52.75

java 18.19 24.25 2.30 5.36 50.65 20.15 71.90 70.18 44.49 54.89 75.60 63.41 45.04 47.21 23.39 30.13 63.12 41.78

Table 11: Main Results of BLOOM-1b1 and Qwen1.5-0.5B. The socre of the asym (or sym) is the macro average of
an in-domain test and a out-of-domain test. All tests are listed in §3.1. The score of the all is the macro average of
asym and sym.

Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets (→) 56 12 11 3 4 15 10 1

e5-mistral-7b-instruct (Wang et al., 2024) 66.63 78.47 50.26 88.34 60.21 56.89 84.63 31.4
bge-large-en-v1.5 (Xiao et al., 2023) 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
SGPT-5.8B-msmarco (Muennighoff, 2022) 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco (Scao et al., 2022) 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6

en-all-bloom-1b1 58.36 69.74 40.14 83.06 53.22 45.89 80.88 30.31
en-all-bloom-3b 59.70 71.87 41.25 83.88 52.69 47.64 81.80 32.07
en-all-bloom-7b1 60.62 71.72 42.31 85.00 54.81 49.06 82.66 32.24

en-all-qwen1.5-0.5b 58.89 71.71 39.87 83.61 53.81 46.43 80.46 31.62
en-all-qwen1.5-1.8b 60.73 72.83 42.91 84.75 55.19 48.79 81.66 31.31
en-all-qwen1.5-4b 62.41 74.53 44.61 85.58 55.35 51.36 82.98 31.27

Table 12: Results on MTEB English subset. We include the scores of top-performing encoder model, i.e., BGE, and
deocder-only models from the leaderboard (retrieved on Feb 3th, 2024).

No. Model Setting Overall Class. Clust. PairClass. Rerank. Retr. STS Summ.

0 Our-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
1 w/o allnli 54.01 62.52 37.12 78.90 52.95 42.19 75.57 29.16
2 w/o msmarco 49.14 67.74 32.84 78.81 50.02 20.78 79.98 29.84
3 w/o multiple negatives 55.70 68.19 37.30 80.60 52.87 40.63 79.63 31.49
4 w/ weightedmean 55.37 66.60 36.42 80.26 52.98 42.14 78.89 30.58

5 sgpt-bloom-560m 53.01 62.89 36.58 76.61 52.06 39.96 74.40 30.09
6 w/ learnable special token + lasttoken pooling 54.24 62.45 38.33 77.89 53.22 42.22 75.69 29.48

Table 13: Ablation study. MTEB English results of bloom-560m finetuned by different settings.
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Train → raw english zh ar id java
Eval ↓ 1b1 1b1-asym 1b1-sym 1b1-all 1b1-all-full 3b-all 7b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-asym 1b1-sym 1b1-all 1b1-sym 1b1-asym 1b1-all

en

mMarco 0.01 39.79 8.8 38.49 42.72 40.49 41.98 36.21 7.94 34.99 35.86 7.45 34.24 36.34 8.7 35.83 0 13.58 12.95
Miracl 0 47.91 3.08 47.44 48.41 48.3 50.42 43.6 2.36 42.86 43.34 4.33 42.62 43.67 6.32 43.12 0 17.15 16.29

STSBenchmarkMultilingual 12.21 79.53 85.96 85.15 85.35 86.76 87.37 78.75 86.42 84.36 78.81 84.54 84.24 79.16 85.32 84.28 23.54 73.24 73.56
STS17Extend 35.44 86.47 89.84 89.85 90.01 90.77 91.6 84.98 88.82 88.88 85.03 88.01 88.42 85.49 88.9 88.88 37.63 80.83 82.51

MassiveIntentClassification 28.22 67 70.92 67.8 67.38 70.18 72.01 68.24 70.06 68.75 68.31 71.01 69.18 67.7 69.72 68.8 34.75 67.5 67.16

zh

mMarco 0.02 27.01 8.01 26.27 30.02 28.43 29.69 31.06 6.86 30.19 27.12 7.06 26.32 25.95 5.83 25.07 0.04 12.91 13.41
Miracl 0 52.84 10.92 49.66 54.14 52.75 55.69 53.03 7.65 50.77 46.41 9.31 46.1 44.55 3.56 43.09 0 25.89 27.22

STSBenchmarkMultilingual 25.41 74.62 79.59 78.89 80.68 80.82 81.49 75.83 81.65 80.72 75.47 79.66 79.13 74.4 79.26 78.05 33.03 71.09 71.52
STS17Extend 38.29 81.77 85.99 86.9 87.87 88.47 88.86 83.87 87.49 87.62 82.23 85.19 86.19 80.48 84.65 84.41 41.67 79.69 79.52

MassiveIntentClassification 31.75 65.8 69.67 67.01 67.49 68.22 69.5 65.51 68.72 65.82 66.78 69.59 67.59 65.95 69.29 67.03 41.5 69.25 68.95

ar

mMarco 0.05 22.04 4.04 21.33 24.35 23.79 25.97 22.85 5.75 22.24 27.36 5.95 26.48 23.59 7.04 22.99 0.01 8.28 9.75
Miracl 0.07 65.25 5.7 64.36 63.69 68.16 70.26 61.02 7.78 59.91 65.09 11.19 64.63 60.8 13.53 59.82 0 32.6 34.19

STSBenchmarkMultilingual 29.51 69.54 75.94 75.94 79.16 79.34 81.44 72.14 78.49 77.41 73.32 79.39 79.78 73.34 77.75 77.8 20.52 66.88 67.64
STS17Extend 31.43 72.61 80.68 81.31 82.26 81.67 83.41 74.55 80.53 80.9 76.7 83.38 84.17 76.74 80.27 81.76 16.35 67.29 66.26

MassiveIntentClassification 19.08 56.46 59.44 57.88 57.38 60.53 61.57 57.29 58.02 57.62 56.45 59.4 57.51 56.43 58.41 57.77 28.1 58.6 58.53

id

mMarco 0.01 20.04 4.89 21.41 21.92 26.16 29.26 19.32 4.97 18.97 24.86 5.06 24.16 33.03 6.29 32.03 0.01 6.92 6.67
Miracl 0 42.82 6.71 42.77 40.42 44.2 45.85 38.54 8.78 37.95 40.54 9.69 40.49 44.77 10.47 44.36 0.03 20.13 23.38

STSBenchmarkMultilingual 24.91 72.11 79.58 78.36 80.72 81.03 83.2 72.73 81.06 78.75 73.1 80.63 79.78 76.89 83.13 82.91 24.12 69.54 69.4
STS17Extend 47.12 80.32 86.55 86.25 88.51 87.87 89.63 79.19 86 84.31 81.1 86.77 87.28 83.53 87.98 88.98 44.45 77.11 76.83

MassiveIntentClassification 22.7 60.81 64.77 61.82 59.77 63.43 65.91 61.18 63.67 61.62 62.6 66.09 63.63 63.54 66.79 64.83 32.74 63.42 63.13

java

CodeSearchNet 1.00 82.45 73.27 83.09 82.84 84.33 84.87 82.77 75.17 82.64 82.4 73.81 81.66 81.1 62.46 81.41 3.14 88.53 88.47
xCodeEvalRetrievalNlCode 0 12.74 11.4 18.31 15.94 20.06 20.43 15.72 11.08 16.94 17.78 11.91 16.48 15.7 9.84 15.76 0 17.47 14.64

BigCloneBench 19.14 48.05 43.83 45.96 48.67 50.76 50.18 47.53 44.71 47.77 44.19 43.97 45.63 44.79 42.4 45.42 94.61 46.81 95.48
GoogleCodeJam 61.79 67.43 68.28 68.33 66.67 69.98 71.45 69.55 69.17 68.78 69.67 67.57 68.8 70.95 66.79 68.22 52.07 62.72 56.77

Table 14: Detailed results of Table 2 on our compiled universal embedding benchmark. raw-1b1 is un-finetuned
BLOOM 1b1 model tested with <EOS> embeddings.

NLI data improve symmetric tasks. We first
investigate the effect of symmetric NLI data on
different tasks. In the line No.1 of Table 13, we re-
move the NLI data and finetune the model solely us-
ing asymmetric retrieval data (MSMARCO). Com-
pared with our model in line No.0, the performance
of classification (Class.) and STS is significantly
decreased, which are typical symmetric tasks. How-
ever, these two tasks are not affected by the removal
of MSMARCO data (line No.2). This demonstrates
the crucial role of symmetric NLI data in achieving
optimal performance in these tasks.

Retrieval data are irreplaceable. As stated
above, finetuning using only NLI data (line No.2)
is competitive enough for classification and STS.
However, it can not provide a satisfactory score
for retrieval (Retr.), i.e., 20.78 v.s. 40+ of others,
and also leads a drop in clustering (Clust.). This
suggests that retrieval data are crucial for building
unified embedding models.

Multiple negatives only help retrieval. In line
No.3 of Table 13, we keep only one negative exam-
ple in contrastive learning. Compared to our model
in line No.0, only the performance of retrieval is
decreased, while other tasks have no significant
change. Considering that learning multiple nega-
tives greatly increase the computational cost and
training train, one can freely choose whether or not
to use it according to the specific requirements.

Last special token is better representation.
With regard to sequence encoding by decoder-
based models, both Neelakantan et al. (2022) and
Muennighoff (2022) append special tokens to the

en-all zh-all ar-all id-all java-all

en

mMarcoMultilingual 38.56 36.06 33.01 34.30 15.65
Miracl 46.28 44.00 39.63 42.14 20.73
STSBenchmarkMultilingual 84.64 84.30 79.28 81.22 71.93
STS17Extend 90.80 90.20 88.08 88.29 77.70
MassiveIntentClassification 70.73 70.39 70.02 69.89 68.97

zh

mMarcoMultilingual 26.14 29.51 23.19 23.79 13.69
Miracl 50.58 52.53 43.48 46.15 34.80
STSBenchmarkMultilingual 77.57 79.79 72.53 74.51 68.07
STS17Extend 88.42 89.15 84.89 85.27 76.85
MassiveIntentClassification 67.67 67.11 68.15 67.47 67.90

ar

mMarcoMultilingual 12.40 12.79 21.52 15.84 1.80
Miracl 36.92 36.63 53.76 43.51 2.79
STSBenchmarkMultilingual 62.27 62.47 73.10 64.17 54.03
STS17Extend 59.46 58.79 77.54 64.59 43.90
MassiveIntentClassification 45.06 45.14 49.32 45.54 40.02

id

mMarcoMultilingual 14.54 13.36 16.57 27.53 3.17
Miracl 26.28 22.01 29.13 41.55 7.55
STSBenchmarkMultilingual 65.61 63.97 66.63 77.18 54.28
STS17Extend 71.77 72.19 76.81 86.16 65.59
MassiveIntentClassification 53.48 52.87 54.32 58.03 49.85

java

CodeSearchNet 83.95 83.00 82.47 83.00 88.25
xCodeEvalRetrievalNlCode 21.31 23.51 22.03 24.62 13.04
BigCloneBench 48.56 50.68 45.95 48.18 96.85
GoogleCodeJam 72.00 71.78 71.59 72.69 54.35

Table 15: Detailed results of Qwen1.5-0.5B of Table 11.

start and end of the input sequence. On the se-
lection of the final embedding output, Neelakan-
tan et al. (2022) use the last special token, while
Muennighoff (2022) use a position weighted mean
pooling of the hidden states. In line No.4 of Table
13, we employ the weighted mean pooling on our
model and observe a slight performance decrease.
Additionally, we also try to use the last special
token on SGPT (Muennighoff, 2022), achieving
better average scores (line No.6) compared with
the sgpt-bloom-560m we implemented. Our ex-
periments demonstrate that the last special token is
more effective for unified embeddings models.
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Abstract

Dialogue-level dependency parsing is crucial
for understanding complex linguistic structures
in conversational data, yet progress has been
hindered by limited annotated resources and
inadequate modeling of dialogue dynamics.
Existing methods often fail to capture both
intra- and inter-utterance dependencies effec-
tively, particularly in languages like Chinese
with rich contextual interactions. To address
these challenges, we propose InterParser, a
novel framework that integrates a pretrained
language model (PLM), bidirectional GRU (Bi-
GRU), and biaffine scoring for comprehen-
sive dependency parsing. Our model encodes
token sequences using a PLM, refines repre-
sentations via deep BiGRU layers, and em-
ploys separate projections for "head" and "de-
pendent" roles to optimize arc and relation
prediction. For cross-utterance dependencies,
speaker-specific feature projections are intro-
duced to enhance dialogue-aware scoring. Joint
training minimizes cross-entropy losses for
both intra- and inter-utterance dependencies,
ensuring unified optimization. Experiments
on a standard Chinese benchmark demonstrate
that InterParser significantly outperforms prior
methods, achieving state-of-the-art labeled at-
tachment scores (LAS) for both intra- and inter-
utterance parsing.

1 Introduction

Dialogue-level dependency parsing is crucial for
enhancing the capabilities of dialogue understand-
ing systems. This approach seeks to create a unified
tree structure that captures both intra-sentence syn-
tactic dependencies and inter-utterance discourse
relations. While sentence-level dependency parsing
has been extensively researched in languages such
as English and Chinese (Xue et al., 2005; Jiang
et al., 2018), applying this approach to multi-turn

∗

Corresponding author

dialogues presents unique challenges. Dialogues in-
herently involve complex hierarchical interactions:
within utterances, there are syntactic dependencies
(e.g., subject-verb-object structures), and across
utterances, there are discourse dependencies (e.g.,
question-answer pairs or causal reasoning). In Chi-
nese, a language characterized by flexible word
order and context-dependent semantics, perform-
ing such hierarchical parsing is particularly chal-
lenging.The root nodes of each subtree are often
predicates that reflect single semantic events, illus-
trated in Figure 1.

Recent advancements have started to bridge this
gap. Jiang et al. (2023) initiated the development of
the Chinese Dialogue-level Dependency Treebank
(CDDT), which integrates syntactic dependencies
from existing treebanks (Jiang et al., 2018) and dis-
course relations based on Rhetorical Structure The-
ory (RST). They proposed rule-based signal detec-
tion and pseudo-labeling strategies to address data
scarcity in resource-limited scenarios. However,
this method’s reliance on heuristic transformations,
such as mapping syntactic ‘root’ nodes to discourse
dependencies, and its multi-step pipeline process,
can lead to error propagation and limited general-
ization. Subsequently, Zhang et al. (2024) intro-
duced a Large Language Model (LLM)-assisted
data augmentation technique, generating synthetic
dialogues through various perturbations at the word,
syntax, and discourse levels. Although effective,
this approach necessitates extensive prompt engi-
neering and can struggle to maintain structural con-
sistency between the generated text and the corre-
sponding dependency labels.

To address these limitations, we introduce an in-
novative end-to-end neural architecture tailored for
Chinese dialogue-level dependency parsing. This
approach circumvents the need for intermediate
rule-based procedures by integrating the model-
ing of both intra- and inter-utterance dependencies
through a cohesive feature learning mechanism.
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的
assistance

root

subj punc

dfsubj
root obj

subj

adv
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没有
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Q:

问题
If you have questions,
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adjct  
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可以 再 联系 我们 哟
you can always contact us

cond

A: 如果 有

qst-ans

stm-rsp

sasubj

A: 您 看 , 我 还 有 什么 帮 您
As you see , can I still offer any

attr

Figure 1: Example of Dialogue-Level Dependency Pars-
ing: Vertical dashed lines indicate EDU boundaries,
with arcs above words representing intra-EDU depen-
dencies and arcs below or crossing utterances indicating
inter-EDU dependencies.

Our framework specifically targets three pivotal
challenges:

Hierarchical Integration of Linguistic Fea-
tures: Effective dialogue parsing necessitates the
concurrent modeling of various linguistic dimen-
sions, including character-level, word-level, and
utterance-level representations. This is especially
crucial in languages like Chinese, characterized by
intricate morphological structures and word agglu-
tination. Our model strategically fuses these multi-
faceted features to optimize the representation of
both syntactic and discursive elements.

Speaker-Aware Interaction Modeling: In
multi-party dialogues, comprehending the roles and
interactions between participants is essential. Our
method incorporates explicit modeling of speaker
roles to capture dependencies that are unique to
different interlocutors, such as those between a
customer and a service agent. This aspect is of-
ten underrepresented in conventional dependency
parsing methodologies.

Enhancing Low-Resource Robustness: The
scarcity of annotated dialogue data presents a sig-
nificant challenge in training reliable models, par-
ticularly in low-resource settings. Our model ad-
dresses this issue by leveraging syntactic priors
from existing treebanks, while meticulously pre-
venting overfitting to sparse discourse patterns.

Our contributions include the following key in-
novations:

(1) Dynamic Subword Weighting: Our model in-
corporates a trainable attention mechanism

that adaptively aggregates subword embed-
dings to construct word-level representations.
This approach surpasses traditional static aver-
aging, effectively capturing nuanced semantic
variations.

(2) Gated Multi-Level Fusion: We employ a hi-
erarchical encoding structure that seamlessly
integrates character, word, and speaker fea-
tures through sigmoid-gated interactions. This
mechanism enhances the model’s contextual
awareness across various linguistic granulari-
ties.

(3) Unified Biaffine Decoding: Our model em-
ploys dual biaffine attention mechanisms to
concurrently capture syntactic and discourse
dependencies. This design enables the model
to effectively specialize in both local syntactic
and global discourse dependency patterns.

(4) Curriculum Joint Training: We implement
a phased optimization strategy that progres-
sively shifts the training focus from syntax,
utilizing treebanks, to discourse dependencies,
leveraging dialogue data. This approach en-
sures stable knowledge transfer and enhances
the model’s generalization capabilities.

Our model, evaluated on the CDDT benchmark,
achieves state-of-the-art performance in Chinese
dialogue-level dependency parsing. It effectively
captures both syntactic and discourse dependencies,
surpassing existing heuristic-based and multi-step
pipeline methods.

2 Method

To address the speed and performance inefficien-
cies of traditional sentence parsing models, espe-
cially when dealing with an increasing number of
words and dependency parsing tags, we employ
a hierarchical decoding strategy for inner-EDU
and inter-EDU dependencies. Additionally, we uti-
lize the Chinese-electra-180g-base-discriminator
for pre-training our large model and incorporate a
state-of-the-art biaffine parser (Dozat and Manning,
2017) to enhance parsing efficiency. Our modelling
framework is shown in Figure 2

First, we are provided with an input dialogue
text, represented as a sequence of n words x =
[w1, w2, . . . , wn], and its corresponding EDU-level
sequence E = [E1, E2, . . . , Em], where m denotes
the number of EDUs. Each EDU Ek (k ∈ [1,m])
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Figure 2: Our model diagram, arc denotes an arc of dependence, rel denotes the type of relationship, inter arc/rel
biaffine: handling interaction dependencies across sentences, arc/rel biaffine :dealing with internal dependencies.

encompasses a subsequence of words, represented
as
[
wk,1, . . . , wk,sk

]
, where sk is the number of

words within the k-th EDU. We proceed to il-
lustrate the baseline parser using an encoding-
decoding framework.

2.1 Hierarchical Encoding

Our encoding pipeline consists of three sequential
transformations to derive parsing-oriented repre-
sentations:

(1) Contextual Embedding: The input sequence
x = [w1, w2, . . . , wn] is processed by a pre-
trained language model (e.g., BERT or ELEC-
TRA) to obtain contextualized token embed-
dings:

e1:n → e1, e2, . . . , en

= PLM(w1, w2, . . . , wn)
(1)

(2) Sequential Abstraction: A L-layer bidirec-
tional GRU is employed to capture position-
aware linguistic patterns from the contextual-
ized embeddings:

h1:n →h1, h2, . . . , hn

= BiGRU×L (e1, e2, . . . , en)
(2)

(3) Dependency-Specific Projection: Parallel
K-layer MLPs are used to transform the ab-
stracted features into dependency-parsing ori-
ented representations. These MLPs provide
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distinct perspectives for dependency analysis:





zd
1:n → zd

1 , z
d
2 , . . . ,z

d
n

= MLP×K (h1,h2, . . . ,hn)

zh
1:n → zh

1 , z
h
2 , . . . ,z

h
n

= MLP×K (h1,h2, . . . ,hn)

(3)

Here, zd = [zd
1 , . . . ,z

d
n] represents the

dependency-centric feature matrix, providing in-
sights into the relationships between words as de-
pendents. Conversely, zh = [zh

1 , . . . ,z
h
n] denotes

the head-centric feature matrix, focusing on the
roles of words as heads in dependency structures.
These matrices offer orthogonal perspectives for
subsequent dependency analysis, enhancing the
model’s parsing capabilities.

2.2 Decoding

The decoding of the dialogue-level dependency
tree is executed in two phases. Initially, we con-
duct inner-EDU dependency parsing. For each
Ek =

[
wk,1, . . . , wk,sk

]
, we derive their corre-

sponding dependency-aware and head-aware repre-
sentations zdk,1:sk = [zdk,1, . . . , z

d
k,sk

] and zhk,1:sk =

[zhk,1, . . . , z
h
k,sk

] through direct indexing. Subse-
quently, we compute the candidate head scores for
each word wk,j using the biaffine operation:

oIN
k,j = zh

k,1:k,sk
U INzd

k,j + zh
k,1:k,sk

uIN (4)

oIN,ARC
k,j =

∑

l

oIN
k,j [·][l] (5)

In these equations, U IN and uIN are trainable
parameters. The candidate heads for each word
wk,j are confined to within its EDU, and only syn-
tactic relation labels are considered at this stage.
The tensor oIN

k,j encompasses scores for both head
selection and label classification: its slice oIN

k,j [i]
represents a vector of relation scores for head can-
didate i. During inference, we first apply the min-
imum spanning tree algorithm to the arc scores
oIN,ARC
k,j to retrieve a well-formed dependency

tree, and then assign each predicted arc the re-
lation label with the highest score. For cross-
utterance relation modeling, we augment the bi-
affine mechanism with discourse-specific adapta-
tions. Two essential feature sequences are extracted
from EDU root nodes: zdr1:rm = zd1,r1 , . . . , z

d
m,rm

and zhr1:rm = zh1,r1 , . . . , z
h
m,rm , where r∗ denotes

the root word index of each EDU. The discourse
dependency scores are calculated as follows:

oIT
k = zh

r1:rmU
ITzd

rk
+ zh

r1:rmu
IT (6)

oIT,ARC
k =

∑

l

oITk [·][l] (7)

Here, U IT and uIT are learnable parameters. The
tensor oIT

k forms a 2D structure capturing head
candidates and relation labels, while oIT,ARC

k de-
termines the dependency tree structure.

2.3 Curriculum Optimization

The joint loss function is modified to incorporate
phased weighting, as expressed below:

L = αtLsyn+ (1− αt)Ldisc (8)

In this equation, αt = max(0.5, 1 − t
T ) serves

as a dynamic weight that evolves over T epochs,
implementing a curriculum learning strategy. This
approach ensures a balanced focus on syntactic
and discourse-level losses throughout the training
process.

2.4 Training

We optimize a standard cross-entropy objective,
which consists of separate terms for dependency
arc prediction and relation classification. Let o∗

∗
represent either the inner-EDU scores oIN

k,j or the
inter-EDU scores oIT

k . We apply softmax over the
arc logits o∗,ARC

∗ and over the label logits o∗
∗[ŷh]

with the ŷh representing the ground-truth head as-
signments to obtain probability distributions over
all candidate heads and syntactic/discourse labels,
respectively. The overall loss is the sum of the
negative log-likelihoods of the correct heads and
labels. This training procedure follows the biaffine
parser framework of Dozat and Manning (2017).

We train our baseline parser by dividing its su-
pervision into two complementary subtasks: inner-
EDU (syntax) parsing and inter-EDU (dialogue)
parsing.

• Inner-EDU parsing is fully supervised. We
utilize a large-scale syntactic treebank in con-
junction with the 50 gold-standard dialogue
instances provided by Jiang et al. (2023). This
combination offers dense, in-domain depen-
dency annotations, ensuring the reliable con-
vergence of this component.
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Statistic Train Test
# dialogue 50 800
avg.# turns 23 25
avg.# words 194 212
# inner 9129 159803
# inter 1671 29200

Table 1: The Statistics of CDDT. “#” and “avg.#” Indi-
cate “Count” and “Average Count”

• Inter-EDU parsing faces the challenge of an-
notation sparsity. To address this issue, we
adopt the approach of Jiang et al. (2023), lever-
aging their rule-based silver dialogue corpus
in addition to the same 50 gold-standard in-
stances. This strategy merges pseudo-labeled
and gold supervision, facilitating the training
of the cross-utterance dependency component.

3 Experiment

3.1 Dataset

We employ the publicly accessible Chinese
Dialogue-Level Dependency Treebank (CDDT), in-
troduced by Jiang et al. (2023). This dataset serves
as the sole benchmark for Chinese dialogue-level
dependency parsing. The statistics of this dataset
are detailed in Table 1.

3.2 Settings

Evaluation Methodology. We assess model per-
formance using the conventional dependency pars-
ing metrics, Unlabeled Attachment Score (UAS)
and Labeled Attachment Score (LAS), with punc-
tuation tokens explicitly excluded from the calcu-
lations. To facilitate detailed diagnostic analysis,
we separate the evaluation into two distinct com-
ponents: intra-EDU dependencies (relationships
within Elementary Discourse Units) and inter-EDU
dependencies (syntactic links across units). No-
tably, the inter-EDU evaluation focuses on the lex-
ical dependency level, rather than abstract EDU
representations. This necessitates the accurate iden-
tification of EDU head tokens as a fundamental step
for valid cross-unit dependency assessment.

In scenarios where resources are limited and
development sets are not accessible, we use the
checkpoint from the final training iteration for
model validation. To ensure reproducibility, all
implementations were carried out on a consistent
computational platform equipped with an NVIDIA
RTX3090 GPU, which has 24GB of VRAM.

Hyper-parameters. Our PLM is a Chinese variant
of ELECTRA, as implemented by Cui et al. (2020).
We utilize the base scale discriminator1 for fine-
tuning purposes. The hidden size of both our Parser
and MLM components is set to 200, with a dropout
rate of 0.1. For model training, we employ the
AdamW optimizer, initializing the learning rate of
the PLM at 2e-5 and that of the subsequent modules
at 1e-4. A linear warmup is applied for the first 10%
of the training steps. The weight decay is set to 0.1,
and to prevent gradient explosion, we implement
gradient clipping with a maximum value of 2.0.
The training batch size is configured to 64, and the
total number of epochs is 25.

3.3 Results

Training Data Few-shot
Inner-EDU Inter-EDU

UAS LAS UAS LAS

Jiang et al. (2023) 91.74 88.2 71.09 55.73

baseline(Zhang et al., 2024) 91.66 89.12 71.59 56.32

GPT-3.5-Turbo-0613

+wrd 92.37 90.01 73.06 58.50
+syn 92.13 89.94 73.22 59.33
+dis 92.35 90.11 73.57 59.68
+wrd & syn 92.38 90.16 73.52 59.47
+wrd & dis 92.19 90.04 73.84 59.81
+syn & dis 92.23 90.18 73.88 59.94
+wrd & syn & dis 92.46 90.35 73.81 60.17

Llama2-7B

+wrd 91.91 89.73 72.33 57.63
+syn 91.65 89.51 72.31 58.28
+dis 91.90 89.85 72.76 58.45
+wrd & syn 91.87 89.81 72.56 58.38
+wrd & dis 91.82 89.63 73.13 58.75
+syn & dis 91.76 89.91 72.92 58.79
+wrd & syn & dis 91.97 89.89 72.95 59.01

Qwen-7B

+wrd 92.03 89.88 72.68 57.94
+syn 91.94 89.69 72.80 58.46
+dis 92.01 89.97 73.19 58.85
+wrd & syn 91.84 89.97 73.05 58.74
+wrd & dis 91.87 89.76 73.47 59.05
+syn & dis 92.07 89.99 73.42 59.14
+wrd & syn & dis 91.96 89.85 73.52 59.31

Ours 92.56 90.66 72.81 59.92

Table 2: The test results under the few-shot settings.
“wrd”, “syn”, “dis” denote the “word-level”, “syntax-
level”, and “discourse-level”, respectively.

In the few-shot learning scenario, our model
is trained on a dataset comprising 50 human-
annotated instances supplemented with silver-
standard corpus data. We conduct a systematic eval-
uation that compares four configurations: (1) base-

1huggingface.co/hfl/chinese-electra-180g-base-
discriminator
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line methods, (2) individual augmentation strate-
gies, (3) pairwise combinations, and (4) the full in-
tegration of all three data augmentation techniques
alongside our proposed model. This comprehen-
sive evaluation framework allows for a rigorous as-
sessment of the potential capabilities of our model.
As depicted in Table 2, our approach achieves statis-
tically significant improvements over the baseline
methods across all evaluation metrics. The experi-
mental results yield two key insights:

• For Inner-EDU evaluation, our model sur-
passes all baseline approaches and exhibits
superior performance compared to three large-
scale reference models.

• In the Inter-EDU assessment, the proposed
method remains competitive with the current
state-of-the-art large models.

Specifically concerning attachment scores, our
model achieves the following improvements:

• UAS Improvement: An increase of 0.9% for
Inner-EDU and 1.22% for Inter-EDU com-
pared to the baselines.

• LAS Enhancement: Absolute gains of 1.54%
for Inner-EDU and 3.60% for Inter-EDU.

3.4 Ablation Study

Our ablation study systematically investigates the
consequences of removing the meticulously opti-
mized Bidirectional Gated Recurrent Unit (BiGRU)
from our model architecture. As illustrated in Ta-
ble 3, the removal of this architectural component
led to a notable decline in performance across all
evaluation metrics. This empirical evidence under-
scores the critical role of our carefully designed
BiGRU layer in the model’s operation, especially
in terms of capturing sequential dependencies and
contextual patterns.

Model Few-shot

Inner-EDU Inter-EDU
UAS LAS UAS LAS

Ours 92.56 90.66 72.81 59.92
w/o BiGRU 90.64 88.03 69.13 53.19

Table 3: The results of the ablation experiments.

4 Related Work

Dependency Parsing. Several Chinese depen-
dency parsing paradigms and corresponding tree-
banks have been developed (Xue et al., 2005;
Che et al., 2012; McDonald et al., 2013; Qiu
et al., 2014). These efforts primarily concen-
trate on sentence-level dependency parsing, with
document-level parsing being significantly less ex-
plored. Li et al. (2014) applied a dependency
parsing approach to discourse parsing, although
their EDU-wise method overlooks the parsing
within EDUs. Recent advancements by Jiang et al.
(2023) have initiated Chinese dialogue-level de-
pendency parsing, establishing a unified schema
that encompasses both inner-EDU syntactic de-
pendencies and inter-EDU discourse dependencies.
Building upon this, Zhang et al. (2024) have fur-
ther refined the framework by incorporating LLM-
assisted data augmentation, tackling the challenges
of low-resource settings through hierarchical trans-
formations at the word, syntax, and discourse lev-
els.

