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Abstract

Humans appear to have a critical period (CP)
for language acquisition: Second language
(L2) acquisition becomes harder after early
childhood, and ceasing exposure to a first lan-
guage (L1) after this period (but not before)
typically does not lead to substantial loss of L1

proficiency. It is unknown whether these CP
effects result from innately determined brain
maturation or as a stabilization of neural con-
nections naturally induced by experience. In
this study, we use language models (LMs) to
test the extent to which these phenomena are
peculiar to humans, or shared by a broader
class of language learners. We vary the age of
exposure by training LMs on language pairs in
various experimental conditions, and find that
LMs, which lack any direct analog to innate
maturational stages, do not show CP effects
when the age of exposure of L2 is delayed.
Our results contradict the claim that CP effects
are an inevitable result of statistical learning,
and they are consistent with an innate mech-
anism for CP effects. We show that we can
reverse-engineer the CP by introducing a reg-
ularizer partway through training to simulate
a maturational decrease in plasticity. All in
all, our results suggest that L1 learning on its
own may not be enough to induce a CP, and
additional engineering is necessary to make
language models more cognitively plausible.

1 Introduction

The tension between nature and nurture is cen-
tral to questions surrounding how humans acquire
language. The Critical Period (CP) for language
acquisition is no exception. Around the onset of
adolescence, humans exhibit a loss in ability to
acquire a second language through immersion
and a tendency not to forget their first language
under deprivation (Penfield and Roberts, 1959;
Lenneberg, 1967; Johnson and Newport, 1989;

Pallier et al., 2003). Scholars of human develop-
ment have long debated whether these phenomena
are predetermined by innately encoded develop-
mental changes in the maturing brain (Penfield,
1965; Chomsky, 1965; Pinker, 1994), or natu-
ral consequences of increased experience that
any typical statistical learner would be subject
to (Elman et al., 1996; Seidenberg and Zevin,
2006; Thiessen et al., 2016).

Until recently, it was difficult to differentiate
these two hypotheses; as we could only observe
one kind of statistical learner (i.e., humans), we
could not identify which properties of its learning
process were responsible for its behavior. Recent
improvement in neural language modeling up-
ends this state of affairs (Warstadt and Bowman,
2022). Language Models (LMs) can learn to
simulate many native-like grammatical judgments
(Warstadt et al., 2020; Zhang et al., 2021; Hu et al.,
2020)—long regarded as one of the main be-
havioral measures of native speaker knowledge
(Chomsky, 1957; Johnson and Newport, 1989)—
and, like humans, they acquire this knowledge
from unstructured input without the need for neg-
ative evidence. However, their learning algorithm
and structure differ from those of humans in a
number of ways. LMs can thus provide additional
information about which phenomena are likely
to be typical of general language learners, and
which are peculiar to humans.

In this work, we use language models to study
the CP for language acquisition, focusing on sec-
ond language acquisition and first language at-
trition. Our experiments test for CP effects1 in
LMs by training them from scratch on bilingual
data, varying only the age of exposure to L2. We

1The term critical period is sometimes used to refer to a
specific biological construct. For clarity, we use the term CP
effects to refer to the characteristic observable effects of age
of exposure on L1 and L2 performance.
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test whether, like humans, LMs learn L2 more
easily when exposed to it simultaneously with L1

from the beginning of training, rather than when
exposed to it only after learning L1. Similarly, we
test whether they fail to forget L1 after extensive
training on it. Experimentally, we find that LMs
are unlike humans in both respects.2 Thus, our
results contradict the view that CP effects are an
expected consequence of statistical learning, and
they are consistent with (but only provide weak
evidence for) the view that the CP in humans is a
biologically programmed developmental stage.

The benefits of studying the CP in neural mod-
els, however, go beyond just discerning the two
hypotheses above. If LMs do differ from humans,
it may be useful to attempt to reverse-engineer
those learning properties exhibited by humans
(Dupoux, 2016). Furthermore, minimizing differ-
ences between LMs and humans is a necessary
step in enabling their use more broadly as mod-
els of human language acquisition (Warstadt and
Bowman, 2022). Thus, we also attempt to reverse-
engineer a CP by simulating a loss of neural plas-
ticity using Elastic Weight Consolidation (EWC;
Kirkpatrick et al., 2017), a Bayesian regularizer
used in machine learning to mitigate catastrophic
forgetting. Our experiments show that both of the
CP effects emerge in tandem when the model’s
plasticity is explicitly controlled in this way. Our
findings demonstrate the utility of LMs as tools
for theories about human language acquisition,
and they suggest a path forward to making LMs
more developmentally plausible models of human
language acquisition.

2 Background: The Critical Period

The proposition that there is a critical period for
language learning has long been prominent in lan-
guage acquisition research (Penfield and Roberts,
1959; Lenneberg, 1967). Discussions around the
CP, however, typically cluster a number of re-
lated observations; these must be teased apart in
order to be properly understood (Singleton, 2005;
Mayberry and Kluender, 2018). The critical period
can be divided into 3 main phenomena, namely:
a CP for L1 acquisition, a CP for L2 acquisition,

2We note that our results thus align with the well-known
fact that language models: (i) are prone to catastrophic forget-
ting; and (ii) are good at transfer learning. Our experiments,
though, support the novel conclusion that transfer perfor-
mance (training in L1 followed by L2) leads to similar or
better results than jointly training on both languages.

and a CP for L1 attrition. We focus on the latter
two here.3

2.1 Critical Period for L2 Acquisition

CP effects for L2 acquisition consist of greater
difficulty in learning a second language and
worse learning outcomes as the age of exposure
increases. As humans vary greatly in the begin-
ning of L2 exposure, this is perhaps the most
well-known of the CP phenomena. The effects
of age of exposure on phonetics and phonology
(i.e., one’s accent) are part of folk knowledge and
were a key piece of evidence in the first works
to propose a neurological mechanism for these
(Lenneberg, 1967). Numerous studies also show
that age of exposure correlates with worse L2

performance on morphological and syntactic ac-
ceptability judgment tasks (Johnson and Newport,
1989; Hartshorne et al., 2018). While the exact
nature and reliability of these effects has been
questioned at times (Ioup et al., 1994), the ex-
istence of age-of-exposure effects is generally
accepted. We refer the reader to several thorough
reviews of the relevant evidence (Singleton, 2005;
Thiessen et al., 2016; Mayberry and Kluender,
2018).

In the realm of computational learners, no prior
work has tested this CP in a controlled manner.
In a more general form, however, L2 acquisition
has been studied in depth (Dufter and Schütze,
2020; Chen et al., 2023, inter alia). Most re-
lated to our work, Oba et al. (2023) trained a
number of language models on an L1 and then
fine-tuned these models on both L1 and L2; they
find that, unlike humans, this two-step training
improves LMs’ L2 performance. This already sug-
gests that LMs may not show CP effects for L2

learning. However, they do make L2 learning rel-
atively easier by fine-tuning their models on L1

and L2 simultaneously within the same bidirec-
tional transformer context, which we contend is
not cognitively plausible.

Beyond Oba et al.’s (2023) study, weak evi-
dence against the existence of a CP forL2 in neural
networks is suggested by a large body of work on
transfer learning which fine-tunes pretrained neu-
ral networks to perform new tasks (e.g., Devlin

3Strong evidence of a CP for L1 acquisition has been
demonstrated in late L1 learners from the deaf community
(Mayberry and Fischer, 1989; Newport, 1990). However, as
simulating lateL1 exposure requires training on non-linguistic
data, we consider it beyond the scope of this work.
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et al., 2019; Liu et al., 2019; Driess et al., 2023).
These studies indicate that a neural model can
achieve superior performance on a fine-tuned task
compared to training on it from scratch. However,
these studies do not manipulate age-of-exposure
while controlling for the total amount of input, and
their main focus is on tasks other than language
modeling itself, such as classification.

