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Abstract

We study the sequence-to-sequence mapping
capacity of transformers by relating them
to finite transducers, and find that they can
express surprisingly large classes of (total
functional) transductions. We do so using
variants of RASP, a programming language
designed to help people *‘think like transform-
ers,”” as an intermediate representation. We
extend the existing Boolean variant B-RASP to
sequence-to-sequence transductions and show
that it computes exactly the first-order ra-
tional transductions (such as string rotation).
Then, we introduce two new extensions.
B-RASP[pos] enables calculations on po-
sitions (such as copying the first half of
a string) and contains all first-order regu-
lar transductions. S-RASP adds prefix sum,
which enables additional arithmetic operations
(such as squaring a string) and contains all
first-order polyregular transductions. Finally,
we show that masked average-hard attention
transformers can simulate S-RASP.

1 Introduction

Transformers (Vaswani et al., 2017) have become
a standard tool in natural language processing and
vision tasks. They are primarily studied in terms
of their expressivity (which functions they can or
cannot compute) or learnability (which functions
they can or cannot learn from examples). Much
recent expressivity work views transformers as
recognizers of formal languages, by comparing
them to automata, circuits, or logic (Strobl et al.,
2024). Here we take the more general view that
they compute (total functional) transductions, or
functions from strings to strings.

Transductions are a fundamental object in com-
puter science, with a long history in linguistics
and natural language processing (Mohri, 1997;
Roark and Sproat, 2007). Many empirical tests of
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transformer reasoning ability use transductions to
define algorithmic sequence generation tasks (e.g.,
Suzgun et al., 2023; Delétang et al., 2023) such
as tracking shuffled objects, sorting strings, con-
catenating all k-th letters, or removing duplicates
from a list.

This paper is the first theoretical analysis,
to our knowledge, of transformers as transduc-
ers of formal languages (Figure 1). Previous
work on transformers as recognizers showed that
unique-hard attention transformers correspond to
star-free regular languages (Yang et al., 2024);
here, we prove the analogous result for trans-
formers as transducers, that unique-hard attention
transformers correspond to aperiodic rational
transductions. We then study two superclasses
of aperiodic rational transductions that are (also)
analogous to star-free regular languages: aperi-
odic regular transductions (e.g., w +— w® or
w — ww) and aperiodic polyregular transduc-
tions (e.g., w — w!®l). We prove unique-hard
attention transformers cannot compute all of these,
but average-hard attention transformers can.

To do this, we introduce two new variants
of RASP (Weiss et al., 2021), a programming
language designed to make it easier to write
down the kinds of computations that transform-
ers can perform. This makes our analysis more
simple, concise, and interpretable compared to
describing transformers directly using linear al-
gebra. These variants, called B-RASP[pos| and
S-RASP, compute more than just the aperiodic
regular and aperiodic polyregular transductions,
and are interesting in their own right.

2 Preliminaries

We write [n] for the set {0, ...,n — 1}. Fix finite
input and output alphabets 3> and I'. We sometimes
use special symbols # and -, which we assume do
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Figure 1: Overview of results of this paper. Arrows
denote inclusion; dashed arrows denote inclusions that
are known from previous work. Slashed arrows denote
non-inclusions. The columns, from left to right, are:
(1) the hierarchy of aperiodic transductions; (2) RASP
variants; (3) variants of transformer encoders.

not belong to 3 or I'. Let X* and I'* be the sets
of strings over X and I, respectively. The empty
string is denoted €. For any string w, we number
its positions starting from 0, so w = ag - - - ap_1.
We write uv or uw - v for the concatenation of
strings v and v, and w® for the reverse of string w.

2.1 Transductions and Transducers

A transduction is a binary relation between strings
in ¥* and strings in I'*. Here we consider only
total functional transductions, that is, functions
¥* — I', and all of our transducers define total
functional transductions.

Definition 2.1 (string homomorphism). A string
homomorphism is a function f: ¥* — I'* such
that, for any strings u,v € ¥*, we have f(uv) =
f(w) f(v).

Definition 2.2 (deterministic finite transducer).

A deterministic finite transducer (DFT) is a tuple
T=(%T,Q,q,0) where

e > and I are the input and output alphabets,
e () is the finite set of states,
e o € (@ is the initial state,

e 0: Q x (XU-) — I'™ x @ is the transition
function.

The transition function § extends to strings as
follows: §(¢,e) = (¢,¢) and for u € ¥* and a €
Y, 0(q,ua) = (uv',s) where d(q,u) = (u/,r)
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and §(r,a) = (v, s) for some r € Q. Then for
any w € X*, we say that 7" transduces w to w’ iff
5(qo, w) = (w',r) for some r € Q. We call a
transduction sequential if it is definable by a DFT.

Next, we introduce several nested classes of
transductions: rational, regular, and polyregular.
We first give examples of transductions in these
classes and informal descriptions of the classes in
terms of various transducers.

In brief, a transduction is rational if it is de-
finable by a nondeterministic transducer (the kind
probably most familiar to NLP researchers, except
we are assuming it is total functional). A trans-
duction is regular if it is definable by a two-way
transducer, which can be thought of as a rational
transducer that can go back and forth on the input
string, or a Turing machine with a read-only input
tape and a write-only, one-way output tape.

Example 2.3. The following transductions are
regular but not rational:

e map-reverse: Reverse each substring be-
tween markers.

| ab | cde | fg | — | ba | edc | gf |

e map-duplicate: Duplicate each substring
between markers.

| ab | cde | —| abab | cdecde |

A transduction is polyregular if it is definable
by a pebble transducer, which is a two-way trans-
ducer augmented with a stack of up to k pebbles
(Bojanczyk, 2022). It can push the current head
position onto the stack and jump to the beginning
of the string, and it can pop the top pebble from
the stack and jump to that pebble’s position. It
can read the symbol at every pebble, and it can
compare the positions of the pebbles.

Example 2.4. The transduction marked-square is
polyregular but not regular. It makes |w| many
copies of w separated by bars with successively
longer prefixes marked, here by uppercasing:

abaa — | Abaa | ABaa | ABAa | ABAA |

Next we restrict to the aperiodic subsets of
these classes, and give formal definitions of these
subclasses as composition closures of sets of prime
transductions. We will use these definitions for
the rest of the paper.



Definition 2.5 (aperiodicity). Let 1" be a deter-
ministic finite automaton or transducer. For any
input string w, there is a binary relation on states,
p <7 q, which holds iff §(p, w) arrives at state g;
if T is a DFT, this means that §(p, w) = (', q)
for some w’. Then T is aperiodic (or counter-free)
if there is an N > 0 (depending on T") such that
for all strings w € ¥* and all n > N, the relations

n+1

w™ w
— 7 and —— are the same.

Aperiodic deterministic finite automata (DFAs)
are equivalent to star-free regular expressions and
first-order logic with order (Schiitzenberger, 1965;
McNaughton and Papert, 1971). They are also
equivalent to masked hard-attention transformers
(Yang et al., 2024). We take this equivalence as
our starting point.

Example 2.6. The regular language (ab)* is
definable by an aperiodic DFA (with N = 2):

a,b

But (aa)* is not defined by any aperiodic DFA:

n n+l
The relations =7 and =—s are always different.
Each of the classes of transductions described
above has an aperiodic subclass.

Definition 2.7. Aperiodic sequential transduc-
tions (which include string homomorphisms) are
those defined by aperiodic DFTs.

Aperiodic rational transductions are the com-
position closure of aperiodic sequential trans-
ductions and right-to-left aperiodic sequential
transductions, that is, transductions that can
be expressed as w > f(w®)R, where f is
aperiodic sequential.'

1Nguyén et al. (2023, fn. xii) characterize aperiodic
rational transductions using just one aperiodic sequential
transduction and one right-to-left aperiodic sequential trans-
duction, and Filiot et al. (2016, Prop. 3) use a closely related
characterization in terms of bimachines. Here we use a com-
position of any number of transductions, which is equivalent
because aperiodic rational transductions are closed under
composition (Carton and Dartois, 2015, Thm. 10).
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Aperiodic regular transductions are the com-
position closure of aperiodic sequential trans-
ductions and the transductions map-reverse and
map-duplicate (Ex. 2.3).2

Aperiodic polyregular transductions
(Bojanczyk, 2018, Def. 1.3) are the compo-
sition closure of aperiodic regular transductions
and the transduction marked-square (Ex. 2.4).

2.2 Transformers

We assume familiarity with transformers
(Vaswani et al.,, 2017) and describe a few
concepts briefly. For more detailed definitions,
please see the survey by Strobl et al. (2024).