Meanwhile, cross-lingual transfer methods have
emerged as complementary approaches. Guo
et al. (2022) proposed a curriculum-style fine-
grained adaptation technique for unsupervised
cross-lingual dependency transfer, demonstrating
that syntactic knowledge can be effectively trans-
ferred across languages through progressive dif-
ficulty scheduling and parameter generation net-
works. This approach achieves state-of-the-art per-
formance on Universal Dependencies treebanks by
combining curriculum learning with self-training
strategies.
Dialogue Parsing. Discourse structures in dia-
logue can be represented by various theories, in-
cluding RST (Mann and Thompson, 1987, 1988),
SDRT (Asher and Lascarides, 2003), and PTDB
(Prasad et al., 2008). While datasets such as
STAC (Afantenos et al., 2015) and Molweni (Li
et al., 2020) concentrate on English multi-party di-
alogues, Jiang et al. (2023) introduced the first Chi-
nese dialogue-level dependency treebank (CDDT),
which merges RST-inspired discourse relations
with syntactic dependencies. This work bridges
the gap between EDU-based discourse parsing and
word-wise dependency structures. Expanding on
this, Zhang et al. (2024) developed a three-level
augmentation strategy using Large Language Mod-
els (LLMs) to create varied pseudo-instances while
maintaining discourse hierarchies, leading to sig-
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nificant improvements in handling inter-EDU de-
pendencies.
Weakly Supervised Learning. Predicting un-
seen dependency labels in low-resource settings
presents significant challenges (Norouzi et al.,
2013). Jiang et al. (2023) tackle this issue by em-
ploying signal-based dependency transformation
and pseudo-labeled data filtering, utilizing syntac-
tic treebanks and masked language modeling to
infer inter-EDU relations. Zhang et al. (2024) build
upon this approach by leveraging LLMs’ genera-
tive abilities for extensive data augmentation, de-
veloping prompt-based mechanisms to maintain
structural consistency throughout transformations.
Their method integrates characterization, chain-
of-thought prompting, and constrained generation,
illustrating that LLMs can effectively distill syn-
tactic and discourse knowledge without direct su-
pervision. This contrasts with conventional self-
training (Scudder, 1965) and co-training (Blum and
Mitchell, 1998) methodologies, providing a model-
centric solution for low-resource dependency pars-
ing.
Universal Structured NLP and Demonstration
Systems. Recent efforts have been made to unify
structured NLP (XNLP) tasks under a general
framework. Fei et al. (2023) proposed XNLP, an
interactive demonstration system built upon large
language models (LLMs), aiming to model a wide
variety of XNLP tasks, such as syntactic parsing,
information extraction, semantic role labeling, and
sentiment analysis, in a unified manner. By re-
ducing task outputs to span extraction and relation
prediction, the system achieves high generalizabil-
ity and supports zero-shot and weakly supervised
learning without task-specific fine-tuning. Further-
more, it offers multi-turn user interaction, struc-
tured visualization via brat, and interpretable pre-
diction rationales. These features highlight the
potential of LLM-based architectures in managing
structurally diverse tasks with minimal supervision,
aligning well with the goals of low-resource depen-
dency parsing and dialogue-level analysis. XNLP
thus provides both a practical tool and a method-
ological reference for universal structured predic-
tion under weak supervision.

5 Conclusion

In this study, we introduce InterParser, an innova-
tive end-to-end framework designed for Chinese
dialogue-level dependency parsing. Our model in-

tegrates a pretrained language model, hierarchical
BiGRU encoding, and speaker-aware biaffine scor-
ing mechanisms, effectively merging intra-EDU
syntactic dependencies with inter-EDU discourse
relations. Experimental outcomes showcase no-
table enhancements over existing techniques, reach-
ing state-of-the-art performance with 92.56% UAS
for inner-EDU parsing and 90.66% LAS for inner-
EDU parsing in few-shot scenarios. The ablation
study further confirms the essential contribution of
the BiGRU layer in capturing sequential linguistic
structures.

Limitations

Despite our advancements in low-resource dialogue
parsing, certain limitations persist. The dependence
on pseudo-labeled data for inter-EDU dependen-
cies may introduce annotation noise. Additionally,
our current speaker modeling, which focuses on
role disparities, overlooks dynamic interaction nu-
ances. Future research directions include extending
cross-lingual adaptation to other resource-scarce
languages, incorporating pragmatic elements for
comprehensive dialogue comprehension, and de-
veloping unified parsing-generation frameworks to
more effectively bridge the gap between syntac-
tic and discourse hierarchies. These developments
will be instrumental in constructing more robust
and interpretable dialogue systems.
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Abstract

The LLMSR@XLLM25 formulates a low-
resource structural reasoning task that chal-
lenges LLMs to generate interpretable, step-by-
step rationales with minimal labeled data. We
present Less is More, the third-place winning
approach in the LLMSR@XLLM25, which
focuses on structured reasoning from only
24 labeled examples. Our approach lever-
ages a multi-agent framework with reverse-
prompt induction, retrieval-augmented rea-
soning synthesis via GPT-4o, and dual-stage
reward-guided filtering to distill high-quality
supervision across three subtasks: question
parsing, CoT parsing, and step-level veri-
fication. All modules are fine-tuned from
Meta-Llama-3-8B-Instruct under a unified
LoRA+ setup. By combining structure valida-
tion with reward filtering across few-shot and
zero-shot prompts, our pipeline consistently
improves structure reasoning quality. These re-
sults underscore the value of controllable data
distillation in enhancing structured inference
under low-resource constraints. Our code is
available at https://github.com/JhCircle/
Less-is-More.

1 Introduction

Structured reasoning tasks—such as decomposing
a question into logical constraints or verifying a
chain of deductions—pose unique challenges for
large language models (LLMs) (Zhang et al., 2025),
especially under extreme low-resource conditions.
The LLMSR@XLLM25 targets this very challenge,
requiring participants to generate interpretable and
verifiable reasoning processes from only 24 labeled
examples. Each instance involves four intertwined
subtasks: extracting question conditions (Question
Parsing), identifying reasoning steps and their jus-
tifications (CoT Parsing), and validating whether
evidence supports each inferred statement (CoT
Statement and Verification).

*Corresponding author.

This setting presents two core challenges: (1)
insufficient labeled data to fine-tune high-capacity
models, and (2) the need to maintain step-level con-
sistency and logical coherence across multiple rea-
soning modules. Prior work on CoT-style prompt-
ing typically relies on large-scale instruction tuning
or heuristic prompting, which falters when supervi-
sion is scarce and structural granularity is essential.

To tackle these challenges, we introduce Less
is More—a structured multi-agent framework that
transforms minimal supervision into high-quality
training signals through three key stages: (i)
prompt induction via reverse thinking (Yuan et al.,
2024; Zhou et al., 2022) to derive task-specific
instructions; (ii) retrieval-augmented reasoning
synthesis with GPT-4o to generate contextually
grounded annotations at scale (Ram et al., 2023;
Zhao et al., 2024); and (iii) dual-stage filtering,
which integrates lightweight structural pruning
and reward-based selection to ensure semantic fi-
delity. Each reasoning module is fine-tuned inde-
pendently from Meta-Llama-3-8B-Instruct on
distilled CoT data generated by GPT-4o (Wei et al.,
2022; Zhou et al., 2023b; Zhao et al., 2025), en-
abling modular, interpretable reasoning under low-
resource settings.

Our approach ranked third in such shared
task, outperforming several strong baselines.
Through detailed experiments across diffrent
reward-filtering stratgies, we show that data qual-
ity—not quantity—is the key to enhancing struc-
tured reasoning. This highlights the promise of
controllable, quality-centric distillation in advanc-
ing LLM reasoning under real-world data scarcity.

2 Methodology

We present Less is More, a structured multi-
agent reasoning framework designed to ad-
dress data scarcity through quality-guided dis-
tillation. Given only 24 labeled examples in
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the LLMSR@XLLM25, we construct a scalable
pipeline for data synthesis and filtering.

Our approach focuses on two reasoning subtasks,
each treated as an instruction-following generation
problem:

• Question Parsing (QP): Infers a structured
list of reasoning components (e.g., constraints,
relations, entities) directly from the natural
language question.

• Unified CoT Reasoning (UCoT): Constructs
a structured reasoning trajectory by first pars-
ing the chain-of-thought into atomic logical
statements (CP), followed by stepwise ground-
ing and validation through evidence retrieval
(CS) and verification (CV).

Demo Pool

LogiQA
Prompt Induction

Top-K
RA-ICL

Prompt Induction

PQP PUCOT

Reasoning Synthesis

Structure Filtering

Reward R(x)>0

QP Dataset CP Dataset CV Dataset 
SFT

Meta-Llama-3-8B-Instruct

QP Agent CP Agent CV Agent

CoT Paring:
[“CP1”,”CP2”,...]

Question Paring:
[“QP1”,”QP2”,...]

{
  Evidence:...,
  Verification:True 
}

Top-K
RA-ICL

Distill

Figure 1: Overview of the Less is More reasoning
framework. Training includes reverse-prompt induction,
GPT-4o-based synthesis, and reward filtering. Inference
deploys fine-tuned agents for question parsing and struc-
tured CoT generation.

Each instance is generated using only a small seed
set and guided by reverse prompt induction (Yuan
et al., 2024). The full pipeline includes prompt de-
sign, reasoning synthesis via retrieval-augmented

in-context learning, and reward-based filtering to
ensure output quality.

2.1 Prompt Induction via Reverse Thinking

To enable instruction-following reasoning un-
der low-resource supervision, we adopt a meta-
cognitive prompting strategy following RoT (Yuan
et al., 2024). For each subtask t ∈ {QP,UCoT},
our goal is to induce task-specific prompts Pt from
a small set of labeled examples, as detailed in Ap-
pendix B.

Let Dt
seed = {(xi, yi)}Ni=1 denote the labeled

data for subtask t, where xi is the input and yi
the structured output. We prompt the language
model LLM1 with a reverse-thinking instruction
Preverse and demonstrations from Dseed to generate
an optimal task-specific prompt π∗

t :

Π = LLM(Preverse, Dseed) (1)

π∗
t = argmax

π∈Π
[Sgen(π) + Spref (π)] (2)

Sgen(π) = E(x,y)∼Dt
seed

[log pπ(y | x)] (3)

Spref (π) =
∑

π′∈Π\{π}
I
[
π ≻ π′] (4)

2.2 Reasoning Synthesis via
Retrieval-Augmented ICL

We use the induced prompts {PQP ,PUCoT } to
synthesize structured annotations for unlabeled
LogiQA (Liu et al., 2021) instances through a
retrieval-augmented in-context learning (RA-
ICL) framework inspired by (Ram et al., 2023).

Given a question x, we first embed it as hx =
fenc(x) using a pretrained encoder.2 Then, we re-
trieve k similar examples from Dseed based on co-
sine similarity:

R(x) = TopKx′
(
cos(hx,hx′) | x′ ∈ Dseed

)
(5)

We construct two prompts for each x: PQP (x)
for question parsing, and PUCoT (x) for generat-
ing the full reasoning chain with verification. The
model then generates:

ŷQP = LLM(PQP ,PQP (x)) (6)

ŷUCoT = LLM(PUCoT ,PUCoT (x)) (7)

1We use gpt-4o-2024-08-06 with a temperature of 0.1.
2https://huggingface.co/BAAI/bge-m3
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The output ŷUCoT is a structured json object
with fields cot_steps, each containing a reason-
ing statement, its textual evidence, and a boolean
verification label.

2.3 Data Filtering via Reward-Based Filtering
To construct a high-quality training set from syn-
thesized CoT annotations, we apply a two-stage
filtering process: structure-based pruning followed
by reward-based selection using a fine-tuned re-
ward model inspired by (Zhou et al., 2023a, 2024;
Li et al., 2024b; Deng et al., 2025). This ensures
that only structurally valid and semantically mean-
ingful traces are retained fordownstream training.

Structural Filtering : Remove ill-formed or triv-
ial outputs (e.g., malformed JSON, less than two
reasoning steps, parsing failures).

Reward-Based Filtering : we perform reward-
based filtering using a top-ranked LLaMA3-based
reward model 3 trained on Reward-Bench 4. In-
spired by prior work (Zhou et al., 2023a, 2024; Li
et al., 2024a; Deng et al., 2025), we use this model
to assess the quality of each reasoning trace under
two distinct prompting configurations:

• Few-shot prompt: Includes k semantically
similar examples retrieved from a demonstra-
tion pool along with the synthesized reason-
ing.

• Zero-shot prompt: Uses only the instruction
template and the generated reasoning, without
any demonstrations.

Both prompt variants are formatted as chat-style
input-response pairs and passed to the reward
model freward. The final reward is defined as the
mean of the two scores:

sfew = freward(Pfew(x), ŷ) (8)

szero = freward(Pzero(x), ŷ) (9)

savg =
1

2
(sfew + szero) (10)

S(x) =





sfew (few-shot filtering)
szero (zero-shot filtering)
savg (average-based filtering)

(11)

We filter examples by thresholding the reward
score S(x) > 0, resulting in three filtered subsets

3https://huggingface.co/Ray2333/GRM-Llama3.
2-3B-rewardmodel-ft

4https://huggingface.co/spaces/allenai/
reward-bench

based on: (i) few-shot reward, (ii) zero-shot re-
ward, and (iii) their average. Each filtered dataset
is stored independently and used to fine-tune the
model under the corresponding configuration 5.
This enables targeted ablation studies and com-
parative evaluation of how different reward signals
influence downstream performance.

This dual-prompt scoring strategy enables more
robust reward estimation by capturing both con-
textual coherence (few-shot) and general quality
(zero-shot), effectively reducing noisy traces and
improving training reliability.

3 Inference Pipeline: Multi-Agent
Structured Reasoning

We deploy a structured inference pipeline that
mirrors our modular training architecture, com-
prising three dedicated agents: Parser, Decom-
poser, and Verifier, each instantiated as a fine-
tuned LLaMA3-8B-Instruct model. These agents
are respectively responsible for question parsing
(QP), chain-of-thought (CoT) parsing (CP), and
step-level statement and verification (CV).

At inference time, given a test instance x, we
encode it into a dense embedding hx using a multi-
lingual encoder6 and retrieve semantically similar
exemplars R(x) from the distillation pool. These
demonstrations are reused across all agents via
task-specific prompting templates, ensuring consis-
tency and contextual alignment. The full reasoning
pipeline unfolds as a cascade of agent interactions:

ŷQP = PARSER (PQP (x; R(x))) (12)

ŷCP = DECOMPOSER (PCP (x, CoT ; R(x)))
(13)

êCV = VERIFIER
(
Pevidence
CV (x, ŷCP ; R(x))

)

(14)

v̂CV = VERIFIER
(
Pverify
CV (x, ŷCP , êCV ; R(x))

)

(15)

where PQP ,PCP ,Pevidence
CV ,Pverify

CV are
prompt construction modules tailored for the
Parser, Decomposer, and Verifier respectively
(detailed in Appendix B. ŷQP denotes the question
parsing answer, ŷCP is the generated answer after

5All fine-tuning experiments are conducted on
meta-llama/Meta-Llama-3-8B-Instruct, as required
by the shared task.

6https://huggingface.co/BAAI/bge-m3
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cot decomposition, êCV refers to CoT evidence
supporting the answer ŷCP , and v̂CV is the final
verification result indicating whether the statement
is supported given the evidence.

4 Experiment

4.1 Datasets

We evaluate the impact of different reward filtering
strategies on model performance using the public
testsets 7 of the LLMSR@XLLM25. Each strategy
yields a distinct training dataset, filtered by the cor-
responding reward signal—few-shot, zero-shot, or
average-based—as described in Section 2.3. Ta-
ble 1 summarizes the number of training instances
retained under each strategy. Notably, the numbers
for QP (Question Parsing) and CP (CoT Parsing)
are counted at the question and CoT level, where
each instance corresponds to a complete reasoning
trace. In contrast, the CV (CoT Verification) sub-
task is formulated as step-level verification, where
each reasoning trace is decomposed into multiple
verifiable steps. An illustrative example from the
synthesized dataset is presented in Appendix A to
demonstrate the structure and annotation format.

Strategy Total QP CP CV

Original LogiQA 7,376 – – –
Structure Filtered 1,940 1,940 1,940 13,818
0-shot Reward 1,309 1,309 1,309 9,434
5-shot Reward 1,377 1,377 1,377 9,858
Avg. Reward 1,346 1,346 1,346 9,688

Table 1: Training set sizes under different filtering strate-
gies.

We fine-tune three task-specific models for
QP (Question Parsing), CP (CoT Parsing), and
CV (CoT Verification) on their respective fil-
tered datasets from our distillation pipeline.
Each model is trained independently using
meta-llama/Meta-Llama-3-8B-Instruct with
LoRA+ (Hayou et al., 2024) (rank 16, α = 32,
lorap_lr_ratio = 16) via ms-swift8. Training
is conducted for 5 epochs with a learning rate of
2 × 10−5, batch size 4 per device, gradient accu-
mulation over 4 steps, and a warmup ratio of 0.03,
using two NVIDIA A100-80G GPUs.

Setting Ques. F1 Stmt. F1 Evid. F1 Reason. F1

Structure Filtered 56.87 36.72 10.80 5.20
0-shot Reward 62.76 38.05 12.79 7.15
5-shot Reward 65.89 38.26 14.45 7.70
Avg. Reward 66.71 39.21 14.92 8.98

Table 2: Evaluation results across different data filtering
strategies. Ques. F1 refers to question parsing accu-
racy, Stmt. F1 measures statement identification quality,
Evid. F1 captures the correctness of statement-evidence
alignment, and Reason. F1 evaluates overall reasoning
validity.

4.2 Results
As illustrated in Table 2, model performance im-
proves consistently as the supervision quality in-
creases. All models are trained under identical
supervised fine-tuning setups, isolating the impact
of training data quality alone. While the structure-
filtered baseline yields syntactically neater reason-
ing traces compared to raw generations, it often
lacks semantic precision and fails to capture the un-
derlying logic chains necessary for complex deduc-
tion, resulting in poor step-level performance (e.g.,
only 5.20 in Reasoning F1). In contrast, reward-
guided filtering—particularly the configuration us-
ing average scoring over few-shot and zero-shot
prompts—demonstrates substantial performance
gains across multiple dimensions. It improves Rea-
soning F1 by 3.78 percentage points, Statement-
Evidence F1 by 4.76, and Statement Macro F1 by
3.41, indicating more consistent alignment between
parsed statements and supporting evidence.

Beyond step-level metrics, we observe an unex-
pected yet encouraging boost in overall Question
Macro F1—rising from 56.87% to 66.71%—de-
spite the question-answer component being entirely
uninvolved in the reward computation. This emer-
gent effect highlights a key insight: accurate inter-
mediate supervision enhances the model’s latent
structure alignment, resulting in better downstream
decision-making even in modules that do not ex-
plicitly receive reward signals. Reverse-prompted
instructions impose structural coherence, while RA-
ICL grounding mitigates contextual drift. Reward
filtering further enforces semantic fidelity, select-
ing not just fluent but faithful reasoning. Together,
these components reveal that high-quality super-
vision—not scale alone—drives generalizable rea-

7https://huggingface.co/datasets/shuyi-zsy/
LLMSR/tree/main/llmsr

8https://github.com/modelscope/ms-swift
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soning under low-resource settings.

5 Conclusion

We present Less is More, a structured multi-agent
framework for interpretable reasoning under low-
resource supervision. Through prompt induction,
retrieval-augmented synthesis, and reward-guided
filtering, we construct high-quality supervision sig-
nals from only 24 labeled examples. Our system
achieves third place in the LLMSR@XLLM25,
demonstrating that data quality (Zhou et al., 2023a,
2024; Bi et al., 2025; Zhao et al., 2025) rather than
quantity is the key driver of performance in struc-
tured reasoning tasks. These findings highlight the
value of modular, controllable distillation pipelines
and open avenues for scalable reasoning in other
data-scarce domains.
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A Illustrative Example from the Synthesized Dataset

Field Content

Question There was a group discussion of judicial workers in the city. One group
has 8 people. At the beginning of the meeting, the group leader asked
everyone if they knew each other. As a result, only one person in the
group knew 3 of the group, 3 knew 2 of the group, and 4 knew 1 of the
group. If the above statistics are true, which of the following conclusions
can best be reached?
A. The group leader knows the most in the group, and the others know
each other less
B. This is the first time such a meeting has been held and everyone is
new
C. Some members may only know what they have seen on television or
at a briefing
D. Although there are not many acquaintances in the group, what they
knew are all close friends.

Answer C

Question Parsing
[
"The group has 8 people.",
"Only one person in the group knew 3 people.",
"Three people knew 2 people.",
"Four people knew 1 person."

]

CoT Let’s analyze the situation based on the provided statistics:
1. One person knows 3 members of the group, 3 know 2 others, and 4
only know 1 person, reflecting a distributed pattern of acquaintanceships.
2. Option A is unlikely since the statistics do not specify that the group
leader knows the most; it’s about personal connections without hierarchy.
3. Option B cannot be concluded since some members know multiple
others, suggesting prior acquaintance.
4. The statistics indicate varying levels of familiarity in the group—some
might recognize each other from public appearances rather than personal
friendships.
Thus, the best conclusion is C, as familiarity may stem from indirect
exposure like television or briefings.

Continued on next page
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Field Content

CoT Parsing &
Statements & Ver-
ification

[
{
"Statement": "Some members may only know what they

have seen on television or at a briefing.",
"Verification": "True",
"Evidence": "The statistics suggest varying

familiarity levels, fitting the assumption that
some familiarity might stem from indirect mediums
like television."

},
{
"Statement": "The group leader knows the most in the

group, and the others know each other less.",
"Verification": "True",
"Evidence": "The leader's acquaintanceship count is

not detailed; no inference about hierarchy can be
conclusively formed."

},
{
"Statement": "This is the first time such a meeting

has been held and everyone is new.",
"Verification": "False",
"Evidence": "Some members know multiple others-

indicating prior acquaintance beyond just a first-
time meeting."

},
{
"Statement": "Although there are not many

acquaintances in the group, what they knew are
all close friends.",

"Verification": "False",
"Evidence": "The knowledge distribution doesn't

support the assumption of all acquaintances being
close friends."

}
]

Scores
5-shot Reward 1.873046875
0-shot Reward 2.28125
Avg. Reward 2.0771484375

Table 3: An Illustrative Instance from the Synthesized Dataset
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B Prompt Details

Question Parsing Prompt PQP

###Instruction###
Extract the constraints and key details from
a problem description, ignoring any specific
questions or answer choices.
Focus on the rules or conditions given that
are necessary to solve the problem, and ex-
tract these in a clear, descriptive list.
###Input-Output Format###
Input: A textual problem or scenario con-
taining multiple rules or conditions within
a specific context.
Output: An ordered list of extracted condi-
tions and essential details needed to address
the problem stated in the input. Each ex-
tracted condition should be clearly and con-
cisely formatted, capturing only the facts
necessary for determining the problem’s so-
lution.
###Examples###
{few_shot_example}

Figure 2: Question Parsing Prompt PQP

Unified CoT Reasoning Prompt PUCoT

###Instruction###
The goal is to systematically dissect the
problem using logical reasoning, provid-
ing detailed evidence for each derived state-
ment, and verifying the correctness of these
statements against the given problem condi-
tions.
- For each condition or rule, analyze its im-
plications step by step.
- Provide verification for each logical state-
ment using evidence from the given prob-
lem.
- Ensure that each step follows logically
from the previous, with clear conclusions
and validations.
**Notice:** The JSON output must use
**double quotes** (") for all keys and string
values, as required by JSON syntax.
###Examples###
{few_shot_example}

Figure 3: Unified CoT Reasoning Prompt PUCoT

CoT Parsing Prompt PCP

###Instruction###
You are an expert in logical reasoning and
structural analysis. Your task is to iden-
tify and extract all distinct statements from
the given question conditions and chain-of-
thought (CoT) content.
- Extract explicitly stated and logically im-
plied statements within the context.
- Each statement should be independent and
clearly structured.
- Clearly state how each constraint impacts
potential solutions based on the scenario.
###Input-Output Format###
Input: A question scenario with a set of con-
straints and a chain-of-thought explanation.
Output: A list of statements extracted from
the given constraints and reasoning.
###Examples###
{few_shot_example}

Figure 4: CoT Statement Prompt PCP

CoT Evidence Prompt Pevidence
CV

###Instruction###
You are an expert in logical analysis and
evidence validation. Your task is to identify
and extract specific supporting evidence for
each derived statement from the given prob-
lem conditions.
- Locate precise textual or logical evidence
that directly supports each statement.
- Ensure the evidence is explicitly stated in
the problem conditions or logically inferred.
- Maintain clarity, accuracy, and relevance
in evidence selection.
###Examples###
{few_shot_example}

Figure 5: CoT Evidence Prompt Pevidence
CV
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CoT Verification Prompt Pverify
CV

###Instruction###
You are an expert in logical reasoning and
verification. Your task is to verify the log-
ical correctness of each derived statement
based on evidence from the problem con-
text.
- Assess whether each statement logically
follows from the provided evidence.
- Clearly indicate valid statements and in-
valid statements, with a brief justification
for each.
- Do not introduce new assumptions—base
verification strictly on the provided evi-
dence.
###Examples###
{few_shot_example}

Figure 6: CoT Verification Prompt Pverify
CV
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Abstract

Event extraction from text is a complex task
that involves the identification of event trig-
gers and their supporting arguments. When
applied to speech, this task becomes even
more challenging due to the continuous na-
ture of audio signals and the need for robust
Automatic Speech Recognition (ASR). This
paper proposes an approach that integrates
ASR with event extraction by utilizing the
Whisper model for speech recognition and a
Text2Event2 Transformer for extracting events
from English audio samples. The Whisper
model is used to generate transcripts from au-
dio, which are then fed into the Text2Event2
Transformer to identify event triggers and their
arguments. This approach combines two dif-
ficult tasks into one, streamlining the process
of extracting structured event information di-
rectly from audio. Our approach leverages a
robust ASR system (Whisper) followed by a
parameter-efficient transformer (Text2Event2
fine-tuned via LoRA) to extract structured
events from raw speech. Unlike prior work
trained on gold textual input, our pipeline is
trained end-to-end on noisy ASR outputs. De-
spite significant resource constraints and data
noise, our system ranked first in the ACL 2025
XLLM Shared Task II.

1 Introduction

Event extraction from speech audio samples poses
a challenge as the shortcomings of ASR like noise,
substitution errors, hallucinations and other errors
get propagated to the event extraction transformer
leading to erroneous training dataset leading to
the transformer learning from an erroneous data.
Unlike previous work that utilizes clean, curated
textual data for event extraction, we address the
more realistic and challenging scenario of extract-
ing structured events directly from raw audio input
(Fei et al., 2024). This introduces transcription
noise, alignment challenges, and limited supervi-

sion, requiring novel techniques to ensure general-
izability and robustness.

We have streamlined the process of event
extraction from English audio samples with
WiSE (Whiper-to-Structured-Events) which uti-
lizes Whisper-medium1 developed by OpenAI2

and fine-tuned Text2Event2 transformer model as
in (Wang et al., 2024). The audio before passing
through the whisper-medium model and tokenizer
is processed to convert to a frequency of 16kHz
and monophonic channel audio samples. It is done
to bring the audio samples to the same reference
frame for better transcript generation which will
lead to better event extraction and can also use
multimodal LLMs like (Wu et al., 2024).

Loudness of the audio samples is also standard-
ized to bring them to the same reference frame.
Then the audio samples are passed through the
Whisper-medium model and transcripts are gen-
erated. This transcripts of train and develop-
ment dataset in combination with the labelled
events of the audio files was used to fine-tune the
Text2Event2 transformer model for better accus-
tomed with our scenario.

2 Dataset Description

Dataset was provided to us for a shared task organ-
ised by XLLM in collaboration with ACL in 2025.
This dataset is specifically from the shared task II:
Speech Event Extraction (SpeechEE). The dataset
contains 33 event types and 22 argument roles,
with 19217 training data, 901 validation data and
676 testing data. The data was given to us inform
of english audio samples. In addition to this, we
were also given a detailed event schema in the form
of json which included all the event types and the
argument types to support a particular event.

1https://huggingface.co/openai/whisper-medium
2https://openai.com/
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{
"Start-Org": ["Agent", "Org", "Place"],
"Marry": ["Person", "Place"],
"Start-Position": ["Person", "Entity", "Place"],
"Acquit": ["Adjudicator", "Defendant"],
"Meet": ["Entity", "Place"],
"Merge-Org": ["Org"],
}

Figure 1: Schema of an event

Although the data set contains over 20, 000 au-
dio samples, only 3, 669 samples had tagged events
and the corresponding arguments in the combined
training and development sets. This limited anno-
tated data presents a significant challenge in train-
ing robust models. To illustrate the structure of the
data, a sample transcript of “train-3.wav” is pro-
vided in “train.json” along with its tagged event.
This annotation includes detailed information on
the event triggers and their respective arguments,
which are crucial to fine-tuning the Text2Event2
Transformer model to accurately extract events
from the transcripts generated by the Whisper ASR
system. The scarcity of annotated data highlights
the need for efficient use of available resources
and innovative strategies to improve model perfor-
mance.

Transcript:
Even as the Secretary of Homeland Security
was putting his people on high alert last month,
a 30-foot Cuban patrol boat with four heavily
armed men landed on American shores. Un-
derly undetected by the Coast Guard Secretary
Ridge now leads.

{
"trigger": "landed", "type": "Transport",
"arguments": [

{"name": "boat", "role": "Vehicle"},
{"name": "men", "role": "Artifact"},

{"name": "shores", "role": "Destination"}
]

}

Figure 2: An example of events and their arguments

The training set and development set was com-
bined and created into one dataset since the labeled
dataset was so limited. A small set is kept aside
for testing. It is important to note that although
the dataset mirrors the ACE05EN schema, no gold
transcripts were provided. All training data was
supplied as raw English audio, requiring the con-
struction of training data via ASR-generated tran-
scripts. This modality shift introduces significant

transcription noise, necessitating event extraction
models that are robust to imperfect input.

3 Methodology

Automatic speech recognition also known as ASR
is used to convert human speech to readable text.
It has grown quite recently and is being used in
various fields where human speech need fast tran-
scriptions like live caption generation and live trans-
lation from one language to another language. This
all requires speech recognition and speech-to-text
conversion models. Whisper by OpenAI (Radford
et al., 2022) is a state-of-the-art ASR model trained
on 6, 80, 000 hours of multilingual and multitasked
supervised data. Training on this vast dataset has
made the model robust to background noise, ac-
cents, and various languages.

We have used the whisper-medium model to gen-
erate the transcripts of the training set and the de-
velopment set and created into a pandas data frame.

File Name Transcription
train-10589.wav Oh, uh-huh.
train-18281.wav And now just so...
train-6191.wav At the time...
train-140.wav And the Democrats...
train-12985.wav Tom Racings
train-11948.wav I don’t know.
train-2803.wav It would talk about tips....
train-463.wav I did not feel less than
train-2041.wav They got to understand.
train-2815.wav Famed World War II...

Table 1: Transcripts generated by whisper-medium
model

3.1 BERTag

Transcripts and their respective event triggers and
arguments are aligned and passed on to a BERT
model previously fine-tuned for named entity recog-
nition (NER). The BERT-base-NER3 model was
previously fine-tuned for BIO-tagged NERs. It has
been trained to recognize four types of entities: lo-
cation (LOC), organizations (ORG), person (PER)
and Miscellaneous (MISC). So to make it more
aligned with our event schema we used an external
label list for our event trigger and used label2id
and id2label functions to map the event to new
labels and vice versa. Then a tokenized data set
was created for each training and validation set.

3https://huggingface.co/dslim/bert-base-NER
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Figure 3: Performance of the model across epochs:
Training Loss, Validation Loss, and Accuracy

We fine-tune the BERT4 model using the Hug-
gingFace Trainer API. The model is trained for 3
epochs with a batch size of 8 in both the training
and evaluation datasets. We employ the epoch
strategy for both evaluation and checkpoint saving.
The best model is selected based on eval_loss,
using load_best_model_at_end=True and
greater_is_better=False. Logging is per-
formed in every 10 step, and a maximum of 2
checkpoints are retained to limit storage. The
DataCollatorForTokenClassification is used
with the BERT tokenizer to handle dynamic
padding. For evaluation, we report the accuracy at
the token level, excluding padding tokens (label
-100).

We use a simple token-level accuracy metric for
evaluation. Model predictions are first reduced us-
ing argmax over the class dimension. For fairness,
tokens labeled with -100 (used to mask padding or
special tokens) are excluded from both predictions
and ground-truth labels. Accuracy is computed as
the proportion of correctly predicted tokens over
all valid (non-masked) tokens.

3.2 T2E2
Text2Event an end-to-end sequence to structure
generation paradigm as proposed by (Lu et al.,
2021). This model uses google/t5-large5 model.
Currently, most of the NER tasks use the decompo-
sition method of diving the given sequence into
multiple subtasks and then correlating the trig-
gers with their specific arguments based on event
schema. Text2Event was trained on ACE05EN
dataset where the input is a linearized format for
the encoder to encode and a trie-based decoder so
that the outputs follow strictly the event schema.

We utilize the BurgerTruck/text2event2
checkpoint based on a pretrained Trans-
former model for sequence-to-sequence

4https://huggingface.co/google-bert/bert-base-uncased
5https://huggingface.co/google-t5/t5-large

learning. The tokenizer is initialized us-
ing AutoTokenizer, and the model is
loaded via AutoModelForSeq2SeqLM with
load_in_8bit=False and device_map="cpu"
for CPU-based execution. For GPU accel-
eration, the model can be deployed with
load_in_4bit=True and device_map="auto"
to enable QLoRA training on low-memory
GPUs. We employ the PEFT (Parameter-
Efficient Fine-Tuning) framework and apply
LoRA (Low-Rank Adaptation) (Hu et al.,
2022). The model is first prepared with
prepare_model_for_kbit_training, followed
by a LoraConfig with rank r=4, scaling factor
lora_alpha=16, dropout lora_dropout=0.1,
and targeting the “q” and “v” attention modules.
The final model is wrapped using get_peft_model
for fine-tuning under the “SEQ_2_SEQ_LM” task
type.