2.2 Critical Period for L1 Attrition

The CP for L1 attrition refers to a loss of pro-
ficiency in L1 due to a lack of exposure to it.
This phenomenon is largely constrained to earlier
ages (Pallier, 2007), as adults who emigrate from
their L1 community do not typically forget their
L1 entirely. However, profound attrition is possi-
ble if L1 exposure ceases during childhood. For
example, Pallier et al. (2003) studied Korean-born
adoptees in France who had no recognition of their
L1, despite living in Korea for as long as eight
years.

In the computational domain, language attrition
relates to another large body of work in life-long
and continual learning. In short, a large number of
works have shown that neural networks are prone
to catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999), losing most of their profi-
ciency in their original training domain when fine-
tuned on another. Continual learning mitigates
catastrophic forgetting through the use of adapt-
ers (Houlsby et al., 2019; Pfeiffer et al., 2020),
regularizers (Kirkpatrick et al., 2017; Pan et al.,
2020), or further training in the original domain.

2.3 Theories

Critical period effects in humans are typically
interpreted as evidence that neural plasticity in
the language centers of the brain decreases as
the brain matures (Newport, 1990). However, the
cause of this decrease in plasticity is a matter
of debate, with much of the divergence among
theories stemming from whether they emphasize
innate or experiential mechanisms as responsi-
ble for this decrease.4

4With exceptions, most views are quite diverse and many
scholars advocate for a nuanced view with multiple causes
(e.g., Newport, 1990; Thiessen et al., 2016; Singleton, 2005).
Other explanations for CP involve social factors, such as a
decrease in willingness to experiment, in motivation to fit
into one’s community, or in the likelihood of being im-
mersed in the target language (Hartshorne et al., 2018).

Innate accounts of the CP argue that this loss
in plasticity is driven by properties which are spe-
cific to how humans acquire language. Some of
these accounts are based on the hypothesis that
children—but not adults—are equipped with a
specialized language acquisition device such as
Universal Grammar (Chomsky, 1965; Newport,
1990). On this view, the CP occurs when Uni-
versal Grammar is (wholly or partially) lost,
displaced, or dismantled as we age, which would
explain why adults struggle with language acqui-
sition (Chomsky, 1965, p. 207; Borer and Wexler,
1987; Bley-Vroman et al., 1988; Schachter, 1988;
Pinker, 1994, p. 294).5 Other innate accounts are
not language-specific, especially those with an ex-
plicit neurobiological basis. For example, humans
(and other mammals; Paolicelli et al., 2011) go
through a phase of synaptic pruning peaking in late
childhood and adolescence (Huttenlocher, 1979,
1990) during which disused neuronal connections
are reduced (Hensch, 2005). Monolingual brains
show signs of more extensive pruning than bilin-
gual ones (Mechelli et al., 2004), suggesting that
early in life abundant synapses provide the neces-
sary plasticity to acquire a second language with
ease, and that later these synapses may be pruned
if not yet recruited (De Bot, 2006). Beyond synap-
tic pruning, other neurobiological process such as
myelination (Pulvermüller and Schumann, 1994;
Pujol et al., 2006) and lateralization (Lenneberg,
1967) are also correlated with a loss in plasticity
as we age.6

By contrast, experiential accounts of the CP
argue that a loss in plasticity is a consequence of
learning itself (Munro, 1986; Elman et al., 1996,
p. 283; Ellis and Lambon Ralph, 2000; Zevin and
Seidenberg, 2002; Seidenberg and Zevin, 2006;
Thiessen et al., 2016; Achille et al., 2019). Early
experiments on connectionist models found that
stages associated with human development some-
times fall out naturally during the training of
low-bias neural networks (McClelland, 1989).
Connectionist word learning simulations found

5Child and adult language acquisition are seen as driven
by different mechanisms on this view (Thiessen et al., 2016),
supported by evidence that general analytic ability pre-
dicts adult—but not child—L2 learning outcomes (DeKeyser,
2000).

6Often, these processes have experiential correlates as
well, i.e., their outcomes are modulated by experiences dur-
ing development (Mechelli et al., 2004; Cheng et al., 2019).
This is consistent, however, with the timing and onset of
the process being biologically determined.
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an effect of age of acquisition on learning out-
comes (Ellis and Lambon Ralph, 2000; Zevin and
Seidenberg, 2002). Numerous scholars explain
this loss of plasticity—sometimes referred to as
entrenchment—as a natural consequence of the
training dynamics of networks that lead to con-
vergence (Munro, 1986; Elman et al., 1996; Ellis
and Lambon Ralph, 2000; Seidenberg and Zevin,
2006). As Ellis and Lambon Ralph (2000, p. 1108)
argue, in a model with random weights (e.g., after
initialization) the activations of individual units
tend towards intermediate values, leading to large
weight changes, but as training proceeds, the units’
activations tend towards extreme values making
them less prone to change, even if the prediction
loss is large.

3 The Role of LMs in Studying the CP

Computational models have the potential to be
a powerful tool for informing debates about lan-
guage acquisition, as they enable a degree of
control over the learning mechanism and envi-
ronment not possible with human subjects; their
relevance to questions about human learning, how-
ever, is hampered by their numerous differences
from human learners (Warstadt and Bowman,
2022). Nonetheless, there are some theoretical
claims that current LMs can provide strong or
even conclusive evidence about. Not surprisingly,
these models are increasingly being used to test
theories of language acquisition (McCoy et al.,
2020; Lavechin et al., 2021; Wilcox et al., 2023;
Warstadt et al., 2023). Language models can,
for example, refute some poverty of the stimulus
claims by providing existence proofs about lan-
guage learnability (Clark and Lappin, 2011, p. 30).

In general, theories of CP effects are rather
diverse and nuanced. However, we can identify
two strong claims which are echoed in many of the
accounts above and about which LMs can provide
evidence: the strong innate claim and the strong
experiential claim.

Strong Innate Claim. Innate learning con-
straints are necessary to explain critical period
effects.

The strong innate claim is implicit in the ar-
gument that the mere existence of CP effects
counts as evidence in favor of an innate mecha-
nism like Universal Grammar (see, e.g., Schachter,
1988). This argument depends on the premise that

a change in learning ability as extreme as what is
seen in L2 acquisition could not (or would be very
unlikely to) arise from a single domain-general
learning mechanism. This premise, and thus the
argument, is simple to refute by finding a coun-
terexample, that is, an instance of a low-bias
learner that does show CP effects. Transformer-
based LMs, while not bias-free, have proven to
be effective learners for vision (Dosovitskiy et al.,
2021), protein folding (Jumper et al., 2021), and
many other types of data, suggesting that they are
sufficiently domain-general to refute strong in-
nate claim if they do show CP effects.

Strong Experiential Claim. Critical period ef-
fects are a necessary consequence of successful
statistical learning.

The strong experiential claim has been argued
to follow from a mathematical understanding of
the training dynamics of connectionist networks
(Munro, 1986; Ellis and Lambon Ralph, 2000).
Seidenberg and Zevin (2006) speak of a paradox
of success, whereby successful generalization cre-
ates the conditions for a loss in plasticity. This
claim is similarly simple to refute, by finding a
successful connectionist learner that fails to show
CP effects.

Studying the CP in LMs serves an additional
purpose for our understanding of human lan-
guage acquisition. Dupoux (2016) argues that
reverse-engineering properties of human language
acquisition can give insights into the mechanisms
behind those properties at the algorithmic or im-
plementational level (Marr and Poggio, 1976).
While we endorse this view, and do attempt to
reverse-engineer CP effects, our efforts are at the
computational level. The resulting models, how-
ever, do more closely resemble human learners
in the relevant property, which makes results ob-
tained from them more likely to generalize to
humans (Warstadt and Bowman, 2022).