In standard attention, attention weights are com-
puted from attention scores using the softmax
function. In average-hard attention (Pérez et al.,
2021; Merrill et al., 2022), each position 7 attends
to those positions j that maximize the score s; ;.
If there is more than one such position, attention
is divided equally among them. In unique-hard
attention (Hahn, 2020), exactly one maximal ele-
ment receives attention. In leftmost hard attention,
the leftmost maximum element is chosen, while in
rightmost hard attention, the rightmost maximum
element is chosen.

In this work, we use RASP (Weiss et al., 2021)
as a proxy for transformers. Specifically, we use
extensions of B-RASP, a version of RASP re-
stricted to Boolean values (Yang et al., 2024).
B-RASP is equivalent to masked hard-attention
transformer encoders with leftmost and rightmost
hard attention, and with strict future and past
masking.

3 B-RASP and Unique Hard
Attention Transformers

In this section, in order to facilitate our study
of transformers and how they relate to classes
of transductions, we modify the definition of
B-RASP to compute transductions and use it to
show that unique-hard attention transformers are
equivalent to aperiodic rational transductions.

In Sections 4 and 5, we consider two exten-
sions: B-RASP[pos] adds position information,

2This characterization is given by Nguyén (2021, p. 15).
It is also given by Bojaninczyk and Stefariski (2020, Thm. 18)
for the more general setting of infinite alphabets constructed
from atoms; our definition here corresponds to the special
case of finite alphabets (that is, where the set of atoms
is empty).



in 0 1 0 1 1
not 1 0 1 0 0
carry 0 0 1 1 1
out 0 1 1 0 0

Table 1: B-RASP computation for increment.

and S-RASP also includes an operator for prefix
sum. These have various correspondences both
with more realistic transformers and with larger
classes of transductions.

3.1 Definition and Examples

We give an example first, followed by a more
systematic definition.

Example 3.1. The following B-RASP program
computes the transduction increment, which takes
as input a binary number (with its high-order bit
on the left) and increments it, ignoring overflow.

not(i) = ‘17 if in(i) = ‘0’else ‘0
carry(i) =w;[j >d,in(j) = ‘0] L: T

out(i) = not (i) if carry(i) else in(7)

Table 1 shows a sample run. The input string is
stored in in(0),...,in(n — 1). The vector not
is the bitwise negation of in. The if expression
is in Python-style syntax: if in(i) = ‘0’, then
not(i) = ‘1’; otherwise, not (i) = ‘0’. The vector
carry tests at each position ¢ whether there is a
carry at that position, that is, whether at every
position j > ¢ the symbol is a ‘1’. It can be read
as: ‘‘Find the rightmost (») position 7 such that
j > iand in(j) = ‘0. If there is such a position,
return false (_L); if there is no such position, return
true (T).”” Finally, the vector out is the output of
the program.

We give a definition of B-RASP that is equiv-
alent to that of Yang et al. (2024), extended to
transductions. For now, we consider B-RASP pro-
grams for length-preserving transductions, and
will later consider two schemes for defining
non-length-preserving transductions as needed.

There are two types of values: Booleans from
{T, L}, and symbols from a finite alphabet A.
These are stored in vectors, which all share the
same length n, mirroring the transformer encoders
they are intended to model.

A B-RASP program receives an input string
w = ag---an—1 represented as a symbol vector
in, where in(i) = a; for i € [n].
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A B-RASP program is a sequence of definitions
of the form P(i) = p, where P is a vector name, i
is a variable name, and p is a right-hand side, to be
defined below. The type of P is the type of p. No
two definitions can have the same left-hand side.

The syntax of B-RASP expressions, with
Boolean (bool) and symbolic (char) type, is:

ebool - —|—‘ i |Pb°°|(i) ’ 6char — echar

‘ebool A ebool ’ ebool v/ ebool ‘ _‘ebool

echar -

‘a, ‘ sb, ’ . ‘Pchar(i)

echar bool char

if e else e
where P is a vector name and ¢ is a variable name.
We write FV(e) for the variables occurring in
e. As mentioned above, conditional expressions
use Python syntax: e; if e else e3 means “‘if ey
evaluates to T, then return e;; otherwise, return
e3.”” The syntax of expressions could be extended
to include arbitrary operations on Booleans or
symbols.

Each definition has one of the following forms:

1. Position-wise operations P(i) = e, where e
is an expression such that FV(e) C {i}.

2. Attention operations, which have one of the

two forms
P(i) = 4 [M(i,5), 50, 5)] V() : D(i)
P(i) =w»; [M(i,5),5(i, )] V(j): D(i)
where:

e The choice function is either leftmost
(<) or rightmost (»).

e M(i,7) is a mask predicate, one of
1. no masking: M(i,7) =T
2. future masking: M (i,5) = (j < 7)

OrM(i>j) = (J < Z)
3. past masking: M (i,j) = (j > i) or
M(i,j) = (3 = 1)

e S(i,j) is an attention predicate,
given by a Boolean expression with
EV(S(i, 7)) € {i, 4}

e V(j) is a value function, given by
a Boolean or symbol expression with
FV(V(5)) € {5}

e D(i) is a default function, given by
a Boolean or symbol expression with
FV(D(i)) € {i}.



The attention operation defines a new vector
P, as follows. For i € [n] and choice function
«, j; is the minimum j € [n] such that
M(i,j) = T and S(i,j) = T, if any, and
P(3) is set to the value V' (j;). If there is no
such j, then P(7) is set to the value D(7).
If the choice function is » then j; is the
maximum j € [n] such that M(i,j) = T
and S(i,j) = T,if any, and P(i) is set to the
value V'(j;). If there is no such j, then P(7)
is set to the value D (7).

The output of a B-RASP program is given in
a designated symbol vector out, which has the
same form as the input vector in.

Example 3.2. The rational transduction
rotate-right rotates the input string to the right by
one symbol, moving the last symbol to the first
position. For example,

abc — cab

The following B-RASP program computes
rotate-right:

right(i) = «;[j > i, T] in(j) : ‘#
last(i) = «; [T,right(j) = ‘#] in(j) : ‘#
left(i) = »;[j <4, T] in(j) : ‘#
out(i) = left(i) if left(i) # ‘# else last(i)

An example run is in Table 2. The vector right,
at each position ¢, records the symbol immediately
to the right of ¢ (or ‘# if there is no symbol to
the right). We distinguish the position j of the
rightmost symbol in the input string by testing
whether right(j) = “#°, and propagate its input
symbol to all positions in the vector last. The
vector left records the symbol immediately to
the left of each position (or ‘#  if there is no
symbol to the left). To compute the output vector
out, the first position takes on the value of the
rightmost symbol of the input string and each other
position takes on the value of its left neighbor, via
a position-wise operation.

3.2 Packed Outputs

So far, we have defined B-RASP to encompass
only length-preserving transductions. But even
some simple classes of transductions, like string
homomorphisms, are not length-preserving.

To address this, we allow the program to output
a vector containing strings up to some length &

in a b C b b a C
right b c b b a c #
last C c c c ¢ ¢ ¢
left # a b c b b a
out c a b c b b a

Table 2: B-RASP computation for rotate-right.

instead of a vector of symbols. For any finite
alphabet A, let ASF denote the set of all strings
over A of length at most k£ (including the empty
string ).

The input vector is still a vector of input sym-
bols: apay - - - an—1, where a;, € ¥ for ¢ € [n].
However, the output vector is a vector of symbols
over the alphabet I'S* for some k. The output
vector is a k-packed representation of a string
u if the concatenation of the strings at positions
0,...,n — 1 is u. There may be many different
k-packed representations of the same string. For
an input string of length n, the output string has
length at most kn. Packed outputs make it possible
to compute any string homomorphism, as in the
following example.

Example 3.3. Apply the homomorphism a — aa,
b +— ccb to an input string over the alphabet

{a,b}.

[}

out(i) = ‘aa’ if in(i) = ‘a

else ‘ccb’

3.3 B-RASP Defines Exactly the Aperiodic
Rational Transductions

Examples 3.1 and 3.2 show that B-RASP can
compute some aperiodic rational transductions
that are not sequential. The following theorem
shows that B-RASP can compute only aperiodic
rational transductions.

Theorem 3.4. Any B-RASP program with
packed outputs defines an aperiodic rational
transduction.