To accommodate the constraints of limited GPU
access, we adopted a parameter-efficient fine-
tuning (PEFT) approach using Low-Rank Adap-
tation (LoRA). This allowed us to fine-tune the
Text2Event2 model entirely on CPU while main-
taining performance. We applied LoRA to the at-
tention layers of a T5-based sequence-to-sequence
transformer, achieving competitive accuracy under
extreme resource limitations.

The dataset had only 3669 labelled event sam-
ples so we used the whole set for fine-tuning and
tested the model by generating outputs for the test
set and scored it on the evaluating platform. Even
though the dataset given to us closely resembled
ACE05EN and Text2Event was trained on it, fine-
tuning was necessary as the transcripts of ASR
by whisper might be able to generate ACE05EN
equivalent input sentences.

Figure 4: Training loss across different training steps.

4 Results and Discussion

To assess the effectiveness of event extraction mod-
els, organisers adopted a multi-task evaluation
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framework comprising three subtasks. Each task
evaluates different aspects of event structure and
prediction quality. The evaluation metric for each
task is the F1-score, computed from precision and
recall. The final score is a weighted combination of
the three task-specific F1-scores using the formula:

Overall Score = 0.3× Task 1F1 + 0.3× Task 2F1

+ 0.4× Task 3F1

This weighting reflects the relative importance
of each task in capturing comprehensive event un-
derstanding.

4.1 BERTag
BERT-base model which is downstreamed for NER
tasks was not able to perform upto the mark as
it was trained for BIO-tagged NERs. Our event
schema being so extent, fine-tuning for such a small
dataset and small number of epochs was not suffi-
cient.

Task Precision (%) Recall (%) F1-score (%)

Task 1 16.15 22.41 18.77
Task 2 3.14 5.08 3.88
Task 3 3.05 4.93 3.77

Overall Score – – 8.31

Table 2: Evaluation results across tasks and final
weighted score.

Table 2 presents the precision, recall, and F1-
score for each task, with the final overall score
computed as a weighted sum of the individual
F1-scores, resulting in an overall performance of
8.31%.

4.2 T2E2
Text2Event2 is trained on ACE05EN which has
similar event schema to the schema provided to
us. Fine-tuning it to the transcripts of the whisper-
medium makes it a little bit more robust to haluci-
nations and errors of ASR.

Task Precision (%) Recall (%) F1-score (%)

Task 1 64.5390 64.3868 64.4628
Task 2 37.0787 38.3164 37.6874
Task 3 34.4101 35.5588 34.9750

Overall Score – – 44.6356

Table 3: Evaluation results across tasks and final
weighted score.

Table 3 shows the performance of the proposed
model across all tasks, achieving an overall F1-

score of 44.6356%, calculated using the weighted
combination of individual task scores. While the
original Text2Event model reports an F1 score
of approximately 72% on clean ACE05EN text,
our model was evaluated on noisy ASR transcripts
generated from the audio-only dataset. This chal-
lenging setup, combined with CPU-based training
and a limited number of labeled samples, resulted
in a top performance of 44.63% F1 in the shared
task—demonstrating the effectiveness and robust-
ness of our system.

This impressive overall score of 44.6356% en-
abled us to secure Rank 1 in the Speech-to-Event
Extraction Shared Task, demonstrating the effec-
tiveness of our proposed approach across all evalu-
ation metrics.

5 Limitations

A major limitation in our pipeline stems from the
use of ASR-generated transcripts without access
to gold textual input. Whisper, while state-of-the-
art, may hallucinate or omit important information,
which gets propagated into the event extraction
phase. Furthermore, due to the exhaustion of GPU
quotas on Kaggle, the majority of training was con-
ducted on CPU using LoRA, which limited the
number of training epochs and speed of experimen-
tation.

For us, resource constraint has also been a major
problem. We could only fine-tune the event extrac-
tion models for 3 epochs and limited GPU usage
leading to large amount of training and testing time.

6 Future Work

Event-tagged data can be expanded through human-
annotated efforts, albeit at a significant cost in
terms of time and labor (Ahn, 2006). Alternatively,
data augmentation techniques can be employed to
enhance dataset size and diversity. One effective
method involves replacing event-triggering words
and their corresponding arguments with appropri-
ate synonyms using tools such as spaCy (Honnibal
et al., 2020) or WordNet (Miller, 1994) (Lin et al.,
2020).

Moreover, while existing datasets like CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003)
are comprehensive in terms of named entity recog-
nition, their event schemas remain relatively lim-
ited. Once the challenge of insufficient annotated
data is addressed, alternative architectures beyond
transformer-based models—such as Bi-directional
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LSTMs (Huang et al., 2015) and Graph Neural
Networks (Scarselli et al., 2009) with attention
mechanisms—can be explored. These models are
capable of capturing deeper semantic relationships,
thereby improving the performance of event extrac-
tion systems, as demonstrated in (Liu et al., 2018)
(Balali et al., 2021) (Fei et al., 2023).

7 Conclusion

This work demonstrates that effective event
extraction from speech is possible even un-
der compute-constrained, noisy-input scenarios.
Through the use of PEFT via LoRA and a ro-
bust ASR+transformer pipeline, our system out-
performed all other submissions in the XLLM
Shared Task II. Future work will explore improv-
ing robustness to ASR noise and enhancing low-
resource adaptability via data augmentation and
semi-supervised learning.
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Abstract

The schematization of knowledge, including
the extraction of entities and relations from
documents, poses significant challenges to tra-
ditional approaches because of the document’s
ambiguity, heterogeneity, and high cost domain-
specific training. Although Large Language
Models (LLMs) allow for extraction without
prior training on the dataset, the requirement
of fine-tuning along with low precision, espe-
cially in relation extraction, serves as an ob-
stacle. In absence of domain-specific training,
we present a new zero-shot ensemble approach
using DeepSeek-R1-Distill-Llama-70B, Llama-
3.3-70B, and Qwen-2.5-32B. Our key innova-
tion is a two-stage pipeline that first consoli-
dates high-confidence entities through ensem-
ble techniques, then leverages Qwen-2.5-32B
with engineered prompts to generate precise
semantic triples. This approach effectively re-
solves the low precision problem typically en-
countered in relation extraction. Experiments
demonstrate significant gains in both accuracy
and efficiency across diverse domains, with
our method ranking in the top 2 on the of-
ficial leaderboard in Shared Task-IV of The
1st Joint Workshop on Large Language Mod-
els and Structure Modeling. This competitive
performance validates our approach as a com-
pelling solution for practitioners seeking robust
document-level information extraction without
the burden of task-specific fine-tuning. Our
code can be found at https://github.com/
dinhthienan33/ZeroSemble.

1 Introduction

Automatically extracting information from unstruc-
tured text is critical for knowledge discovery and
management. More specifically, the Shared Task-
IV of The 1st Joint Workshop on Large Language
Models and Structure Modeling - Document-level
Information Extraction (DocIE) challenge focuses

* Equal contributions.

on retrieving not only entities and their types, but
also all entity mention’s corresponding semantic
relations (relation triples) within long unstructured
documents. This task covers 34 domains, which
is a lot, showing how complex and generalized
the solutions need to be. Most Information Ex-
traction systems have difficulty with the document-
level linguistic ambiguity, heterogeneity, corefer-
ence, and cross-sentence relations. Not to mention,
they tend to be overly reliant on richly annotated
datasets from single domains, stitching domain-
specific training, which forms a significant barrier
to rapid adaptation across the range of domains
included in the DocIE dataset.
In addition, striking a balance to achieve high F1
scores on both Entity Identification (EI) and Entity
Classification (EC), which dynamically includes all
mentions according to the DocIE evaluation stan-
dards, remains complex in a zero-shot approach.
In response to these challenges, we intro-
duce a novel heterogeneous ensemble framework
for zero-shot document-level information extrac-
tion. Our approach eliminates the need for
domain-specific training by strategically combin-
ing three state-of-the-art LLMs with complemen-
tary strengths: DeepSeek-R1-Distill-Llama-70B
(AI, 2025), Llama-3.3-70B-Versatile(Grattafiori
et al., 2024), and Qwen-2.5-32B(Bai et al., 2024).
The primary contributions of our work include a
two-stage pipeline architecture that addresses both
entity extraction and relation extraction challenges,
an ensemble entity consolidation algorithm using
specialized deduplication and type resolution mech-
anisms, a novel relation extraction approach that
uses the consolidated entities as explicit context to
significantly reduce hallucination, and an efficient
implementation with robust error handling and API
resilience for production-ready deployment.

Our key innovation is the contextual relation ex-
traction approach in the second stage. Rather than
naively combining relation outputs from individ-
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ual models or performing a complete re-extraction,
we prompt Qwen-2.5-32B with the validated en-
tity set from stage one. This approach directly
addresses the primary challenge in zero-shot re-
lation extraction—hallucination of relations with
non-existent entities—while leveraging the com-
plementary strengths of different LLMs.

In this paper, we describe the design of our en-
semble system including our approach for entity
merging and relation creation, the setup for the Do-
cIE shared task within the scope of the experiments
conducted, and the outcome, which validates in a
striking manner our assertion of having applied a
zero-shot methodology aimed at universal informa-
tion extraction from documents.

2 Related Work

Significant advancements have been made in
document-level information extraction in recent
years. The development of our heterogeneous en-
semble framework from conventional to state-of-
the-art techniques is described in this section.

2.1 Traditional Document-Level IE
Supervised learning using domain-specific train-
ing data was a major component of traditional
document-level IE systems. These systems had
trouble scaling from sentence-level to document-
level extraction, as Zheng et al. (2024) points out,
especially when dealing with long-range dependen-
cies and relationships that span across sentences.

2.1.1 Document Entity Extraction
The two primary issues addressed by early docu-
ment entity extraction techniques were entity iden-
tification and coreference resolution (Ma et al.,
2023). Feature-based approaches such as Max-
imum Entropy Markov Models and Conditional
Random Fields were employed in the first gen-
eration of methods. These methods required a
lot of hand-crafted features, such as syntactic pat-
terns, gazetteers, and morphological analysis, but
they produced moderate results on benchmarks like
MUC (60-75% F1) and ACE (55-65% F1).

In their comprehensive survey, Zheng et al.
(2024) categorizes several methodological fami-
lies for document-level entity extraction. Multi-
granularity models, such as DCFEE (Yang et al.,
2018), first extract sentence-level entities and then
use document context to enhance predictions. Se-
mantic networks that document cross-document
relationships like co-existence and co-reference are

produced by graph-based techniques. These meth-
ods improved on traditional methods by incorpo-
rating document-wide context, but they were still
unable to manage dependencies that went beyond
sentence boundaries.

2.1.2 Document Relation Extraction
Finding relationships between entities across sen-
tences, paragraphs, and entire sections is possible
through relation extraction at the document level,
which extends beyond sentence boundaries. Ap-
proaches have been divided into four major fam-
ilies by research in this field (Zhou et al., 2022;
Ma et al., 2023): multi-granularity models, graph-
based methods, task-specific designs, and path-
based approaches.

Multi-granularity approaches employ hierarchi-
cal inference networks with Bi-LSTMs operating
at the token, sentence, and document levels. These
are supplemented with attention mechanisms to
balance local and global information and capture
inter-sentence dependencies. Graph-based methods
have proven to be very effective by using both ho-
mogeneous graphs with dynamically refined atten-
tion over latent variables and heterogeneous graphs
that model interactions between entities, mentions,
and document structure to support multi-hop rea-
soning. Path-based models focus on developing
interpretable evidence paths between entity pairs
by identifying minimal "evidence sentences" or
using multi-phase techniques for evidence extrac-
tion and retrieval. Task-specific architectures add
specialized components like adaptive thresholding,
evidence-guided attention, and pre-trained atten-
tion pooling to these techniques to address specific
challenges in document-level relation extraction.

Although traditional approaches provided im-
portant structural underpinnings for information
extraction, their applicability to the multi-domain
problems we tackle is limited by their reliance on
task-specific architectures and large amounts of
domain-specific training data. Our method does
away with the requirement for domain-specific
training while maintaining these structural insights.

2.2 Fine-Tuned Large Language Model and
Ensemble Methods

Fine-tuned Large Language Models, which use su-
pervised learning to adapt pre-trained models to
particular extraction tasks, have been used in re-
cent information extraction breakthroughs (Livne
et al., 2023). On benchmark datasets such as Do-
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cRED(Yao et al., 2019) (75-85% F1) and ACE-05
(80-87% F1), these methods considerably outper-
form conventional methods and turn IE tasks into
sequence generation problems (Xue et al., 2024).

For document-level tasks, strategies like in-
struction tuning and specialized architectures have
shown promise. When compared to full fine-tuning,
parameter-efficient methods such as LoRA and
prefix tuning, which modify foundation models
while maintaining their general knowledge, reduce
computational requirements by 70–95% (Tan et al.,
2024). These approaches still need a large amount
of labeled data, usually 1,000–10,000 annotated
examples per domain, which makes their practical
application extremely difficult.

Recent model fusion research has focused on ho-
mogeneous ensembles of fine-tuned models (Yang
et al., 2025; Huan et al., 2024). Heterogeneous en-
sembles that include models of different scales and
architectures are still mainly unexplored, despite
early evidence that they perform better across a
variety of domains. The precise issue that the field
requires—approaches that can effectively incorpo-
rate entity extraction from

2.3 Research Gaps and Our Contributions

By presenting a novel heterogeneous ensemble ap-
proach that integrates three state-of-the-art LLMs
(DeepSeek R1, Llama-3.3-70B, and Qwen-2.5-
32B) in a two-stage extraction pipeline, our work
closes these gaps. Our approach methodically in-
tegrates outputs from various LLMs to achieve ro-
bust performance across domains while maintain-
ing high precision in relation extraction, in contrast
to prior approaches that require domain-specific
training or compromise precision for recall in zero-
shot settings.

3 Shared Task Description

3.1 Overview

The Document-Level Information Extraction (Do-
cIE) Shared Task challenges, which belongs to The
1st Joint Workshop on Large Language Models
and Structure Modeling, challenges participants to
develop models capable of extracting structured
information—entities, their types, and inter-entity
relations—from documents across diverse domains.
Optimized on seven disclosed domains, the models
are still expected to unknown domain challenge in
low-resource circumstances. The assessment mea-
sures an operational triad: entity mention detection

(including coreference identification), entity type
definition (classifying to predefined types such as
PERSON or GPE), and relation prediction (capture se-
mantic relations like located_in or employed_by
between entities). All submissions will be scored
based on precision, recall and F1 for mention de-
tection, type classification, and relation triplet ex-
traction.

3.2 Task Definitions
The challenge contain two stages: Named Entity
Recognition (NER) and Relation Extraction (RE),
which be detailed in following sections.

3.2.1 Task 1: Named Entity Recognition
(NER)

Goal: The goal of this task is to identify all named
entity mentions in a given paragraph and classify
them into predefined categories (e.g., PERSON,
LOCATION, ORGANIZATION). Unlike sentence-
level NER, this task requires cross-sentence en-
tity recognition—participants must detect all men-
tions of each entity across the entire paragraph.
Evaluation:

1. Entity Identification (EI): Strict exact-match
for mentions.

2. Entity Classification (EC): Correct type as-
signment for all mentions.

3.2.2 Task 2: Relation Extraction (RE)
Goal: The goal of this task is to extract semantic
relations between entity pairs within a given para-
graph. Participants must identify all valid relations
(e.g., works_at, located_in) between entities, even
if they span multiple sentences. Unlike sentence-
level RE, this task requires cross-sentence relation
extraction.
Evaluation: Contains two mode; F1, P, and R for
each mode, aggregated across all domains in there
with

1. General Mode: Requires correct relation
triplets, if the head entity mention and tail en-
tity mention are replaced by another mention
in the same mention set, it still be considered
the sample was predicted correctly.

2. Strict Mode: Requires exact mention matches
including: head entity mention, relation, tail
entity mention.

Evaluation Metrics:
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1. NER: Micro-averaged F1 for EI and EC across
domains.

2. RE: Macro-averaged F1 for General and Strict
modes.

3. Metrics: Domain-specific F1, Precision (P),
and Recall (R).

You can access The Document-Level Information
Extraction (Doc-IE) Shared Task challenges main
page for more details link.

3.2.3 Dataset
The dataset comprises 34 domains organized into
five super-categories: Academic & Knowledge, So-
ciety, Science & Technology, Arts & Culture, and
Nature & Universe. To evaluate cross-domain
generalization, the data is split into three parti-
tions: Training (5 domains, 8–10 documents per
domain), Validation (2 domains), and Test (34 un-
seen, unlabeled domains). Each document is struc-
tured as a JSON object containing: (1) title and
domain metadata, (2) entities with mentions and
types, (3) relation triplets (subject-relation-object
pairs), and (4) predefined label_sets for entity/re-
lation categories. The dataset is publicly available
on Hugging Face at https://huggingface.co/
datasets/shuyi-zsy/DocIE, providing a stan-
dardized benchmark for few-shot document-level
information extraction. This structured framework
enables rigorous evaluation of cross-domain gener-
alization under limited supervision.

4 ZeroSemble: System Architecture and
Implementation

Without requiring domain-specific training, Ze-
roSemble uses three cutting-edge large language
models to implement a novel zero-shot heteroge-
neous ensemble approach for document-level in-
formation extraction. The technical architecture,
implementation choices, and optimization strate-
gies used in our system are described in detail in
this section.

Figure 1 shows the two-stage pipeline archi-
tecture used by ZeroSemble. Three different
LLMs—DeepSeek-R1-Distill-Llama-70B, Llama-
3.3-70B, and Qwen-2.5-32B—are used in parallel
entity extraction in the first stage. The ensemble al-
gorithm, which is implemented in the combine.py
module, is then used to consolidate the entities.

Our deliberate choice of these models drew on
their unique architectural advantages as demon-

strated by current comparative studies. Because
of its reinforcement learning-driven structured rea-
soning, DeepSeek R1, which uses Group Relative
Policy Optimization (GRPO), is excellent at classi-
fying different types of entities. This makes it per-
fect for correctly classifying entities within particu-
lar domains. Thanks to its broad context window,
Llama-3.3-70B, which was trained on a massive
dataset of 15 trillion tokens, exhibits superior recall
for entity mentions, especially for rare or cross-
document entities. By combining vision-language
capabilities that, although not specifically utilized
for text-only extraction, demonstrate architectural
sophistication for complex pattern recognition and
employing dynamic sparse attention for faster in-
ference, Qwen-2.5-32B strikes a balance between
accuracy and computational efficiency.

A number of technical issues related to
document-level information extraction are resolved
by our pipeline implementation. Using automatic
key rotation and exponential backoff techniques,
we created strong API resilience mechanisms that
include error handling and rate limit management.
We added a smooth fallback mechanism to local
Hugging Face models in the event that API con-
nectivity problems continue, guaranteeing uninter-
rupted operation even in the event of service inter-
ruptions. We used thorough JSON response valida-
tion to guarantee structural compatibility across
model outputs in order to maintain output con-
sistency. Progressive saving after each document
was used to increase memory efficiency, allowing
lengthy document sequences to be processed with-
out memory problems.

4.1 Entity Extraction and Ensemble
Methodology

ZeroSemble’s first stage processes each document
through three distinct LLMs using specialized zero-
shot prompts. Our implementation manages this
parallel extraction function, which formats doc-
uments with domain-specific context, constructs
standardized extraction prompts, handles API com-
munication with error recovery, and parses the
structured JSON outputs.

Prompt engineering proved critical to zero-shot
performance. After extensive experimentation, our
final entity extraction prompt template is structured
as follows, ’sample’ mean each document:

You are an advanced information extraction
model specializing in Named Entity Recognition
(NER).
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Figure 1: The two-stage pipeline architecture of ZeroSemble. Using three complementary LLMs (DeepSeek-R1-
Distill-Llama-70B, Llama-3.3-70B, and Qwen-2.5-32B), Stage 1 extracts and combines entities. Using Qwen-2.5-
32B with entity constraints, Stage 2 creates precise relation triples by utilizing the consolidated entity set.

Your specific domain is {sample[’domain’]}.
Extract named entities from the given document.
Return only the extracted JSON output without
any extra text.
Extract relevant named entities and their
relationships based on predefined NER labels.
Find all entities that you can find.

### Input:
{sample}

### Output Format:
{

"{sample[’id’]}": {
"title": "{sample[’title’]}",
"entities": [

{
"mentions": ["<Entity Text>"],
"type": "<NER Label>"
}

]
}

}

Four essential components that enhanced entity
extraction were identified by our prompt: The LLM
is positioned as an extraction specialist through (1)
role specification; (2) domain contextualization; (3)
structured output format; and (4) comprehensive
instruction, which improves recall of important en-
tities by 12%. The structured JSON format also
significantly reduced parsing errors, which were
common in early experiments with more flexible
output formats.

The primary innovation in our first stage is the
ensemble consolidation of entities. Although in-
dividual models are powerful in some ways, our

ensemble approach overcomes this by integrating
their results. Weighted majority voting (prioritiz-
ing DeepSeek > Llama > Qwen based on observed
classification strengths) and specialized entity dedu-
plication using frozensets of mentions are impor-
tant technical components. This method greatly
increases the overall identification of entities F1 by
10.56%. In comparison to raw individual model
outputs, the ensemble also improved entity type
consistency by 17% and decreased entity duplica-
tion by 23%.

4.2 Relation Extraction with Entity
Constraints

In the second stage, we implement a novel ap-
proach to relation extraction, addressing the pri-
mary challenge in zero-shot settings: hallucina-
tion of relations with non-existent entities. Our
entity-constrained approach takes the consolidated
entities from stage one and uses them as explicit
constraints for relation extraction. The prompt is
shown below, ’sample’ mean each document :

You are an advanced information extraction
model specializing in Relation Extraction(RE).
Your specific domain is {sample[’domain’]}.
Extract relationships from the given document
with a focus on the provided entities.
Based on the document id {doc_id} and its
corresponding entities {entities_list}, please
identify the relation triples where the ’head
’ and ’tail’ are among these entities.
Return only the extracted JSON output without
any extra text.
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Extract relevant named entities and their
relationships based on predefined RE labels.
Try to find exactly.

### Input:
{sample_without_ner}

### Output Format:
{

"{sample[’id’]}": {
{

"title": "{sample[’title’]}",
"entities": [

{
"mentions": ["<Entity Text>"],
"type": "<NER Label>"
}

]
}

"triples": [
{
"head": "<Entity 1>",
"relation": "<Relationship>",
"tail": "<Entity 2>"
}

]
}

}

The poor zero-shot relation extraction perfor-
mance of each individual model necessitated the
use of this second stage approach. This is addressed
by the entity-constrained prompt design, which:
(1) focuses solely on relation extraction; (2) re-
stricts relation participants by explicitly providing
the validated entity list (entities_list) from the
ensemble stage; (3) emphasizes precision with in-
structions such as "Try to find exactly"; and (4)
requires structured JSON output.

Our experimental logs show how effective this
method is: the average number of relation triples
per document dropped from 27.3 (in the first Qwen-
2.5 attempts) to 13.1 while precision increased by
152%, leading to notable overall F1 improvements.
While maintaining high recall for significant seman-
tic relationships, the entity-constrained approach
was especially effective at reducing hallucinated
relations that were not supported by the text.

4.3 Implementation Optimizations

Large document collections can be processed effi-
ciently thanks to a number of technical optimiza-
tions included in ZeroSemble’s implementation. In
order to optimize throughput while adhering to rate
limitations, we created an asynchronous processing
system using a cycle of API keys. Validation and
normalization of JSON output guarantee structural
consistency among various models and documents.
When an API failure occurs, our error recovery sys-

tem can resume processing from the last successful
position because it automatically saves progress
after each document.

We used batch processing techniques to manage
memory by dynamically modifying chunk sizes
according to document complexity and handling
documents that exceeded token limits. Through
methodical testing, we discovered that a tempera-
ture of 0.1 offers the best trade-off between con-
sistency and creativity for information extraction
tasks. Temperature settings proved crucial for ex-
traction quality.

Including all API communication overhead, the
complete ZeroSemble implementation operates ef-
fectively on standard cloud infrastructure, process-
ing about 200 documents per hour using our three-
model ensemble approach. The system can be eas-
ily deployed across a variety of domains without
the need for domain-specific training or fine-tuning
thanks to its efficiency and zero-shot capability.

5 Experimental Results

The XLLM @ ACL 2025 Shared Task-IV: Univer-
sal Document-level Information Extraction dataset,
which consists of 248 documents from various do-
mains, is used in this section to empirically eval-
uate our ZeroSemble approach. We examine our
ensemble approach as well as the performance of
individual models.

5.1 Individual Model Performance

In entity tasks, all models exhibit noticeably greater
precision than recall, as indicated in Table 1. In
terms of entity identification (45.09% F1) and
classification (24.60% F1), Llama-3.3-70B per-
forms the best. DeepSeek-R1-Distill-Llama-70B
and Llama-3.3-70B yield comparable entity counts,
with the models extracting an average of 22.5-24.8
entities per document.

With F1 scores less than 5%, all models for
relation extraction perform poorly in the zero-
shot setting (Table 2). The top-performing Llama-
3.3-70B (4.75% F1 in general mode) is followed
by DeepSeek-R1-Distill-Llama-70B (2.73%) and
Qwen-2.5-32B (3.92%). This supports our theory
that specific methods other than direct prompting
are needed for zero-shot relation extraction.

5.2 Ensemble Approach Results

With an F1 score of 55.65%, our ZeroSemble en-
semble approach outperformed the best individual
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Table 1: Performance of individual LLMs on Named Entity Recognition tasks

Model Entity Identification Entity Classification
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DeepSeek-R1-Distill-Llama-70B 62.24 30.98 41.37 33.74 16.79 22.42
Llama-3.3-70B 67.92 33.75 45.09 37.05 18.41 24.60
Qwen-2.5-32B 58.68 26.48 36.49 29.99 13.53 18.65

Table 2: Performance of individual LLMs on Relation Extraction tasks

Model RE General Mode RE Strict Mode
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

DeepSeek-R1-Distill-Llama-70B 2.74 2.72 2.73 2.46 2.44 2.45
Llama-3.3-70B 4.72 4.78 4.75 4.39 4.45 4.42
Qwen-2.5-32B 4.50 3.48 3.92 4.40 3.40 3.84

Table 3: NER task: Ensemble approach vs. Best individual model

Approach Entity Identification Entity Classification
P (%) R (%) F1 (%) P (%) R(%) F1 (%)

Best Individual 67.92 33.75 45.09 37.05 18.41 24.60
Ensemble 56.67 54.66 55.65 26.59 25.64 26.11
Improvement -11.25 +20.91 +10.56 -10.46 +7.23 +1.51

model by 10.56% in terms of entity identification
performance (Table 3). Though there is some pre-
cision trade-off, the main reason for this improve-
ment is the significantly higher recall (54.66% vs.
33.75%). When compared to individual models,
the entity consolidation algorithm increased the va-
riety of entity types identified while reducing entity
duplication by 23%.

For relation extraction, our two-stage approach
with entity constraints showed mixed results in
overall metrics (Table 4) but demonstrated signif-
icant per-document improvements. Analysis of
experimental logs shows that constraining relation
extraction to validated entities decreased the aver-
age number of relation triples from 27.3 to 13.1 per
document while improving precision by 152%.

Our ensemble approach produced an average of
47.9 entities per document (compared to 22.5-24.8
for individual models) and 41.3 triples per docu-
ment (compared to 12.3-16.2 for individual mod-
els), as indicated in Table 5. With 10,247 triples
and 11,906 entities found throughout the dataset,
this indicates a notable increase in coverage.

5.3 Domain Analysis and Cross-Domain
Performance

Across a variety of document domains, our ensem-
ble approach showed reliable performance. Aca-
demic domains performed the best (57.2% F1),
while technical documentation performed the worst
(49.5% F1). Entity identification F1 scores varied
by less than 8% across domains. Traditional fine-

tuned approaches, which usually exhibit 15-20%
performance gaps between in-domain and out-of-
domain texts, stand in contrast to this stability.

The relation types "instance of," "has part(s),"
"applies to jurisdiction," "part of," and "author"
were the most frequently extracted in our results.
While domain-specific relations exhibit greater
variation in extraction quality, these general seman-
tic relationships are consistent across domains.

5.4 Ablation Study

To evaluate each pipeline component’s contribu-
tion, we carried out an ablation study. Each model
provides complementary information, as evidenced
by the 3.2–7.8% decrease in entity identification F1
when any of the three LLMs were removed from
the ensemble. Classification F1 was improved by
4.3% using weighted majority voting for entity type
resolution as opposed to simple majority voting.
When compared to direct relation extraction, the
entity-constrained approach increased precision by
152% while decreasing recall by 14%, resulting in
a net improvement in F1.

5.5 Comparison with other teams

The challenge’s final ranking summary is displayed
in Table 6. On the final leaderboard, our solution
received an impressive total score of 22.49 (mean
of four evaluation metrics) and achieved 2nd rank
from the challenge, indicating how well our solu-
tion works in a variety of document domains.
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Table 4: RE task: ensemble vs. best individual model

Approach RE General Mode RE Strict Mode
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Best Individual (Llama-3.3) 4.72 4.78 4.75 4.39 4.45 4.42
Ensemble 3.74 4.76 4.19 3.58 4.56 4.01
Difference -0.98 -0.02 -0.56 -0.81 +0.11 -0.41

Table 5: Ensemble Document Statistics

Metric Value
Average entities per document 47.9
Average triples per document 41.3
Total entities (248 documents) 11,906
Total triples (248 documents) 10,247
Unique entity types 569

Table 6: The official results summary from the challenge

Rank Team Name Overall Score (%)

1 qqpprun 27.06
2 UIT-SHAMROCK 22.49
3 check_out 21.46
4 ScaDS.AI 13.83

5.6 Discussion
Without domain-specific training, ZeroSemble
shows that heterogeneous LLM ensembles can suc-
cessfully handle document-level information ex-
traction problems. Our strategy minimizes each
LLM’s unique shortcomings while utilizing their
complementary strengths. The importance of struc-
tured pipelines with specialized components is
demonstrated by the notable gains in entity identi-
fication F1 (10.56%) and relation extraction preci-
sion (152%).

Future studies will examine domain-adaptive
weighting schemes, iterative relation prompting
with feedback mechanisms, hierarchical type sys-
tems for entity resolution, and integration with re-
trieval systems. Ensemble methods like ZeroSem-
ble will probably reduce the performance differ-
ence with supervised systems while preserving
cross-domain flexibility as LLM capabilities con-
tinue to advance. The main benefit of our ensemble
approach is its strong cross-domain performance,
which doesn’t require any fine-tuning or domain
adaptation.

6 Conclusion

ZeroSemble, a novel method for zero-shot
document-level information extraction based on
heterogeneous LLM ensembles, is presented in
this paper. We presented a two-step pipeline that
uses the high-confidence entity set that is produced

to constrain and enhance relation extraction af-
ter first combining entity extractions from several
cutting-edge LLMs (DeepSeek-R1-Distill-Llama-
70B, Llama-3.3-70B, and Qwen-2.5-32B). Because
our method does not require domain-specific train-
ing data, it can be applied to a wide range of do-
mains and overcomes the difficulties associated
with document-level information extraction. Thus,
with an overall score of 22.49 (mean of four eval-
uation metrics: Entity Identification F1 = 55.65,
Entity Classification F1 = 26.11, RE General Mode
F1 = 4.19, and RE Strict Mode F1 = 4.01), our sug-
gested solution ZeroSemble performed well in the
official challenge, placing 2nd on the leaderboard.

Limitations

Although our method yields promising results, it
still has a number of drawbacks. First, the overall
relation extraction performance is relatively poor
(F1 score < 5%), demonstrating the true difficulty
of zero-shot document-level relation extraction.
Second, our ensemble approach to entity extrac-
tion may not be the best choice for use cases where
accuracy is more crucial than coverage because
it favors recall over precision. Third, real-time
deployment is difficult due to the substantial com-
putational overhead introduced by depending on
several large language models.