4 Research Questions and Methodology

To study the claims above, we now put forward
two research questions which we investigate with
the help of language models.

RQ 1. Can we find evidence of a critical period
for L2 learning in language models?

RQ 2. Can we find evidence of a critical period
for L1 attrition in language models?
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Figure 1: A visualization of the training conditions, using L1 = de,L2 = en, S = 600M, E = 6.

These are the main questions that we want to
investigate, and on which we focus our experi-
ments. We analyze them by first training LMs
in various multilingual setups—while altering the
ages (epochs) at which L1 and L2 are acquired—
and then evaluating our models on L1 and L2.
Importantly, we do not make any modifications
to the LMs’ architecture or learning objectives in
these experiments.

Beyond these main questions, we also explore
two other research question here.

RQ 3. Does reducing plasticity in language
models induce human-like critical period effects?

RQ 4. Are critical period effects in language
models dependent on L1 and L2’s similarity?

Investigating RQ 3 serves a dual purpose. First,
it allows us to test whether the critical period
effects associated with L2 acquisition and L1 at-
trition arise in tandem as a result of a loss in
plasticity, or whether these phenomena can (at
least in one case) be decoupled. Second, if we are
successful at reverse engineering these CP effects,
we obtain a model that more closely resembles
human learners and that might be useful for fu-
ture work. We test this question by evaluating the
linguistic performance on both L1 and L2 while

training a model whose learning objective has an
extra regularizer which enforces a reduction in
plasticity.

Similarly, RQ 4 also serves a dual purpose.
First, it informs us about the relationship between
language similarity and CP effects. Second, it
implicitly assesses how sensitive our results are
to a specific choice of language pair, providing us
with a notion of how robust our experiments are
to this choice. We test this question by perform-
ing the above analysis in a number of language
pairs which differ in their similarity.

4.1 Training Conditions

Our goal is to train a language model L from
scratch on pairs of languages (L1 and L2) while
manipulating two independent variables: (i) the
ages (epochs) of exposure to L1 and L2, and (ii)
the level of programmed plasticity. In this section
our focus will be on providing the methodology for
variable (i), whereas the methodology for variable
(ii) is left to be presented in §4.2.

The obvious way to manipulate age of acqui-
sition in the case of language modeling is to
alter the training data schedule. As visualized in
Figure 1, we consider five schedules, which we
will refer to as ‘‘training conditions’’ throughout
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the paper. Across all conditions, the datasets re-
main unchanged (for a given language pair) and
the size of the training data per language is kept
consistent (we denote this quantity by S). The
total number of training iterations per example,
also known as epochs, is also a constant number
(we refer to this as E). As a consequence, the
amount of exposure to L1 and L2 is the same
across conditions, with the inevitable exceptions
of the MONOLINGUAL and SEQUENTIAL-INTERLEAVED

conditions.

MONOLINGUAL. This condition simulates a mono-
lingual human learner exposed to only one
language during their lifetime. The simplest ap-
proach in this condition would be to just trainL for
2 · E epochs on a monolingual dataset. However,
this would mean that L would be trained only on
half the number of tokens (S) compared to the
other conditions (2 · S). To account for this, we
create a second monolingual dataset of the same
size and train L on the two datasets in a sequen-
tial manner.

INTERLEAVED. This condition aims to replicate a
simultaneous bilingual human learner exposed to
two different languages from birth. It is also an
implementation of typical multitask learning. We
train L for a total of E epochs on an interleaved
bilingual dataset. Throughout training, L encoun-
ters batches of fixed size that alternate between
L1 and L2. As the bilingual dataset is double in
size compared to the monolingual datasets, E
epochs provide the same amount of training steps
per language as with the other conditions.

SEQUENTIAL. This condition represents the expe-
rience of a late L2 learner who changes linguistic
communities, losing exposure toL1 entirely. It can
also be seen as a typical implementation of trans-
fer learning. In this condition, L is trained for E
epochs exclusively on L1, and then subsequently
trained for another E epochs on L2. The shift from
L1 to L2 occurs abruptly, with a complete halt in
L1 exposure rather than a gradual transition.

SEQUENTIAL-INTERLEAVED. This condition is
closely related to the previous sequential condi-
tion, but recreates an experience more common
among human bilinguals where L1 exposure con-
tinues during L2 acquisition. It is also an imple-
mentation of one approach to continual learning.
After the initial stage of L1 learning, L is trained

on L1 interleaved with L2. We continue to use the
same L1 dataset from the initial training stage.

SEQUENTIAL-EWC. This condition attempts to em-
ulate in LMs an innate reduction in plasticity like
that proposed for humans. The L2 models are
trained from the same L1 checkpoints as for the
normal SEQUENTIAL condition, but with EWC regu-
larization added to the loss function. The reduction
in plasticity is not progressive, but only changes
once, after L1 has been fully trained.

4.2 Enforcing Plasticity

There are several methods to simulate a compu-
tational reduction in plasticity in LMs. We have
chosen Elastic Weight Consolidation (Kirkpatrick
et al., 2017) due to its popularity and simplicity.
EWC introduces a Bayesian-inspired regulariza-
tion term on a LM’s loss partway through training;
this term penalizes deviations from a prior distri-
bution over the parameter space (defined in terms
of L1 training), simulating the end of the critical
period. The modified loss function is defined as

L(θ) = LL2
(θ) + λ · REWC (θ) (1)

We introduce an additional hyperparameter λ ∈
R≥0 to control the strength of the EWC regu-
larization term. In the trivial case when λ = 0,
there is no programmed decrease in plasticity.
We provide the complete derivation of EWC in
Appendix E.

5 Experimental Setup

This section provides a comprehensive descrip-
tion of the experimental setup for this project, in-
cluding: languages, datasets, model architectures,
and evaluation methods.7

Languages. Our experiments consist of train-
ing LMs from scratch on language pairs. In this
work, we rely on English (en) data for evalua-
tion, as it has a wealth of well-studied resources
for assessing language proficiency (see §5).
Therefore, we justify the selection of the other
languages in this study according to their related-
ness to English. To reduce the computational
overhead, we restrict most of our experiments
to only two language pairs: German–English

7The code is released at https://github.com
/iconstantinescu/lm-critical-period.
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and Finnish–English. We choose these lan-
guages because they are both (relatively) high-
resource languages that are well-represented in
our chosen data domains. Furthermore, German
(de) is in the same language family as English
(Indo-European/Germanic), while Finnish (fi)
is unrelated to both (Finno-Ugric).

Nonetheless, to improve the generalizability of
our results, we also run one experiment with an
extended set of languages as L1, using English as
L2 (see Experiment 4 in §6). We select languages
from various language families (Indo-European
(IE) or not) using different scripts (Latin (L) or
not). To represent the extreme endpoints, we also
use a different corpus of English as the most
closely related L1, and a corpus in a programming
language (Java) as the least closely related L1.
The complete list is as follows (from most to least
related):

• Same language: English2 (en2)

• Germanic: German (de), Dutch (nl)

• IE, L: Spanish (es), Polish (pl)

• IE, Non-L: Greek (el), Russian (ru)

• Non-IE, L: Finnish (fi), Turkish (tr)

• Non-IE, Non-L:Arabic (ar),Korean (ko)

• Programming language: Java (java)

Datasets. Ideally, we would train on data that
closely resembles the kinds of language chil-
dren encounter during language acquisition. This
typically involves natural speech and narratives.
Unfortunately, there are no existing datasets in
any language that are fully representative of the
type and volume of language input a child is ex-
posed to during learning, let alone in a variety
of languages. As a consequence, in this work,
we construct a customized mix of multilingual
training data sourced from three complementary
domains: spoken, literature, and non-fiction. We
select the OpenSubtitles (Lison and Tiedemann,
2016) corpus for the spoken domain, the Guten-
berg (Gerlach and Font-Clos, 2020) collection
for literature, and the Wikipedia content for non-
fiction.8 While these choices of datasets are not

8To perform Experiment 4 with a broader range of lan-
guages, we exclude the Gutenberg dataset due to insufficient
data availability across languages. Further, for the special
Java (programming) language, we use an additional corpus
called The Stack (Kocetkov et al., 2023).

fully developmentally plausible, we judge them
to have a good balance of diversity, quality, and
quantity among the limited set of publicly avail-
able multilingual datasets. See Appendix A for
preprocessing details and Tables 1, 2, and 3 in
Appendix B for data statistics.