Proof. Let P be a B-RASP program. By
Lemma 12 of Yang et al. (2024), P can be
rewritten so that every score predicate S(4, j) de-
pends only on j. Denote the sequence of vectors
of P as Py,..., Py, and treat the input vec-
tor in as Fy. We prove by induction that the
first k£ operations of P can be converted to a
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composition of left-to-right and right-to-left ape-
riodic sequential transductions. The output of the
composition is the sequence of (k + 1)-tuples
(.%070, ce ,$07k), ey (.Z'n_l’(], e ,$n,17k>, where
fori € [n] and j € [k + 1], we have z; ; = P;(i).

If £ = 1, we just construct the identity trans-
ducer. If k¥ > 1, assume that the first £ — 1
operations have been converted to a composition
of transductions. If Py is a position-wise opera-
tion, it can be computed by a one-state DFT that
appends the value of x;; = Pj(i) onto the end
of the input k-tuple. The interesting cases are the
attention operations.

Case Py (i) = »;[j < i, Ps(i)] Py(j) : Pali),
where s,v,d < k: Let T be the set of values in
the type of Pk. Then we construct the following
(left-to-right) DFT. Starting from the first posi-
tion, it appends Py(¢) onto the end of the input
k-tuple. Every time it reaches a position j where
P.(j) is true, it switches, starting from position
j + 1, to appending P,(j). In the following, &
is the input k-tuple, x, is the component of
with index r, and (7, x) is the (k 4+ 1)-tuple ob-
tained by appending the element z to the end
of 7.

Q = {Qdef} U {%J’x € T}

o J((# 2a),qe,) ws=T
lae ) = {((f 2a), daer) s =L

2 = (Z,2),qz,) w€T,x5=T
(4. ) {((:E,:U),qm) reT,zs=1

To see that this is counter-free: Let v be any string.
If w contains a tuple ¥ such that z; = T, let &
be the rightmost such tuple. Then ¢ — 4z, for

all g, so (E;) (X— ) for all z > 1. If u does
not contain such a tuple, then ¢ — ¢ for all ¢, so
(%) = () forall i > 0.

Case Py(i) = 4 [j < i, P,(j)] Po(j) : Puli),
where s,v,d < k: Let Q and T be as above. Then
we construct the following DFT. Starting from the
first position, it appends P;(i) onto the end of the
input k-tuple. The first time it reaches a position
j where Pg(j) is true, it switches to appending
P,(7), from position j + 1 to the end.

T) = ((f’ xd)?‘]:cv) Ty = T
(Qaet, T) {((f, o) o) mo= L
0(¢a, %) = (& ), ) zeT.
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To see that this is counter-free: Same as the
previous case, except & is the leftmost tuple in
u such that vy = T.

The cases

Pp(i) = ;[ > i,ps(j)] Po(g) : Pali)
Pp(i) =wj[j > i,p5(3)] Po(j) : Pali)

are the same, but using right-to-left transducers.

Case Py(i) = <« [T,Ps(j)] Pu(j3) : Pali),
where s,v,d < k: This operation could be
replaced by the following sequence of three
operations, which are covered in the preceding
cases.

Ry, (i) = 43 [j > i,ps(5)] Po(j) : Pali)
Cr(i) = P,(3) if Ps(3) else Ry(i)
Pp.(i) = < [j >4, Ps(j)] Pu(j) : C(3).

Here, Ry (i) is the value from the leftmost j > i
with P,(7) = T (if any), else Py(7); then C(i) is
the value from the leftmost j > i with P(j) = T
(if any), else P;(4); finally, Py () is the value from
the leftmost j overall with Ps(j) = T (if any),
else Py(i).

Case Py(i) = > [T, Ps(5)] Pu(d)
the mirror image of the previous case.

: Pd(l) is
[

For the converse, we need the following lemma.

Lemma 3.5. If P is a B-RASP program with
packed outputs and f is an aperiodic sequential
transduction, there is a B-RASP program with
packed outputs that computes f o P.

Proof. We can adapt the proof of Lemma 19
of Yang et al. (2024). By the Krohn-Rhodes
decomposition theorem for aperiodic sequen-
tial transductions (Pradic and Nguyén, 2020,
Thm. 4.8), f is equivalent to the sequential compo-
sition of finitely many two-state aperiodic DFTs.
Hence, without loss of generality, we can assume
that f is defined by a two-state aperiodic DFT T'.
This machine 7' is an identity—reset transducer,
which means that for any symbol o € ¥, the state
transformation 2 either is the identity (maps
both states to themselves) or resets to one of the
states g (maps both states to q). For each state q of
T, let R, be the set of symbols that reset to q. Let
R =J,Rgand I = ¥\ R. Let g be the start state



and ¢, the other state. We write T'(q,w) = w' if
d(g,w) = (v, ¢q) for some ¢'.

Modify P so that its output vector is a fresh
vector z instead of out. Then f o P is defined by
appending the following operations to P:

stateq(i) =w»; |J <1, \/ z(j) = uav

uavel<k
acRvel”

‘4=q

\/ z(j) = uav

uavel<k
acRyvel”

sym(i) = @ [ >4, T] z() : z(i)-
out(z) = T'(q1,sym(7)) if stateg, (i)
else T'(q2, sym(i))

Vector state,(7) tests whether 7' is in state g just
before reading (packed) symbol w;. It does so by
searching for the rightmost symbol a that resets
to any state. If a exists and resets in particular to
¢, then T" must still be in state ¢; otherwise, it is
not. But if a does not exist, then 7" must still be
in the start state ¢;. Vector sym(¢) simply appends
- to the last position. Finally, out maps sym(i)
to T'(q,sym(z)) (where ¢ is the state just before
reading w;). U

Theorem 3.6. For any aperiodic rational trans-
duction f: 3* — I'*, there is a B-RASP program
‘P with packed outputs that computes f.

Proof. The transduction f can be written as
fr o fr, where fr is an aperiodic sequential
transduction and fp is a right-to-left aperiodic
sequential transduction (Def. 2.7). The iden-
tity transduction can clearly be computed by a
B-RASP program, and by Lem. 3.5 there is a
B-RASP program computing f7.. Finally, Lem. 3.5
can be easily modified to apply also to fgr, using
the mirror images of state, and sym above. L[]

3.4 Unique-hard Attention Transformers
Compute Exactly the Aperiodic Rational
Transductions

Yang et al. (2024) show that a B-RASP pro-
gram can be simulated by a unique-hard attention
transformer with no position information besides
masking, and vice versa. With Thms. 3.4 and 3.6,
this implies that masked unique-hard attention
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transformers with packed outputs can compute
exactly the aperiodic rational transductions.

4 B-RASP with Positions

4.1 Definition

We extend B-RASP to B-RASP[pos], which
adds a type nat for integers in [n], and vectors
containing integers.

We extend the syntax of expressions as follows:

6nat =0 | 1 ‘ 6nat + enat ’ enat _ enat
ebool -
| ”°t where | FV(c™°') | <1
Cbool - enat — enat ’ enat < enat | enat S enat
‘ enat > enat | enat Z 6nat
where - -- means all of the productions from the

syntax of B-RASP. Then vector definitions are
extended as follows.

1. There is a pre-defined integer vector pos(i),
whose value is simply ¢ at every position
i € [n].

2. There are position-wise operations P(i) =
e where FV(e") C {i}. Addition and
subtraction have their usual meaning, but
values less than O are replaced by 0 and
values greater than n — 1 are replaced by
n — 1. (Since this is not associative, we fully
parenthesize arithmetic expressions.)

3. There are position-wise operations P(i) =
%0l where FV(c°°") C {i}. The operators
<, >, =, #, <, and > have their usual
meaning.

4. In B-RASP, S(i,j) was a Boolean expres-
sion (¢°9); in B-RASP|[pos], it can be either
a Boolean expression (e°°®) or, as a spe-
cial case, Vi(i) = Va(j), where V; and V5
are previously defined integer vectors. We
emphasize that only tests for equality are
allowed (not, for example, V;(i) < Va(y)).
This restriction is used in the transformer
simulation in Section 5.5.

4.2 Examples

Informally, we omit a default value from a leftmost
or rightmost operation if the operation is such that
the default value will never be taken.



in input Il a b | ¢ d e |
pos position o 1 2 3 4 5 6 7
prev | previous" | O O O O 3 3 3 3
next | next ‘I 3 3 3 7 7T v 7T 0
src source 3 2 1 4 6 5 4 0
yi in(sre(é)) | I b a ¢ e d c¢ |
out output I b a | e d ¢ |

Table 3: Example B-RASP[pos] computation for
map-reverse. Details in Ex. 4.1.