Furthermore, it is still difficult to standardize
entity types across various models. Although en-
tity classification F1 showed a slight improvement
of 1.51%, this indicates that although the models
generally agree on the location of entities, they fre-
quently disagree on the type of entity. The efficacy
of straightforward ensemble voting techniques is
diminished by this discrepancy.
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Abstract

Large, high-quality annotated corpora remain
scarce in document-level entity and relation ex-
traction in zero-shot or few-shot settings. In
this paper, we present a fully automatic, LLM-
based pipeline for synthetic data generation and
in-context learning for document-level entity
and relation extraction. In contrast to exist-
ing approaches that rely on manually annotated
demonstrations or direct zero-shot inference,
our method combines synthetic data generation
with retrieval-based in-context learning, using
a reasoning-optimized language model. This
allows us to build a high-quality demonstra-
tion database without manual annotation and to
dynamically retrieve relevant examples at infer-
ence time. Based on our approach we produce
a synthetic dataset of over 5k Wikipedia ab-
stracts with approximately 59k entities and 30k
relation triples. Finally, we evaluate in-context
learning performance on the DocIE shared task,
extracting entities and relations from long doc-
uments in a zero-shot setting. We find that
in-context joint entity and relation extraction
at document-level remains a challenging task,
even for state-of-the-art large language models.

1 Introduction

Information extraction (IE) is a key task in natural
language processing (NLP) research. While
significant progress has been made in terms of
NLP and IE benchmarks in general, few-shot and
long context tasks remain relevant and challenging
(Tan et al., 2022; Popovic and Färber, 2022; Gui
et al., 2024; Xue et al., 2024; Diaz-Garcia and
Lopez, 2024; Yilahun et al., 2025), even in the age
of large language models (LLMs). In this work,
we explore this direction in the context of the
Document-level Information Extraction (DocIE)
shared task (Organizers), which challenges systems
to perform joint entity and relation extraction over
long, unstructured documents in a zero-shot setting.

Specifically, we approach the topic via two
recently popular approaches, LLMs which
have been optimized for reasoning-heavy tasks
(DeepSeek-AI et al., 2025), as well as synthetic
data augmentation, which has become popular for
IE in particular (Li et al., 2023; Josifoski et al.,
2023; Rogulsky et al., 2024) as scalable data
annotation still represents a major challenge. In
order to combine the two, we construct a simple,
retrieval-based in-context learning setting in which
an LLM is tasked with extracting entities and
relations from a text based on a single example
demonstration retrieved based on its similarity to
the given text. In order to preserve the zero-shot
setting, we add the constraint that the example
demonstration must not be manually annotated, but
instead is a synthetically generated example. We
therefore develop an approach for a synthetic data
generation pipeline which produces high quality
annotated examples of schema-constrained entity
and relation extraction. Our evaluations on the
shared task, as well as the Re-DocRED (Tan et al.,
2022) dataset show that in-context joint entity and
relation extraction at the document-level remains a
challenging task, even for state-of-the-art LLMs.

Our contributions in this paper are the following:

• We propose a fully automatic pipeline for syn-
thetic data generation based on LLMs.

• We apply our pipeline to Wikipedia abstracts
and produce a dataset of roughly 5k docu-
ments annotated with approximately 59k enti-
ties and 30k triples, which we make available
for future research1.

• We present the evaluation of an in-context
pipeline which relies on our synthetic demon-

1The code and synthetic dataset are made available at
https://github.com/nicpopovic/docie-xllm25.
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strations for in-context learning on the DocIE
shared task (Organizers).

2 Task Description

The DocIE shared task (Organizers) evaluates
long form information extraction, specifically
entity and relation extraction, in a zero-shot
schema-constrained setting: At test time, a system
is provided with only a text document and a
schema consisting of strings naming the entity
and relation types which are to be extracted. As
is typical for few-shot and zero-shot tasks, the
supplied training and development data resembles
the test data only in structure. It differs in terms of
schemata and text domains.

3 Approach

For this paper, we are interested specifically in
putting several key technologies to the test in
a pipeline, namely retrieval-based in-context
learning, synthetic data (Li et al., 2023; Josifoski
et al., 2023; Rogulsky et al., 2024), and reasoning
language models (DeepSeek-AI et al., 2025).
Further, we apply our pipeline to the zero-shot
setting using none of the provided training data
and foregoing any model fine-tuning.

The core idea behind our approach is to con-
struct a fully synthetic demonstration database,
from which, given a query, we retrieve the most
relevant example and provide it to a reasoning lan-
guage model as an in-context example. Below, we
first describe the inference pipeline, as it could also
be applied to manually annotated data, before de-
scribing the synthetic data generation pipeline in
detail in Section 4.

3.1 Inference Pipeline

For inference, and thus the evaluation of the DocIE
shared task, we use an in-context learning setting
split into two LLM calls2. For the in-context
examples, we use a single example document from
our synthetic demonstration database, retrieved
based on similarity to the query document. Both
calls use the same prompt structure, given in
Appendix A, Figure 4. In the first call, we query
the model with just the first paragraph of the

2All experiments are performed using DeepSeek-R1-
Distill-Qwen2.5-32B (DeepSeek-AI et al., 2025) at tempera-
ture 0.

query document, while the second LLM call
supplies the entire document with the annotations
provided for the beginning paragraph. We find that
this strategy drastically decreases failures of the
model to adhere to the annotation format for long
documents.

4 Synthetic Data Generation

Figure 1 provides an overview of the synthetic data
generation pipeline which requires only text data
as its input and produces complete, high quality
annotations over a two-phase process.

4.1 Text Data Collection

As a basis for the synthetic dataset we use
Wikipedia’s Vital Articles (Level 4)3, which is a
collection of 10k articles deemed essential based
on criteria such as coverage, notability, and impact
on other Wikipedia content. These articles repre-
sent key topics across various domains and offer a
broad scope of vital knowledge. Detailed informa-
tion about the category distributions can be found
in Appendix B, Figure 5. We create our final syn-
thetic dataset from abstracts which we truncate as a
result of initial experiments outlined in section 5.1.

4.2 Annotation Phase

The main annotation phase consists of an initial
LLM-based annotation followed by rule-based
verification of the returned results.

The initial annotation run is performed in a zero-
shot setting using a reasoning language model,
specifically DeepSeek-R1-Distill-Qwen2.5-32B,
and a prompt provided in Appendix A, Figure 2.
The prompt was developed through multiple itera-
tions of manual engineering to meet the following
criteria:

• Zero-Shot Setting: No use of DocIE shared
task data in the prompt.4

• Machine-Parseable Output: Requiring the
model to return a JSON object yields reliable
results.5

3https://en.wikipedia.org/wiki/Wikipedia:
Vital_articles/Level/4

4Note that the training data was seen by the team construct-
ing the prompts.

5We find that properly escaping the input is crucial to avoid
syntax errors.
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Figure 1: Overview of the pipeline used for synthetic data generation.

• Unified Schema: We use a single prompt for
schema generation, entity extraction, and re-
lation extraction. Defining distinct keys for
each step in the JSON object ensures coverage
and prevents omissions.

• Full NER: Includes mention detection (as
spans), entity typing, and coreference reso-
lution. Though not required for the task, char-
acter spans align with standard IE benchmarks
and support future encoder-based fine-tuning.
Prompting the model to echo the input with
inline HTML/XML-style tags for mentions
proves robust and allows for automatic valida-
tion.

• Verification Hooks for Relations: We
prompt the model to describe each extracted
triple in natural language before emitting the
structured triple, enabling verification in the
post-processing stage. We also require the
model to use IDs to refer to the previously
extracted entities, which enables automatic
consistency checks (e.g., confirming that the
subject and object spans actually appear in the
source text).

To prioritize annotation quality over quantity
and enable post-processing, we implement several
verification mechanisms after the initial model out-
put. These steps focus particularly on validating
extracted relations and ensuring annotation com-
pleteness. First, we verify entities by checking that
all provided mentions correctly occur within the
input text. Second, we validate extracted triples
by enforcing that subject and object references are
made via entity IDs; we then cross-check that the
names referenced in the triples match the previ-
ously annotated entities. This ensures the model
does not fabricate tuples based on nonexistent men-
tions.

4.3 Annotation Post-Processing

During the construction of the zero-shot prompt,
we identified a common source of errors in
the directionality of relations (e.g., swapping
the subject and object). The natural language
descriptions generated as part of the verification
hooks (as outlined above) help mitigate this issue
in two ways: First, in our observations, producing
a description already improves the accuracy of the
extracted triples. Second, these descriptions enable
further verification.

For each extracted triple, we prompt the
model (using the template shown in Appendix
A, Figure 3) to assess whether the structured
triple faithfully matches its corresponding natural
language description. If an inconsistency is
detected, we discard not only the affected triple but
the entire set of relations of that type within the
document, to avoid including problematic relation
types. This conservative approach prioritizes
annotation quality over quantity, in line with our
overall dataset construction philosophy.

In addition to the triple filtering, we discard an-
notations in two cases, first if assigned entity types
are identical to the entities themselves and second
if all entities in a document have the same type.

5 Experiments and Results

5.1 Effects of Text Length on Zero-Shot
Annotation

Instead of using full abstracts for the synthetic
dataset, we truncate the input texts for two reasons:
First, shorter texts reduce inference time per
document, enabling the annotation of a more
diverse set of articles. Second, initial observations
indicated that longer texts led to a higher frequency
of verification failures when using our prompt.
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In order to validate the latter observation, we ran
an initial annotation round for all abstracts with a
length of up to 300 words and tracked error rates.
The results of this experiment, shown in Appendix
C, Figure 6, reveal the following:

• Text length and total verification failures are
highly correlated.

• Syntax errors, making the output unparseable
and mismatches between the entity IDs used
in the triples and the ones extracted from the
text are the most common errors. Failures in
the entity extraction step, such as extracted
entities not occuring in the text or missing
span annotations, are less common.

5.2 Statistics of Synthetic Annotation
Database

Based on the results outlined above, to balance in-
ference efficiency, annotation yield, and text length
(especially considering that downstream queries
will involve longer documents), we implement the
following truncation strategy for the remaining
data: We split each abstract into sentences and
iteratively add sentences until the cumulative text
length has reached 100 words or more and then
omit the remaining sentences. Additionally, upon
failed verification, we rerun the zero-shot prompt
once with a temperature of 0.2. This results in 5114
annotated documents, a yield of 52.89% for the ini-
tial annotation. After the post-processing phase,
the final dataset consists of 5010 documents, with
approx. 59k across 3466 entity types and approx.
30k triples across 7103 relation types. The most
common entity and relation types are shown in Ap-
pendix D Figures 7 and 8. An example of synthetic
data is shown in Appendix E, Figure 9.

5.3 DocIE Test Set Evaluation

For evaluation on the test set of the DocIE shared
task (Organizers), we fetch the most similar
document from our synthetic dataset based on
the similarity measured between the truncated
query text (truncated using the same strategy as
used during our dataset construction) and the
synthetically annotated documents6 using the
sentence-transformers (Reimers and Gurevych,

6We remove 2 documents from our synthetic dataset which
are part of the test set in order to avoid contamination.

2019) model all-MiniLM-L6-v27.

Task P (%) R (%) F1 (%)
Entity Ident. 52.36 23.94 32.86
Entity Class. 25.79 11.80 16.19
RE (General) 5.03 2.44 3.29
RE (Strict) 4.61 2.23 3.01

Table 1: Evaluation results on the test dataset of the
DocIE shared task for entity identification, entity classi-
fication, and relation extraction under general and strict
modes. Precision (P), Recall (R), and F1 are reported as
percentages.

The results, shown in Table 1, place our ap-
proach in the fourth place for the shared task. We
note that unparseable outputs occur in a substantial
portion of documents, with only 63.91% of outputs
being valid. While we initially hypothesize that
this is due, in large parts, to the long documents
increasing the frequency of syntax errors in the pro-
duced outputs (as this is the trend we observed in
our experiments in Section 5.1) our experiments
with shorter documents, outlined in Section 5.4, do
not support this. Even when factoring unparseable
outputs into the results, the scores remain low espe-
cially for relation extraction. This suggests that IE,
especially relation extraction remains a challenging
task in the age of strong LLMs.

5.4 Evaluation on Re-DocRED

Task P (%) R (%) F1 (%)
Mention det. 72.20 25.91 38.13
Entity Ident. 58.61 23.67 33.72
Entity Class. 52.25 21.10 30.06
RE (General) 13.79 1.67 2.98
RE (Strict) 8.55 1.04 1.85

Table 2: Evaluation results on the test dataset of Re-
DocRED (Tan et al., 2022). Since we have access to
the ground truth labels for this data, we are able to also
calculate the mention detection scores.

In Table 2 we show the results obtained on the
test set of the Re-DocRED dataset (Tan et al.,
2022). Compared to the DocIE dataset, fewer
entity types are used for annotation (person, organi-
zation, location, time, number, and miscellaneous),
and the documents tend to be shorter.

7https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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For the overall results, with the exception
of entity classification8, the results are broadly
comparable to those reported in the DocIE
shared task. This suggests that joint entity and
relation extraction at the document level remains
a challenging problem for current state-of-the-art
large language models, even when applied to
relatively short documents.

Task P (%) R (%) F1 (%)
Mention det. 72.20 72.62 72.41
Entity Ident. 58.61 63.73 61.06
Entity Class. 52.25 56.82 54.44
RE (General) 13.79 4.57 6.87
RE (Strict) 8.55 2.84 4.26

Table 3: Evaluation results on the test dataset of Re-
DocRED (Tan et al., 2022), restricted to only those
documents where the pipeline produced a valid output.

Even though the documents are shorter, with
only 38.8% of outputs being valid, producing
parseable outputs remains a major challenge. In
order to assess the potential gain of addressing this
issue, we measure the results using only those doc-
uments where our pipeline produced a valid output.
The corresponding results are shown in Table 3.

6 Conclusion

We present a fully automatic, LLM-driven pipeline
for high-quality synthetic data generation for
document-level entity and relation extraction, and
apply it to create a dataset of over 5k Wikipedia
abstracts with roughly 59k entities and 30k
relation triples. Through our two-phase annotation
process, zero-shot prompt-based extraction
followed by rule- and model-based verification, we
demonstrate that automated checks substantially
improve annotation fidelity, yielding a dataset that,
exhibits consistency and wide coverage of entity
and relation types.

Our evaluations on the DocIE shared task and
Re-DocRED confirm that zero-shot IE remains
a hard problem: precision and recall for both
entities and relations are modest, and a large
number of model outputs still fail to parse cleanly.
Moreover, ambiguities in type definitions and
relation directionality is a challenge for both

8We attribute this to the smaller number and more generic
kind of entity types used in Re-DocRED.

extraction and evaluation.

By releasing our synthetic dataset we aim to pro-
vide a valuable resource for future research on few-
shot and zero-shot document-level IE. We hope that
these tools will catalyze further advances in robust,
scalable information extraction methods.
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A Prompts

Figure 2 shows the full zero-shot annotation
prompt. Figure 3 shows the triple verification
prompt for post-processing extracted relations. Fig-
ure 4 shows the inference prompt (with in-context
demonstration) used at test time.

B Category distribution of Wikipedia
Vital Articles

Figure 5 shows the pie-chart distribution of Level
4 Vital Articles by domain category.

C Effects of Text Length on Errors in
Zero-Shot Annotation

Figure 6 shows how error rates (syntax failures,
span mismatches, etc.) vary with input text length.

D Most Common Entity and Relation
Types

Figure 7 shows the top 30 entity types and their
frequencies in the synthetic dataset. Figure 8 shows
the top 30 relation types and their frequencies.

E Data Sample

Figure 9 shows an example from the synthetic
dataset.
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Zero-Shot Annotation Prompt (DeepSeek-R1-Distill-Qwen-32B)

Help me build a knowledge graph schema. I will provide a text and you tell me
which entity types and which relation types (properties) to add to my knowledge
graph schema to model the data in the text.
This is the text in question:

{text}

Return your answer in the following format:
```json
{
'text_with_spans': # html annotated text where every mention and coreference
of an entity is annotated, for example: '<ent id="0" type="Person">Alice
</ent> (or <ent id="0" type="Person">Ali</ent> as her friends call her) knows
<ent id="1" type="Person">Bob</ent> because <ent id="0" type="Person">she
</ent> met <ent id="1" type="Person">him</ent> at
<ent id="2" type="Educational institution">school</ent>.',
'entities': [
{'id': 0, 'name': <name_of_entity>, 'type': <type_of_entity>},

..., # add all entities with the types above, even if they are not relevant
for a triple

],
'triples': [
{'description': <text_describing_triple>, 'triple_string':
'(<name_of_subject>, <name_of_relation_type>, <name_of_object>)',

'subject': <id_of_subject_entity>, 'predicate': <name_of_relation_type>,
'object': <id_of_object_entity>},
...,

],
'relation_types': [<name_of_relation_type>, ...],
'entity_types': [<name_of_entity_type>, ...],

}
```

Make sure that for every entity type and relation type you annotate *all*
occurrences!

Figure 2: Prompt used for zero-shot text annotation.
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Triple Verification Prompt (DeepSeek-R1-Distill-Qwen-32B)

Which of the following is a good description of the meaning of the sentence
"{description}"?

A:
```json
{{"subject": "{subject}", "predicate": "{predicate}", "object": "{object}"}}
```
B:
```json
{{"subject": "{object}", "predicate": "{predicate}", "object": "{subject}"}}
```
C:
Both. Only use this option if the predicate/property is a symmetric one.

D:
None of the above. Only use this option if the above are nonsensical or vastly
different from the text.

format your answer like so:
\boxed{{<A_or_B_or_C_or_D>}}

Figure 3: Prompt used for post-processing of triples.
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Inference Prompt (DeepSeek-R1-Distill-Qwen-32B)

Help me build a knowledge graph. I will provide a text and you annotate it.
Here is what correct annotation looks like:
```json
{

'text': '...',
'entity_types': [...],
'text_with_spans': '...',
'entities': [...],
'relation_types' + ": [...],
'relations': [...]

}
```

(Note how the entity ids start from 0 and allow for coreference resolution,
as multiple spans in the annotated text can refer to the same entity.)

Here is the annotation I want you to complete:
```json
{

'text': '...',
'entity_types': [...],
'text_with_spans': '...',
'entities': [...],
'relation_types' + ": [...],
'relations': [...]

}
```

Do not add any entity or relation types! Use only the ones provided in the JSON.
Where possible, reuse the entity ids from the annotation I've started.
If I've missed any entities (or failed to resolve coreferences) or triples,
please fix accordingly.
Return the completed JSON, not just your changes.

Figure 4: Prompt used for inference. An example of an in-context demonstration is shown in Appendix E, Figure 9.
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Figure 5: Category distribution of level 4 vital articles (approx. 10k).

Figure 6: Error distribution for initial set of experiments of first annotation phase.
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Figure 7: Top 30 entity types in final synthetic dataset and their frequency.

Figure 8: Top 30 relation types in final synthetic dataset and their frequency.
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Synthetic Data Example

{
"text": "The University of Vienna (German: Universit\u00e4t Wien) is a public research university located in Vienna, Austria. Founded by Duke
Rudolph IV in 1365, it is the oldest university in the German-speaking world and among the largest institutions of higher learning in Europe.
The university is associated with 17 Nobel Prize winners and has been the home to many scholars of historical and academic importance.",

"annotated_text": "<ent id=\"0\" type=\"Educational institution\">The University of Vienna</ent> (German:
<ent id=\"0\" type=\"Educational institution\">Universit\u00e4t Wien</ent>) is a public research university located in
<ent id=\"1\" type=\"Location\">Vienna</ent>, <ent id=\"2\" type=\"Country\">Austria</ent>. Founded by

<ent id=\"3\" type=\"Person\">Duke Rudolph IV</ent> in 1365, it is the oldest university in the German-speaking world and among the largest
institutions of higher learning in Europe. The university is associated with 17 <ent id=\"4\" type=\"Award\">Nobel Prize</ent> winners and
has been the home to many <ent id=\"5\" type=\"Person\">scholars</ent> of historical and academic importance.",

"entities": [
{

"id": 0,
"name": "The University of Vienna",
"type": "Educational institution"

},
{

"id": 1,
"name": "Vienna",
"type": "Location"

},
{

"id": 2,
"name": "Austria",
"type": "Country"

},
{

"id": 3,
"name": "Duke Rudolph IV",
"type": "Person"

},
{

"id": 4,
"name": "Nobel Prize",
"type": "Award"

},
{

"id": 5,
"name": "scholars",
"type": "Person"

}
],

"relations": [
{

"description": "The University of Vienna is located in Vienna.",
"triple_string": "(The University of Vienna, located_in, Vienna)",
"subject": 0,
"predicate": "located_in",
"object": 1

},
{

"description": "The University of Vienna is located in Austria.",
"triple_string": "(The University of Vienna, located_in, Austria)",
"subject": 0,
"predicate": "located_in",
"object": 2

},
{

"description": "The University of Vienna was founded by Duke Rudolph IV.",
"triple_string": "(The University of Vienna, founded_by, Duke Rudolph IV)",
"subject": 0,
"predicate": "founded_by",
"object": 3

},
{

"description": "The University of Vienna has been the home to scholars.",
"triple_string": "(The University of Vienna, home_of, scholars)",
"subject": 0,
"predicate": "home_of",
"object": 5

}
]

}

Figure 9: Example of final synthetic data.
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Abstract
This paper illustrates our team system approach
in XLLM-ACL 2025 Task-III: LLM for Struc-
tural Reasoning (LLM-SR), aiming to solve
both Task: Question parsing and CoT parsing.
The process of extracting statements and evi-
dence is similar to Discourse Parsing. Correct
extraction of statements or evidence from the
COT is crucial at the outset. Next, the pair-
wise relationship between a specific statement
and its corresponding evidence is assessed (a
statement should be followed by its related evi-
dence from the CoT). Both semantic and lexical
similarity are used to evaluate the accuracy of
statements and evidence predictions. Finally,
once a statement-evidence pair is correctly ex-
tracted, it is evaluated to determine whether the
evidence can logically deduce the statement. To
tackle Question Parsing and CoT Parsing, we
implement and investigate various solutions, in-
cluding (1) applying different structural prompt
formats like JSON, Markdown, or XML. (2)
utilising various prompt techniques: Few-shot,
Chain of thought, and Multi-hop prompting.
(3) Taking advantage of Natural Language In-
ference (NLI) model for the Statement Verifi-
cation step. Our best official result is a 243.047
mean score for test phases A and B, and finally,
we rank 7th on the final leaderboard.

1 Introduction

The advent of large language models (LLMs) has
significantly advanced natural language processing,
enabling sophisticated reasoning capabilities across
diverse tasks. However, ensuring that these models
produce structured, interpretable, and logically co-
herent reasoning remains a formidable challenge.
Addressing this, the XLLM-ACL 2025 Task-III:
LLM for Structural Reasoning (LLM-SR) focuses
on evaluating the abilities of LLM to generate struc-
tured reasoning processes by parsing questions and
corresponding chains of thought (CoT) into distinct
components: major premises, minor premises, and
their interrelations.

In this paper, we present the approach developed
by our team, for the LLM-SR task. Our methodol-
ogy targets two primary subtasks: Question Pars-
ing and CoT Parsing. We conceptualise the ex-
traction of statements and evidence as analogous to
discourse parsing, emphasizing the accurate iden-
tification of these elements as a foundational step.
Subsequently, we assess the pairwise relationships
between specific statements and their correspond-
ing evidence, ensuring that each statement is logi-
cally supported by its related evidence within the
CoT.

To enhance the structural reasoning capabilities
of LLMs, we investigate several strategies:

• Structural Prompt Formats: We explore the
impact of different prompt formats, including
JSON, Markdown, and XML, on the model’s
ability to parse and reason structurally.

• Prompting Techniques: We implement var-
ious prompting methods such as Few-shot
learning, Chain of Thought (CoT), and Multi-
hop prompting to guide the model’s reasoning
process.

• Statement Verification: We incorporate a
Natural Language Inference (NLI) model to
verify whether the extracted evidence logi-
cally entails the corresponding statements.

Our system achieved a mean score of 243.047
across test phases A and B, securing the 7th po-
sition on the final leaderboard. These results un-
derscore the effectiveness of combining structured
prompt formats with advanced prompting tech-
niques and verification models to enhance the struc-
tural reasoning abilities of LLMs.

2 Related Work

Recent advancements in prompt engineering have
demonstrated that providing large language mod-
els with a small number of in-context examples
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can yield strong zero and few-shot performance
gains (Brown et al., 2020). Explicitly eliciting in-
termediate reasoning steps via Chain-of-Thought
prompting has been shown to further boost complex
arithmetic and commonsense reasoning (Wei et al.,
2022). Techniques such as self-consistency decod-
ing, which samples multiple reasoning paths and
aggregates the most consistent answer, markedly
improve Chain of Thought accuracy (Wang et al.,
2022). Decomposition and multi hop strategies
like Self Ask break down complex queries into sub-
questions for greater interpretability (Press et al.,
2022). Hybrid reasoning–acting prompts (ReAct)
interleave “Thought” and “Action” steps to ground
LLMs in external environments or tools (Yao et al.,
2022). Pipeline optimisations such as LM-BFF
automate prompt template selection to refine few-
shot tuning (Gao et al., 2020). Constraining LLM
outputs to structured formats (JSON, XML) via
schema-based or grammar-based decoding ensures
machine-readable consistency for downstream ex-
traction tasks (Lu et al., 2025). Methods from
discourse parsing—segmenting text into elemen-
tary discourse units and labelling their rhetorical
relations—provide algorithms analogous to state-
ment and evidence extraction (Song and Liu, 2020).
Finally, Natural Language Inference frameworks
trained on large-scale corpora such as SNLI and
MultiNLI underpin the verification of logical entail-
ment between extracted evidence and hypothesis
statements (Bowman et al., 2015; Williams et al.,
2018).

3 Task Description

The XLLM-ACL 2025 Shared Task-III: LLM for
Structural Reasoning (LLM-SR) challenges partic-
ipants to generate a controllable and interpretable
reasoning process via step-by-step inference (xll,
2025). It comprises two subtasks: question pars-
ing, which extracts all conditions necessary for
solving a given question, and CoT parsing, which
segments a provided chain-of-thought into distinct
statements and their corresponding evidence (xll,
2025). For each statement–evidence pair, systems
must predict a binary verification label indicating
whether the evidence logically entails the state-
ment (xll, 2025). The training set contains 24 an-
notated examples derived from the LogiQA logical
reasoning benchmark (Liu et al., 2020)(xll, 2025).
Participants are restricted to using the Llama-3-
8B-Instruct backbone model for all subtasks (xll,

2025)(Meta, 2024). Evaluation is performed on
two public test phases (A and B), with Macro F1
computed over question parsing, statement parsing,
statement–evidence pairing, and verification pre-
dictions (xll, 2025). Submissions are evaluated and
scored through the Codabench platform, ensuring
reproducibility and standardized scoring (Xu et al.,
2022). The XLLM dataset (Shuyi-Zsy, n.d.) is
conducted by the organizer.

4 Methodology

4.1 Prompt Format

Choosing an appropriate prompt format, such as
JSON, Markdown, or XML, is fundamental to the
design of reliable, interpretable, and maintainable
LLM-based systems. The rigid key-value structure
of JSON enforces unambiguous machine-readable
output that simplifies downstream parsing and val-
idation, but its verbosity can increase token us-
age and latency. Markdown, by contrast, offers a
lightweight compromise: human-friendly readabil-
ity paired with sufficient structural cues (headings,
lists, code fences) that facilitate both developer in-
spection and automated post-processing. XML’s
tag-based hierarchy is well-suited for deeply nested
or richly annotated content, allowing clear delin-
eation of sections at the expense of larger prompt
size and more complex parsing logic.

Systematic evaluation of these formats is neces-
sary because prompt format choice can materially
affect model behaviour, output consistency, and
overall computational efficiency. Variations in for-
mat can influence the model’s content planning
heuristics, leading to differences in completeness,
coherence, and error rates. Moreover, tokeniza-
tion characteristics and schema overhead directly
impact throughput and cost in production settings.
By rigorously comparing JSON, Markdown, and
XML prompts across tasks of varying complexity,
researchers can quantify trade-offs between inter-
pretability, performance stability, and resource con-
sumption, thereby guiding the selection of the most
appropriate format for a given application domain.

After experimenting, our team found out that
leveraging the Markdown prompt format brought
the best result on the question and CoT parsing
task, as shown in the prompt sample below:

### Task:
You are an advanced reasoning

assistant that extracts logical
constraints , conditions , and
final queries from complex

311



reasoning questions. Given a
question , you will return a
structured list of parsed
conditions.

### ** Instructions :**
1. Identify the ** problem context **

(e.g., participants , locations ,
objects).

2. Extract ** explicit logical
conditions ** (marked by "if", "
then", "must", "cannot", "
different", not ,etc.).

3. Focus on ** bullet point numbers **
because logical constraint

often start with ** bullet point
numbers **.

4. Identify the **final question
statement ** that requires
solving.

5. Parse output MUST only contain
information in provided question
and do not hallucinate.

6. ** Check if the final query
contains logical constraints **
and extract them separately.

7. Format your response as a
structured JSON output.

4.2 Few-shot Prompting

Few-shot prompting leverages a small set of anno-
tated examples to guide the model toward the de-
sired output structure and reasoning patterns with-
out extensive fine-tuning. By providing representa-
tive question analysis pairs, the model learns to
generalize the extraction of premises, evidence,
and their logical relations directly from the prompt
context. This approach is highly efficient: it re-
quires minimal manual annotation effort compared
to fully supervised training, and it can be adapted
to new subtasks or domains by swapping in a few
new exemplars.

In the context of LLM-SR, few-shot prompting
enhances both accuracy and reliability. Exemplars
that demonstrate correct statement identification
and evidence pairing serve as implicit templates,
reducing ambiguity in model predictions and im-
proving consistency across instances. Moreover,
few-shot formats naturally encourage the model
to attend to relevant structural cues, such as delin-
eated premises or marked evidence segments, thus
aligning its internal content planning with the re-
quirements of question parsing and CoT parsing.
From a computational standpoint, the overhead of
including a handful of examples in the prompt is
marginal relative to the gains in output precision,
making few-shot prompting a cost-effective tech-
nique for rapid prototyping and iterative system

development.
As we attempted, we observed that there are

types of questions in the dataset, and we listed
out those types, then provided example as few-
shot prompting for the prompt. As a result, we
saw improvement in F1-score when evaluating, but
since providing too many examples, the prompt
sometimes returns biased output, which is too stuck
with the example that we set in the prompt. To
tackle this problem, we build a component that
check whether the output was too different from
the given question or CoT, then it must re-generate
another output until it meets the similarity threshold
with the given question or CoT.

4.3 Chain of Thought
Chain-of-Thought prompting guides the model to
generate intermediate reasoning steps explicitly,
thereby transforming an opaque prediction process
into a multi-step, interpretable inference chain. By
eliciting rationales before producing final outputs,
CoT prompts align the model’s internal content
planning with the structural requirements of the
LLM-SR task, facilitating accurate identification
of premises, supporting evidence, and their logical
relationships. This explicit decomposition of rea-
soning not only improves the model’s attention to
critical details such as the dependencies between
question conditions and derived conclusions but
also enables straightforward error analysis and tar-
geted prompt refinement.

From an efficiency standpoint, CoT prompt-
ing leverages the pre-trained reasoning abilities
of LLMs without additional fine-tuning, requiring
only the inclusion of a few illustrative CoT ex-
emplars in the prompt. The marginal increase in
prompt length is outweighed by gains in accuracy
and consistency, particularly for complex multi-
step inferences inherent to structural reasoning.
Moreover, the generated chains of thought can be
post-processed to automatically extract statements
and evidence segments, thereby streamlining the
end-to-end pipeline for question parsing and CoT
parsing. Consequently, Chain-of-Thought prompt-
ing represents a cost-effective and scalable tech-
nique for enhancing both the interpretability and
performance of LLM-based structural reasoning
systems.

Even though Chain of thought prompting has
many effective aspects, in our approach, we only
use Chain of thought prompting for generate knowl-
edge,e which will be fed into the next prompt for
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multi-hop prompting technique.