Models. We run our experiments with both
autoregressive and masked language models.
To represent these two categories, we consider
RoBERTa (Liu et al., 2019), an encoder-only
transformer trained to predict masked tokens, and
GPT-2 (Radford et al., 2019), a decoder-only
transformer trained to predict next tokens. We
rely on implementations from the HuggingFace
Transformers library (Wolf et al., 2020), namely,
roberta-base with 125M parameters and
gpt2 with 137M parameters. We choose these
two models due to their availability, size, and sci-
entific relevance. These models are then trained
according to the conditions defined in §4.1. In all
three sequential conditions, L2 training starts from
the finalL1 checkpoints, but with a new optimizer.

Hyper-parameters. We run a Bayesian hyper-
parameter search using the Weights & Biases
Sweeps API (Biewald, 2020) to identify good
model configurations for our training data and
methodology. We extract several model configu-
rations (see Appendix C) with which we run the
various experiments from §6.

EWC Implementation. We estimate the Fisher
Information Matrix according to Eq. (9), using
K = 10 samples per input. The model is trained
using the loss in Eq. (1).9 We choose the reg-
ularization strength λ such that L1 performance
matches L2 performance at the end of training,
which we identify experimentally to be λ = 20
for GPT-2 and λ = 150 for RoBERTa. We dis-
cuss the details and reasoning behind the choice
of λ in §6.

Evaluation. We use Perplexity (PPL), BLiMP,
and GLUE to assess models’ language profi-
ciency throughout our experiments. To account
for the differences in tokenization across lan-
guage pairs, we report the PPL per character.10

9While we use EWC’s loss for training, we still report the
cross-entropy loss for evaluations to be consistent.

10In addition, PPL per character being smaller in magnitude
than the more familiar PPL per token, differences between
PPL scores relative to the total magnitude are smaller as well.
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BLiMP (Warstadt et al., 2020) is a dataset of min-
imal pairs targeting contrasts in acceptability for
a variety of grammatical phenomena in English.
Evaluation is performed in a zero-shot setting by
comparing LM surprisal on a grammatical and un-
grammatical sentence. GLUE and superGLUE11

are compilations of semantic, commonsense, and
syntactic tasks (Wang et al., 2018, 2019a). Evalu-
ation is performed by fine-tuning all parameters of
the model as well as a randomly initialized classi-
fier MLP. While similar benchmarks (some even
using the names BLiMP and GLUE) are available
for many of the languages we study, these are in-
herently different datasets which are not mutually
comparable. Thus, throughout this work, we use
only English as the evaluation language. This
is far from optimal from the perspective of lin-
guistic representation, but we prioritize controlled
evaluation, rather than obtaining a large set of
exploratory results.

6 Experiments

This section describes our four experiments, de-
signed to provide evidence for answering the
research questions detailed in §4.

Experiment 1: Regular Training.
L1 ∈ {de, fi}, L2 ∈ {en}, S = 600M, E = 6.

The goal of this setup is to study the CP for L2

learning, which relates to RQ 1 and RQ 3. We
run this experiment on both GPT-2 and RoBERTa
models, using German and Finnish data as a
first language and English data as a second
language. The dataset for each language has the
same size of 600 million tokens, a factor which
was limited by the availability of the Finnish
data. The models are trained with a limited bud-
get of 6 epochs per language. This number has
been empirically determined (after preliminary
exploration) to provide a good trade-off between
computational costs and model performance (i.e.,
the models perform sufficiently well after train-
ing for 6 epochs and the learning slows down).
Finally, in order to introduce more variability and
provide more result samples, the trainings are run
with three different configurations (C1,C2,C3,
see Tables 4 and 5 in Appendix C).

11We henceforth use GLUE to refer to a combination
of tasks from GLUE and superGLUE (see Appendix D)
implemented in the BabyLM evaluation pipeline (Warstadt
et al., 2023).

Figure 2: L2 (en) results for regular training (6 epochs).
Results are aggregated across model configuration and
L1 (de and fi). Top: PPL per character on L2 (en)
during training on L2. Middle: Accuracy on BLiMP
during training on L2. Bottom: Performance on GLUE
at the end of training.

We illustrate the results for this experiment in
Figure 2. In general, the learning patterns through
epochs are similar across conditions (except for
INTERLEAVED), with variations observed mostly in
the final performance. As expected, the MONOLIN-
GUAL performance is the best among all condi-
tions. We notice that the INTERLEAVED condition
performs slightly worse than the SEQUENTIAL con-
dition, although the difference is more noticeable
in RoBERTa models than in GPT-2 models. Both
achieve lower scores than the MONOLINGUAL train-
ing (the baseline for native-level language profi-
ciency). Results from the SEQUENTIAL-INTERLEAVED

condition differ based on the model architec-
ture. On GPT-2 it is worse compared to SEQUEN-
TIAL results (i.e., keeping L1 exposure hinders L2

learning), while on RoBERTa it is better (i.e.,
keeping L1 exposure helps L2 learning). Lastly,
the SEQUENTIAL-EWC condition shows clear dif-
ferences, with much worse L2 proficiency. Un-
surprisingly, the reduction in plasticity through
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Figure 3: L1 (en) results when the language order is
reversed (6 + 6 epochs). Results are aggregated across
L2 (de and fi). Top: PPL per character on the L1

(en) validation set during training. Middle: Accuracy
on BLiMP during training. Bottom: Performance on
GLUE at the end of training on L1 and L2.

regularization has a significant (negative) impact
on L2’s learning outcome.

Experiment 2: Reversing the Language Order.
L1 ∈ {en}, L2 ∈ {de, fi}, S = 600M, E = 6.

The purpose of this experiment is to study the CP
for L1 attrition, which relates to RQ 2 and RQ 3.
The experimental setup differs from the previous
one mainly in that the order of the languages is
reversed: English is used as a first language
and German and Finnish as second languages.
This swap allows us to use all three evaluation
benchmarks to track L1 performance across the
entire training process. Furthermore, each run is
performed with a single configuration (C1).