Example 4.1 (map-reverse). Reverse each sub-
string between markers.

| ab | cde | fg || edc | gf |

prev(i) =»;[j < ¢,in(j) = °|’] pos(j): 0
next(i) = «; [j > ¢,in(j) = °|’] pos(j): 0
src(i) = prev(i) + next(i) — pos(i)
y1(i) = «; [T, src(i) = pos(j)] in(j)
out(i) = °|” if in(i) = |” else y1(7)

An example run is in Table 3.

Above, the vector y1 just retrieves, for each 1,
the input symbol at position src(i). This idiom is
so common that we will write it using the syntactic
sugar:

y1(i) = in(src()).

Example 4.2 (map-duplicate). Duplicate each
substring between markers.

|ab|cde| — |abab|cdecde

prev(i) = »; [j < i, in(j) = I pos(j) : 0
next(i) = «; [j > 4,in(j) = ‘'] pos(j): 0
nowrap(i) = pos(i) + (pos(i) — prev(i) — 1)
wrap(i) = pos(i) — (next(i) — pos(i))
srcl(i) = nowrap(i) if nowrap(i) < next(7)
else wrap(7)
src2(i) = nowrap(i) + 1 nowrap( )+ 1 < next(7)
else wrap(4) +
out(?) = ‘| if in(4) = ‘|’

else in(src1(s)) - in(src2(i))

Here - denotes string concatenation over I'S*. An
example run is in Table 4. Note that nowrap(6) =
7, not 8, because addition and subtraction are
clipped to lie in [0, — 1].
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in input Il a b | ¢ d e |
pos position o1 2 3 4 5 6 17
prev previous‘” |0 0 O O 3 3 3 3
next next ‘I’ 33 3 7 7 7 70
nowrap o1 3 5 4 6 7 7
wrap o o0 1 0 1 3 5 7
srcl leftsymbol (O 1 1 5 4 6 5 7
src2 rightsymbol |1 2 2 6 5 4 6 7
out output | ab ab | cd ec de |

Table 4: Example B-RASP[pos] computation for
map-duplicate. Details in Ex. 4.2.

in input a b c a a b c b b
po i 01 2 3 4 5 6 7 8
last | n—1 8§ 8 8 8 8 8 8 8 8
sum | min(2¢,n—1) |0 2 4 6 8 8 8 8 8
out | output a b c a e ¢ ¢ € ¢

Table 5: Example B-RASP[pos| computation for
copy-first-half. Details in Ex. 4.3.

Example 4.3 (copy-first-half). Copy just the first
half of the input string, rounding down.

abcaabcbb — abca

last(i) = »; [T, T] pos(j)

sun(i) = pos() + pos(i)
out(i) = in(¢) if sum(:) < last(i) else ‘e’

An example run is in Table 5.

Proposition 4.4. The transduction copy-first-half
is neither regular nor polyregular.

Proof. Both regular and polyregular transduc-
tions preserve regular languages under inverse
(Bojanczyk, 2018, Thm 1.7). The inverse of the
regular language a* under copy-first-half is the
set of words of the form a"w where |w| < n,
which is not regular if [¥| > 1, so the trans-
duction copy-first-half is neither regular nor
polyregular.? O

Example 4.5 (residues-mod-m). Let m be a
positive integer and define the transduction
residues-mod-m to map any input apa; - - - Gp_1
to the sequence byb; - - - b,,—1 where b; = ¢ mod m.
This transduction is rational but not aperiodic.

Proposition 4.6. For any m, B-RASP[pos] can
compute the transduction residues-mod-m.

3Thanks to an anonymous reviewer for suggesting this
argument to us.



Proof. For concreteness, we give a program for
the case m = 3, which is easily generalized. The
second line deals with clipping to n — 1.

sum3(i) = pos(i) + pos(i) + pos(i)
sum3c(i) = sum3(¢) if sum3(i) = sum3(i — 1) + 3
else 0
mult3(i) = «; [T,pos(i) = sum3c(j)] T: L
out (i) = 0 if mult3(4) else 1 if mult3(i — 1)
else 2

4.3 Expressivity

Theorem 4.7. B-RASP|pos| programs with
packed outputs can compute all aperiodic regular
transductions.

Proof. If f is an aperiodic regular transduction,
then by Def. 2.7, it can be decomposed into a
composition of transductions, each of which is
(a) aperiodic sequential, (b) map-reverse, or (c)
map-duplicate. We convert f to a B-RASP[pos]
program by induction on the number of func-
tions in the composition. Case (a) is the same
as the proof of Lem. 3.5, mutatis mutandis.
The following two lemmas handle the other two
cases. O

Lemma 4.8. If P is a B-RASP[pos| program
with packed outputs, then there is a B-RASP[pos]
program with packed outputs that computes
map-reverse o P.

Proof. We’d like to compose P with the pro-
gram of Ex. 4.1, but since P uses packed outputs,
we must adapt Ex. 4.1 to use packed inputs.
Define the functions head, body, and tail as fol-
lows. If w does not contain the separator (|), then
head(w) = tail(w) = w and body(w) = . Oth-
erwise, factor w as zyz, where z is the prefix of
w before the first separator and z is the suffix
of w after the last separator, and head(w) = =z,
body(w) = y, and tail(w) = z. Position-wise op-
erations allow the application of these functions, as
well as map-reverse itself and the test of whether
a string contains a symbol (w — (a € w)),
to bounded-length strings. Modify P so that its

output vector is a fresh vector z instead of out.
Then append the following operations to P:

(next (i) — (pos(i) — prev(i)))R

= tail(prev(i))R

= map-reverse(body(i))

head(next(i))R

= ptail(i) - rbody(¢) - nhead(7)
sep(i) if ‘I € z(i) else nosep(7)

O]

To see how this works, consider a packed sym-
bol z(i). If it contains at least one separator, it
is parsed into head, body, and tail as xyz. The
correct output for position i is computed in sep(i),
and consists of replacing x by the reverse of the
tail of the closest left neighbor that has a separator,
replacing y with map-reverse(y), and replacing z
by the reverse of the head of the closest right
neighbor that has a separator. If z(i) contains no
separator, then it appears in a maximal subse-
quence wy, w1, ..., w,_1 With no separator, say
as wy, and the correct output for position ¢ is
computed in nosep, and consists of the reverse of

Wk—1—¢-

Lemma 4.9. If P is a B-RASP[pos] program
with packed outputs, then there is a B-RASP|pos|
program with packed outputs that computes
map-duplicate o P.

Proof. As in the proof of Lem. 4.8, we want to
compose P with the program in Ex. 4.2, so we
adapt Ex. 4.2 to use packed inputs. Modify P so
that its output vector is a fresh vector z instead of
out. First append the following operations to P
(where prev, next, head, body, and tail are as
in the proof of Lem. 4.8):

ptail(z) = (tall(z —1)if i > Oelse ‘€’) - head(s)
nhead (i) = tail(z) - (head(i + 1) if i < n — Lelse ‘€”)
dbody (i) = map-duplicate(body(i))

sep(i) = ptail(i) - dbody(i) - nhead(i)
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This computes in the vector sep the correct
outputs for those positions ¢ that have a separator
in the input symbol z(7). The symbol is parsed
into head, body, and tail as xyz, and the correct
output is the concatenation of the tail of the pre-
ceding symbol, the strings =, map-duplicate(y),
z, and the head of the the following symbol. Note
that map-duplicate is applied only to strings of
bounded length.

The outputs for positions ¢ where z(i) does
not contain a separator are computed in the
vector nosep and combined with the values in
sep to produce the final output by the following
operations.

nowrap(z) = pos(i) + (pos(i) — prev(i))
wrap(i) = pos(i) — (next(:) — pos(i)) + 1)
half(i) = (pos(i) — prev(i)) < (next(i) — pos(7))
srcl(i) = nowrap(7) if half (i) else wrap(s)
src2(i) = srcl1(i) + 1 if src1(i) < next(s)

else prev(7)
sym1(i) = tail(srcl(s)) if srcl(i) < next(s)
else head(srci())
sym2(z) = tail(src2(s)) if src2(i) < next(q)
else head(src2(7))
nosep(i) = sym1(i) - sym2(7)
out(i) = sep(i) if ‘|” € z(¢) else nosep(i)

If the input symbol does not contain a separator,

it is the concatenation of the symbols from sym1
and sym2, whose positions are calculated using
the vectors nowrap and wrap in a manner similar
to Ex. 4.2, but also including the tail of the
closest symbol on the left with a separator, and
the head of the closest symbol on the right with a
separator. O

On the other hand, every operation in
B-RASP[pos] is computable by a family of AC’
circuits, that is, a family of Boolean circuits
of constant depth and polynomial size (Hao
et al., 2022), which implies that any transduction
computable in B-RASP[pos] is computable in
AC’.