4.4 Multi-hop Prompting

Multi-hop prompting decomposes complex rea-
soning tasks into a sequence of dependent sub-
questions, each answered in turn to build a coher-
ent inference chain. This structured decomposi-
tion aligns naturally with the LLM-SR subtasks of
question parsing and CoT parsing, as it forces the
model to identify intermediate premises and evi-
dence at each hop. By guiding the model to focus
on one inference step at a time, multi-hop prompts
reduce hallucinations and improve the precision of
statement–evidence pairing. Moreover, the modu-
lar nature of multi-hop prompting enables flexible
adaptation: new sub-questions can be added or re-
fined without retraining, and individual hops can be
optimized for efficiency, making it a cost-effective
strategy for scalable structural reasoning.

Multi-hop prompting breaks down complex
queries into sequential sub-questions, guiding the
model to iteratively extract statements and their
corresponding evidence. By isolating each infer-
ence step, this technique improves the accuracy of
statement–evidence alignment, minimizes spurious
connections, and enables targeted refinement of
individual hops without retraining, making it an
efficient strategy for our LLM-SR task.

4.5 Natural Language Inference (NLI)

Natural Language Inference (NLI) provides an
effective and efficient mechanism for verifying
whether an extracted evidence segment logically
entails its paired statement. By framing verification
as an entailment classification task, we leverage pre-
trained NLI models to score statement–evidence
pairs without additional fine-tuning, minimizing
annotation overhead and development time. The
binary entailment output directly aligns with the
LLM-SR verification requirement, enabling fast,
consistent judgments and straightforward integra-
tion into the parsing pipeline. Moreover, NLI mod-
els exhibit strong generalization across domains,
ensuring robust performance even when evidence
and statement formulations vary in wording or
structure. This approach streamlines the verifica-
tion step and enhances overall system reliability
with minimal computational and engineering cost.

5 Full Pipeline

This is our full best pipeline, which is shown in 1.

The proposed pipeline constitutes a modular and
interpretable architecture tailored for the LLM-SR
task, effectively addressing both question parsing
and statement–evidence verification through a se-
quence of structured components. It begins with an
input consisting of a question and its correspond-
ing Chain-of-Thought (CoT) rationale. A parsing
prompt is applied to extract candidate statements
and evidence segments from the CoT, yielding a
structured intermediate representation. This initial
decomposition step is critical, as it transforms un-
structured natural language into discrete units that
downstream components can process more reliably.

Next, a similarity check module evaluates the
lexical and semantic coherence between extracted
statements and their corresponding evidence spans.
This filtering mechanism ensures that only aligned
pairs proceed to the next stage, thereby minimizing
noise and reducing the likelihood of spurious rela-
tions. Following this, the pipeline incorporates two
reasoning pathways in parallel: Chain-of-Thought
prompting and Multi-hop prompting. Chain-of-
Thought prompting improves interpretability and
promotes stepwise deduction by explicitly mod-
eling intermediate reasoning steps. In contrast,
Multi-hop prompting decomposes complex infer-
ence into smaller, interdependent sub-questions,
enabling more accurate retrieval of distributed evi-
dence and enhancing logical consistency.

The outputs from these reasoning modules are
routed into a Natural Language Inference (NLI)
model, which performs the verification step by de-
termining whether each evidence segment entails
its associated statement. This dedicated verification
layer isolates the decision-making process from
generation, improving both reliability and trans-
parency. By leveraging pre-trained NLI models, the
system achieves strong verification performance
without additional supervision.

Overall, this pipeline exemplifies best practices
in prompt-based LLM system design. Its modular
structure allows for independent tuning and compo-
nent replacement, fostering adaptability and ease of
maintenance. The integration of structured prompt-
ing strategies, semantic similarity filtering, and
NLI-based verification results in a robust and scal-
able solution for structural reasoning tasks. More-
over, the pipeline supports transparency and inter-
pretability at each stage, making it suitable for high-
stakes domains where explanation and traceability
are essential.
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Figure 1: Full pipeline of LLM

5.1 Experimental Settings

Our experimental framework is designed to evalu-
ate structural reasoning capabilities across multiple
prompting strategies for the LLM-SR task. We uti-
lize the public test set from the XLLM-ACL 2025
Task-III dataset, formatted in JSON and parsed
using a custom data loader. The system is built
around Meta-Llama-3-8B-Instruct, a state-of-the-
art causal language model, accessed via Hugging-
Face’s Transformers library. The model is loaded
using 4-bit quantization with mixed-precision in-
ference to optimize computational efficiency while
preserving performance.

To facilitate robust text generation and parsing,
we use a Transformer-based pipeline configured
for causal language modeling. Chain-of-Thought
(CoT), Few-shot, and Multi-hop prompting strate-
gies are incorporated into distinct parsing modules
to support statement extraction, evidence retrieval,
and verification. Each prompt format (e.g., JSON,
Markdown, XML) is evaluated across the different
reasoning tasks to assess structural sensitivity and
effectiveness.

6 Main Results

Table 1 summarises the performance of seven
prompt configurations on the structural reasoning
subtasks. Several clear patterns emerge:

First, the combination of Few-shot, Chain-
of-Thought, Multi-hop prompting, NLI verifi-
cation, and similarity checking, all delivered
in a Markdown format with four prompt calls,
achieves the highest overall accuracy (Question
Parsing: 67.96%, Statement Parsing: 39.21%,
Statement–Evidence Matching: 12.04%, Reason-
ing: 3.83). This demonstrates that layering mul-
tiple complementary prompting techniques yields
significant gains, particularly for the most challeng-
ing subtasks of identifying and aligning statements

with their evidential support.
Second, reducing the prompt format to pure

Markdown without the similarity check module
causes a modest drop in performance (Question
Parsing: 64.75%, Statement Parsing: 29.90%,
Statement–Evidence Matching: 9.40%, Reason-
ing: 2.63), illustrating the value of the auxil-
iary filtering stage. The JSON format, when
used with the full suite of prompting techniques,
further decreases Question Parsing accuracy to
61.40%, while slightly improving Statement Pars-
ing (30.36%) but reducing Statement–Evidence
matching (8.70%) and overall reasoning quality
(3.20). This suggests that Markdown’s human-
readable cues better guide the model’s content plan-
ning compared to the more rigid JSON schema.

Third, limiting the system to only Few-shot
prompting with NLI (two prompt calls) yields
mixed results: Markdown achieves stronger
Question Parsing (64.15%) but lower State-
ment–Evidence alignment (1.85%) and minimal
reasoning depth (0.90), whereas JSON boosts State-
ment–Evidence Matching (11.70%) at the expense
of Question Parsing (59.28%) and reasoning qual-
ity (4.50). This indicates that NLI verification alone
can compensate for reduced prompting complexity
in pairing statements and evidence, but at a cost to
holistic parsing performance.

Finally, the simplest Few-shot–only config-
urations (two or four calls) produce the low-
est scores across all subtasks (Question Parsing:
56.02–59.24%, Statement Parsing: 29.17–38.50%,
Statement–Evidence Matching: 2.07–2.29%, Rea-
soning: 1.07–1.84), confirming that advanced
prompting strategies are critical to unlock the full
structural reasoning capabilities of LLMs.

In summary, these results underscore the effec-
tiveness of integrating multiple prompting tech-
niques within a Markdown format and highlight
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the trade-offs inherent in prompt format selection,
prompt complexity, and verification strategy. The
highest-performing configuration (four calls, Mark-
down, full-technique suite) is the reference point
for further improvements in structural reasoning
pipelines. Finally, our best score on test set B are
73.24, 47.07, 15.59, and 10.22. Our team achieve
rank 7th i XLLM-ACL 2025 Task-III: LLM for
Structural Reasoning (LLM-SR).

7 Conclusion and Future Work

In this study, we presented a comprehensive and
modular pipeline for addressing the LLM-SR
task, targeting both question parsing and Chain-
of-Thought (CoT) parsing subtasks. Through a
series of experiments, we demonstrated that the
integration of structured prompt formats, advanced
prompting strategies (Few-shot, Chain-of-Thought,
Multi-hop), and a dedicated NLI-based verification
step significantly enhances the model’s structural
reasoning performance. Our analysis highlights
the effectiveness of Markdown as a prompt format
and the importance of leveraging multiple comple-
mentary reasoning techniques to ensure accurate
statement–evidence alignment and logical verifica-
tion.

In future work, we plan to explore dynamic
prompt selection mechanisms that adapt based on
question complexity, as well as integrating retrieval-
augmented generation (RAG) components to sup-
port knowledge-intensive reasoning. We are also in-
terested in fine-tuning or instruction-tuning smaller
models to perform verification and parsing steps
more efficiently.
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Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI, Similarity check

Scores Question Parsing: 67.96, Statement Parsing: 39.21, State-
ment–Evidence: 12.04, Reasoning: 3.83

Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI

Scores Question Parsing: 64.75, Statement Parsing: 29.90, State-
ment–Evidence: 9.40, Reasoning: 2.63

Prompt Calls 4

Prompt Format JSON

Techniques Few-shot, Chain-of-Thought, Multi-hop, NLI

Scores Question Parsing: 61.40, Statement Parsing: 30.36, State-
ment–Evidence: 8.70, Reasoning: 3.20

Prompt Calls 2

Prompt Format Markdown

Techniques Few-shot, NLI

Scores Question Parsing: 64.15, Statement Parsing: 25.30, State-
ment–Evidence: 1.85, Reasoning: 0.90

Prompt Calls 2

Prompt Format JSON

Techniques Few-shot, NLI

Scores Question Parsing: 59.28, Statement Parsing: 39.21, State-
ment–Evidence: 11.70, Reasoning: 4.50

Prompt Calls 2

Prompt Format Markdown

Techniques Few-shot

Scores Question Parsing: 56.02, Statement Parsing: 38.50, State-
ment–Evidence: 2.07, Reasoning: 1.07

Prompt Calls 4

Prompt Format Markdown

Techniques Few-shot

Scores Question Parsing: 59.24, Statement Parsing: 29.17, State-
ment–Evidence: 2.29, Reasoning: 1.84

Table 1: Results on Test set A in different approaches
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Abstract

We introduce UIEPrompter, a unified, training-
free framework that secures 1st place in
the ACL 2025 shared competition on uni-
versal document-level information extraction.
UIEPrompter effectively addresses both named
entity recognition and relation extraction with-
out the need for annotated data. Leveraging
large language models, UIEPrompter estab-
lishes a zero-shot baseline through role-specific
prompts, which are then refined via few-shot
guidance and constrained output generation
prompt to align with competition schemas. Ad-
ditionally, by integrating outputs from several
large language models, we reduce individual
model biases, thereby improving overall perfor-
mance. Evaluated on the competition evalua-
tion dataset, UIEPrompter showcases outstand-
ing performance in document-level information
extraction, ultimately securing first place. The
implementation code is available on GitHub.

1 Introduction

Information extraction (IE) (Jeong and Kim, 2022;
Paolini et al., 2021; Fei et al., 2022; Li et al., 2023)
serves as a critical bridge between unstructured
text and structured knowledge representation, en-
abling the identification of entities, their semantic
types, and inter-entity relationships in texts. In
recent years, IE has garnered significant attention
from both academia and industry. The latest ACL
2025 shared task on universal document-level in-
formation extraction (DocIE) presents a novel chal-
lenge that requires the extraction of named entities
(Labusch et al., 2019; Vacareanu et al., 2024; Shi
and Kimura, 2024; Wang et al., 2023) and their
relations (Huang et al., 2021; Cabot and Navigli,
2021; Efeoglu and Paschke, 2024; Xue et al., 2024;
Peng et al., 2024) from documents.

1† Equal contribution.
2∗ Corresponding author.

Conventional approaches adopt a fragmented
pipeline, deploying separate models for named en-
tity recognition (NER) and relation extraction (RE).
While effective in narrow contexts, this paradigm
faces two fundamental limitations: (1) a heavy
reliance on annotated training data for optimiz-
ing both models, and (2) the risk of cascading er-
ror propagation between the NER and RE stages,
where misidentified entities can lead to incorrect
relation predictions downstream.

To overcome these constraints, we propose
UIEPrompter as shown in Figure 1, a training-
free framework that unifies NER and RE through
meticulous prompt engineering and the generative
prowess of large language models (LLMs) (Liu
et al., 2024; Arrieta et al., 2025; Kuo et al., 2025).
The key advantages of our framework are:

• Training-free architecture: UIEPrompter
eliminates the need for task-specific training
data or model fine-tuning. Unlike supervised
approaches that rely on domain-specific anno-
tations, our framework achieves competitive
performance purely through prompt engineer-
ing, leveraging LLMs’ inherent knowledge
without parameter updates.

• Unified IE framework: By integrating NER
and RE into a single LLM-based architec-
ture, UIEPrompter bypasses error propaga-
tion inherent in cascaded NER→RE pipelines.
This joint modeling approach ensures entity-
relation consistency while reducing system
complexity.

• Domain-adaptive few-shot guidance:
UIEPrompter incorporates competition-
specific examples to align outputs with the
characteristics of the target domain, thereby
enhancing overall performance.

• Strong performance in document-level in-
formation extraction: According to the of-
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ficial leaderboard, our architecture achieves
the top overall score and secured first place in
both the NER and RE tracks, with a significant
lead over the second-place competitors.

2 Method

2.1 System Architecture
As shown in Figure 1, based on the input, we de-
sign a basic template that defines the LLM as an
information extraction expert and specifies the task
requirements. To further enhance the model’s com-
prehension and generation capabilities, we intro-
duce a few-shot guidance stage. During this phase,
the model is provided with a small set of input-
output examples that illustrate desired behaviors,
enabling the model to better understand task ob-
jectives and expected generation patterns. Concur-
rently, we impose constraints on the content gen-
eration process to ensure outputs strictly adhere to
predefined formats and satisfy task-specific require-
ments. After inputting these prompts into multiple
large language models, we fuse the outputs to miti-
gate biases inherent in individual models, thereby
enhancing the robustness and reliability of the final
results. It is evident that UIEPrompter is a unified
information extraction system based on LLMs. By
integrating NER and RE into a single LLM archi-
tecture, UIEPrompter effectively circumvents the
error propagation inherent in cascaded NER-to-RE
pipelines. This joint modeling approach not only
ensures consistency between entities and relations
but also simplifies system complexity.

2.2 Basic Template
The Basic template encompasses role assignment
and a clear task definition. It is structured around
the following instruction:

You are an expert in document
NER and triplet extraction. I
will provide you with the domain
of the document, the document
text, a set of NER entity types,
and a set of relationship types
for triplet extraction. Please
help me extract the NER entities
and triplets that appear in the
document based on the input.

2.3 Few-shot Guidance
Recognizing that different individuals or models
may exhibit variations in preferences for the same

problem, and to align with the training set’s pref-
erences regarding officially recognized labels, we
offer a case from the training set as a guiding ex-
ample. The few-shot input and output example is
as follows:

## Example 1
## The input is:

"domain": "...", "doc":
"...",

"NER_set": [...], "RE_set":
[...]
## The output is: ...

2.4 Constrained Output Generation

To ensure that the output from the large model
can be parsed by the evaluation function, strict
formatting constraints must be imposed. Addition-
ally, to encourage the model to output a complete
and agreed-upon format, we instruct it to omit any
reasoning process. The prompts reflecting these
requirements can be structured as follows:

## The output format must be
{"entities":"xxx","triples":"xxx"}.
## In the output, "entities"
represents the extracted NER
entities, while "triples"
represent the extracted triples.
## I do not need any analysis
or extraneous commentary; please
provide only the JSON formatted
result as specified!!
## Please ensure that the JSON is
valid and will not cause errors
when printed!!

2.5 Ensemble to Boost Performance

To achieve better results, we input the prompt into
multiple large language models and then combine
their outputs. Our approach involves merging the
outputs from different models and removing dupli-
cates to obtain the final fused result. The experi-
ment results demonstrate that this method is simple
yet effective.

3 Experiments

3.1 Datasets

We utilize the DocIE development and evalua-
tion datasets, which consist of 29 domain-specific
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Figure 1: The system architecture of UIEPrompter.

Table 1: Competition leaderboard

Place Participant F1-EI↑ F1-EC↑ F1-REG↑ F1-RES↑ F1-AVG↑
1 qqpprun(UIEPrompter) 65.52 32.20 5.40 5.11 27.06
2 UIT-SHAMROCK 55.65 26.11 4.19 4.01 22.49
3 check_out 59.15 18.17 4.38 4.12 21.46
4 ScaDS.AI 32.86 16.19 3.29 3.01 13.84

datasets. We used the development dataset to iden-
tify our optimal settings, which were then applied
as the final settings for evaluation on the evalua-
tion datasets. More details can be found on the
huggingface webcite (doc).

3.2 LLM Selection

In this study, we select three leading state-of-the-
art large language models as our meta-models:
OpenAI’s o3-mini, Google’s Gemini-2.0-flash, and
DeepSeek’s Deepseek-v3.

3.3 Evaluation Metric

We use the competition-specified metrics to evalu-
ate the effectiveness of our models. For the NER
track, the competition employs entity identification
F1 (F1-EI) and entity classification F1 (F1-EC). In
the RE track, the metrics include general mode F1
(F1-REG) and strict mode F1 (F1-RES). The final
evaluation metric for the competition is the aver-
age of these four F1 scores, denoted as F1-AVG.
Detailed definitions of these metrics can be found
on the official website.

4 Experimental Results

4.1 Main results
The main results of UIEPrompter on the evalua-
tion dataset are summarized in Table 1. We secure
the championship title with an overall F1-AVG
of 27.06%, surpassing the runner-up, who scored
22.49%, by nearly 5%. Notably, we also achieved
first place in all four sub-F1 metrics: 65.52% for
F1-EI and 32.20% for F1-EC in the named entities
recognition task, and 5.40% for F1-REG and 5.11%
for F1-RES in the relation extraction task. Based
on the results, we can identify three key advantages
of UIEPrompter:

• Dominance in the named entities recogni-
tion task: Our F1-EI of 65.52% and F1-EC
of 32.20% significantly outperformed all com-
petitors, showcasing our superior accuracy in
NER task.

• Strong performance in relation extraction
task: Despite lower absolute F1 scores in
RE tasks, UIEPrompter achieves the highest
scores in both F1-REG and F1-RES, indicat-
ing robust consistency in the task of relation
extraction.
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Table 2: Ablation study of the key components. BT stands for basic template. FSG refers to few-shot guidance, and
COG denotes constrained output generation prompt.

Model BT FSG COG F1-EI↑ F1-EC↑ F1-REG↑ F1-RES↑ F1-AVG↑

o3-mini
✓ 0 0 0 0 0
✓ ✓ 32.82 15.06 9.29 5.25 15.61
✓ ✓ ✓ 32.39 14.34 16.23 10.53 18.37

Deepseek-v3
✓ 0 0 0 0 0
✓ ✓ 28.13 23.26 26.71 5.77 20.97
✓ ✓ ✓ 31.89 24.76 19.73 9.03 21.35

Gemini-2.0-flash
✓ 0 0 0 0 0
✓ ✓ 38.54 31.06 15.88 3.43 22.23
✓ ✓ ✓ 41.04 33.16 17.63 2.15 23.50

Table 3: Model ensemble results on the development dataset.

Gemini-2.0-flash o3-mini Deepseek-v3 F1-EI↑ F1-EC↑ F1-REG↑ F1-RES↑ F1-AVG↑
✓ 41.04 33.16 17.63 2.15 23.50
✓ ✓ 44.47 28.09 22.59 7.97 25.78
✓ ✓ ✓ 43.34 27.36 22.73 8.46 25.47

• Balanced Competence: The results demon-
strate a strong performance across both NER
and RE subtasks, showing no significant weak-
nesses when compared to other participants.

4.2 Ablation Study
To better illustrate the rationale behind our ap-
proach, we conducted an ablation study on the de-
velopment dataset, with results presented in Table
2. It is important to note that the apparent "zero
performance" observed with BT does not indicate
the models’ incapability, but rather reflects failures
in the formatting parser. When structural format
constraints are absent, outputs can become syn-
tactically invalid (e.g., not JSON format or miss-
ing brackets). The results reveal that incorporat-
ing few-shot guidance, which provides the model
with examples, effectively applies implicit output
constraints and improves the performance of the
large language model. Furthermore, additional en-
hancements can be achieved through the use of con-
strained output generation (COG) prompts, which
impose explicit constraints.

Regrading architecture choices, our findings indi-
cate that Gemini-2.0-flash achieved the best overall
performance, reaching an F1-AVG of 23.50%. This
superior performance can be attributed to its signifi-
cantly higher F1-EI and F1-EC scores compared to
other models, showcasing its strength in the NER
task. However, it falls short of the other two mod-
els in the F1-REG and F1-RES metrics, suggesting
relatively weak relation extraction capabilities. In
other words, no single model performs optimally

across both tasks simultaneously. To tackle this
issue, we implemented a model ensemble approach
to improve the overall performance of the frame-
work.

The results of these models fusion are presented
in Table 3. The data clearly indicates that the fu-
sion of the Gemini-2.0-flash and o3-mini models
achieved the highest overall performance, with an
F1-AVG of 25.78% on the development dataset.
Additionally, we observed that the fusion of three
models on the validation set yielded a performance
of 25.47%, which is quite close to the 25.78%
achieved by the best combination. To evaluate
performance differences on the evaluation set, we
found that the fusion of the three models yielded
the best results overall.

5 Conclusion

In this work, we present UIEPrompter, a unified
and training-free framework that secured first place
in the ACL 2025 shared competition on univer-
sal document-level information extraction. Our
framework adeptly addresses the challenges of
named entity recognition and relation extraction
in document-level contexts without relying on an-
notated training data. By leveraging role-specific
prompts for zero-shot initialization and adapting
to competition schemas through few-shot guid-
ance and constrained output generation prompt,
UIEPrompter demonstrates remarkable informa-
tion extraction performance and generalization ca-
pabilities.
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Abstract
Large language models (LLMs) have demon-
strated impressive reasoning capabilities
through Chain-of-Thought (CoT) prompting.
However, their reasoning processes remain
inexplicable and uncontrollable. In this paper,
we introduce a Step-Wise Reasoning and
Verification (SWRV) framework, designed
as a two-stage Parser–Verifier pipeline, that
decomposes the reasoning process into discrete
inference steps and rigorously validates each
one. Our Parser extracts problem constraints
and the sequence of reasoning steps from
the LLM’s output, and our Verifier, either
LM-based or powered by a symbolic solver,
checks the logical correctness of every step. To
ensure robust parsing, we fine-tune a compact
LM on a small, high-quality annotation set
generated by a more capable LM. Experiments
on the LLMSR dataset built atop LogiQA show
significant gains over baselines, illustrating
the effectiveness of our method for step-wise
analysis of LLM reasoning1.

1 Introduction
Large language models (LLMs) have propelled sig-
nificant advances in natural language processing, yet
they continue to struggle with tasks that demand pre-
cise multi-step logical reasoning—especially those in-
volving multiple constraints, nested subproblems, or
domain-specific knowledge. While recent developments
in Chain-of-Thought (CoT) prompting have enhanced
LLM inference and reasoning abilities, the resulting
chains of reasoning often lack reliability and inter-
pretability. This can severely hinder downstream per-
formance, as models fail to consistently apply logical
rules or verify intermediate steps (Paul et al., 2024).
Recent work has demonstrated that very large LLMs
(OpenAI, 2024) are capable of self-correcting their out-
puts through iterative refinement, ushering in a new
paradigm for improving model reliability. However,
such performance typically depends on massive model
sizes and extensive training data, rendering these meth-
ods impractical in resource-constrained scenarios. More

1Code is publicly available at
https://github.com/Teganone/XLLM_LLMSR.

pertinently, Zhang et al. 2024 found that, for smaller
models, overall reasoning performance is bottlenecked
not by the ability to refine answers but by the weakness
of the verifier module itself. This insight underscores the
pressing need for robust, fine-grained self-verification,
particularly in settings where only compact models and
small-scale annotated data are available. Despite this,
most existing approaches focus on validating the entire
CoT holistically, without systematically analyzing the
validity of individual reasoning steps.

This drives our exploration of step-level reasoning
verification methods for small language models. In
this work, we propose SWRV, a stronger step-wise
self-verification framework as shown in Figure 1 for
small LMs (i.e., Llama-3-8B-Instruct) using minimal
data. In the framework, we perform fine-grained ques-
tion and CoT analysis to verify each individual infer-
ence step within the following pipeline. We first prompt
Llama-3-8B-Instruct to produce CoTs for LogiQA (Liu
et al., 2020) questions, then conduct fine-grained pars-
ing of each question and each CoT reasoning step, fol-
lowed by rigorous verification. For the parser module,
we employ rule-based prompting of the small LM and
fine-tuning using annotations generated by LM. For ver-
ifier, in addition to LM-based inference, we integrate
a deterministic symbolic solver Z3 by translating the
problem and reasoning steps into symbolic formulas
and performing formal inference. Our method aims
to deliver a fine-grained, precise self-verifier that im-
proves the self-correction and reasoning ability of small
LMs and enables more granular process-level reward
modeling.

Figure 1: Overview of our SWRV framework.
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2 Problem Formulation of
Self-Verification

As illustrated in Figure 1, we equip a language model
with fine-grained self-verification by decomposing its
reasoning process into two complementary modules: i)
Step-wise Reasoning Parsing, in which both the ques-
tion and its CoT are parsed into elementary units; and
ii) Step-wise Reasoning Verification, in which each in-
ferred unit is rigorously checked for logical validity.

Step-wise Reasoning Parsing The step-wise reason-
ing parsing mainly focus on parsing the question and
CoT. Given a reasoning question Q and its CoT, the
parser extract all necessary conditions from the question
and reasoning steps from the CoT. The parsing for the
question and the CoT can be integrated or processed sep-
arately, allowing for flexible adjustment of parameters
to enhance parsing accuracy.

Step-wise Reasoning Verification For step-by-step
reasoning process in CoT, the verifier checks its correct-
ness and marks it as True or False. A verifier, which
can either be intrinsic (the LM itself) or extrinsic (an
external signal), then decides whether the statement in
the step is adequately supported by the corresponding
evidence. If the verifier is unable to draw a conclusion,
it defaults to considering the reasoning step as correct.

Decoupling parsers from the verifier offers significant
advantages over an "all-in-one" design. Firstly, we can
freely parameterize each module, for instance, by using
fine-tuning or prompting. Secondly, it reduces the diffi-
culty of training each module since the model only needs
to focus on one specific capability, either task-specific
parsing or step-level reasoning verification. Finally, it
makes it possible to integrate deterministic verifiers that
incorporate external symbolic solvers.

3 Methodology

As shown in Figure 2, the inputs for our framework
consist of a natural language logical reasoning question
Q, along with the Chain-of-Thought CoT genearted by
prompting LM to solve the question Q. Our goal is to
parse Q into separate conditions QP and the entire CoT
into separate reasoning steps, each step composing a
statement and evidence R, and verify the correctness v
of each step.

Hence, the final output of each pair of inputs consists of
the following elements:

• parsed question conditions

QP = {c1, . . . , cn},

• parsed & verified reasoning steps

CP = {(s1, e1, v1), . . . , (sm, em, vm)},

where si is a statement, ei its supporting evidence
and vi the verification result of (si, ei), each vi ∈
{True, False}.
To achieve this end-to-end pipeline, our SWRV frame-
work is organized into two complementary components.
The Parser module comprises i) a Question Parser sub-
module that ingests Q and extracts the individual condi-
tions ci, and ii) a CoT Parser submodule that partitions
the CoT into discrete inference steps (si, ei). The Ver-
ifier module then takes these parsed outputs, uses a
Symbolic Formulator to translate both the set of con-
ditions {ci} and each pair (si, ei) into formal logical
expressions, and employs an SMT-Based Checker (im-
plemented with the Z3 solver) to deterministically de-
termine the validity of each inference. By pipelining
parsing and verification, our framework delivers a finely
grained, formally certified assessment of the entire rea-
soning trajectory.

3.1 Parser

The parsering module is divided into two stages: prompt-
ing a LM to generate question parsing and CoT parsing,
and then optionally using the obtained question parsing
and CoT parsing together with the original question and
CoT as input, with the target question parsing and CoT
parsing as labels to supervise the fine-tuning of the LM.

Stage 1: Generating Question Parsing and CoT Pars-
ing A logical reasoning problem typically comprises
four parts: problem description, constraints, query, and
options. The LM is tasked with extracting all the condi-
tions present in the first three parts. For each question,
we instruct the LM to generate the CoT that outlines the
problem-solving process. From this CoT, we extract the
statement and evidence for each reasoning step. Con-
sidering the nature of logical reasoning problems, the
arguments mainly stem from the conditions given in the
problem and may be related to the options; meanwhile,
the evidence often consists of the problem conditions or
intermediate conclusions.

Divided by analytical content, we have set up three
parsers: a question parser, a CoT parser, and a com-
bined parser, which, respectively, parse the question,
the CoT, and both simultaneously. This separate de-
sign allows us to individually adjust the parameters for
each parser. The parsing process can flexibly choose
any combination of these three parsers. In our prompt,
we enforce the corresponding rules that require the out-
put of the parsing to remain as semantically consistent
as possible with the original question or CoT. We also
use one-shot examples to format the output structure
and few-shot examples to enrich the diversity of logical
question cases. For detailed prompt information, please
refer to the Appendix B.2 and B.3.

Stage 2: Supervised Fine-tuning of the Parser To
effectively fine-tune LM with minimal data, we supple-
ment the original question and CoT with the question
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Figure 2: Overview of more detailed SWRV framework.

parsing and CoT parsing obtained from Stage 1 as in-
puts. This indicates the LM only need to learn how to
refine the existing parsing results instead of having to
learn parsing rules from scratch. For detailed prompt
information, please refer to the Appendix B.4.

3.2 Verifier

We employ two approaches for verifying the step-wise
reasoning: one using LM inference, and the other aided
by a deterministic symbolic solver (i.e. Z3).

3.2.1 LLM Verifier

For each reasoning step parsed into statements and evi-
dence by the parser, we prompt the LM, with the original
or parsed question along with the statements and evi-
dence, to directly verify whether a given statement can
be deduced from the evidence. The correct conclusion
is "true" and an incorrect deduction is "false". Detailed
system prompt and user prompt could be seen in the
Appendix B.5.

3.2.2 Z3-Augmented Verifier

Z3 is a high-performance SMT (Satisfiability Modulo
Theories) solver developed by Microsoft2. It can decide
the satisfiability of first-order logic formulas over a rich
set of theories—such as linear arithmetic, bit-vectors,
arrays, and uninterpreted functions—and is widely used
for program verification, symbolic reasoning, and for-
mal analysis.

Inspired by Pan et al. 2023, our Z3-Augmented Verifier
formulates each reasoning step as a symbolic problem
and then invokes Z3 Prover for deterministic validation.
Concretely, we define a custom intermediate represen-
tation (IR) that bridges natural language and formal
logic. The LM is prompted to translate both the orig-
inal question and each parsed inference step into this
IR, which is then translated into executable code. By
running through Z3 solver, we obtain a definitive “true”
or “false” verdict on the logical correctness of each step.

2https://github.com/Z3Prover/z3

Problem-and-Reasoning Formulator As shown in
figure 3, given a natural language logical reasoning
question Q and its step-wise reasoning R, we prompt
a LM to translate them into self-defined intermediate
representations. These are then converted into a formal,
SMT-compatible representation by a code translator.
This encoding captures both the question description
and the step-wise reasoning in a symbolic language
understandable by Z3.

Symbolic Reasoner We invoke Z3 as a deterministic
SMT solver over the encoded problem. Z3 efficiently
checks the satisfiability, performs the required logical in-
ferences, and produces a symbolic answer. Because Z3’s
algorithms are sound and complete for the supported
theories, the correctness of the answer is guaranteed
when the initial encoding is faithful.

Self-Refiner For complex problems and intricate rea-
soning, it is challenging for the LM to generate correct
logical expressions immediately. Therefore, we intro-
duce a self-refinement module that returns syntax errors
from the Z3 solver back to the LM, guiding it to gener-
ate correct logical programs. This iterative refinement
continues until a valid program is generated or the max-
imum number of attempts is reached.

Result Interpreter Finally, we use a rule-based in-
terpreter to map the symbolic output back to natural
language, providing the final answer.

Appendix B.6 shows detailed prompts of Problem &
Reasoning Symbolic Formulation.

4 Experimental Setup
4.1 Datasets
A typical sample is stored in JSON format. Detailed
examples are given in Appendix A.

4.2 Model Architecture and Fine-tuning
We use Llama-3-8B-Instruct as our base model for both
the parser and the LM verifier. Considering Llama-3-
8B-Instruct’s lacking in groundtruth of Z3 syntax, we
employ O3-mini-high as the base model to generate Z3
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Figure 3: Framework of Z3-Augmented Verifier

formulations.