The results for this experiment are displayed in
Figure 3. In general, we observe a smaller drop

in GLUE scores compared to BLiMP scores after
exposure to L1 ceases (i.e., comparing epoch 6 to
12). This is most probably caused by the concep-
tual difference between evaluations in a zero-shot
setting and evaluations that require fine-tuning.
When fine-tuning on GLUE, the LM is once again
allowed to learn from L1 data. In the MONOLINGUAL

condition, L1 performance keeps improving until
the end of training, even though it slows down
in the second stage. In the INTERLEAVED condi-
tion, models reach the same level of L1 and L2

proficiency (when comparing these results to the
ones from Figure 2).12 The more notable result
comes from the SEQUENTIAL learning. In this con-
dition, LMs rapidly lose the knowledge acquired
from L1 learning after L2 exposure is started.
The final L1 perplexity values indicate that, in
the end, the LMs forget almost everything that
they have learned before. It looks like the second
language completely replaces the first one. How-
ever, the loss of L1 is completely mitigated in
the SEQUENTIAL-INTERLEAVED condition. When L1

exposure is prolonged without any reduction in
plasticity, models are able to retain all the prior L1

knowledge.13

When a computational regularization method
is introduced in the SEQUENTIAL-EWC condition, L1

knowledge is successfully preserved to a certain
degree. However, as we have seen from Figure 2,
L2 learning is also harmed in this case. To ex-
plore this trade-off, we vary the λ values and test
the models’ performance on both L1 and L2 at
the end of training. The results are illustrated in
Figure 5. We see that the regularization strength
λ highly influences both L1 and L2 learning out-
comes. When high λ values are used (strong EWC
regularization), L1 knowledge can be predictably
maintained at the initial levels. However,L2 learn-
ing will be almost completely impaired. On the
other side, when lower λ values are used (weak
EWC regularization), L2 learning is affected less,
but L1 will not be preserved. It is also noticeable
that in this case, there is a higher variance on the
final L1 outcomes. As mentioned in §5, we have
selected the λ values for all our experiments as
the point where L1 and L2 performance is roughly
equivalent (intersection lines are marked on the
plots). Thus, we do not favor either very strong

12Note that the dataset size is 2S in this condition, so the
model is only trained for E epochs.

13RoBERTa continues learning L1 during the second
stage. We believe this is due to undertraining.
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Figure 4: Summary of the L2 (en) evaluation results for the convergence training (48 epochs). Results are
aggregated across L1 (de and fi). Top left: PPL per character on the L2 (en) validation set during training on L2.
Top right: PPL per character on the L1 (de, fi) validation set during training. Bottom left: Accuracy on BLiMP
during L2 training. Bottom right: Performance on GLUE at the end of L2 training.

or very weak regularization, and also to match the
behavior exposed by the INTERLEAVED models.

Experiment 3: Training to Convergence.
L1 ∈ {de, fi}, L2 ∈ {en}, S = 600M, E = 48.

This experiment is motivated by the observation
that CP effects can become stronger with a later
age of exposure. We extend the training time for
each language (thus postponing the start of L2 ex-
posure) to 48 epochs, allowing the model weights
to better converge. As this is more computation-
ally demanding, we do only one run per condition
and we also omit the SEQUENTIAL-INTERLEAVED

condition.
The results are provided in Figure 4, which

shows that the final results are more uniform
across the first three conditions, especially be-
tween INTERLEAVED and SEQUENTIAL. We still see a
substantial loss in L1 performance in the SEQUEN-
TIAL condition, indicating that longer L1 training
does not lead to entrenchment, though these PPL
scores are for fi and de, and thus are not directly
comparable to the en from other experiments.
The performance of the INTERLEAVED setting shows
a slight improvement compared to regular train-
ing, indicating that a longer training duration was
beneficial (and necessary for convergence). The
learning pattern for the SEQUENTIAL-EWC condition

Figure 5: Trade-off between L1 and L2 performance
(CE) at the end of training as a function of λ (EWC
strength). Results are aggregated acrossL1 (de and fi).

does not change, i.e., the final L2 performance
does not significantly improve with additional
training. It also appears the EWC regularization
does not simply slow down L2 learning, but rather
acts as a lower bound: L2 knowledge can never
improve past a certain point for a given choice
of λ.

Experiment 4: Diversifying the Language
Pool.
L1∈{ar, de, el, es, fi, ko, nl, pl, ru, tr, java},
L2 ∈ {en}, S = 100M, E = 6.

This experiment both addresses RQ 4 and pro-
vides more diversity in the results; the latter is
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Figure 6: L2 (en) results for each language pair at the end of training (6 epochs). Top: PPL per character on
L2 (en) at the end of training minus PPL per character from the MONOLINGUAL condition. Bottom: Accuracy on
BLiMP at the end of training.

especially important considering the limited se-
lection of languages for the previous experiments.
The main focus here is to find whether the choice
of languages or, more concretely, the degree of
similarity between L1 and L2, has any impact on
the CP. For this, we consider a wider range of
languages based on their relatedness to English
(see §5). To accommodate for the increase in com-
putational demand, we consider only the GPT-2
model architecture (with configuration C5), we
reduce the size of the training data to 100 million
tokens, we only train with English as L2, and we
only run PPL and BLiMP evaluations.

We present the findings in Figure 6. Consid-
ering L2 PPL, we find the expected pattern, i.e.,
PPL generally increases (gets worse) when L1 is
less closely related to it. However, the effect size
is quite small (hence we plot the difference with
respect to MONOLINGUAL condition): only 0.1–0.3
in most cases, while the total PPL ranges from
about 2.3–2.5. However, the BLiMP results do
not support the same conclusion. Mostly, BLiMP
scores vary seemingly at random, and indeed these
differences could reflect random noise due to
model initialization. As expected, L2 performance
on BLiMP is greatest when L1 and L2 are just
different corpora of English. But curiously, Java
pretraining aids BLiMP performance more than
most natural languages. The only condition where
we can make the strongest case for an effect is

SEQUENTIAL-EWC, which suggests that perhaps re-
latedness effects exist at the beginning of transfer
but are wiped out by extensive L2 training.

7 Discussion

We first address our four research questions from
§4. We then explore our results’ implications for
the theoretical claims introduced in §3.

7.1 Research Questions

RQ 1. This RQ concerned L2 CP effects. We
find evidence against a CP for L2 learning in lan-
guage models. In experiments 1 and 3 (Figures 2
and 4), we consistently find that final performance
in L2 is worse (or at least not different) in the IN-
TERLEAVED than in the SEQUENTIAL condition. This is
the opposite of the pattern found in humans, where
bilingual learners have greater proficiency in L2

with earlier exposure to it (Johnson and Newport,
1989). Comparing the INTERLEAVED and MONOLIN-
GUAL conditions also informs this question. For
humans, early L2 learners resemble monolinguals
in their L2 performance. However, MONOLINGUAL

models outperform INTERLEAVED ones on all three
metrics. Looking at the entire learning trajectory,
INTERLEAVED models differ markedly from both
MONOLINGUAL and SEQUENTIAL models, showing
more gradual and delayed improvements.
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RQ 2. This RQ concerned the CP for L1 at-
trition. Humans show few signs of L1 attrition
after the CP, even if L1 exposure decreases or
ceases. Our results in experiment 2 provide strong
evidence against a similar phenomenon in typical
LMs. Instead, we find that L1 performance wors-
ens rapidly and to a large degree in the SEQUENTIAL

condition after L1 exposure ceases. This is ex-
pected given the susceptibility of neural networks
to catastrophic forgetting. The loss of L1 profi-
ciency is prevented by continuing L1 exposure
in the SEQUENTIAL-INTERLEAVED condition, but such
continued exposure is not necessary in humans.14

RQ 3. This RQ concerned the trade-off be-
tween L2 learning and preventing L1 attrition
when explicitly reducing plasticity partway dur-
ing learning. We find strong evidence for such
a trade-off when comparing the SEQUENTIAL-EWC
condition to the SEQUENTIAL condition. The value
of λ we selected preserved L1 performance sub-
stantially compared to the SEQUENTIAL models,
at the cost of harming final performance in L2.
The L2 learning curves also converge relatively
quickly when plasticity is reduced. Our explo-
ration of different values of λ (Figure 5) shows
that preserving L1 to monolingual levels harms
L2 acquisition by roughly 1.5 nats of L2 perfor-
mance, but we do not directly compare grammat-
ical performance of our models to that of human
late L2 learners. Thus, our attempt at reverse en-
gineering shows a broadly human-like learning
pattern when using EWC, but we cannot say quan-
titatively and at a high level of granularity whether
the result is human-like.