5 S-RASP and Average Hard Attention
Transformers

5.1 Definition

We further extend B-RASP[pos| to RASP with
prefix sum (or S-RASP) by adding a prefix sum
operation.
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Definition 5.1 (Prefix sum). A prefix sum
operation has the form

P(i) = psum; [j <] V(j)

where V'(j) is an integer expression with
FV(V(j)) C {j}. It defines an integer vector
P(i) containing the sum of the values V'(j) for
those positions j such that j < i. As with arith-
metic operations, if the value of the prefix sum at
a position is greater than n — 1, it is replaced with
n— 1.

5.2 Padded Inputs

We defined non-length-preserving transductions
for B-RASP and B-RASP|pos| by employing
the convention of packed outputs. However, for
S-RASP, we introduce a simpler scheme: using
only symbol, not string, vectors, while assum-
ing that the input string is followed by padding
symbols #, enough to accommodate the output
string.

The input vector is agpay - - ap_1#"t, where
¢ < nanda; € ¥ fori € [¢]. The output vector,
similarly, is bgb; - - -bp_1#"", where k < n and
b; € I' fori € [k].

With this input/output convention, padding
symbols may be necessary to create enough po-
sitions to hold the output string. But in order to
be able to prove closure under composition for
transductions computable in B-RASP and its ex-
tensions, we allow additional padding symbols to
be required. In particular, the program P computes
the transduction f iff there exists a nondecreas-
ing function ¢, called the minimum vector length,
such that for every input string w € ¢, we have
q(t) > k = |f(w)], and if P is run on w - #" ¢,
where n > q(¢), then the output is f(w) - #" .
In all of the examples in this section, except
marked-square, q is linear.

We could have used padded inputs with
B-RASP programs, but it can be shown that pro-
grams would only be able to map input strings of
length n to output strings of length at most n + k&,
for some constant k. Packed outputs give B-RASP
the ability to define transductions with longer out-
puts, like string homomorphisms. However, the
situation is exactly opposite with S-RASP. Packed
outputs do not add any power to S-RASP, because
“‘unpacking’’ a packed output into a vector of
output symbols can be computed within S-RASP
(Lem. 5.3). Moreover, packed outputs only al-
low transductions with linear growth, and, as we



will see, S-RASP can define transductions with
superlinear growth (Ex. 2.4).

5.3 Properties

Lemma 5.2. If fi: X7 — X5 and fo: 35 — X3
are computable in S-RASP, then their composition
foo fi: X7 = X5 is computable in S-RASP.

Proof. Let the S-RASP program P; compute the
transduction f; with minimum vector length ¢;
for ¢ = 1,2. Let P3; be the S-RASP program
that consists of the operations of P; followed
by the operations of P,, where P; is modified
to output a fresh vector z (instead of out) and
P» is modified to input vector z (instead of in).
We can choose a nondecreasing function g3 such
that g3(¢) > max(q1(¥€), g2(q1(¢))), so that g3 as a
minimum vector length ensures that Ps correctly
computes f5 o f. O

Lemma 5.3. For any string homomorphism h :
X* — I'™ there exists an S-RASP program to
compute h, with minimum vector length q(¢) =
K, where K is the maximum of |h(c)| over
ocEe.

Proof. Number the symbolsof X as oy, ...,0pm_1.
We use a position-wise operation to record in
position ¢ the length of A(in(7)).

lens(i) = |h(in(7))]

Then we determine the starting position of each
h(in(7)) in the output.

ends(i) = psum,; [j < 4] lens(j)
starts(i) = ends(i) — lens(i)

For k € [K], define sym; (i) such that if output
position ¢ is to be the k-th symbol generated from
input position j, then sym; (i) = in(j):

symo(i) = »; [T, pos(i) = starts(j)] in(j) : ‘#
symy (i) =W [ <, T] symo(j) : ‘#

symg_1(i) = W [j <, T] symg o(j) : ‘#
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in input A B B C # #
pos 1 0 1 2 3 4 5
lens |lengthofh(in(z))|2 0 0 3 0 O
ends end of h(in(7)) 2 2 2 5 5 5
starts |startof h(in(7)) |0 2 2 2 5 5
symO mark start A # C # # #
syml mark start+1 # A # C # #
sym2 mark start+2 # # A # C #
out output a a c ¢ d #

Table 6: Example S-RASP computation for a
string homomorphism. Details in Ex. 5.4.

Finally, we can define the output vector:

out(i) = oy if \/
acy,ke[K]
h(a)r=09

sym (i) = a

else oo if \/ sym, (i) = a

a€X,ke[K]|
h(a)k:o'm,g

else 0,,—1

An example is in Ex. 5.4. O

5.4 Examples and Expressivity

Example 5.4 (string homomorphisms). Consider
the homomorphism A — aa, B — ¢, C — ccd.

ABBC## — aaccd#

lens(i) = 2if in(i) = ‘A’
else 3 if in(i) = ‘C’ else 0

ends(i) = psum, [j <] lens(j)
starts(i) = ends(i) — lens(i)
symO0(i) = »; [T, pos(i) = starts(j)] in(j) : #
syml(i) = »; [j <, T] symO(j) : ‘#
sym2(i) = »; [j < i, T] symi(j) : #
out(i) = ‘a’ if sym0(7) = ‘A’ V sym1(i) = ‘A’

else ‘¢’ if sym0(i) = ‘C’ V sym1(i) = ‘C’
else ‘d’ if sym2(i) = ‘C’ else ‘#

An example run is in Table 6.

Example 5.5 (marked-square). Make |w| many
copies of w separated by bars, with successively
longer prefixes marked (here by uppercasing).

abaa — | Abaa | ABaa | ABAa | ABAA |

This transduction is aperiodic polyregular but not
regular. It has greater than linear growth, and is
therefore not computable in B-RASP[pos] with



in input a a b # # # F # # H#F HF H# A H
pos 1 o 1 2 3 4 5 6 7 8 9 10 11 12 13
len input length 3 3 3 3 3 3 3 3 3 3 3 3 3 3
inpos 1 in input? T T T L 1l 4 1 L 1 L 1 L 1 1L
glen lg=grouplength(: >0) |0 4 4 4 4 4 4 4 4 4 4 4 4 4
mglen min(n — 1, ilg) 0 4 8 12 13 13 13 13 13 13 13 13 13 13
starts starts of groups o 4 8 0 0 O O O O O O o0 o0 o
isstart is 7 in starts? T 1L 1L L T 1 1 1r T 1 1 1 1 1
isstartnum | isstart numeric i1 0o 0o o0 1 0 0O 0 1 0 0O 0 0 O
gnumber group number r1r 1 1 2 2 2 2 3 3 3 3 3 3
gstart start of ¢’s group o o 0 0O 4 4 4 4 8 8 8 8 8 8
src i —gstart(i) — 1 o o 1 2 o0 o0 1 2 0o 0 1 2 3 4
ismarked is ¢ marked? T T +r +£LH T T T L T T T T L 1
y1 letters moved a a a b a a a b a a a b #H# #
y2 mark and add initial ‘|”’s | | A a b | A A b | A A B # #
lastbar 12 12 12 12 12 12 12 12 12 12 12 12 12 12
out output | A a b | A A b | A A B | #
Table 7: Example S-RASP computation for marked-square. Details in Ex. 5.5.
packed outputs. But it can be computed by the ~ in |input bbabbaba# #
following S-RASP program. pos |t 01234567389
pa |count-leftta) |0 0 1 1 1 2 2 3 3 3
na | count(a) 33333333 3 3
len(i) = «; [T,in(j) = #] pos(j) pb |countleftb) |1 2 2 3 4 4 55 5 5
inpos(i) = pos(i) < len(:) nb | count(b) 55555555 5 5
glen(i) = len(s) + 1 if pos(i) > 0 else 0 out | output bbbbbbbb>b# #
1 sum;; < 1
nglen(i) = p U< il glen(y) Table 8: Example S-RASP computation for
starts(i) = mglen(s) if inpos(7) else 0 . o
] majority-rules. Details in Ex. 5.7.
isstart(i) = «; [T,pos(i) = starts(j)] T : L
isstart = 1if isstart Ise O
tsstartnun(i) if ssstart(i) clse _ transductions are computable in S-RASP. Fur-
gnumber (i) = psum; [j < i] isstartnum(j) ) )
cart(s) < cart . ther, marked-square is computable in S-RASP
gstart(i) : >; [ < dsstar (])]1pos(]) (Ex. 5.5) and S-RASP is closed under composi-
ste(i) = pos(i) — gstart(i) tion (Lem. 5.2). Thus, S-RASP can compute all
ismarked(i) = src(i) < gnumber(7) . .
aperiodic polyregular transductions. 0
y1(i) = in(sre(i))
y2(i) = I if isstart(i) Example 5.7 (majority-rules). If there are at least
else mark(y1(i)) if ismarked(i) asmany a’s as b’s in the input, change all inputs to
else y1(i) a; otherwise change inputs to b (Bakovic, 2000).
lastbar(i) = € [T,y2(j) = ‘#] pos(j)
out(i) = ‘I’ if pos(i) = lastbar(i) else y2(z) abbabbba## +— bbbbbbbb##

The finite function mark changes the input
symbol to uppercase. An example runis in Table 7.