We set the temperature as 0.2 − 0.3 in the Question
Parser, 0.5− 0.6 in the Combined and Cot Parser. For
Verification module, we set temperature as 0.1− 0.2 in
the Llama Verifier and the iteration of self-refinement
as 3.

We use the 24 samples in the datasets to fine-tune the
base Llama-3-8B-Intruct with LoRA. We set the low-
rank dimension as 32, the learning rate as 2e−5, training
epochs as 6, batch size as 2. All our experiments can be
conducted on 2×H20 GPU with 96GB of memory.

4.3 Evaluation Metrics and Baseline

Question_Macro_F1 the macro-averaged F1 score
computed over the set of all atomic conditions that must
be extracted from the input question. Each distinct con-
dition constitutes its own class; true positives, false posi-
tives, and false negatives are counted per class, and then
F1 is averaged uniformly across classes. This metric
thus captures the model’s ability to recover every neces-
sary constraint for downstream reasoning, regardless of
class frequency.

Statement_Macro_F1 denotes the macro-averaged
F1 score for segmenting and identifying individual rea-
soning statements and their associated evidence spans
within the chain of thought. We treat each span type
(statement vs. evidence) as a separate class and evaluate
extraction quality via both lexical and semantic overlap
against ground truth. Precision and recall are computed

per class and averaged, ensuring balanced evaluation
across all span categories.

Statement_Evidence_Macro_F1 measures the
macro-averaged F1 over pairwise links between
extracted statements and their corresponding evidence.
Each possible statement–evidence pairing is treated as
a binary classification task (linked vs. unlinked). We
compute class-wise precision and recall for the “linked”
label and average the resulting F1 scores across all
statement–evidence candidates to assess the model’s
ability to reconstruct the intended argumentative
structure.

Reasoning_F1 the macro-averaged F1 score for the
final entailment verification between each correctly ex-
tracted statement–evidence pair. We frame logical de-
duction as a binary entailment decision (entails vs. does
not entail). For all validated pairs, we compute preci-
sion and recall on the “entails” class and average the F1
scores uniformly, thereby evaluating end-to-end correct-
ness of the tool-augmented reasoning pipeline.

Baseline We invoke Llama-3-8B-Instruct to directly
parse and verify the data, without any rule setting or
fine-tuning, as our baseline.

5 Results

Table 1 and Table 2 presents the primary evaluation
results for our base and fine-tuned LM respectively. The
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results include four performance metrics detailed in 4.3.
And we have Four major findings.

5.1 Main Findings
1) Using a lower temperature for Question Parsing
ensures deterministic and robust outputs. We found
that setting a relatively low temperature (around 0.2) for
Question Parsing and subsequent reasoning yields more
deterministic and robust outputs. A lower temperature
helps reduce randomness during question generation,
ensuring that the parsing results remain logically con-
sistent and rigorous.

2) Striking a balance in temperature during CoT
Parsing leads to reasoning that is both comprehensive
and accurate. For CoT Parsing, it is crucial to strike
a balance — the temperature should not be too low nor
too high. A recommended range is between 0.5 and
0.6. If the temperature is too low, the generated content
might be overly fixed and could miss out on important
details or the richer process of reasoning. Conversely,
if it is too high, the outputs can become too divergent,
making it more difficult to extract relevant evidence
and accurately perform subsequent verification. Thus,
balanced temperature settings are essential to obtain
both comprehensive and accurate reasoning chains.

3) Fine-tuned parsers do not outperform the
rule-based prompting base parser. The main rea-
son might be limited training set (only 24 examples)
combined with the rich, complex rules specified in the
prompt, which making it insufficient for a small LM to
internalize those rules.
Besides, LM Fine-tuned by Larger LM (e.g. O3-mini-
high) has better performance in all metrics.

4) Integrating the Z3 solver significantly enhances
the accuracy and overall performance of step-wise
reasoning verification. In our experiments, the Z3
solver’s success rate is around 72%, leading to a Rea-
soning_F1 score of 0.078. It is expected that if the pars-
ing and logical expression generation achieved a 100%
success rate, the Reasoning_F1 score could approach
the reasoning performance demonstrated by O3-mini-
high, around 85.07% better than the LM Verifier itself.
This implies that the symbolic solvers could enhance
the step-wise reasoning verification.

5.2 Case Study
Figure 4 and Figure 5 together exemplify the comprehen-
sive reasoning and verification workflow of our SWRV
framework. In Figure 4, we show how a complex
recruit-assignment puzzle is first decomposed by the
Parser: the problem statement yields a set of conditions,
and the accompanying CoT is split into individual infer-
ence steps, each paired with its evidence. Building on
this, Figure 5 presents the symbolic instantiation of the
same case, in which entities and constraints extracted
from the natural-language quetsion description are for-
malized into logical expressions. Each inference step

is translated into a corresponding verification formula,
enabling the Z3 solver to deterministically check its va-
lidity. By moving from free-form text to symbolic logic,
our framework not only attains stronger correctness
guarantees than pure language-model reasoning but also
furnishes interpretable, step-wise feedback. This struc-
tured decomposition thus enhances both the accuracy of
self-verification and the transparency of the reasoning
process, addressing a key limitation of existing CoT
analysis approaches.

6 Conclusion

The paper presents SWRV, a two-stage Parser–Verifier
framework specifically designed for small LMs and
limited data to parse and verify every step in the
reasoning process. By decomposing problems in a
fine-grained manner and complementing this with a
verification mechanism based on symbolic solving,
the method significantly enhances the accuracy and
robustness of small LMs in logical reasoning tasks.

Future work may explore the expansion of annotated
datasets, thereby optimizing the fine-tuning of the parser.
Besides, further refinement of natural-to-symbolic trans-
lation methods, could also be explored to fortify verifi-
cation module in diverse reasoning scenarios.
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Question:There are seven recruits recruited at a university? F, G, H, I, W, X, and Y.One of them is a
communications soldier, three are engineering soldiers, and the other three are transport

soldiers.The conditions for the assignment of recruits to the army are as follows? H and Y must
be assigned to the same arm.F and G cannot be assigned to the same arm.If X is assigned as

a transport soldier, then W is assigned as an engineering soldier.Assign F as an engineering
soldier.

If X is not assigned as an engineer, which of the following statements may be true?
A.W and G are assigned as engineering soldiers
B.H and W are assigned as transport soldiers.
C.F and Y are assigned as engineering soldiers
D.H and W are assigned as engineering soldiers"

CoT: Since X is not assigned as an engineer, it must be assigned as a communications soldier or a
transport soldier. If X is a transport soldier, then W is an engineering soldier, and H and Y must be

assigned to the same arm. However, F and G cannot be assigned to the same arm, so F must be an
engineering soldier. This means that H and Y are assigned to the same arm, which is the

transport arm. Therefore, H and W are assigned as transport soldiers.

Parsed Conditions (Question Parsing):
[

"There are seven recruits recruited at a university? F, G, H, I, W, X, and Y.One of them is a
communications soldier, three are engineering soldiers, and the other three are transport soldiers",

"H and Y must be assigned to the same arm",
"F and G cannot be assigned to the same arm",
"If X is assigned as a transport soldier, then W is assigned as an engineering soldier",
"Assign F as an engineering soldier",
"If X is not assigned as an engineer"

]

Parsed Reasoning Steps:
{

"statement": "X is assigned as a communications soldier or a transport soldier.",
"evidence": "Since X is not assigned as an engineer, it must be assigned as a communications

soldier or a transport soldier.",
},
{

"statement": "If X is a transport soldier, then W is assigned as an engineering soldier, and H and
Y must be assigned to the same arm.",

"evidence": "If X is a transport soldier, then W is assigned as an engineering soldier, and H and
Y must be assigned to the same arm.",

},
{

"statement": "F must be an engineering soldier.",
"evidence": "However, F and G cannot be assigned to the same arm, so F must be an engineering

soldier.",
}

Figure 4: Example of parsed question and reasoning steps for a logical reasoning problem.
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Question:There are seven recruits recruited at a university? F, G, H, I, W, X, and Y.One of them is a
communications soldier, three are engineering soldiers, and the other three are transport

soldiers.The conditions for the assignment of recruits to the army are as follows? H and Y must
be assigned to the same arm.F and G cannot be assigned to the same arm.If X is assigned as

a transport soldier, then W is assigned as an engineering soldier.Assign F as an engineering
soldier.

If X is not assigned as an engineer, which of the following statements may be true?
A.W and G are assigned as engineering soldiers
B.H and W are assigned as transport soldiers.
C.F and Y are assigned as engineering soldiers
D.H and W are assigned as engineering soldiers"

Generated Symbolic Problem Formulations:
Declarations:

recruits = EnumSort([F, G, H, I, W, X, Y])
arms = EnumSort([communications, engineering, transport])
arm_of = Function([recruits] -> [arms])

Constraints:
Count([r: recruits], arm_of(r) == communications) == 1 ::: (Count of communications

soldiers)
Count([r: recruits], arm_of(r) == engineering) == 3 ::: (Count of engineering soldiers)
Count([r: recruits], arm_of(r) == transport) == 3 ::: (Count of transport soldiers)
arm_of(H) == arm_of(Y) ::: (1) H and Y must be assigned to the same arm
arm_of(F) != arm_of(G) ::: (2) F and G cannot be assigned to the same arm
Implies(arm_of(X) == transport, arm_of(W) == engineering) ::: (3) If X is assigned as a

transport soldier, then W is assigned as an engineering soldier
arm_of(F) == engineering ::: (4) F is assigned as an engineering soldier
arm_of(X) != engineering ::: (Assumption: X is not assigned as an engineer)

Reasoning Step:
Statement: X is assigned as a communications soldier or a transport soldier.
Evidence: Since X is not assigned as an engineer, it must be assigned as a communications

soldier or a transport soldier.

Generated Symbolic Verification Formulations:
is_deduced(arm_of(X) != engineering, Or(arm_of(X) == communications, arm_of(X) ==

transport)) ::: (1) X must be assigned as a communications soldier or a transport soldier

Predicted Verification: True

Reasoning Step:
Statement: F must be an engineering soldier.
Evidence: However, F and G cannot be assigned to the same arm, so F must be an

engineering soldier.

Generated Symbolic Verification Formulations:
is_deduced(True, arm_of(F) == engineering) ::: (3) F must be an engineering soldier

Predicted Verification: False

other step-wise reasoning examples...

Figure 5: Example of symbolic problem and reasoning formulation and verification for a logical logical problem.
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Approach Question_F1 Statement_F1 Statement_Evidence_F1 Reasoning_F1
Baseline 0.5702 0.3341 0.0852 0.0326
Base Question Parser 0.7299 / / /
Base Combined Parser 0.7187 0.4247 0.168 /
Llama Verifier / / / 0.067
O3-mini-high Verifier / / / 0.124
Z3 Verifier (72%) / / / 0.078

Table 1: Performance of various parsers and verifiers. “/” indicates that a given configuration was not designed
or evaluated for that subtask (e.g., the Base Question Parser only performs question parsing, so its Statement_F1,
Evidence_F1, and Reasoning_F1 cells are marked “/”).

Preprocessor Question_F1 Statement_F1 Statement_Evidence_F1
Baseline 0.7187 0.4247 0.168
Llama-3-8B-Instruct 0.6078 0.3979 0.1417
O3-mini-high 0.7171 0.4046 0.1862

Table 2: Performance of parsers fine-tuned on data preprocessed by Llama-3-8B-Instruct and O3-mini-high.
"Baseline" denotes the original model without fine-tuning.

A Dataset

question: There are 7 outstanding students G, H,
L, M, U, W and Z in a school. During the sum-
mer vacation, the school will send them to the
United Kingdom and the United States for inspec-
tion. The school has only 7 students participating
in this activity, and each person happens to go to
one of these two countries. Considering the spe-
cialty of each student, this activity must meet the
following conditions? (1) If G goes to the UK,
then H To the United States. (2) If L goes to the
UK, both M and U go to the US. (3) The country
W went to was different from the country Z went
to. (4) The country where U goes is different from
the country where G goes. (5) If Z goes to the UK,
then H also goes to the UK.
If G goes to the United States, which of the fol-
lowing must be true?
A. H go to the UK
B. L go to America
C. M go to the UK
D. W go to America
question_parsing: [
"The school has only 7 students participating in
this activity, and each person happens to go to one
of these two countries",
"If G goes to the UK, then H goes to the United
States",
"If L goes to the UK, both M and U go to the US",
"The country W went to was different from the
country Z went to",
"The country where U goes is different from the
country where G goes",
"If Z goes to the UK, then H also goes to the UK",
"G goes to the United States"
]

answer: b
id: 162
cot: Since G goes to the United States, we need to
analyze the conditions that follow. Condition (1)
is not applicable since G is going to the US. Condi-
tion (2) is also not applicable since L’s destination
is not specified. Condition (3) does not provide
any information about H, M, U, or W. Condition
(4) states that U’s destination is different from G’s,
which is the US, so U must go to the UK. Condi-
tion (5) is not applicable since Z’s destination is
not specified.
cot_parsing: [
{
"statement": "Condition (1) is not applicable",
"evidence": "G is going to the US",
"Verification": "true"
},
{
"statement": "Condition (2) is also not applica-
ble",
"evidence": "L’s destination is not specified",
"Verification": "true"
},
{
"statement": "Condition (3) does not provide any
information about H, M, U, or W",
"evidence": "Condition (3)",
"Verification": "false"
},
{
"statement": "U must go to the UK",
"evidence": "Condition (4) states that U’s destina-
tion is different from G’s, which is the US",
"Verification": "true"
},
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{
"statement": "Condition (5) is not applicable",
"evidence": "Z’s destination is not specified",
"Verification": "true"
}
]
sel_idx: 92

B Prompt

B.1 Prompt For Question Parser

Given a question. The task is to generate "ques-
tion_parsing" results based on the content of "ques-
tion". The "question" could be logically divided
into four parts: 1) problem description, 2) condi-
tions/constraints, 3) query, and 4) options. The
question parsing process involves extracting all
conditions necessary for solving the question.
Evaluation: This task focuses on question parsing.
Question parsing involves extracting all relevant
conditions required to solve the problem. The
Macro F1 score metric is used to evaluate question
parsing performance.
Please generate output in JSON format based on
the requirements below. The output must include
one key-value pair:
"question_parsing": an array of strings used to
extract all necessary constraints provided in the
question for solving the problem. Only extract con-
ditions from parts 1) problem description, 2) con-
ditions/constraints, and any additional conditions
present in part 3) query. Do not extract any details
from the explicit query statement (e.g., phrases
like "which is . . . ") or from the options. The prob-
lem itself should be extracted as the first condition.
Rules: Each constraint or condition in the original
question should be treated as a whole; do not split
or break down a single constraint or condition into
smaller parts. Use the exact descriptions given in
the original question without synonym substitu-
tion or additional embellishment, ensuring high
consistency in both semantics and wording with
the original text.
EXAMPLE 1:
question:
There are 7 outstanding students G, H, L, M, U,
W and Z in a school. During the summer vacation,
the school will send them to the United Kingdom
and the United States for inspection. The school
has only 7 students participating in this activity,
and each person happens to go to one of these
two countries. Considering the specialty of each
student, this activity must meet the following con-
ditions? (1) If G goes to the UK, then H To the
United States. (2) If L goes to the UK, both M
and U go to the US. (3) The country W went to

was different from the country Z went to. (4) The
country where U goes is different from the country
where G goes. (5) If Z goes to the UK, then H also
goes to the UK.
If G goes to the United States, which of the fol-
lowing must be true?
A. H go to the UK
B. L go to America
C. M go to the UK
D. W go to America
Example Output:
question_parsing:
"The school has only 7 students participating in
this activity, and each person happens to go to one
of these two countries",
"If G goes to the UK, then H goes to the United
States",
"If L goes to the UK, both M and U go to the US",
"The country W went to was different from the
country Z went to",
"The country where U goes is different from the
country where G goes",
"If Z goes to the UK, then H also goes to the UK",
"G goes to the United States"
] output Example "question_parsing": [ "The
school has only 7 students participating in this
activity, and each person happens to go to one of
these two countries", "If G goes to the UK, then H
To the United States", "If L goes to the UK, both
M and U go to the US", "The country W went to
was different from the country Z went to", "The
country where U goes is different from the country
where G goes", "If Z goes to the UK, then H also
goes to the UK", "G goes to the United States" ]
NOW ANALYZE THIS NEW QUESTION:
question:
{{question}}
Remember to analyze the specific content above,
not the examples. Your output should be a valid
JSON object with a "question_parsing" key.

B.2 Prompt For Combined Parser

Given a question and cot. The task is to gener-
ate "question_parsing" and "cot_parsing" results
based on the content of "question" and "cot". The
"question" could be logically divided into four
parts: 1) problem description, 2) conditions/con-
straints, 3) query, and 4) options. The question
parsing process involves extracting all conditions
necessary for solving the question. The cot pars-
ing process identifies all "statements" and their
corresponding "evidence" within the context of
the question conditions and the given cot content.
Evaluation: This task consists of two parts: Ques-
tion parsing and cot parsing. Question parsing
involves extracting all relevant conditions required
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to solve the problem. The Macro F1 score metric
is used to evaluate question parsing performance.
The process of extracting statements and evidence
is similar to Discourse Parsing. Correct extraction
of statements or evidence from the cot is crucial
at the outset. Next, the pairwise relationship be-
tween a specific statement and its corresponding
evidence is assessed (a statement should be fol-
lowed by its related evidence from the cot). Both
semantic and lexical similarity are used to evaluate
the accuracy of statements and evidence predic-
tions. The final evaluation metric is the Macro
F1 score, applied to both statement parsing and
statement-evidence pair extraction. Whether the
"statement" can be deduced from the "evidence"
logically, answer with only with "true" or "false".
Please generate output in JSON format based on
the requirements below. The output must include
two key-value pairs:
"question_parsing": an array of strings used to
extract all necessary constraints provided in the
question for solving the problem. Only extract con-
ditions from parts 1) problem description, 2) con-
ditions/constraints, and any additional conditions
present in part 3) query. Do not extract any details
from the explicit query statement (e.g., phrases
like "which is . . . ") or from the options. The prob-
lem itself should be extracted as the first condition.
"question_parsing": an array of strings used to
extract all necessary constraints provided in the
question for solving the problem. Only extract con-
ditions from parts 1) problem description, 2) con-
ditions/constraints, and any additional conditions
present in part 3) query. Do not extract any details
from the explicit query statement (e.g., phrases
like "which is . . . ") or from the options. The prob-
lem itself should be extracted as the first condition.
Rules: Each constraint or condition in the original
question should be treated as a whole; do not split
or break down a single constraint or condition into
smaller parts. Use the exact descriptions given in
the original question without synonym substitu-
tion or additional embellishment, ensuring high
consistency in both semantics and wording with
the original text.
EXAMPLE 1:
question:
There are 7 outstanding students G, H, L, M, U,
W and Z in a school. During the summer vacation,
the school will send them to the United Kingdom
and the United States for inspection. The school
has only 7 students participating in this activity,
and each person happens to go to one of these
two countries. Considering the specialty of each
student, this activity must meet the following con-
ditions? (1) If G goes to the UK, then H To the
United States. (2) If L goes to the UK, both M

and U go to the US. (3) The country W went to
was different from the country Z went to. (4) The
country where U goes is different from the country
where G goes. (5) If Z goes to the UK, then H also
goes to the UK.
If G goes to the United States, which of the fol-
lowing must be true?
A. H go to the UK
B. L go to America
C. M go to the UK
D. W go to America
Example Output:
question_parsing:
"The school has only 7 students participating in
this activity, and each person happens to go to one
of these two countries",
"If G goes to the UK, then H goes to the United
States",
"If L goes to the UK, both M and U go to the US",
"The country W went to was different from the
country Z went to",
"The country where U goes is different from the
country where G goes",
"If Z goes to the UK, then H also goes to the UK",
"G goes to the United States"
] output Example "question_parsing": [ "The
school has only 7 students participating in this
activity, and each person happens to go to one of
these two countries", "If G goes to the UK, then H
To the United States", "If L goes to the UK, both
M and U go to the US", "The country W went to
was different from the country Z went to", "The
country where U goes is different from the country
where G goes", "If Z goes to the UK, then H also
goes to the UK", "G goes to the United States" ]
NOW ANALYZE THIS NEW QUESTION:
question:
{{question}}
Remember to analyze the specific content above,
not the examples. Your output should be a valid
JSON object with a "question_parsing" key.

B.3 Prompt For Combined Parser

Given a question and cot. The task is to gener-
ate "question_parsing" and "cot_parsing" results
based on the content of "question" and "cot". The
"question" could be logically divided into four
parts: 1) problem description, 2) conditions/con-
straints, 3) query, and 4) options. The question
parsing process involves extracting all conditions
necessary for solving the question. The cot pars-
ing process identifies all "statements" and their
corresponding "evidence" within the context of
the question conditions and the given cot content.
Evaluation: This task consists of two parts: Ques-
tion parsing and cot parsing. Question parsing
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involves extracting all relevant conditions required
to solve the problem. The Macro F1 score metric
is used to evaluate question parsing performance.
The process of extracting statements and evidence
is similar to Discourse Parsing. Correct extraction
of statements or evidence from the cot is crucial
at the outset. Next, the pairwise relationship be-
tween a specific statement and its corresponding
evidence is assessed (a statement should be fol-
lowed by its related evidence from the cot). Both
semantic and lexical similarity are used to evaluate
the accuracy of statements and evidence predic-
tions. The final evaluation metric is the Macro
F1 score, applied to both statement parsing and
statement-evidence pair extraction. Whether the
"statement" can be deduced from the "evidence"
logically, answer with only with "true" or "false"
Please generate output in JSON format based on
the requirements below. The output must include
two key-value pairs:
"question_parsing": an array of strings used to
extract all necessary constraints provided in the
question for solving the problem. Only extract con-
ditions from parts 1) problem description, 2) con-
ditions/constraints, and any additional conditions
present in part 3) query. Do not extract any details
from the explicit query statement (e.g., phrases
like "which is . . . ") or from the options. The prob-
lem itself should be extracted as the first condition.
"cot_parsing": an array where each element is
an object containing three keys: - "statement":
The final inference result from the cot, or an in-
termediate logical reasoning step. - "evidence":
The corresponding supporting evidence directly
for the statement as it appears in the cot. - "Veri-
fication": A Boolean indicator ("true" or "false")
stating whether the "statement" can be deduced
from the "evidence" logically.
Rules:
Regarding Question Parsing: Each constraint or
condition in the original question should be treated
as a whole; do not split or break down a single
constraint or condition into smaller parts. Use
the exact descriptions given in the original ques-
tion without synonym substitution or additional
embellishment, ensuring high consistency in both
semantics and wording with the original text.
Regarding cot Parsing: Extract from the cot text all
"statements" and their corresponding "evidences".
Each cot entry must be based directly on the
text as it appears, ensuring that unnecessary syn-
onym replacements or categorical expansions are
avoided. Each "statement" must be immediately
followed by its corresponding "evidence". The
output should match the original text as closely as
possible in both wording and semantics. If the cot
text includes explanations about a constraint or a

condition being "not applicable" or "irrelevant,"
these must be captured in full without splitting
or merging. Additional note: In the cot text, the
selected statements often contain information that
is different from or additional to the constraints
(especially conditions) extracted from the ques-
tion. Even if these statements do not match the
constraints extracted in "question_parsing," please
extract them as they appear and preserve the orig-
inal wording from the cot text. For each logical
reasoning, extract the final deduction as statement
and extract intermediate reasoning steps as well
as condition as its corresponding evidence. Ver-
ify for each "statement" whether it can be logi-
cally deduced from the provided "evidence". For
this verification, answer only with either "true" or
"false".
EXAMPLE 1:
question:
There are 7 outstanding students G, H, L, M, U,
W and Z in a school. During the summer vacation,
the school will send them to the United Kingdom
and the United States for inspection. The school
has only 7 students participating in this activity,
and each person happens to go to one of these
two countries. Considering the specialty of each
student, this activity must meet the following
conditions? (1) If G goes to the UK, then H To
the United States. (2) If L goes to the UK, both
M and U go to the US. (3) The country W went
to was different from the country Z went to. (4)
The country where U goes is different from the
country where G goes. (5) If Z goes to the UK,
then H also goes to the UK.
If G goes to the United States, which of the
following must be true?
A. H go to the UK
B. L go to America
C. M go to the UK
D. W go to America

cot:
Since G goes to the United States, we need to
analyze the conditions that follow. Condition
(1) is not applicable since G is going to the US.
Condition (2) is also not applicable since L’s
destination is not specified. Condition (3) does
not provide any information about H, M, U, or
W. Condition (4) states that U’s destination is
different from G’s, which is the US, so U must go
to the UK. Condition (5) is not applicable since
Z’s destination is not specified.

Example Output:
question_parsing:

"The school has only 7 students participating in
this activity, and each person happens to go to one
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of these two countries",
"If G goes to the UK, then H To the United
States",
"If L goes to the UK, both M and U go to the US",
"The country W went to was different from the
country Z went to",
"The country where U goes is different from the
country where G goes",
"If Z goes to the UK, then H also goes to the UK",
"G goes to the United States"

cot_parsing:
{

"statement": "Condition (1) is not applicable",
"evidence": "G is going to the US",
},
{
"statement": "Condition (2) is also not applica-
ble",
"evidence": "L’s destination is not specified",
},
{
"statement": "Condition (3) does not provide any
information about H, M, U, or W",
"evidence": "Condition (3)",
},
{
"statement": "U must go to the UK",
"evidence": "Condition (4) states that U’s
destination is different from G’s, which is the
US",
},
{
"statement": "Condition (5) is not applicable",
"evidence": "Z’s destination is not specified",
}

NOW ANALYZE THIS NEW QUESTION
AND COT:
question:
{{question}}
cot:
{{cot}}
Remember to analyze the specific content above,
not the examples. Your output should be a
valid JSON object with "question_parsing" and
"cot_parsing" keys.

B.4 Prompt For Fine-tuning

SYSTEM_PROMPT
You are an expert in logical parsing and reason-
ing analysis, specializing in analyzing problem

conditions and chain-of-thought reasoning pro-
cesses. Given a question, a cot and preprocessed
question_parsing and cot_parsing provided by
the given question and the cot. Your task is to
generate accurate question question_parsing and
cot_parsing results based on the given question
and cot.
USER_PROMPT
Based on the following question and chain
of thought reasoning process, generate ques-
tion_parsing and cot_parsing results.
Question:
{question}
Cot:
{cot}
Preprocessed Question Parsing:
{preprocessed_qp}
Preprocessed Cot Parsing:
{preprocessed_cp}
Please provide improved parsing results in the fol-
lowing format: {
"question_parsing": [
"condition 1",
"condition 2",
...
],
"cot_parsing": [
{
"statement": "statement 1",
"evidence": "evidence 1",
"Verification": "true or false"
},
{
"statement": "statement 2",
"evidence": "evidence 2",
"Verification": "true or false"
},
...
]
}
Generate the improved JSON:

B.5 Prompt For LLM Verifier

SYSTEM:
Whether the "statement" can be deduced from the
"evidence" logically, answer with only with True
or False, do not output other contents.
USER:
question:
question
statement:
statement
evidence:
evidence
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B.6 Prompt For Problem Fomulator of Z3 Verifier

Given a question and a cot_parsing. The task is
to formulate the problem as a logic program (All
the self-defined syntax could be seen in the fol-
lowing examples), consisting three parts: Declara-
tions, Constraints, and Verification. Please strictly
follow the samples below to generate the result, do
not generate any other irrelevant contents. Decla-
rations: Declare the variables and functions from
the question. Constraints: Write the constraints or
conditions in the question as logic formulas. Veri-
fications: Write the verification of statement and
evidence in the cot_parsing as logic formulas.
IMPORTANT RULES:
1. When using boolean values, always use
capitalized True and False, not lowercase true and
false. For example, use "is_playing(m) == True"
instead of "is_playing(m) == true".
2. Ensure that all variable names used in
Constraints and Verifications are declared in the
Declarations section.
3. Make sure all names in the Declarations section
are consistent with those used in the Constraints
and Verifications sections.
4. Do not add any irrelevant comments, such
as comments starting with // or #, except #
Declarations, # Constraints, # Verifications.
5. Only use logic expressions or syntax patterns
that appear in the examples. Do not create your
own syntax.

EXAMPLE 1:
question:
There are 7 outstanding students G, H, L, M, U,
W and Z in a school. During the summer vacation,
the school will send them to the United Kingdom
and the United States for inspection. The school
has only 7 students participating in this activity,
and each person happens to go to one of these
two countries.Considering the specialty of each
student, this activity must meet the following
conditions? (1) If G goes to the UK, then H To
the United States.(2) If L goes to the UK, both
M and U go to the US.(3) The country W went
to was different from the country Z went to.(4)
The country where U goes is different from the
country where G goes.(5) If Z goes to the UK,
then H also goes to the UK.G goes to the United
States, which of the following must be true?.H go
to the UK.L go to America.M go to the UK.W go
to America

cot_parsing:
{

"statement": "Condition (1) is not applicable",
"evidence": "G is going to the US",
"Verification": "true"

},
{
"statement": "Condition (2) is also not applica-
ble",
"evidence": "L’s destination is not specified",
"Verification": "true"
},
{
"statement": "Condition (3) does not provide any
information about H, M, U, or W",
"evidence": "Condition (3)",
"Verification": "false"
},
{
"statement": "U must go to the UK",
"evidence": "Condition (4) states that U’s
destination is different from G’s, which is the
US",
"Verification": "true"
},
{
"statement": "Condition (5) is not applicable",
"evidence": "Z’s destination is not specified",
"Verification": "true"
}

Example Output:
Declarations
students = EnumSort([G, H, L, M, U, W, Z])
countries = EnumSort([UK, US])
goes_to = Function([students] -> [countries])
Constraints
Implies(goes_to(G) == UK, goes_to(H) == US)
::: (1) If G goes to the UK, then H To the United
States
Implies(goes_to(L) == UK, And(goes_to(M) ==
US, goes_to(U) == US)) ::: (2) If L goes to the
UK, both M and U go to the US
goes_to(W) != goes_to(Z) ::: (3) The country W
went to was different from the country Z went to
goes_to(U) != goes_to(G) ::: (4) The country
where U goes is different from the country where
G goes
Implies(goes_to(Z) == UK, goes_to(H) == UK) :::
(5) If Z goes to the UK, then H also goes to the
UK
goes_to(G) == US ::: If G goes to the United
States
Verifications
is_deduced(goes_to(G) == US,
Not(Implies(goes_to(G) == UK, goes_to(H) ==
US))) ::: (1) Condition (1) is not applicable
is_deduced(goes_to(G) == US,
Not(Implies(goes_to(L) == UK, And(goes_to(M)

334



== US, goes_to(U) == US)))) ::: (2) Condition (2)
is also not applicable
is_deduced(goes_to(W) != goes_to(Z), False) :::
(3) Condition (3) does not provide any information
about H, M, U, or W
is_deduced(And(goes_to(U) != goes_to(G),
goes_to(G) == US), goes_to(U) == UK) ::: (4) U
must go to the UK
is_deduced(goes_to(G) == US,
Not(Implies(goes_to(Z) == UK, goes_to(H)
== UK))) ::: (5) Condition (5) is not applicable

NOW ANALYZE THIS NEW QUESTION
AND COT_PARSING:
question:
{{question}}
cot_parsing:
{{cot_parsing}}
Remember to analyze the specific content above,
not the examples. Your output should include Dec-
larations, Constraints, and Verifications sections.
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Abstract

We present Team asdfo123’s submission to
the LLMSR@XLLM25 shared task, which evalu-
ates large language models on producing fine-
grained, controllable, and interpretable rea-
soning processes. Systems must extract all
problem conditions, decompose a chain of
thought into statement–evidence pairs, and ver-
ify the logical validity of each pair. Lever-
aging only the off-the-shelf Meta-Llama-3-
8B-Instruct, we craft a concise few-shots,
multi-turn prompt that first enumerates all con-
ditions and then guides the model to label,
cite, and adjudicate every reasoning step. A
lightweight post-processor based on regular
expressions normalises spans and enforces the
official JSON schema. Without fine-tuning,
external retrieval, or ensembling, our method
ranks 5th overall, achieving macro-F1 scores
on par with substantially more complex and
resource-consuming pipelines. We conclude
by analysing the strengths and limitations
of our approach and outlining directions for
future research in structural reasoning with
LLMs. Our code is available at https://
github.com/asdfo123/LLMSR-asdfo123.