RQ 4. This RQ concerned the impact of lan-
guage similarity on CP effects. Our results showed
that the language family of L1 and its script has
an impact on L2 learning in the expected way for
only a subset of evaluations. Based on earlier
findings from Papadimitriou and Jurafsky (2020)
and Oba et al. (2023), we had expected L2 perfor-
mance would be greater when L1 is more closely
related. However, only our results for PPL sup-
port this prior conclusion. Our results for BLiMP
do not unless EWC is applied, suggesting that
models are ordinarily plastic enough to learn the
grammar of L2 regardless of relatedness, unless

14This ignores self-talk as a potential source of L1 ex-
posure; self-talk may continue even if external L1 exposure
ceases.

plasticity is specifically reduced. We note that
Papadimitriou and Jurafsky (2020) reduce plas-
ticity by freezing the model weights before trans-
ferring to L2, but we do not venture an explanation
why Oba et al. (2023) seemingly find models to
be less plastic than we do.

7.2 Theoretical Implications
Our results show that CP effects are not naturally
arising in LMs in a typical training regime. At the
same time, we are able to suggest a methodology
to reverse engineer human-like learning patterns
by artificially reducing plasticity later in training.
As discussed in §3, results like these are relevant
to certain specific claims in the critical period
literature. Specifically, they refute the strong ex-
periential claim, which states that all successful
learning algorithms will show CP effects, and they
are consistent with (but do not provide strong ev-
idence for) the strong innate claim, which states
that innate maturational stages are necessary to
produce CP effects.

The strong experiential claim incorrectly pre-
dicts that our LMs will naturally show CP effects.
This may come as a surprise, given this claim
was based on previous studies on connection-
ist models finding evidence for the phenomenon
of entrenchment (Munro, 1986; Ellis and Lambon
Ralph, 2000). One explanation for this discrepancy
in results is the difference in models’ capacity.
These earlier works trained extremely small mod-
els by today’s standards, whereas our LMs may
be over-parameterized and therefore have suffi-
cient capacity to train to convergence without
entrenchment.

On the other hand, the strong innate claim
correctly predicts that our LMs will not show
CP effects, unless we introduce an innate loss
in plasticity. Our introduction of EWC part-way
through training is akin to an innate loss in plas-
ticity. However, our experiments are not strong
evidence either that the strong innate claim is
correct or that EWC is a plausible algorithmic
mechanism underlying the loss in plasticity in hu-
mans. The possibilities remain that other statistical
learners will show CP effects as a natural conse-
quence of experience, and that humans could be
one such learner.

Finally, many scholars of human development
advocate for a complex explanation of CP effects
involving both innate and experiential mecha-
nisms (e.g., Newport, 1990; Thiessen et al., 2016;
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Singleton, 2005). We consider this nuanced view
to be likely correct, but our results suggest that the
role of statistical learning should not be assumed
or overstated without evidence from humans or
more cognitively plausible models.

7.3 Limitations and Future Work
From a Bayesian epistemological point of view,
results from GPT-2 and RoBERTa should affect
our priors about general learners and humans in
some ways, but Transformer LMs are inherently
limited as models of human learners. Assum-
ing a sort of Copernican Principle for cognitive
modeling, humans and LMs should both be un-
extraordinary relative to the theoretical class of
language learners. So without other evidence or
a priori reasoning, we should assume they share
properties: i.e., the property that we identified in
LMs that the ordinary mechanism of learning fails
to lead to CP effects. However, there are many
differences that could lead us a priori to hypoth-
esize differences in how humans and LMs learn.
More generalizable evidence could be obtained
by considering more cognitively-inspired models
and learning algorithms, and learning environ-
ments drawing on more developmentally plausible
linguistic data and multimodal input (Warstadt
and Bowman 2022). For those who want to
defend the position that CP effects fall out in
humans—but not LMs—from ordinary learning,
these or other differences must be identified as the
cause. Our experiments seek a compromise given
today’s resources by choosing architectures and
procedures that maximize human-like learning
outcomes, while still using a transcribed-speech
training corpus and human-scale data. Future work
should revisit this compromise as better resources
for cognitive modeling are developed.

One caveat to the rejection of the strong ex-
periential claim is that the claim only applies to
learners that adequately acquire L1. While this
condition is not rigorously defined, one might ar-
gue our models do not qualify. For example, our
GPT-2 models in the SEQUENTIAL and INTERLEAVED

conditions achieve 75± 1% accuracy on BLiMP.
This is substantially better than chance (50%)
and is comparable to the strongest baseline model
from the BabyLM Challenge (Warstadt et al.,
2023), but falls well below human agreement
with BLiMP (89%). No LMs currently achieve
fully human-like performance on BLiMP, and
higher performance generally requires compro-

mising on developmental plausibility, though more
data-efficient architectures exist (Samuel et al.,
2023; Warstadt et al., 2023). We do not expect our
results to be qualitatively different if our exper-
iments are run with more effective Transformer-
based LMs, but this is something future work
should confirm.

We must also acknowledge the theoretical
implications of learning rate decay and the op-
timizer. The learning rate impacts the magnitude
of changes to model weights during training, and
so it is directly related to the plasticity of the
model. Extensive work in machine learning has
found that the learning rate should decrease in the
later stages of training (see, e.g., Gotmare et al.,
2019). Thus, one could take this as evidence that
a predetermined loss in plasticity is necessary for
successful learning, though the implementation
may not necessarily result in CP effects. As our
goal with our experiments was to reproduce typical
LM training pipelines, we reduce the learning rate
in all conditions, but we also restart the learning
rate in the sequential conditions at the begin-
ning of L2 training, as is standard in fine-tuning
(Howard and Ruder, 2018). However, this may
be interpreted as artificially increasing the plas-
ticity of our models, which could contribute to
the lack of CP effects. Learning rate schedules,
their interaction with successful learning, and their
impact on critical periods should be the focus
of future work.

We identify several additional avenues for fu-
ture work: First, the regularization method we use,
EWC (Kirkpatrick et al., 2017), can be viewed
only as a computational-level model of an in-
nate biological CP; future work could consider
other regularizers such as Memory Aware Synap-
sis (Aljundi et al., 2018) that arguably model what
happens in humans at the algorithmic level. Sec-
ond, there is neurolinguistic evidence for some de-
gree of modularity in how human bilinguals
process different languages (Hernandez et al.,
2005), but our models use completely shared
parameters for languages. Future work can ex-
plore LM architectures that encourage or directly
build in modularity, such as XLM (Conneau and
Lample, 2019) or X-MOD (Pfeiffer et al., 2022).
Third, our models learn in a text-only environ-
ment, but for humans L1 and L2 are both grounded
in the same non-linguistic stimuli. Training mul-
timodal models can lead to more realistic simula-
tions, as well as enable testing of CP effects for
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L1 learning, which requires non-linguistic experi-
ence to precede L1 acquisition.

8 Conclusion

There are many obvious ways in which LMs differ
from humans when learning language. Our work
reveals another important point of divergence,
namely, that LMs remain far more plastic later
into the learning process than human learners.
Even though humans and models differ sub-
stantially, comparing the learning trajectories of
human learners to those of computational ones
tells us something about humans: Those features
that we do share are more likely to be natural
properties of language learning, while those that
we do not are more likely to require idiosyncratic
innate mechanisms. Our results provide strong
evidence against the hypothesis that CP effects
are necessarily induced solely by experience, and
they are consistent with, but only provide weak
evidence in favor of, the view that innate mecha-
nisms are necessary to explain CP phenomena. It
will be important to replicate these results in other
artificial learners, including ones which resemble
humans more closely in other respects. Our study
thus constitutes early progress towards integrating
modern LMs into the study of human language
acquisition.
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A Data Preprocessing

Cleaning. We remove extra spaces, non-
breaking spaces and dataset-specific characters
such as dialogue lines and music symbols
(in OpenSubtitles) and paragraph delimiters
(in Gutenberg). For the Java code extracted
from The Stack, we remove all docstrings and
comments.