Theorem 5.6. Every aperiodic polyregular trans-
duction is computable in S-RASP.

Proof. By Def. 2.7, any aperiodic polyregular
transduction can be decomposed into a com-
position of aperiodic regular transductions and
marked-square. All aperiodic regular transduc-
tions are computable in B-RASP[pos] (Thm. 4.7),
and their packed outputs can be unpacked in
S-RASP (Lem. 5.3), so all aperiodic regular
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The number of a’s and the number of b’s are
computed and broadcast to every position. Each
position determines whether its output is a, b or #.

pa(i) = psum, [j <] (1if in(j) = ‘a’ else 0)
na(i) = »; [T, T] pa(j)
pb(i) = psum; [j < i] (Lif in(j) = b’ else 0)
nb(i) = »; [T, T] pb(j)
out(:z) =#if in(i) = #
else ‘a’ if na(i) > nb(7) else ‘b

An example run is in Table 8.



Proposition 5.8. The transduction majority-rules
is neither polyregular nor computable in
B-RASP|[pos].

Proof. Polyregular transductions preserve regu-
lar languages under inverse (Bojaiczyk, 2018,
Thm. 1.7). The preimage of the regular language
a* under majority-rules is M = {w | w con-
tains more a’s than b’s}, which is not regular, so
majority-rules is not polyregular.

A circuit family computing majority-rules can
be modified to decide M, whichis not in AC? (Furst
et al., 1984). Thus the majority-rules transduction
is not computable in B-RASP[pos]. O

Example 5.9 (count-mod-m). Let m be a positive
integer and define the transduction count-mod-m
to map any input sequence agay - - - a1 to the se-
quence byb; - - - b,—1 where b; = (> a;) mod m.
This transduction is rational but not aperiodic; it is
a generalization of the parity problem, which has
been discussed at length elsewhere (Hahn, 2020;
Chiang and Cholak, 2022).

Proposition 5.10. For any m, S-RASP can
compute the transduction count-mod-m.

Proof. We just give the case of m = 3, which is
easily generalized. The vector residues contains
the residues of positions modulo 3 computed by
the program in Prop. 4.6. Define the finite function
fmod3(z,y) = (x + 2y) mod 3 for z,y € [3].

psim3(i) = residues(ps1(i))
twos(i) = 1if in(i) = 2else 0
ps2(i) = psum, [j <] twos(j)

O]

On the other hand, because prefix sum can be
simulated by a family of TC" circuits (threshold
circuits of constant depth and polynomial size),
any transduction computable in S-RASP is in TC".

5.5 Average-hard Attention Transformers

We prove the following connection between
S-RASP programs and average hard attention
transformers in Appendix B.
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Theorem 5.11. Any transduction computable by
an S-RASP program is computable by a masked
average-hard attention transformer encoder with
a position encoding ofi/n, (i/n)?, and 1/(i + 2).

One consequence is the following result relating
unique-hard and average-hard attention:

Corollary 5.12. Any transduction computable by
a masked unique-hard attention transformer en-
coder can be computed by a masked average-hard
attention transformer encoder with a position
encoding of i /n, (i/n)? and 1/(i + 2).

6 Conclusions

This is, to our knowledge, the first formal study of
transformers for sequence-to-sequence transduc-
tions, using variants of RASP to connect classes
of transformers to classes of transductions. We
showed that unique-hard attention transformers
and B-RASP compute precisely the class of aperi-
odic rational transductions; B-RASP[pos] strictly
contains all aperiodic regular transductions; and
average-hard attention transformers and S-RASP
strictly contain all aperiodic polyregular trans-
ductions. Our finding that B-RASP[pos] and
S-RASP can compute transductions outside the
corresponding aperiodic class in the transduction
hierarchy raises the question of fully characteriz-
ing their expressivity, a promising future research
direction.
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Appendices

In the following appendices, we prove Thm. 5.11.
Appendix A reviews the definition of average-hard
attention transformers. Appendix B contains our
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main proof, while Appendix C contains another
construction using a different position embed-
ding. Appendix D compares some features of our
simulation with other simulations.

A Average Hard Attention Transformers

We recall the definition of a transformer encoder
with average-hard attention, also known as satu-
rated attention (Yao et al., 2021; Hao et al., 2022;
Barcel6 et al., 2024). Let d > 0 and n > 0. An
activation sequence is a sequence of n vectors in
R?, one for each string position. The positions are
numbered —1,0,1,...,n— 1. Position —1, called
the default position, does not hold an input sym-
bol and will be explained below. A transformer
encoder is the composition of a constant num-
ber (independent of n) of layers, which of which
maps an activation sequence u_1, ..., U,_1 to an
activation sequence u’ ,...,ul .

There are two types of layers: (1) position-wise
and (2) average hard attention. A position-wise
layer computes a function u; = u; + f(u;) for all
positions i, where f is a position-wise two-layer
feed-forward network (FFN) with ReLU activa-
tions. An average hard attention layer is specified
by three linear transformations Q, K,V : R —
R<. The dot product S(i,j) = (Qu;, Ku;) is
the attention score from position ¢ to posi-
tion j. For each position i, let M; be the
set of positions j that maximize S(i,;j). Then
u; = u; + (3 jens, Vuy)/|Mi|. An average hard
attention layer may be masked using strict or
non-strict future masking, in which for each posi-
tion %, only positions j < ¢ or j < % (respectively)
are considered in the attention calculation. With
strict future masking, the default position has
nowhere to attend to, so the resultis v’ ;| = u_;.

B Simulating S-RASP

B.1 Overview of the Simulation

To define the computation of a transduction by
a transformer, we need to specify how the input
and output strings are represented in the initial
and final activation sequences. If the input string
is w = qpay---ap—1, we let a; = # for i =
£ ....n—1.

Let ¥ U {#} = {00,...,0%_1} be totally or-
dered. The first k& coordinates of each activation
vector hold the one-hot encoding of a; (or the
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zero vector at the default position). The represen-
tation of the output string is analogous, using the
alphabet I' U {#}.

Five more coordinates are designated to hold the
position encoding (PE) and quantities computed
from it. Descriptive names for these coordinates
of the activation vector at position ¢ are as follows.

0 ]I[ai = 0'0}
k—1 I[a; = op_1]
pos i/n
posq (i/n)?
pOsi 1/(i+2)
default I[i = —1]
zero I[i = 0]

where I[-] is 1 if the argument is true, O other-
wise. In the simulation, i/n is used for sum and
difference, i/n and (i/n)? are used for equality
comparison, and i/n, (i/n)? and 1/(i + 2) are
used for the prefix sum operation. We note that
the last two coordinates above can be computed
from i/n.

We turn to how S-RASP programs may be sim-
ulated. Vectors of Boolean, symbol, and integer
values in an S-RASP program are represented in
one or more coordinates of an activation sequence
in the transformer. Each operation of an S-RASP
program computes a new vector of values, and
is simulated by one or more transformer encoder
layers which compute new values in one or more
coordinates of the activation sequence. Assume
that Py is an S-RASP program computing a trans-
duction f : ¥* — I'* with minimum vector length
q(¢), and that n > q(¥).

B.2 Representing S-RASP Vectors

Vectors of Booleans, symbols, and integers in
the program Py are represented in the activation
sequence of the transformer as follows.

Each Boolean vector vy, vy, ...,v,—1 in Py is
represented by one coordinate r of the transformer
activation sequence u_1, ug, . . . , Uy_1, Where for
each i € [n], u;[r] = 0if v; = L and w;[r] = 1 if
v; = T. For the default position, u_;[r] = 0.