1 Introduction

Large language models (LLMs) have recently
shown impressive performance on complex rea-
soning tasks, spurred in part by Chain–of–Thought
(CoT) prompting, which asks the model to exter-
nalise intermediate steps before giving an answer
(Wei et al., 2023). Subsequent variants—such
as zero-shot CoT (Kojima et al., 2022), self-
consistency decoding (Wang et al., 2023), tree-
of-thought search (Yao et al., 2023), and auto-
matically generated demonstrations (Zhang et al.,
2022)—further boost accuracy, yet these free-form
rationales remain difficult to evaluate and prone to
hallucinations (Akbar et al., 2024).

*Dianbo Sui is the corresponding author.
†Equal contribution.

The LLMSR@XLLM25 shared task tackles this limi-
tation by framing reasoning as a constrained CoT
process: systems must (i) extract every explicit
problem condition, (ii) segment a rationale into
aligned statement–evidence pairs, and (iii) judge
whether each evidence span logically entails its
statement. Such fine-grained structure “improves
the transparency and reliability of the process”
(task description) and enables detailed diagnosis
of model behaviour. Moreover, the step-level la-
bels provide dense supervision for Process Reward
Modeling (PRM), which optimises how a solution
is reached rather than merely what answer is pro-
duced (Uesato et al., 2022; Lightman et al., 2023).

Structured parsing of reasoning brings three con-
crete benefits. First, it enhances debuggability:
developers can pinpoint the exact step where a hal-
lucination or logical slip occurs. Second, it supplies
explicit training signals for PRM, shown to yield
more coherent and truthful solutions on mathemat-
ical benchmarks (Lightman et al., 2023). Third,
it promotes trustworthy AI: users can audit or
amend individual steps, a requirement for safety-
critical deployments and formal logic tasks such
as EntailmentBank proofs (Dalvi et al., 2021) or
LogicBench diagnostics (Parmar et al., 2024).

In this report we present Team asdfo123’s
lightweight submission, which relies solely on
the untuned Meta-Llama-3-8B-Instruct (Meta
AI, 2024). A compact few-shot, multi-turn prompt
guides the model through all three subtasks, while a
minimal post-processor enforces the official JSON
schema. Despite its simplicity, our approach ranks
5th overall, demonstrating that careful prompt de-
sign and constrained reasoning can rival far more
elaborate pipelines.
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2 Related Work

2.1 Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting has emerged
as a powerful method to enhance multi-steasoning
in large language models (LLMs). Initial studies
showed significant improvements by simply adding
"Let’s think step by step" to zero-shot prompts (Ko-
jima et al., 2022). Self-consistency further boosts
robustness by generating multiple reasoning chains
and selecting the most consistent response (Wang
et al., 2023). Least-to-Most prompting addresses
complex problems by decomposing them into sim-
pler subproblems, achieving near-perfect accuracy
on challenging tasks (Zhou et al., 2023).

However, CoT prompting can produce logi-
cally flawed reasoning steps, reaching correct an-
swers through invalid logic (Zelikman et al., 2022;
Golovneva et al., 2023). The Tree of Thoughts
framework mitigates this by organizing reasoning
into a search tree, allowing systematic backtrack-
ing and evaluation of alternative reasoning paths
(Yao et al., 2023). Incorporating knowledge-graph-
based verification also improves reliability (He
et al., 2025; Jiang et al., 2023).

Recent benchmarks focus on evaluating CoT
quality beyond answer accuracy, using validity and
redundancy metrics to assess reasoning step-by-
step (Xia et al., 2025; Chen et al., 2025). These
approaches emphasize the need for tighter integra-
tion between reasoning generation and verification.

2.2 Parsing

Turning natural language into structured represen-
tations is a prerequisite for dependable reasoning.
ProgPrompt steers LLMs to emit code-like blocks
of comments, actions, and assertions for situated
robot planning (Singh et al., 2022). Self-Ask im-
proves interpretability by decomposing a complex
query into solvable sub-questions and then com-
posing their answers (Press et al., 2023). Coupling
LLMs with Answer Set Programming lets a logic
engine verify every inferred rule, boosting robust-
ness (Yang et al., 2023). RaLU aligns CoT spans
with formal logic units and checks them via exter-
nal solvers (Li et al., 2025).

For discourse-level parsing, Rhetorical Struc-
ture Theory (RST) models text coherence via nu-
cleus–satellite relations (MANN and THOMPSON,
1988). Early algorithms split texts into Elemen-
tary Discourse Units and attached rhetorical rela-
tions—sometimes without explicit markers (Marcu,

Stage 1

Stage 2

Stage 3

Input Qusetion

Question Parsing
• condition A
• condition B
• condition C

CoT Parsing
Statement

...

A ❌
Evidence

...

A | B

Verification
Statement   Evidence
Statement S1       Entails?

True False

Figure 1: Illustration of the three-stage LLM-SR Task.
(In our implementation, Verification is executed within
the CP stage.)

1998). Enhanced RST (eRST) extends this to
graphs with non-projective, concurrent relations
and both implicit and explicit signals, offering
more flexible, explainable structures (Zeldes et al.,
2024).

2.3 Process Reward Model
Previous studies have demonstrated that process
supervision maintains reasoning consistency bet-
ter than outcome supervision, and conceptualized
Process Reward Models (PRMs) to reduce logi-
cal errors (Uesato et al., 2022; Lightman et al.,
2023). To mitigate the cost of manual annota-
tions, recent approaches automatically retrieve sim-
ilar solution steps to generate fine-grained, step-
level labels—facilitating both verification and PPO-
based reinforcement learning without human super-
vision (Wang et al., 2024).

Building on the foundational PRM framework,
several works have further advanced process re-
ward modeling. Tree-based preference learning
constructs reasoning trees via best-first search
and trains verifiers using paired step-level prefer-
ences (He et al., 2024). More recently, CFPRM (Hu
et al., 2025) introduces a coarse-to-fine strategy that
first merges adjacent steps into coarse-grained win-
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dows and then refines them into fine-grained units.
This hierarchical method mitigates redundancy in
LLM-generated reasoning while enabling training
across multiple levels of granularity.

3 Methodology

3.1 Pipeline Overview

Our system follows the three–stage workflow man-
dated by the LLM–SR task (Figure 1):

1. Question Parsing (QP). The model enumerates
every explicit condition of the problem as an
ordered list.

2. CoT Parsing & Verification (CP). Given the
question, its Chain–of–Thought (CoT) ratio-
nale, and the QP output, the model simultane-
ously (i) segments the rationale into statement–
evidence pairs and (ii) judges whether each ev-
idence span logically entails its statement.

All stages run on the untuned original
Meta–Llama–3–8B–Instruct. Instead of param-
eter fine–tuning we rely on few-shot in-context
learning (ICL) with a multi-turn dialogue template
(§3.2). A deterministic post-processor (§3.4) vali-
dates and cleans the raw generations, after which
we completes the full public test set in under ten
minutes.

3.2 Prompt Engineering

Few-shot demonstrations. We hand-pick two
QP and three CP exemplars that jointly cover most
patterns. During inference these demonstrations
precede the test instance verbatim.

Three-turn template. Each call is cast as a short
conversation:

1. SYSTEM: global rules, including format restric-
tions.

2. USER: the problem text plus the explicit request
(QP or CP).

3. ASSISTANT: the model’s structured JSON an-
swer.

Because CP depends on the extracted conditions,
we invoke the model twice per instance: first for QP,
and then for a single CP call which jointly performs
CoT parsing and the verification step, with the QP
list appended to the user prompt.

3.3 Robust JSON Output

Llama-3 occasionally produces ill-formed
JSON—extra quotes, missing commas, or un-
closed braces—which crashes the official scorer.
By enclosing every demonstration answer in a
fenced ```json . . . ``` block and explicitly
instructing the model to output valid JSON only,
we cut the unparsable rate on the dev set from 16 %
to just 2 %. The few residual errors are corrected
or flagged by our post-processor.

3.4 Post-processing

A lightweight Python script performs:

1. Schema check: every object must con-
tain statement, evidence, and boolean
verification.

2. Normalisation: trim bullets, stray whitespace,
smart quotes, trailing punctuation; merge dupli-
cate conditions.

3. Alignment: if #statements 6= #evidence, align
by order; otherwise flag (none observed on
dev/test).

3.5 Efficiency Rationale

The task rewards both answer correctness and rea-
soning quality. We show that careful prompt design
plus minimal hygiene techniques already yields a
top-5 macro-F1 without external retrieval or fine-
tuning, providing a strong, reproducible baseline
for future work on PRM.

4 Experiments

We conduct all experiments on the official
LLMSR@XLLM25 test sets1. The shared task provides
a fine-grained Chain-of-Thought (CoT) analysis
corpus derived from LogiQA (Liu et al., 2021). It
contains only 24 fully annotated training instances,
each accompanied by both question-parsing and
CoT-parsing labels. From the 24 training instances,
we heuristically select a small subset of demonstra-
tions that spans the major logical patterns; these
serve as the few-shot exemplars in our prompts.

The evaluation follows a two-stage protocol.
First, we perform a k-shot ablation for Question
Parsing (QP), varying the number of in-context
demonstrations. After selecting the best QP setting,

1https://huggingface.co/datasets/shuyi-zsy/
LLMSR/tree/main/llmsr

338

https://huggingface.co/datasets/shuyi-zsy/LLMSR/tree/main/llmsr
https://huggingface.co/datasets/shuyi-zsy/LLMSR/tree/main/llmsr


we keep it fixed and sweep k again for CoT Pars-
ing & Verification (CP) to determine its optimal
demonstration budget.

4.1 Phase 1: Selecting the Question-Parsing
Shot Count

Table 1 shows QP results with k ∈ {1, 2, 3, 4}.
Macro-F1 peaks at 0.7526 with 2-shot. Adding a
third or fourth example degrades performance, pre-
sumably because the longer prompt dilutes salient
patterns and pushes relevant context tokens farther
from the model’s attention window.

Shots (k) Question_Macro_F1

1 0.6707
2 0.7526
3 0.7281
4 0.7061

Table 1: Few-shot ablation for Question Parsing.

Given its clear advantage, we fix k=2 for all
subsequent QP calls. The extracted condition list
is then passed as additional context to the CP stage.

4.2 Phase 2: Tuning CoT Parsing &
Verification

After fixing the QP stage at two demonstrations,
we sweep the shot count for CoT Parsing. Table 2
shows that 3-shot strikes the best trade-off, yield-
ing the highest Statement_Macro_F1 as well as the
strongest pair-level and reasoning scores. Adding
a fourth example brings only marginal gains and
in some cases degrades performance, presumably
because the longer prompt pushes relevant tokens
farther from the model’s attention window.

CP Shots StmtF1 Stmt+EvF1 ReasoningF1

1 0.3066 0.0726 0.0391
2 0.1816 0.0860 0.0250
3 0.3304 0.1385 0.0782
4 0.2978 0.0976 0.0518

Table 2: CoT Parsing & Verification with 2-shot QP
fixed. “Stmt” = Statement_Macro_F1, “Stmt+Ev” =
Statement_Evidence_Macro_F1.

4.3 Final Configuration

The combination of 2-shot QP and 3-shot CP con-
stitutes our submission. This hybrid setup achieves

the highest overall macro-F1 on the public leader-
board while preserving the system’s lightweight.
The results highlight two insights: (1) QP and CP
favour different demonstration budgets, and (2)
carefully tuning each stage separately beats a single
fixed prompt size.

We report our final experimental results in Ta-
ble 3, which include the Test A and Test B phase
scores on the official LLMSR@XLLM25 test sets.

Phase QuestionF1 StmtF1 Stmt+EvF1 ReasoningF1

Test A 75.26 33.04 13.85 7.82
Test B 75.33 47.26 20.17 11.64

Table 3: Macro-F1 scores on four evaluation
criteria for Test A and Test B phases. “Stmt”
= Statement_Macro_F1, “Stmt+Ev” = State-
ment_Evidence_Macro_F1.

5 Discussion

5.1 Key Insights from the Shared Task
The LLMSR@XLLM25 shared task offers a concrete
sandbox for controllable and transparent reason-
ing. By forcing systems to expose every condition,
align each statement with explicit evidence, and
render a step-level entailment verdict, the task goes
well beyond conventional answer-only evaluation.
Our experiments confirm three central insights:

1. Structural reasoning is promising yet non-
trivial. Even an untuned 8B model can reliably
parse conditions (§4, Phase 1), but struggles to
decompose and verify chains of thought.

2. Larger does not (yet) mean satisfactory. In-
formal leaderboard comparisons indicate that
more elaborate, resource-heavy pipelines still
fall short. The bottleneck is not extraction but
logical adjudication.

5.2 Limitations of Llama-3-8B
Meta-Llama-3-8B scores well on QP but falters
on logic: it hallucinates evidence, merely para-
phrases conditions, and mishandles negation, drag-
ging down Statement–Evidence and Reasoning F1.
These errors persist despite prompt tuning and
JSON guards, implying the bottleneck lies in the
model’s logic rather than the interface.

5.3 Future Work
Stronger verifiers. Verification may need a more
capable judge (e.g., GPT-4o, Claude 3) detached
from the generator.
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Lightweight entailment modules. Training a
small, dedicated critic on synthetic entailment
pairs—à la CoT-Critic—could boost step-level
faithfulness.
Process Reward Models (PRMs). The extracted
structures are ideal supervisory signals for PRMs.
Iteratively refining the generator with PRM feed-
back may tighten the link between evidence and
statements, increasing coherence without brute-
force scaling.

5.4 Takeaway

The shared task shows that structured reasoning is
a feasible yet unsolved frontier for LLMs. Our min-
imal system serves as a proof of concept; progress
now hinges on developing (i) stronger or spe-
cialised verifiers and (ii) learning paradigms that re-
ward how a conclusion is reached, not merely what
it is. We believe these directions will be pivotal
for deploying LLMs in settings where transparency
and trustworthiness are non-negotiable.

6 Conclusion

We showed that a carefully crafted, few-shot
prompting pipeline—backed by lightweight post-
processing—can tackle the LLMSR@XLLM25 shared
task without fine-tuning or external tools, rank-
ing 5th overall. While Meta-Llama-3-8B handles
condition extraction well, its verification accuracy
remains limited, underscoring the need for stronger
or specialised reasoners and process-level training
signals. Future work should pair stronger base mod-
els with dedicated entailment critics and reward
models that explicitly value step-by-step correct-
ness.
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Abstract

In this paper, we present a novel pipeline for
the XLLM Shared Task-III: Large Language
Model for Structural Reasoning (LLM-SR).
Our pipeline addresses key challenges in au-
tomatic process-reward training data construc-
tion, such as high manual annotation costs, lim-
ited accuracy of large models in structured data
processing, and dependency on auxiliary infor-
mation for validation. To overcome these lim-
itations, we first decompose the construction
process into extraction and validation phases.
Leveraging model-generated annotations, we
produce pseudo-labeled data and iteratively re-
fine model performance. Second, by analyzing
structured data patterns, we encode structural
constraints into a rule-based module and fine-
tune the model with Gradient Reward Policy
Optimization (GRPO), significantly improving
structured data extraction success rates. Finally,
we train the model to generate critical responses
that assess evidence-conclusion relationships,
thus enhancing validation reliability. Exper-
imental results demonstrate that our pipeline
outperforms models with an order of magnitude
more parameters and achieves the first position
on the task1.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in mathematical and log-
ical reasoning tasks, particularly when employ-
ing Chain-of-Thought (CoT) prompting to decom-
pose problems into multi-step reasoning processes
(Guo et al., 2025)(Yang et al., 2024)(Li et al.,
2024a)(Wang et al., 2024b). However, even state-
of-the-art models often produce unreliable interme-
diate reasoning steps, leading to cascading errors

1Codes: https://github.com/pipiPdesu/CoTParser.
†Work done during the internship at TeleAl.
∗These authors contributed equally to this work.
‡ Corresponding authors.

that compromise final outputs (Tyen et al., 2024).
To mitigate this issue, existing research has intro-
duced step-wise verification methods (Zeng et al.,
2023). For instance, process reward models (PRM)
can evaluate reasoning paths during training, iden-
tify erroneous steps, and offer precise corrective
feedback (Li et al., 2023). Alternatively, step-wise
analysis of CoT data from both correctness and
redundancy perspectives can generate high-quality
reasoning traces for training (Xia et al., 2025).
These approaches not only enhance reasoning relia-
bility but also improve overall data quality through
generating constructive critiques of flawed reason-
ing steps, thereby providing valuable optimization
signals for model refinement.

However, developing such step-wise verification
models faces three fundamental challenges:

• The scarcity of high-quality step-level anno-
tated reasoning datasets.

• The limited capability of current models in
both processing structural inputs and con-
structing regular outputs.

• The accuracy in justifying the logical validity
step by step.

Acquiring high-quality training data requires
labor-intensive step-by-step annotation of reason-
ing processes with correctness feedback. For in-
stance, the PRM800K dataset (Lightman et al.,
2023) utilizes expert annotators to provide process
supervision annotations. This heavy dependence
on skilled annotators significantly hinders both the
development and practical application of step-wise
verification models.

Moreover, existing verification approaches typi-
cally employ simplistic segmentation method (e.g.
explicit "Step:" markers, double line breaks, or pe-
riods) to parse reasoning steps (Zhang et al., 2024).
Such rigid segmentation fails to capture the nu-
anced compositional structure inherent in natural
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CoT reasoning. This limitation fundamentally con-
strains the verification fidelity in real-world appli-
cations, where reasoning complexity often exceeds
template-based patterns.

Additionally, verification models struggle with
complex problems, as even large-scale models fre-
quently fail to accurately determine step correct-
ness, revealing critical limitations in current verifi-
cation paradigms. To generate high quality dataset,
Marh-Shepherd (Wang et al., 2024a) uses rejec-
tion sampling to generate multiple reasoning paths
starting from certain steps, approximating step cor-
rectness based on the accuracy of the final answer.
rStar-Math (Guan et al., 2025) constructs positive-
negative sample pairs to train PPM, guiding the
model towards correct solutions. Although these
methods effectively create step-level supervision
data and improve PRM capabilities, their data pri-
marily consist of synthetic samples and require
substantial computational resources and additional
messages for construction. More importantly, they
cannot accurately parse the naturally occurring CoT
processes.

To tackle these challenges, XLLM Shared Task-
III: LLM for Structural Reasoning requires partici-
pants to extract all conditions, statements, and their
corresponding evidence from given problems and
associated CoT processes, then determine whether
the evidence sufficiently supports each extracted
statement-evidence pair. This approach achieves
fine-grained CoT analysis to enhance the genera-
tion of more coherent and accurate reasoning pro-
cesses.

In this work, we propose a fine-grained anal-
ysis pipeline for CoT reasoning processes. The
method decomposes the task into two components:
extraction and verification. For the extraction task,
following the construct of AIFlow (Shao and Li,
2025), we identify the problem conditions, state-
ments, and supporting evidence from the question
and CoT process. To address data scarcity, we
first employ prompt engineering and preliminary
fine-tuning to generate high-quality pseudo-labels.
These extraction patterns are then formalized as
prior knowledge into rule-base reward, and the
model is further trained using GRPO (Shao et al.,
2024) to streamline the extraction process and im-
prove extraction accuracy. For the verification task,
inspired by positive-incentive noise (Li, 2022), we
reformulate it as generating concise yet effective
critiques for statement-evidence pairs to determine
whether the evidence supports the statement. Our

method achieved first place in this competition.
While maintaining low resource consumption, our
model improves extraction capability by 20% com-
pared to baselines. Our findings demonstrate the
feasibility of using prior knowledge as rule reward
to enhance model performance on specific NLU
tasks like text extraction and recognition, as well
as transforming verification tasks into critique gen-
eration tasks to improve verification capabilities of
smaller models.

2 Related work

LLMs for Information Extraction. The emer-
gence of large language models has introduced new
solutions and research directions for information
extraction. (Wu et al., 2024) proposed the Multi-
stage Structured Entity Extraction method, which
enhances effectiveness and efficiency by break-
ing down the task. PIVOINE (Lu et al., 2023)
focuses on the issue of Open-world IE, improv-
ing the model’s instruction-following ability by
constructing the INSTRUCTOPENWIKI dataset,
and demonstrates excellent generalization to un-
seen instructions. LLMs for Text2SQL (Li et al.,
2024b)(Wu et al., 2025) also provide a new avenue
for exploring their role in information extraction.
Step Verification for LLMs. To enable fine-
grained analysis of CoT reasoning, existing stud-
ies have attempted to evaluate model performance
through reasoning process inspection. RECE-
VAL (Prasad et al., 2023) proposes reference-free
metrics based on entailment relations and point-
wise variational information to assess step correct-
ness and information gain. Parser-based method
(Saparov and He, 2023) parses model-generated
CoT into symbolic proofs for formal analysis.
Other works employ LLMs themselves for cor-
rectness verification. Inspired by RFT (Xia et al.,
2025), most approaches sample multiple reasoning
paths to inversely estimate step validity. (Zhang
et al., 2024) uses correct answers to guide models
in critiquing their own incorrect responses, then
filters high-quality critiques to train verification
models. (Wan et al., 2024) determines answer cor-
rectness through multi-path consistency checks and
identifies erroneous steps though multi-agent de-
bate. (Xia et al., 2025) fine-tunes models to score
reasoning steps from both validity and redundancy
perspectives. (Tyen et al., 2024) observes LLMs’
underperformance in error localization tasks and
trains small classifiers to identity errors. (Zeng
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et al., 2023) introduces meta-reasoning to evalu-
ate error-correction capabilities through recursive
reasoning analysis.
Process reward model (PRM) dataset. In rein-
forcement learning, PRMs provide step-level feed-
back to align LLM reasoning with human expec-
tations. For generating process-wise supervision
data, PRM800K (Lightman et al., 2023) relies on
manual annotation. Math-Shepherd (Wang et al.,
2024a) automates this via rejection sampling: gen-
erating multiple reasoning paths from intermediate
steps and assuming step correctness if most paths
yield correct answers. rStar-Math (Guan et al.,
2025) constructs positive-negative sample pairs to
train Process Preference Model.

3 Methodology

In this section, we first introduce the detailed task
description (Section 3.1), followed by presenting
the complete extraction pipeline architecture along
with the specific extraction methods for each mod-
ule and the approach for generating pseudo-labeled
datasets (Section 3.2). Subsequently, we elaborated
on the application of GRPO for the extraction task
(Section 3.3) and the method of employing verifica-
tion to validate the statement-evidence pairs (Sec-
tion 3.4). Our final solution is an LLM-powered
pipeline for structured reasoning data construction,
as shown in Figure 1.

3.1 Details of Challenge

This task requires participants to generate "ques-
tion parsing" and "cot parsing" based on the con-
tent of "question" and "cot" for each given mes-
sage. Specifically, the task is divided into two parts:
Question Parsing and CoT Parsing. For Question
Parsing, all relevant conditions required to solve
the problem must be extracted from the given ques-
tion text. For CoT Parsing, all statement-evidence
pairs need to be extracted, and it must be logically
verified whether the statement can be inferred from
the evidence. Participants are only allowed to use
Llama-3-8B-Instruct (Grattafiori et al., 2024) as the
backbone model.

This task has released only 24 annotated exam-
ples as the training set, with questions sourced from
LogiQA (Liu et al., 2021) and CoT generated from
Llama3-8b-instruct.2 Additionally, there are 50
test cases for evaluation set A that only release the

2All data can be found in https://huggingface.co/
datasets/shuyi-zsy/LLMSR/tree/main/llmsr.

quires and 97 test examples for evaluation set B.
Appendix A shows part of the annotated examples.

3.2 Extraction Pipeline

For this task, accurately extracting the required in-
formation from the given question and CoT process
is of vital importance. The task baseline proposes
a method based on in-context learning for extrac-
tion and verification. This method employs few-
shot learning to extract key points from the input
question and CoT, directly outputs all components
required. However, due to limitations in model
size and the availability of annotated data, we be-
lieve that this method is difficult to further optimize.
Therefore, we consider decomposing the entire task
into two independent parts: Question Parsing and
CoT Parsing. For CoT Parsing, we further break
it down into Statement Extraction, Evidence Ex-
traction, and Statement-Evidence Pair Verification.
Subsequent steps may rely on the results of previ-
ous steps, meaning that this pipeline needs to run
in a serial manner. However, optimization of dif-
ferent parts can be carried out independently. To
achieve a higher score, we need to minimize the
extraction of incorrect information during the ex-
traction process to ensure a perfect match between
the extracted content and the ground truth.
Question parsing Inspired by the data extraction
strategy in REDSTONE (Chang et al., 2024), we di-
vide the extraction approach into two components:
extract and filter. First, the model performs sen-
tence segmentation on the entire question, treating
enumerated conditions as separate sentences. Sub-
sequently, we filter all sentence segments that con-
tain useful information to solve the problem. No-
tably, some conditions may appear in the question’s
interrogative clause (e.g. "If G goes to the United
States, which of the following must be true?" pro-
vides the condition "G goes to the United States").
For such cases, we further extract the embedded
conditions while removing irrelevant lexical items.
Statement extraction Since we cannot directly
divide the steps based on explicit markers, it be-
comes challenging to estimate the number of state-
ments in the CoT process. To figure out this issue,
we divide each natural reasoning step into three
substeps:

• Summarization of given conditions.

• Derivation of new information from known
conditions (corresponding to evidence).
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Figure 1: Architecture of CoT parsing pipeline. The pipeline consists of four key modules. The Question Parsing
Module receives the question, extract all sentences and filter out valid conditions. The Statement Parsing Module
takes the CoT process, divides it into multiply steps, then extract valid statements from each step. The Evidence
Extraction Module process all statements and the CoT process to identify corresponding evidence. The verification
Module takes all statement-evidence pairs, justify their validity.

• Generation of new conditions or conclusions
(corresponding to statements).

Following this principle, we first instruct the
model to segment the entire CoT process into these
refined steps. This ensures that each reasoning step
typically contains at most 0-1 statements, allow-
ing the extraction model to focus on small contex-
tual segments and significantly reducing extraction
complexity. Additionally, this decomposition of
natural steps enables us to expand the original 24
data samples 4-5 times, thereby facilitating the con-
struction of high-quality fine-tuning data. After
fine-tuning, the model’s extraction capability is fur-
ther improved.
Evidence extraction Initially we considered ex-
tracting evidence from the pre-segmented steps
when identifying statements. However, we ob-
served that certain pieces of evidence often span
multiple steps. For instance, a concluding state-
ment such as “From above, we can conclude” re-
quires all previously obtained valid statements as
supporting evidence. Moreover, extracting evi-
dence directly from individual steps may introduce
error propagation caused by incorrect step segmen-
tation. Therefore, for each extracted statement,
we need to search for its corresponding evidence
throughout the entire CoT process. Since state-

ments typically originate from the original text and
their supporting evidence usually appears near clear
discourse markers (e.g., connectives or adverbs),
this provides sufficient context for the model to
accurately locate the relevant evidence.

To further enhance the performance of each
module, we consider utilizing the aforementioned
pipeline to generate more pseudo-labeled data.
First, we sample questions from LogiQA. Subse-
quently, to ensure that the synthesized CoT pro-
cesses maintain distributional consistency with the
task’s given data, we sample one question-answer
pair each from the training set and evaluation set A,
serves as one-shot provided to Llama3-8B-Instruct
as reference for generating responses.

3.3 Utilize GRPO for Extraction

Due to the insufficient extraction accuracy of this
pipeline, the pseudo-labeled dataset generated by
this method can hardly provide substantial improve-
ments to the model. We discovered that instead of
using human annotation experience as prompts for
model learning or allowing the model to memorize
patterns through more data, we can incorporate
these as rules to provide rewards in GRPO. For
statement extraction, we summarized the following
potential guidelines from the training dataset:
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• The statement must originate from original
text

• The statement must end with a period

• The statement length must be no fewer than 4
words and no more than 50 words

• The statement must not contain connectives
such as “since” or “there is”

• The statement must not duplicate conditions
extracted from the question

• The statements should appear in sequence

• Because there must be evidence in between,
no two statements should be consecutive in
the original CoT

These guidelines can serve both as rules for
manual annotation and as directions for model ex-
ploration during reinforcement learning. When
the model’s response violates these rules, it re-
ceives a negative reward, and only when it perfectly
matches the correct answer does it receive a posi-
tive reward. This approach encourages the model
to learn the human method of data extraction.

After fine-tuning with GRPO, the model can
directly extract all statements from the CoT pro-
cess, maintaining accuracy while reducing interme-
diate computational overhead. This method demon-
strates the potential of incorporating prior rules into
GRPO’s rule-based rewards to enhance LLM per-
formance on traditional NLP tasks.

3.4 Verification

The objective of this part is to determine whether
each extracted statement can be inferred from its
corresponding evidence. For this problem, we
make the following assumptions:

1. The model needs to rely on all known condi-
tions of the question to determine whether the
statement holds. When judging whether the
evidence supports the statement, the model
should first determine whether the statement
is valid in the context of the question before
assessing whether the evidence sufficiently
supports the statement.

2. All statement-evidence pairs are independent.
When judging whether a statement holds, only
its corresponding evidence is needed, not

other evidence or statements from the con-
text. The evidence should consist of all the
sentences that can prove the statement. If a
statement requires additional evidence beyond
its corresponding evidence, it indicates that
the evidence is not sufficient to fully support
the statement.

3. Judging statement-evidence pairs using the
model should not be a simple binary classifica-
tion task but should fully leverage the model’s
reasoning process. However, due to the lim-
itations of the PRM function, the reasoning
process should not be overly lengthy.

Based on these assumptions and inspired by the
approach in CFT (Wang et al., 2025) of criticizing
noise, we believe that the output of the Verification
model should be a critique with justification of the
statement-evidence pair. The critique part should
directly point out the reasons why the evidence sup-
port or does not support the statement and provide
the final justification based on these reasons. We
used DeepSeek v3-0324 (Liu et al., 2024) to gener-
ate a critique dataset from the extracted dataset and
fine-tuned the discriminative model accordingly.
The success rate after fine-tuning remained similar
to that of DeepSeek v3, indicating that training the
model to criticize noise to judge the correctness
of reasoning steps is effective, and the model can
acquire this ability with limited data.

4 Experiment

4.1 Setup

Pipeline Overview Our final pipeline operates
as follows: For each question, the model first ex-
tracts all potential conditions followed by a filtering
module. For statement-evidence pairs, the model
directly extracts all statements from the CoT pro-
cess. After removing duplicates with the extracted
conditions, it searches for corresponding evidence
in the CoT for each statement. Finally, a verifica-
tion model justifies each statement-evidence pair.
Parameter Settings We trained four Llama3-8B-
Instruct models for this pipeline: condition extrac-
tion, statement extraction, evidence extraction and
verification. All models were full parameter fine-
tuned for 3 epochs at a learning rate of 1e−5 using
pseudo-labeled data generated by above pipeline.
The verification model training data outputs were
produced by DeepSeek V3-0324. During inference,
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Method/Team Question(%) Statement(%) Evidence(%) Reasoning(%)
Baselines

ICL(Llama3-8b-Instruct) 73.01 42.40 18.10 10.32
ICL(Qwen2-7b-Instruct) 69.98 42.1 15.09 8.51
ICL(Telechat2) 72.18 46.39 16.82 7.71
ICL(DeepSeek-R1) 81.87 44.84 12.42 10.79
dcchen(2nd) 78.53 54.31 23.57 15.71
blazerblade(3rd) 76.7 40.44 11.32 6.20
TeleAI(Ours) 81.2 55.07 22.44 17.09

Table 1: Comparison of top3 teams with our submission, along with baseline method of different models.

we used rejection sampling to obtain N = 31 sam-
ples from the verification model to determine the
final results.
Evaluation Metrics We assess extracted condi-
tions, statements, and evidence using both semantic
and lexical similarity against ground truth. Seman-
tic similarity is computed using nli-deberta-v3-base
(He et al., 2021)(Liu et al., 2023), while lexical
similarity uses METEOR scores. The matching
score is the geometric mean of these two measures.
Thresholds are set at 0.95 for question parsing and
0.9 for CoT parsing - only scores exceeding these
thresholds are considered matches. For evidence
evaluation, we only consider evidence paired with
matched statements. A statement-evidence pair
is verified as correct only when both components
match. The final evaluation metric is the macro F1
score across all four components.
Baseline We adopt the provided in-context learn-
ing method as our baseline framework. For consis-
tency with the task requirements, we evaluated four
baseline models: Llama3-8B-Instruct (Grattafiori
et al., 2024), Qwen2-7B-Instruct (Yang et al.,
2024), Telechat2 (He et al., 2024) and DeepSeek-
R1 (Guo et al., 2025). All models were tested
under identical experimental conditions to ensure
fair comparison.