Unifying. We downsample the original data
sources to align the data quantity and distri-
bution of domains for all languages. A fixed
sampling ratio of 2 : 1 : 1 is established for
OpenSubtitles : Gutenberg : Wikipedia in order
to ensure an even distribution of transcribed and
written text within the training data. As mentioned
previously, there is an exception to this rule for
Experiment 4, where only data from OpenSubti-
tles and Wikipedia is sampled in equal parts. To
mix the data from different domains while lim-
iting the number of context breaks, large blocks
of 10000 lines are uniformly sampled from each
dataset, and then randomly shuffled. The resulting
unified dataset is then split as follows: 83% train,
8.5% validation, and 8.5% test.

Interleaving. Interleaved datasets are created
for each language pair (en plus a second lan-
guage). The same blocks of texts sampled in
the previous unifying step are simply interleaved
while maintaining their ordering (e.g., L1 block 1,
L2 block 1, L1 block 2, L2 block 2, etc.). In this
way, the data from the two languages is presented
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in the same order to the model during the IN-
TERLEAVED training as it is during the SEQUENTIAL

training.

Size Alignment. We uniformize the training
dataset sizes across languages. We quantify
dataset sizes in terms of the number of tokens
obtained using a BPE tokenizer; see Appendix A.
Beyond the fact that tokens are the true unit
of input to the LMs, BPE is a compression
algorithm, so while the amount of information
per word might be highly language-specific, the
amount of information per token is more compa-
rable across languages.

Tokenization. We train bilingual byte-Level
BPE tokenizers.15 Given the size of our train-
ing datasets, we set a vocabulary size of 32,000
and a minimum frequency of 2. When tokenizing
the training data, all the text lines are concate-
nated and the resulting tokenized dataset is split
into fixed-size blocks of 512 tokens which are
used as input for both GPT-2 and RoBERTa.

B Data

Dataset Lang. Size (GB) Lines (M) Words (M)

OpenSubtitles

ar 1.6 39 177
de 1.2 34 202
el 6.5 126 650
en 11.0 316 2112
es 6.4 213 1144
fi 1.4 45 191
ko 0.1 3 8
nl 3.1 105 600
pl 6.8 236 1055
ru 2.2 45 214
tr 5.1 173 698

Wikipedia

ar 2.1 8 209
de 6.4 25 931
el 1.1 2 92
en 15.0 60 2543
es 4.5 21 767
fi 0.8 3 93
ko 0.8 5 85
nl 1.9 12 303
pl 2.0 11 275
ru 7.4 24 604
tr 0.7 4 86

Gutenberg
en 19.0 59 3417
de 0.6 2 103
fi 0.7 3 92

The Stack java 3.8 110 337

Table 1: Statistics of the collected data.

15With the exception of the MONOLINGUAL condition, which
uses a monolingual byte-Level BPE tokenizer instead.

Train Dataset Size (GB) Words (M) Tokens (M)

en 2.2 408 601
en2 2.2 402 592
de 2.4 378 600
fi 2.4 311 596

Table 2: Main experiments’ dataset sizes.

Train Dataset Size (GB) Words (M) Tokens (M)

ar 0.6 62 104
de 0.4 63 100
el 0.7 61 102
en 0.4 68 99
en2 0.4 66 96
es 0.4 66 100
fi 0.4 51 100
ko 0.5 47 102
nl 0.4 65 98
pl 0.4 57 104
ru 0.6 54 99
tr 0.4 55 101
java 0.3 30 99

Table 3: Experiment 4 dataset sizes.

C Hyperparameters

Hyperarameter C1 C2 C3 C4 C5

Learning rate (×10−3) 1.00 1.00 8.00 1.00 1.00
Warmup ratio 7% 9% 10% 7% 7%

Gradient accum. steps 16 32 32 16 4

Table 4: Configurations for GPT-2 models.

Hyperarameter C1 C2 C3 C4 C5

Learning rate (×10−4) 4.75 3.88 3.90 3.00 4.00
Warmup ratio 5% 10% 9% 1% 1%

Gradient accum. steps 32 32 16 32 1
MLM probability 0.3 0.15 0.3 0.3 0.3

Table 5: Configurations for RoBERTa models.

D Evaluation Tasks

The BLiMP tasks that our models are evaluated on
are examplified in Table 7. The subset of GLUE16

tasks that our models are evaluated on are the
following.

CoLA. The Corpus of Linguistic Acceptabil-
ity consists of around 10K English sentences

16https://gluebenchmark.com.
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Value

Hyperparameter GPT-2 RoBERTa

n head 12 12
n layer 12 12
n positions 1,024 512
n embd 768 768
activation function ‘‘gelu new’’ ‘‘gelu’’
optimizer ‘‘adamw hf’’ ‘‘adamw hf’’
lr scheduler ‘‘linear’’ ‘‘linear’’
device train batch size 4 8
adafactor False False
adam beta1 0.9 0.9
adam beta2 0.999 0.999
adam epsilon 0.00000001 0.00000001
max grad norm 1 1
layer norm epsilon 0.00001 0.000000000001
weight decay 0 0
dropout 0.1 0.1
fp16 True True

Table 6: Fixed hyperparameters for GPT-2 and
RoBERTa models.

gathered from published linguistics literature that
have been annotated by experts for binary ac-
ceptability (grammaticality) judgments (Warstadt
et al., 2019). The evaluation metric is Matthews
Correlation Coefficient.

SST-2. The Binary Stanford Sentiment Tree-
bank includes 215K unique phrases extracted from
the parse trees of movie reviews sentences and that
have been fully labeled as having either a posi-
tive or negative sentiment by three human judges
(Socher et al., 2013). The evaluation metric is
Accuracy.

MRPC. The Microsoft Research Paraphrase
Corpus contains 5,800 pairs of sentences sourced
from a large corpus of news data, each labeled with
a binary judgment indicating whether the pair rep-
resents a paraphrase or not (Dolan and Brockett,
2005). The evaluation metric is F1 score.

QQP. The Quora Question Pairs is a corpus of
over 400K question pairs from the Quora website
which are annotated with a binary value denoting
whether the questions are paraphrases of each
other. The evaluation metric is F1 score.

MNLI. The Multi-Genre Natural Language In-
ference is a crowd-sourced collection of 433K
sentence pairs annotated with textual entailment

information, covering a wide range of genres of
both spoken and written text (Williams et al.,
2018). The evaluation metric is Accuracy.

MNLI-MM. The Multi-Genre Natural Lan-
guage Inference Mismatched dataset is the mis-
matched version of the MNLI (matched) dataset,
where the dev and test sets use out-of-domain
data that does not closely resemble anything
seen at training time (Williams et al., 2018). The
evaluation metric is Accuracy.

QNLI. The Question-answering Natural Lan-
guage Inference dataset is automatically derived
from the Stanford Question Answering Dataset
v1.1 (SQuAD) (Rajpurkar et al., 2016). It consists
of question–paragraph pairs with one sentence
in each paragraph, sourced from Wikipedia, con-
taining the answer to the corresponding question,
written by an annotator (Wang et al., 2019b). The
evaluation metric is Accuracy.

RTE. The Recognizing Textual Entailment
dataset is compiled from a series of textual entail-
ment challenges: RTE1 (Dagan et al., 2005), RTE2
(Bar-Haim et al., 2006), RTE3 (Giampiccolo et al.,
2007), and RTE5 (Bentivogli et al., 2009). The
task requires to recognize whether the meaning of
a text fragment can be inferred from the other text.
The evaluation metric is Accuracy.

The subset of SuperGLUE17 tasks that the
models are evaluated on are the following.