Let A = {dy,d1,...,d;} denote the finite set
of all symbols that appear in any symbol vector
in Py. Each symbol vector vy, vy, ..., v,—1 in Py
is represented by |A| coordinates g, 71, . . ., Tk_1,
which hold a one-hot representation of v; (or the
zero vector at the default position).
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Each integer vector vy, vy, ..., v,_1 in the pro-
gram is represented by a specified coordinate r
in the transformer activation sequence, where for
each i € [n], u;[r] = v;/n. In the PE, the value
of u_1[pos] is —1/n, but for other integer vec-
tors we have u_1[r] = 0. We note that all of the
representing values are less than or equal to 1.

B.3 Table Lookup

A key property of S-RASP is that every integer
value computed in the program must be equal to
some position index i € [n|. We use this property
to implement a table lookup operation.

Lemma B.1. For any integers x, q, let

fo(x) = 2qz — 2°.

Then:
1. fy(z) is uniquely maximized at x = q;

2. ifx # q, then fy(q) — fq(x) > 1.

Proof. This is a generalized version of a technique
by Barcel6 et al. (2024). It can easily be shown
by looking at the first and second derivatives of
f, and by comparing f,(q) with f;(¢ — 1) and
falg+1). O

Lemma B.2. Fix an activation sequence
U_1,...,Upn_1 and coordinates r,s,t such that
ui[r] = ki/n, where each k; € [n|. Then there
is an average-hard attention layer that computes
u'y, ... ul,_y, where uj[t] = ug,[s| and the other
coordinates stay the same.

Proof. Consider an attention layer with no mask
and the following attention score:

S(i, 7) = 2u;[r|uj[pos] — u;[posq]
2k;j — j*

which is a bilinear form in u; and u;, and (by
Lem. B.1) is uniquely maximized when j = k;.
The value is u;[s], which is stored in coordinate ¢
of the output activation sequence. O

We remark that if k; > n, the unique max-
imizing value of S(i,j) for j € [—1,n — 1] is
j = n — 1, so the attention layer in the proof

above returns the value v,,_; for such positions 1.



B.4 Simulating S-RASP Operations

For each operation below, letu_1, . .., u,_1 be the
input activation sequence, and let v’ , ..., u}
be the output activation sequence. If k, vy, vo,
b, and t are S-RASP vectors, we also write k,
vy, V9, b, and ¢, respectively, for the coordinates

representing them in the transformer.

B.4.1 Position-wise Operations

Position-wise Boolean operations on Boolean vec-
tors can be simulated exactly by position-wise
FFNs, as shown by Yang et al. (2024).
Position-wise operations on symbol values reduce
to Boolean operations on Boolean values.

To simulate addition of two integer vectors,
t(7) = v1(i) + va(7), we first use a FFN to com-
pute k/n = max(0, u;[v1] + w;[vs]). The result
may exceed (n — 1)/n, so we use table lookup
(Lem. B.2) to map k/n to ug [pos]; this sets values
larger than (n — 1)/n to (n — 1)/n. The result is
stored in w/[t]. Subtraction is similar, with ReLU
ensuring the result is non-negative.

For position-wise comparison of integer vec-
tors t(i) = wvi1(i) < v9(i), we use a FFN to
compute k/n = max(0, u;[v1] — u;[v2]). We use
table lookup to map k/n to ug[zero|, which is 1
if u;[v1] — w;[ve] < 0, and O otherwise. The other
comparison operators are similar.

For the position-wise operation t(i) = vy (i) if
b(i) else vy(i): If vy and vy are both Boolean
vectors or both symbol vectors, this can be reduced
to position-wise Boolean operations. If v; and v
are integer vectors, we use a FFN to compute

ui[t] = max (0, u;[v1] + u;[b] — 1)
+ max (0, u; [ve] — u;[b]).

Thus if u;[b] = 1 then u}[t] = u;[vi] and u}[t] = 0,
and if u;[b] = 0 then v} [t] = 0 and u}[t] = u;[vy).

B.4.2 Prefix Sum

Next, we turn to the prefix sum operation, t(i) =
psum, [j <] k(j). Assume that u;[k] = k(i) /n,
where each k(7) is an integer in [n] and k(—1) = 0.
Let p; > 0 be the sum of k(—1),k(0),...,k(z)
and let p; = min(n — 1, p;), which is the sequence
of values to be computed and stored in coordi-
nate ¢t.

The first attention layer uses non-strict future
masked average hard attention with S(7, j) = 0,
and the value is u;[k]. The resulting activation
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sequence has the following values in coordi-
nate s:

0 p p1 Pn-1 (1)
n’ 2n’3n"" " (n+1)n

Each value is smaller than the desired value by
a factor of (i + 2); to remove this factor, we
use a second attention layer. Let v_1,vg, ..., vp_1
denote the activation sequence after the first layer.
We use an average hard attention layer with no
mask and the following attention score:

S(i,j) = 2v;[s|vj[pos| — vi[posilvj[posq]
_ 2pij — 72
(i + 2)n?

which is a bilinear form in v; and v;, and (by
Lem. B.1) is uniquely maximized when j = p;.
As in the remark after Lemma B.2, if p; > n,
the maximizing j € [n] is j = n — 1. The value
is v;[pos] = j/n = p;_,/n for i > 0 (and O if
¢ = 0), which is assigned to coordinate ¢, and the
other coordinates are unchanged.

B.4.3 Leftmost and Rightmost Attention

The operations

require that if there is any position j € [n] that
makes the attention predicate S(3, j) true, then the
unique minimum or maximum such j is selected,
but if there is no satisfying position j € [n], then
the default value is used. Attention may be past
or future masked, either strictly or non-strictly.
We assume that transformers have only (strict
or non-strict) future masking; to simulate past
masking, we can calculate the index (n — 1)/n —
i/n, use Lem. B.2 to reverse the relevant vectors,
and then use future masking.

The attention score S(3, j) is either a Boolean
combination of Boolean vectors, or an equality
comparison between two integer vectors. In either
case, we compute an attention score

S/(Zaj) = Sbase(iaj) + Stie(iaj) + Sdef(i) defau”(J)

where Shuse (7, 7) is maximized for positions where
S(i,7) is true, +Sye breaks ties to right, —Sie to
the left, and Sy handles the default case.



Maximization. If S(¢, j) is a Boolean combina-
tion of Boolean vectors, to ensure that attention
from any position to the default position is 0, we
let Shase (7, 7) = —default(j) A S(i, 7). This may
be computed by dot product attention, as described
by Yang et al. (2024).

For the special case where S(3, j) is an equality
comparison of integer vectors, say v1(i) = v2(j):
We first use a lookup operation (Lem. B.2) with
the posq entry of the PE to get the squares of the
values in vy in coordinate t. Let u_1, ug, . . ., Up—_1
be the resulting activation sequence. We then
use an average hard attention operation with the
attention score function

Sbase(i’j) = 2“1’[”1]“]’ [UQ] — U [t]

_ 20n(i)a(j) — 02(5)?

which is a bilinear form in u; and u;, and is
maximized (by Lem. B.1) when vy (j) = v ().

Breaking Ties. If Shue(i,j) were used with
average hard attention, then the activation values
would be averaged for all the satisfying j. To
ensure that the maximum satisfying position j
has a unique maximum score, we break ties by
adding or subtracting S(7,j). We must ensure
that the values added or subtracted are smaller
than the minimum difference between the values
for satisfying and non-satisfying positions.

For a Boolean combination of Boolean vectors,
let S (7, j) = max(0,j/(2n)). Then under right-
most attention, the rightmost satisfying j has the
highest attention score, which is at least 1, while
every non-satisfying j has an attention score less
than 1/2. Similarly for leftmost attention.

For an equality comparison v(i) = v2(j),
the difference between the maximum score at-
tained and any other score is at least (1/n)? by
Lem. B.1. So if we add or subtract values less
than (1/n)?, no non-equality score can exceed an
equality score. This can be achieved by letting
Stie (i, 7) = j/(2n?). This is computable using dot
product attention because j/n is in the PE for j
and (1/n)? is in the PE for 1 and can be initially
broadcast to all positions.

Default Values. The term Sg.r needs to give
the default position an attention score strictly
between the possible scores for satisfying and
non-satisfying j.

For a Boolean combination of Boolean vectors,
the maximum non-satisfying score is less than 1/2
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and the minimum satisfying score is at least 1, so
if we let Sger(i) = 3/4, then the default position
has an attention score of 3/4, so it will be the
unique maximum in case there are no satisfying
positions.

For an equality comparison of integer vec-
tors, the maximum non-satisfying score is less
than (vq(i)/n)? — (1/2)(1/n?), and the mini-
mum satisfying score is at least (vi(i)/n)?, so
Saer(i) = (v1(i)/n)? — (1/4)(1/n?) is strictly be-
tween these values. The value of (v1(i)/n)? may
be obtained at position ¢ using Lem. B.2 with
index vy (i)/n and the posq coordinate of the PE.