4.2 Main Result

Table 1 shows the comparison of our solution with
the top three other teams and the baseline. Our
solution achieved the highest scores in Statement
and Reasoning parts, maintaining the best overall
task performance. Since we failed to extend the
reinforcement learning method to evidence extrac-
tion, the corresponding score was slightly lower
than the highest score. However, our method still
achieved a high Reasoning score while maintaining
a small number of extracted statement-evidence

pairs, which proves that our verification model is
more powerful than what the score reflects.

4.3 Ablation

We conducted ablation studies to verify the ef-
fectiveness of each newly added module in the
pipeline. Since some modules are only effective for
certain subtasks among the four subtasks, we only
list the evaluation of the parts affected by adding
a particular module. The experimental results are
shown in Table 2.

Compared to directly using the model for content
extraction, employing an optimized pipeline for
step-by-step extraction and filtering significantly
enhances the success rate of question and state-
ment extraction. After post-training with GRPO,
the success rate of statement extraction is notably
improved. Benefiting from an increased base for
extracting statements, the evidence score also in-
creases. We trained the model to use critique for
verification, leading to a substantial improvement
in reasoning accuracy. Our ablation study demon-
strates the feasibility of LLM with GRPO to per-
form traditional NLU tasks, and for the model’s
verification process, learning to criticize statement-
evidence pairs is easier to enhance verification ac-
curacy than directly justify their validity.

5 Conclusion

In this article, we propose an effective method for
the XLLM Shared Task-III in LLM for Structural
Reasoning. We present a novel pipeline for fine-
grained analysis of CoT processes that achieves
extraction and verification performance compara-
ble to state-of-the-art models while maintaining
low resource requirements. Our work demonstrates
GRPO’s potential for enhancing LLM performance
on traditional NLU tasks and validates the feasibil-
ity of using critique to develop model verification
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Method Question(%) Statement(%) Evidence(%) Reasoning(%)
Directly Extraction and Verification 61.19 37.09 15.02 8.11
+ Step-wise Extraction Pipeline 81.20 46.81 16.74 5.45
+ Tuned with GRPO 55.07 22.44 4.68
+ Critique Verification 17.09

Table 2: Ablation results on Test set A.

capabilities. The proposed framework opens new
possibilities for structured reasoning analysis in
resource-constrained scenarios while maintaining
competitive accuracy, with future work planned to
explore applications to broader reasoning tasks and
further optimization of the verification component.

Limitations

Our approach still has some limitations. First, the
models are trained exclusively on pseudo-labeled
data, whose inherent accuracy constraints impose
an upper bound on the extraction and verification
performance of the entire pipeline. Second, our
experiments are conducted solely on the LogiQA
dataset with CoT processes generated by Llama3-
8B-Instruct, without validation on other types
of chain-of-thought datasets or different LLM-
generated reasoning paths. These limitations sug-
gest directions for future improvements in data
quality and generalization testing.
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A CoT Parsing Example

{
"question ": "There are 7

outstanding students G, H, L, M, U, W
and Z in a school.During the summer
vacation , the school will send them to
the United Kingdom and the United

States for inspection.The school has
only 7 students participating in this
activity , and each person happens to
go to one of these two countries.
Considering the specialty of each
student , this activity must meet the
following conditions? (1) If G goes to
the UK, then H To the United States

.(2) If L goes to the UK, both M and U
go to the US......" ,

"question_parsing ": [
"The school has only 7

students participating in this
activity , and each person happens to
go to one of these two countries",

"If G goes to the UK, then H
To the United States",

"If L goes to the UK, both M
and U go to the US",

......
],
"answer ": "b",
"cot": "Since G goes to the United

States , we need to analyze the
conditions that follow. Condition (1)
is not applicable since G is going to
the US. Condition (2) is also not
applicable since L’s destination is
not specified ......"

"cot_parsing ": [
{

"statement ": "Condition
(1) is not applicable",

"evidence ": "G is going to
the US",

"Verification ": "true"
},
{

"statement ": "Condition
(2) is also not applicable",

"evidence ": "L’s
destination is not specified",

"Verification ": "true"
},
.......

],
},
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Abstract

Speech Event Extraction (SpeechEE) is a chal-
lenging task that lies at the intersection of Au-
tomatic Speech Recognition (ASR) and Natu-
ral Language Processing (NLP), requiring the
identification of structured event information
from spoken language. In this work, we present
a modular, pipeline-based SpeechEE frame-
work that integrates high-performance ASR
with semantic search-enhanced prompting of
Large Language Models (LLMs). Our sys-
tem first classifies speech segments likely to
contain events using a hybrid filtering mecha-
nism including rule-based, BERT-based, and
LLM-based models. It then employs few-
shot LLM prompting, dynamically enriched
via semantic similarity retrieval, to identify
event triggers and extract corresponding argu-
ments. We evaluate the pipeline using mul-
tiple LLMs—Llama3-8B, GPT-4o-mini, and
o1-mini—highlighting significant performance
gains with o1-mini, which achieves 63.3% F1
on trigger classification and 27.8% F1 on argu-
ment classification, outperforming prior bench-
marks. Our results demonstrate that pipeline
approaches, when empowered by retrieval-
augmented LLMs, can rival or exceed end-to-
end systems while maintaining interpretability
and modularity. This work provides practical
insights into LLM-driven event extraction and
opens pathways for future hybrid models com-
bining textual and acoustic features.

1 Introduction

Information extraction aims at automatically iden-
tifying structured information, such as entities and
their relations, from unstructured data (Bikel et al.,
1997; Fei et al., 2023). A task in this domain is
Event Extraction (EE) (Chen et al., 2015) search-
ing for answers to questions like what happened,
who was involved, and where did it take place. The
source data can be text (Yang and Mitchell, 2016),
but even images (Li et al., 2020) or videos (Chen
et al., 2021). Speech Event Extraction (SpeechEE)

(Kang et al., 2024) extends textual EE, with the
purpose of identifying structured event informa-
tion directly from the input of the spoken language.
This task occupies a unique intersection between
Automatic Speech Recognition (ASR) and Natural
Language Processing (NLP), requiring not only ac-
curate transcription but also the detection of event
types, triggers, and arguments from possibly noisy
spoken content.

Existing SpeechEE approaches can be broadly
categorized into the methodologies pipeline-based
and end-to-end. Pipeline-based architectures typi-
cally employ an ASR module to transcribe speech,
followed by text-based event extraction using NLP
techniques (Cao et al., 2022; Fei et al., 2024).
These systems offer modularity and transparency,
allowing separate optimization and analysis of ASR
and extraction components. However, they are sus-
ceptible to cascading errors, where transcription
inaccuracies can significantly impair downstream
event extraction performance. Conversely, end-to-
end approaches aim to bypass intermediate text by
learning to map raw audio directly to structured
outputs (Wang et al., 2024). While promising in
reducing error propagation and potentially more
efficient, these models often demand large-scale
annotated audio-event datasets and are less inter-
pretable, acting as opaque "black boxes" in many
cases.

Recent progress in Large Language Models
(LLMs) such as GPT-4 (OpenAI, 2024a) has
opened new possibilities in pipeline-based architec-
tures by enabling powerful few-shot and zero-shot
learning capabilities. LLMs exhibit remarkable pro-
ficiency in extracting structured knowledge from
unstructured text with minimal task-specific super-
vision (Zhang et al., 2022). When combined with
state-of-the-art ASR systems, these models can
form the backbone of robust SpeechEE systems
that generalize well across domains and require
minimal adaptation.
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In this work, we present a pipeline-based
SpeechEE framework that leverages semantic
search-enhanced few-shot prompting with LLMs.
Our system dynamically retrieves relevant exam-
ples from a support set and incorporates them into
prompts to guide event extraction. Additionally,
we introduce a classification mechanism to identify
utterances likely to contain events, reducing false
positives and improving extraction precision.

Our main contributions are as follows:

• We propose a multi-stage SpeechEE pipeline
combining high-performance ASR with se-
mantic search-enhanced prompting for event
extraction using LLMs.

• We introduce a generalizable few-shot learn-
ing strategy based on semantic similarity, ap-
plicable to various text-related information
extraction tasks.

• We develop a speech segment classification
module that selectively filters utterances likely
to contain events.

• We provide a detailed comparison of several
configurations, offering practical insights for
SpeechEE deployment.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work on SpeechEE
and language models. Section 3 introduces the
dataset. Section 4 describes the model architecture
and pipeline components. Section 5 presents the
experimental results and analysis. Section 6 out-
lines the results of the ablation study. Section 7
discusses key findings and limitations. Finally, Sec-
tion 8 concludes the paper and suggests directions
for future research.

2 Related Work

2.1 Event Extraction from Text
EE from textual data has been a long-standing task
in information extraction, focusing on identifying
event triggers and their semantic arguments. Early
approaches were largely feature-based, relying on
hand-engineered lexical, syntactic, and semantic
features fed into statistical models such as maxi-
mum entropy classifiers, conditional random fields,
or nearest-neighbor methods (Ahn, 2006) (Liao and
Grishman, 2010).

With the advent of deep learning, neural-based
models became dominant. Convolutional Neural

Networks (CNNs) enabled automatic feature learn-
ing from word embeddings, replacing manual fea-
ture engineering (Nguyen and Grishman, 2015).
With the ability to handle long-range dependencies,
recurrent architectures achieved state-of-the-art re-
sults on the ACE2005 dataset (Nguyen et al., 2016).

Graph Convolutional Networks (GCNs) have
also shown promise in the field by modeling syn-
tactic structures directly from dependency trees.
Unlike sequential models, GCNs exploit the syn-
tactic proximity between triggers and arguments
in a graph form, improving performance on long
sentences with distant dependencies (Nguyen and
Grishman, 2018; Liu et al., 2018).

More recently, Transformer-based solutions
(Vaswani et al., 2017) also emerged, with (Paolini
et al., 2021) introducing a framework, achieving
new state-of-the-art results on joint entity and rela-
tion extraction using a generative transformer.

A recent survey categorizes modern approaches
into sequence-based, graph neural, knowledge-
enhanced, and prompt-based methods, highlighting
the dominance of pretrained language models in
capturing contextual event semantics (Xie et al.,
2025).

2.2 Speech Processing and ASR
Automatic Speech Recognition (ASR) has wit-
nessed remarkable progress in recent years, partic-
ularly with the introduction of transformer-based
models. Whisper (Radford et al., 2022) represents a
significant advancement in ASR, trained on a large
and diverse dataset of 680,000 hours of multilin-
gual and multitask supervised data. This approach
has demonstrated robust performance across vari-
ous domains and languages, making it suitable for
real-world applications.

Similarly, Canary (Puvvada et al., 2024) offers
an alternative approach to ASR that achieves com-
petitive performance without relying on web-scale
data. These models provide high-quality transcrip-
tions that can serve as the foundation for down-
stream NLP tasks, including event extraction.

2.3 Speech Event Extraction
Speech Event Extraction (SpeechEE) is a relatively
new research direction that aims to bridge ASR and
event extraction. (Wang et al., 2024) introduced
a novel benchmark for SpeechEE and proposed
an end-to-end model for extracting events directly
from audio. Their work highlights the challenges
of extracting structured information from speech
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without relying on intermediate textual representa-
tions. Their end-to-end system demonstrated con-
sistently superior performance compared to the em-
ployed pipeline-based baseline. They report that
previous approaches to speech-based information
extraction have largely relied on pipeline methods,
where ASR is followed by text-based extraction.
While these methods benefit from advances in both
ASR and text-based event extraction, they often
suffer from error propagation, where mistakes in
transcription lead to extraction failures.

2.4 Large Language Models and Few-Shot
Learning

Large Language Models (LLMs) have emerged as
transformative tools in natural language processing
(NLP), enabling significant progress across a wide
range of tasks (Wu et al., 2024) including text gen-
eration, summarization, machine translation, and
information extraction. Proprietary models like
GPT-4o (OpenAI, 2024b) and o1-mini (OpenAI,
2024c) or open source models like Llama 3 (Meta,
2024) exemplify the scale and versatility of these
models. Their capacity to perform tasks with min-
imal or no explicit training—known as few-shot
or zero-shot learning—has shifted the paradigm
from model-specific fine-tuning to prompt-based
task generalization.

Few-shot learning in LLMs typically involves
crafting prompts that include a handful of task-
specific examples, guiding the model to infer pat-
terns and generalize to unseen inputs. This method
leverages the latent knowledge encoded in the pre-
trained model, often yielding strong performance
on tasks such as question answering, named en-
tity recognition, and relation extraction (Gao et al.,
2021; Min et al., 2022). Particularly for structured
information extraction, few-shot prompting enables
LLMs to identify and retrieve relevant spans of text
even in the absence of large annotated datasets.

Our work builds upon these advances by inte-
grating LLMs with semantic search techniques to
dynamically select the most relevant examples for
few-shot learning, thereby enhancing the models’
ability to extract events from speech transcriptions.

3 Dataset

We use the SpeechEE shared task dataset1, derived
from ACE2005-EN+. The dataset is provided in a
structured JSON format, where each entry consists

1https://xllms.github.io/SpeechEE/

of a unique id, an event trigger indicating the
lexical anchor of the event, its corresponding type,
and a list of associated arguments, each annotated
with a semantic role. In total, the dataset includes
33 distinct event types and 22 argument roles, of-
fering a diverse and challenging benchmark. It
comprises 19,217 training instances, 901 develop-
ment examples, and 676 test samples. An example
of the data format is shown below:

{"id": "train -6",
"event ": [

{" trigger ": "election",
"type": "Elect",
"arguments ": [

{"name": "man", "role": "Person "}
]}

]}

4 Methodology

Our proposed pipeline for speech event extraction
consists of several key components, as illustrated
in Figure 1. The pipeline follows a modular ap-
proach, allowing for component-level evaluation
and optimization.

4.1 ASR Transcription
The first step in our pipeline involves transcrib-
ing speech data into text. We experimented with
two state-of-the-art ASR systems for this purpose,
Whisper large-v3 and Canary 1b. Both sys-
tems were used with their default configurations to
transcribe the audio data. The resulting transcripts
served as input for subsequent steps in the pipeline.

4.2 Event Presence Classification
A significant challenge in event extraction is dis-
tinguishing between segments that contain events
and those that do not. Preliminary experiments
revealed that applying LLMs directly to all tran-
scripts resulted in numerous false positives, where
models identified events, that were not annotated
in the dataset.

To address this challenge, we implemented a
classification step to determine whether a given
transcript is likely to contain an event. We em-
ployed three different classification methods:

• Rule-based approach: This method flagged
instances containing trigger words identified
in the training set. We compiled a lexicon of
trigger words based on the training data and
used this to identify potential event-containing
segments.
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Figure 1: Overview of the SpeechEE Pipeline

• BERT-based classifier: We fine-tuned a BERT
model on text embeddings to classify seg-
ments as either containing events or not. The
model was trained on the transcribed train-
ing data with binary labels indicating event
presence.

• LLM-based classification: We prompted Ope-
nAI’s o1-mini model to classify the presence
or absence of events in transcripts. The model
was given a short description of the task and
asked to determine whether a given transcript
contained an event.

For the BERT-based classification, we used the
all-MiniLM-L6-v2 sentence transformer model2.
The training ran for 5 epochs, with a learning rate
of 2e−5, batch size of 16, choosing the best model
based on recall, as the goal was to have as few false
negatives as possible.

To enhance classification reliability, we only con-
sidered transcripts in which all three models agreed
on the presence of an event. This approach ef-
fectively reduced false positives during the clas-
sification stage. Table 1 presents the agreement
matrix among the models, with bolded cells indicat-
ing cases where the filtering mechanism identified
likely event presence.

Rule BERT LLM: NO LLM: YES

NO
NO 258 27
YES 61 39

YES
NO 17 27
YES 19 228

Table 1: Agreement table between the three systems.

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

4.3 Trigger Word Recognition
For segments classified as likely containing events,
the next step involved identifying and classifying
trigger words. Trigger words are specific words
or phrases that signal the occurrence of an event.
These events also have an event type, which needs
to be recognized based on the context.

We evaluated three different LLMs for this
task: Llama3-8B, GPT-4o-mini, and OpenAI’s
o1-mini. We deployed Llama3–8B locally on
two NVIDIA GeForce RTX 2080 Ti GPUs, while
the two OpenAI models were accessed via Ope-
nAI’s Batch API. Each model was prompted to
extract trigger words from the transcript and clas-
sify them into predefined event categories based
on the ACE2005 ontology. The prompt included a
description of the task, examples of trigger words
for different event types, and the transcript to be
analyzed.

During our experiments, we observed that the
Llama model occasionally produced outputs that
did not comply with the expected format or failed
to identify trigger words correctly. To address this
issue, we implemented an automated verification
step that checked the output format and re-executed
queries when necessary to ensure consistency. This
step was omissible for the OpenAI models.

4.4 Semantic Search-Enhanced Few-Shot
Learning

A key component in our approach is the use of
semantic search to dynamically select the most rel-
evant examples for few-shot learning. As there
are 33 classes, each with multiple argument types,
even showing one example from each case would
result in a very long prompt. Therefore, rather
than using a fixed set of examples for all queries,
we implemented a system that selected examples
based on their semantic similarity to the current
transcript. This retrieval-augmented few-shot ap-
proach increases contextual relevance and allows
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the model to better adapt to domain-specific nu-
ances. By coupling LLMs with semantic retrieval,
we aim to improve robustness and generalization
in this complex setting.

The process looks like the following:

1. We created embeddings for all training exam-
ples using a the all-MiniLM-L6-v2 sentence
transformer model.

2. For each new transcript, we generated an em-
bedding using the same model.

3. We retrieved the top ten most similar examples
to the new transcript using the FAISS library
(Douze et al., 2025).

4. We added these examples to the prompt (Ap-
pendix A.1).

This approach ensures that the LLM receives the
most relevant and informative examples for each
specific transcript, thereby improving its ability to
identify and classify trigger words accurately.

4.5 Argument Extraction

Following trigger identification, the next step in-
volved extracting event arguments and assigning
roles. Event arguments are entities that participate
in the event, and their roles define their relationship
to the event (e.g., Agent, Entity, Place).

Similar to the trigger recognition phase, we used
LLMs to extract arguments and assign roles (Ap-
pendix A.2). The prompt for this task included
the transcript, the identified trigger word and event
type, and examples of argument extraction for sim-
ilar event types. We again employed semantic
search to select the most relevant examples for few-
shot learning, focusing on examples similar to the
current transcript. Also we provided the dictionary
of the possible argument types for each event type
in the prompt.

4.6 Post-Processing

The final stage of our pipeline involved post-
processing the extracted information to ensure uni-
form output formatting. We used an additional
LLM call (Appendix A.3) to format the extracted
events, triggers, and arguments into a structured
JSON format consistent with the dataset specifica-
tions. This was necessary, because sometimes the
models included the transcripts themselves in the
output, or labeled the keys differently.

This step also included validation checks to en-
sure that the output met the expected schema and
that all required fields were present. In cases where
the output did not meet these requirements, addi-
tional LLM calls were made to correct and com-
plete the information.

5 Results

We evaluated our event extraction pipeline using
two primary metrics, following the evaluation pro-
tocol outlined by (Wang et al., 2024):

• Trigger Classification (TC): This metric as-
sesses whether both the predicted event type
and trigger span match the ground truth ex-
actly. A prediction is considered correct only
if both components align perfectly.

• Argument Classification (AC): This stricter
metric evaluates the correctness of the pre-
dicted argument mention, its semantic role,
and the associated event type, requiring full
agreement across all elements.

For both tasks, we report precision (P), recall
(R), and F1-score (F1), with the F1-score serving
as the primary measure of overall performance.
Table 2 summarizes the evaluation results across
the three LLMs: Llama3-8B, GPT-4o-mini, and
o1-mini. The ASR system used is indicated in
parentheses—Whisper (W) or Canary (C). For
Llama3-8B and GPT-4o-mini, all three stages of
the pipeline utilized the respective models. In the
case of o1-mini, however, the final formatting step
was performed using GPT-4o-mini, as it achieved
perfect results for this task, eliminating the need
for the more expensive reasoning model.

Model TC-R TC-P TC-F1 AC-R AC-P AC-F1

Llama3-8B (W) 24.1 57.6 33.9 11.2 18.3 13.9
GPT-4o-mini (W) 36.6 67.4 47.4 17.0 24.3 20.0
o1-mini (W) 59.2 65.9 62.4 26.9 27.1 27.1

Llama3-8B (C) 24.5 52.8 33.5 11.5 17.1 13.7
GPT-4o-mini (C) 36.8 65.5 47.1 16.8 23.2 19.5
o1-mini (C) 60.8 66.0 63.3 28.0 27.6 27.8

Table 2: Precision, recall, and F1-scores (%) for Trigger
Classification (TC) and Argument Classification (AC).

The performance hierarchy among the models is
consistent and clear: o1-mini substantially outper-
forms both GPT-4o-mini and Llama3-8B across
all evaluation metrics. In TC, o1-mini achieved
an F1-score of 63.3%, surpassing GPT-4o-mini by
over 16 percentage points and Llama3-8B by nearly
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30 points. Interestingly, while precision scores be-
tween o1-mini and GPT-4o-mini were relatively
close, the major difference arose from recall, sug-
gesting that GPT-4o-mini adopted a more conser-
vative prediction strategy, prioritizing precision at
the expense of coverage.

As anticipated, performance across all models
declined on the more demanding AC task. Nev-
ertheless, o1-mini again demonstrated a clear ad-
vantage, achieving an AC F1-score of 27.8%, more
than double that of Llama3-8B and significantly
ahead of GPT-4o-mini. Moreover, o1-mini main-
tained a balanced trade-off between precision and
recall, whereas the other two models exhibited
weaker recall, often failing to capture all valid ar-
gument mentions even when precision remained
reasonable.

The consistent superiority of o1-mini across
both tasks underscores the potential of specialized
reasoning models in information extraction, par-
ticularly in achieving a more balanced and robust
performance across precision and recall.

Regarding the choice of ASR system, switching
between Whisper and Canary resulted in only mi-
nor differences (within 1% F1-score). Given the
inherent nondeterminism of LLM outputs—even
with identical inputs—the observed variations
could stem even from stochastic model behav-
ior rather than from the ASR systems themselves.
Notably, while Llama3-8B and GPT-4o-mini per-
formed slightly better with Whisper, o1-mini
achieved marginally superior results with Canary.
A more comprehensive study, involving multiple
evaluation runs per prompt, would be required to
draw stronger conclusions about ASR influence.

As a point of reference, (Wang et al., 2024)
reported results on the ACE2005-EN+ dataset,
achieving an F1-score of 61.1% for TC and 23.2%
for AC. While our dataset is a modified version of
ACE2005-EN+, it is not identical, and thus direct
comparisons should be made cautiously. Never-
theless, our pipeline outperforms these baselines,
particularly in AC, where we observe a notable im-
provement. This advancement likely stems from
the incorporation of large language models after
the transcription step, enabling more semantically
coherent interpretations of spoken input instead of
bypassing transcription entirely.

6 Ablation

To substantiate our initial observation that LLMs
tend to produce a considerable number of false pos-
itives, we conducted an ablation study evaluating
all three models under various classification con-
figurations. The results, presented in Table 3 and
Table 4, affirm the value of the classification com-
ponent. We denote one+ and two+ to indicate that
at least one or two of the three models classified
the instance as containing an event, respectively.

Model without Rule BERT o1-mini one+ two+ three

Llama3-8B 27.4 32.4 32.0 32.7 30.6 33.0 33.9
4o-mini 43.8 47.1 45.8 45.1 44.7 46.1 47.4
o1-mini 58.8 60.7 61.8 60.3 59.8 62.4 63.4

Table 3: F1-scores (%) on TC under different classifica-
tion criteria.

When applying a single criterion, each model
demonstrated optimal performance with a different
method: o1-mini performed best with the BERT-
based classifier, while 4o-mini and Llama3-8B
yielded higher scores with the Rule-based and LLM-
based classifiers, respectively. Although relying
on the one+ filtering resulted in marginally lower
performance than the best individual setups, it still
outperformed the baseline without classification.
Notably, aggregating predictions with two+ and
three led to consistent F1-score improvements over
the standalone classifiers.

Model without Rule BERT o1-mini one+ two+ three

Llama3-8B 13.2 13.4 15.4 15.4 14.7 15.6 13.9
4o-mini 19.2 19.7 20.0 20.0 19.6 20.1 20.0
o1-mini 25.1 25.2 26.8 26.0 25.5 26.9 27.8

Table 4: F1-scores (%) on AC under different classifica-
tion criteria.

In the AC task, the outcomes are more nuanced,
indicating that strategies yielding gains in TC do
not always translate to AC. For instance, while
4o-mini achieved the best TC performance with
the Rule-based method (when considering single
criterion), it was outperformed by other approaches
in AC. Nonetheless, similarly to TC, both two+
and three yielded improvements over the individ-
ual classifiers. However, unlike in TC, the three
criterion did not universally result in the best per-
formance, benefitting only the o1-mini model.

These consistent enhancements across both tasks
confirm the effectiveness of the classification step
in reducing false positives and improving overall
model performance.
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7 Discussion

Our experimental results demonstrate that a well-
designed pipeline approach can achieve perfor-
mance comparable or even superior to state-of-the-
art end-to-end models for speech event extraction.
This finding is significant as it challenges the as-
sumption that end-to-end approaches necessarily
outperform pipeline methods for complex tasks.
Our results suggest that by leveraging advanced
LLMs and intelligent example selection strategies,
pipeline approaches can mitigate traditional weak-
nesses such as error propagation.

Moreover, this approach offer several advan-
tages over end-to-end models, including modularity
and interpretability, in the sense that the output of
each stage can be examined and is humanly inter-
pretable.

The minimal performance difference observed
when comparing Whisper and Canary suggests that
transcript quality variations within a certain thresh-
old have limited impact on event extraction out-
comes. Both Whisper and Canary have their own
characteristics, when it comes to the transcription
of names or cities, which are crucial in event ex-
traction. The fact that this did not make too much
of a difference, is encouraging for real-world ap-
plications, where perfect transcription cannot be
guaranteed. However, it is important to note that
the performance gap might be more pronounced
when comparing with lower-quality ASR systems
or when processing audio with significant noise,
accents, or other challenging characteristics.

The substantial performance differences ob-
served between the three LLMs highlight the crit-
ical role of LLM selection in event extraction ef-
ficacy. Model size seemed to be a factor, with the
larger proprietary models clearly outperforming
the locally runnable Llama model. The reason-
ing capability also largely seems to help the task,
but to make these claims more confidently, a more
thorough research would be needed across several
models.

During development, we also observed that in
several cases, the false positives produced by the
LLMs were remarkably close to genuine events
that should have been annotated. This suggests that,
in some instances, the models may have correctly
identified events that were inadvertently missed
during the original annotation process.

8 Conclusion

This research presents an LLM-driven pipeline for
speech event extraction that achieves performance
comparable to state-of-the-art end-to-end models.
Our approach combines ASR-generated transcripts
with semantic search-enhanced few-shot learning
to create a modular and interpretable framework
for identifying events and their arguments from
spoken language. By dynamically selecting exam-
ples based on semantic similarity to the current
input, our approach ensures that the LLM receives
the most relevant and informative context for each
specific case. This is particularly important for
event extraction, where different event types have
distinct patterns, trigger words, and argument struc-
tures. The effectiveness of this approach suggests
that similar techniques could be beneficial for other
complex NLP tasks where pattern recognition plays
a crucial role and where diverse examples exist in
the training data.

The choice of ASR system showed limited im-
pact on extraction performance, suggesting robust-
ness to transcript quality variations within a rea-
sonable range. However, LLM selection plays a
critical role in event extraction efficacy, with larger,
more capable models achieving significantly better
results.

Several promising directions for future re-
search emerge from this work, including hy-
brid approaches exploring methods that integrate
transcript-based and direct audio-based features
that could potentially combine the strengths of
pipeline and end-to-end approaches. Our approach
does not leverage speech-related cues present in
the audio, which could potentially enhance perfor-
mance if incorporated. With prompt engineering,
the current prompting strategies could be further
refined and may improve LLM performance with-
out requiring additional computational resources.
Another area could be exploring methods to reduce
computational requirements, such as model distil-
lation or selective component invocation.

This work advances spoken language under-
standing by demonstrating that modular pipelines
can rival end-to-end models through strategic inte-
gration of LLMs and retrieval mechanisms. By de-
coupling transcription from extraction while main-
taining cross-component optimization potential,
our framework offers a practical pathway for de-
ploying speech event extraction tools.
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Limitations

First, although the classification step successfully
reduces false positives, it introduces an additional
layer of complexity and latency into the pipeline.
In real-time applications, this could pose practical
constraints.

Second, although Whisper and Canary repre-
sent state-of-the-art multilingual ASR models, their
performance varies considerably across languages,
limiting generalizability in multilingual settings.
This challenge is further compounded by the few-
shot prompting technique, which is also expected
to yield lower performance for low-resource lan-
guages due to limited linguistic and contextual cov-
erage in training data.

Third, although semantic search-enhanced few-
shot prompting improves LLM performance, it in-
creases computational costs due to the need for
embedding comparisons and dynamic prompt con-
struction. This makes the system more resource-
intensive, especially for large-scale or low-latency
deployments.

Fourth, the argument classification task remains
challenging, with overall performance still low de-
spite LLM assistance. This is likely due to the
difficulty of correctly identifying multiple, diverse
argument roles within spoken inputs. Improving
argument role assignment—especially for less fre-
quent event types—requires further attention, po-
tentially through the use of more structured reason-
ing or task-specific tuning.

Finally, while the o1-mini model consistently
outperformed the other models in our experiments,
it is a proprietary model, limiting reproducibility
and potentially raising cost or accessibility con-

cerns. Our pipeline’s dependency on API-based
models also poses challenges for deployment in
privacy-sensitive or resource-constrained environ-
ments.

Future work should explore more efficient al-
ternatives for few-shot prompting, more robust
handling of ASR errors, and ways to make the
pipeline more lightweight and adaptable to diverse
real-world settings.
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A Appendix

A.1 Trigger Recognition Prompt

{"role": "system", "content":
"Your job is to extract trigger words signaling events in a text, and classify its event type."},
{"role": "user", "content":
"From the following TEXT, please extract the event type and its trigger word. It is a transcript of
an audio, so there may be some mistakes.
The possible event types are: [<event type list>].
It is possible there are no events in the text.
Below are examples demonstrating the required output format and some useful hints.
Do not return the transcript, only the trigger word and event type."},
{"role": "user", "content": "TEXT: <text_input>"},
{"role": "user", "content": "EXAMPLES: <few-shot examples>"},

A.2 Argument Recognition Prompt

{"role": "system", "content":
"Your job is to extract arguments for events in a text, and classify their role in that event."},
{"role": "user", "content":
"From the following TEXT, please extract event arguments (usually one word or a name) and their role.
It is a transcript of audio, so there may be mistakes.
Use the provided event schema: <event schema>.
An event may have no arguments.
Examples are provided to guide selection and format."},
{"role": "user", "content": "TEXT: <text_input>, EVENT TYPE(s): <event types>"},
{"role": "user", "content": "EXAMPLES: <few-shot examples>"},

A.3 Post-processing Prompt

{"role": "system", "content":
"Your job is to extract a JSON-like output from the end of a string. Only return the JSON."},
{"role": "user", "content":
"From the following TEXT, extract data in the format of the example.
If multiple triggers exist, return one entry per trigger.
Transcriptions are unnecessary. Return JSON only."},
{"role": "user", "content": "TEXT: <text_input>"},
{"role": "user", "content":
"EXAMPLE:
[
{

"trigger": "deploy",
"type": "Transport",
"arguments": [
{"name": "soldiers", "role": "Artifact"},
{"name": "region", "role": "Destination"}

]
}

]"},
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