Thus, the default position is selected when
there is no j € [n] satisfying the attention pred-
icate; it remains to supply the default value. We
use an attention layer with the attention score
S’ given above and value V(j) = [d‘e@i‘%@]
Let j; be the position that ¢ attends to. Then
we use a position-wise if/else operation that re-
turns (the simulation of) D(7) if default(j;) = 1
and V (j;) otherwise. This concludes the proof of
Theorem 5.11.

C An Alternate Position Encoding

The simulation of S-RASP via average hard atten-
tion transformers in Thm. 5.11 relies on three kinds
of position encoding: i /n, (i/n)?,and 1/(i+2). In
this section, we present evidence for the following.

Conjecture C.1. Any transduction computable by
an S-RASP program is computable by a masked
average-hard attention transformer encoder with
a position encoding of i /n.

First, 1/(i + 2) can be computed from i /n.

Proposition C.2. A transformer with positions
i € {—1,0,...,n} and position encoding i/n
can compute 1/(i + 2) at all positions i.

Proof. As observed by Merrill and Sabharwal
(2024), a transformer can use the i/n encod-
ing to uniquely identify the first position (—1)
and compute 1/(i + 2) by using non-strict future
masked attention with value 1 at that position and
0 elsewhere (0,...,n — 1). ]

In Thm. C.4 we show that the position encod-
ing i/n and 1/(i + 2)? suffices for the simulation
of S-RASP by a masked average hard attention
transformer. Though it’s unclear whether a trans-
former with position encoding i/n can compute
1/(i + 2)?, we note the following.



Proposition C.3. A transformer with positions
i € {—1,0,...,n} and position encoding i/n
can compute 1/((i + 2)* — 1) at positions i < n.

Proof. By Proposition C.2, the transformer can
compute 1/(i+2) at position . It can then compute
1/((i+2)? — 1) simply as the difference between
the 1/(i + 2) values at the two neighbors of
position ¢:

1 101 1
(i+2)2—-1 2\i+1 i+3)°
O

Theorem C.4. Any transduction computable by
an S-RASP program is computable by a masked
average-hard attention transformer encoder with
a position encoding of i/n and 1/ (i + 2)>.

Proof Sketch. The proof of this theorem closely
follows the argument presented earlier for
Thm. 5.11, except for the position encoding used.
We will show how each use of (i/n)? in that
original argument can be replaced with an equiv-
alent use of 1/(i + 2)?, which we assume to be
stored in a coordinate called posiq (for ‘‘inverse
quadratic’’). We also assume that 1/(i + 2) is
available by Prop. C.2.

The original proof uses the quadratic max-
imization in Lem. B.l1, which we replace
with:

Lemma C.5. For any integers x, q, let

_ 2 _ q+2
fq(x)_n(:c—i-Q) n(x+2)2 @

Then fy(z) is uniquely maximized over values of
x> —1whenx =q.

Proof. Consider the derivative, —2/n(j + 2)* +
2(q + 2)/n(j + 2), whose only real-valued root
is 7 = q. Furthermore, the derivative is positive
for j < q and negative for j > q. O

This score is a bilinear form that can be com-
puted via average hard attention using query
(2/n,—q/n — 2/n) at position ¢ and key (1/(j +
2),1/(j + 2)?) at position j. In all our applica-
tions of this new score, we will ensure that ¢q/n
is available at position i. The 2/n term can also
be computed at position ¢ by attending uniformly
(without masking) with value 2 at the first position
and O elsewhere. There are three uses of posq in
the original argument that we have to modify.
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The first use is in the proof of Lem. B.2, for
the basic lookup operation. Instead of using an
attention score of 2u;[r|u;[pos] — u;[posq], we
use Eq. (2) with ¢ = k; (recall that u;[r| = k;/n):

S(i,5) = %uj [posi] — (uz[r] + i) uj[posiq.

ByLem. C.5, S(3, j) is maximized over j uniquely
when j = k;, as needed in the proof of Lem. B.2.

The next use of posq in the original argument
is for the prefix sum (Appendix B.4.2). As before,
we compute p; /((i+2)n) and store it as v;[s], with
v;[0] being 0/n. Instead of the original attention
score of 2v;[s|v;[pos] — v;[posqlv;[posi], we use:

2 , ,
S(i,j) = - vj[posi]v;[post] —

(ms] + 71(212)> v;j[posiq]

where the 2/(n(i 4+ 2)) term is computed at po-
sition ¢ by using future masked attention with a
score of 2/n (computed earlier) at the first po-
sition and O elsewhere. This gives an attention
score of:

S(i, j) = 2 pi+2
PTG +2) a2+ 2()3)
which, by Lem. C.5, is uniquely maximized when
j = p;. This allows us to retrieve value j/n =
p;/n from position j, as needed in the proof in
Appendix B.4.2.

The third and final use of posgq is in the sim-
ulation of leftmost and rightmost attention and
its default values (Appendix B.4.3). Specifically,
suppose the attention predicate in S-RASP is an
equality comparison of two integer vectors, say
v1(4) and vy(j), represented as u;[r] = k;/n and
uj[s] = k;/n, respectively. In this case, we first
use two lookup operations (Lem. B.2, updated for
the inverse square position embedding) with the
post and posiq entries of the position embedding
to copy inverses and inverse squares of the values
in vy to coordinates ¢ and z of the activation. As
in the original proof, let u_1, ug, ..., un—1 denote
the resulting activation sequence. We thus have
ui[t] = 1/(k; + 2) and w;[2] = 1/(k; + 2)*. We
then use the attention score function

$6.) = 2wl — (whl+2) -l @



a bilinear combination of u; and u; equivalent to:

.. 2 k; +2
S.4) = nl+2)  nlk+22 O

By Lem. C.5, S(i, j) is uniquely maximized over
values of j > —1 when k; = k;.

As in the original argument, there may be mul-
tiple matches and we thus need to break ties in
favor of the leftmost or rightmost match. To this
end, we observe that S(i,7) = 1/(n(k; + 2))
when k; = k;, and compare this to the max-
imum value of S(i,j) for k; # k;, which is
(ki+4)/(n(k;+3)?), attained at k; = k;+1. Thus,
the gap between the attention score when k; = £;
versus the maximum possible when k; # k; is
1/(n(k; + 2)(k; + 3)?). Since k; < n, this is
lower bounded by 1/(n(n + 1)(n + 2)?) > g(n)
where g(n) = 1/(20n*). As in the original argu-
ment, if we add or subtract from S(7,j) values
less than g(n), no non-equality score can exceed
the corresponding equality score. We achieve this
by adding or subtracting the tie-breaking term
g(n)j/(2n) = j/(40n); the reason for using this
specific tie-breaking term will become apparent
when we discuss default values below. This term
is computable by first computing 1/n* at position
i and then using dot product attention with j/n
in the position encoding of j. In order to com-
pute 1/n*, we can attend uniformly with only the
first position having value 1/n (the rest having
value 0) to obtain 1/n?, and repeat this process
twice more to obtain 1/n*. This finishes the up-
dates needed for the simulation of leftmost and
rightmost attention.
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We address default values in a similar way as
in the original proof. When it involves an equal-
ity comparison of integer vectors and rightmost
attention, we observe that with the tie-breaking
term g(n)j/(2n) discussed above, the gap be-
tween the matching attention score 1/(n(k; + 2))
and the maximum non-matching attention score
for rightmost attention is at least g(n)/2. Hence, a
default position value of 1/(n(k; + 2)) — g(n)/4
is strictly between these two values. Further, this
default position value is computable at position ¢
by the same arguments as above. We treat default
values with leftmost attention analogously. O

D Comparison with Other Simulations

In the prefix sum operation (1), the result at
position i is s(i)/(i + 1), where s(i) is the
prefix sum of v(i). The fact that the denom-
inator of this expression varies with position
is an obstacle to comparing or adding the val-
ues s(i) and s(j) at two different positions i
and j. This problem is addressed by Yao et al.
(2021) and Merrill and Sabharwal (2024) using
a non-standard layer normalization operation to
produce a vector representation of the quantities,
which allows them to be compared for equality
using dot product attention. Pérez et al. (2021)
include 1/(i + 1) in their position embedding to
enable the comparison; however, they compute
attention scores as —|(Qu;, Ku;)| in place of the
standard dot-product. The approach of the current
paper is based on that of Barcel et al. (2024),
who show how average hard attention can be used
to compute the prefix sum of a 0/1 vector.