BoolQ. The Boolean Questions dataset is a read-
ing comprehension dataset that consists of almost
16K naturally occurring yes–no questions gen-
erated in unprompted and unconstrained settings
(Clark et al., 2019). The evaluation metric is
Accuracy.

MultiRC. The Multi-Sentence Reading Com-
prehension dataset contains around 10K questions
that can be answered by combining information
from a multi-sentence paragraph (Khashabi et al.,
2018). The evaluation metric is F1 score.

WSC. The Winograd Schema Challenge dataset
is a corpus of sentence pairs that differ in only one
or two words and contain an ambiguity that can
be resolved using world knowledge and reasoning
(Levesque et al., 2011). The evaluation metric is
Accuracy.

17https://super.gluebenchmark.com.
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Field Phenomenon Acceptable example Unacceptable example

Morphology

Anaphor Agreement Many girls insulted themselves. Many girls insulted herself.

Determiner-Noun Agreement Rachelle had bought that chair. Rachelle had bought that chairs.

Irregular Forms Aaron broke the unicycle. Aaron broken the unicycle.

Subject-Verb Agreement These casseroles disgust Kayla. These casseroles disgusts Kayla.

Syntax

Argument Structure Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.

Ellipsis Jill hides one orange chair and Tammy
hides more.

Jill hides one chair and Tammy hides
more orange.

Filler-Gap Brett knew what many waiters find. Brett knew that many waiters find.

Island Effects Which bikes is John fixing? Which is John fixing bikes?

Subject-Auxiliary Inversion Was the steak he is cooking fresh? Is the steak he cooking was fresh?

Semantics
NPI Licensing The truck has clearly tipped over. The truck has ever tipped over.

Quantifiers No boy knew fewer than six guys. No boy knew at most six guys.

Hypernym He has a chihuahua, so he has a dog. He has a chihuahua, so he has a cat.

Syntax & Semantics
Binding Carlos said that Lori helped him. Carlos said that Lori helped himself.

Control/Raising There was bound to be a fish escaping. There was unable to be a fish escaping.

Discourse
Q-A Congruence (easy) A: Who is sleeping? B: David. A: Who is sleeping? B: Eggs.

Q-A Congruence (tricky) A: Who studies? B: David. A: Who studies? B: Science.

Turn-taking A: Did you arrive? B: No, we didn’t. A: Did you arrive? B: No, you didn’t.

Table 7: Examples of BLiMP minimal pairs (Warstadt et al., 2020).

E Derivation of EWC Regularization for Language Modeling

Let Σ be an alphabet; furthermore, define Σ̄
def
= Σ ∪ {EOS}. We assume we have access to a collection

of strings DL1
= {x(n)}Nn=1 ⊂ Σ∗ in L1 and another DL2

= {y(m)}Mm=1 ⊂ Σ∗ in L2. Additionally,
let Θ ⊂ R

d be a compact set of possible parameters. We take a Bayesian approach and construct a
posterior density over possible parameter vectors θ. Let π(θ) be a prior density over Θ, and consider
the following likelihood

p(DL1
,DL2

| θ) =
N∏
n=1

p(x(n) | θ)︸ ︷︷ ︸
def
=p(DL1

|θ)

M∏
m=1

p(y(m) | θ)︸ ︷︷ ︸
def
=p(DL2

|θ)

(2a)

=
N∏
n=1

Tn∏
t=1

p(EOS | x(n), θ)p(x
(n)
t | x(n)

<t , θ)
M∏

m=1

Tm∏
t=1

p(EOS | y(m), θ)p(y
(m)
t | y(m)

<t , θ), (2b)

where, as the notation states, our model assumes conditional independence between data instances
given the model’s parameters. Note that our language model p(· | θ) is unusual in that it generates sen-
tences from both L1 and L2. By Bayes’ rule, we have the following posterior

p(θ | DL1
,DL2

) ∝ p(DL1
,DL2

| θ)π(θ) (3a)
= p(DL2

| θ)p(DL1
| θ)π(θ) (3b)

∝ p(DL2
| θ)p(θ | DL1

), (3c)
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where the transition from Eq. (3a) to Eq. (3b) follows from the conditional independence assumption of
Eq. (2). There is no known general-purpose algorithm to compute p(θ | DL1

,DL2
). Thus, we construct

a Gaussian approximation of p(θ | DL1
) by computing a second-order Taylor approximation to the

log-likelihood around the likelihood mode, i.e.,

θ∗
L1

= argmax
θ∈Θ

log p(DL1
| θ). (4)

Applying the Taylor approximation yields

log p(DL1
| θ) ≈ log p(DL1

| θ∗
L1
) +

1

2
(θ − θ∗

L1
)ᵀ∇2

θ log p(DL1
| θ∗

L1
)(θ − θ∗

L1
). (5)

We have omitted the first term in the Taylor expansion since it is zero precisely because we have
expanded log p(DL1

| θ) around a local optimum. If the prior is set to be a zero-centered, spherical
Gaussian with variance σ2, i.e.,

π(θ) ∝ exp− 1

2σ2
θᵀθ, (6)

applying Bayes’ rule gives:

log p(θ | DL1
) = log p(DL1

| θ) + log π(θ)− log p(DL1
). (7)

As log p(DL1
) is constant with respect to θ, it does not influence the optimization problem. By replac-

ing log p(DL1
| θ) with the approximation from Eq. (5) we obtain:18

logp(θ | DL1
) ≈ 1

2
(θ − θ∗

L1
)ᵀ∇2

θ log p(DL1
| θ∗

L1
)(θ − θ∗

L1
)− 1

2σ2
θᵀθ (8a)

=
1

2
(θ − θ∗

L1
)ᵀ

(
N∑
n=1

(
∇2

θ log p(EOS | x(n), θ∗
L1
) +

Tn∑
t=1

∇2
θ log p(x

(n)
t | x(n)

<t , θ
∗
L1
)

))
(θ − θ∗

L1
)

− 1

2σ2
θᵀθ (8b)

≈ −1

2
(θ − θ∗

L1
)ᵀ

(
N∑
n=1

Tn+1∑
t=1

E
x̄∼p(·|x<t,θ

∗
L1
)
∇2

θ − log p(x̄ | x(n)
<t , θ

∗
L1
)

)
(θ − θ∗

L1
)− 1

2σ2
θᵀθ, (8c)

where the last approximation replaces ∇2
θ log p(x

(n)
t | x

(n)
<t , θ

∗
L1
) with its expectation

Ex̄∼p(·|x<t,θ
∗
L1
) ∇2

θ log p(x̄ | x(n)
<t , θ

∗
L1
) and performs a sign manipulation.

A Fast Approximation. Exact computation of the matrix Ex̄∼p(·|x<t,θ
∗
L1
) ∇2

θ − log p(x̄ | x(n)
<t , θ

∗
L1
)

is impractical for multiple reasons. First, it requires second-order automatic differentiation, which is

18Note that log p(DL1
| θ∗

L1
) in Eq. (5) is also constant w.r.t. θ, so we do not add it.
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relatively expensive and not a standard feature in common automatic differentiation toolkits, e.g.,
PyTorch (Paszke et al., 2019). Second, recall that p(· | x<t, θ

∗
L1
) is the next-symbol distribution of

the language model, i.e., a distribution over Σ̄, so Ex̄∼p(·|x<t,θ
∗
L1
) ∇2

θ − log p(x̄ | x(n)
<t , θ

∗
L1
) could be

computed in O(|Σ̄|) time. While linear, Σ̄ is often large in practice in modern language models. Thirdly,
the matrix contains O(d2) unique entries.19 When d is large, as it is in our case, we cannot compute all
d2 entries easily. A classic identity involving the Fisher information matrix from Bickel and Doksum
(2001, pg. 185) (see also Kunstner et al. (2019, Eq. 4)) allows us to derive the following approximation:

N∑
n=1

Tn+1∑
t=1

E
x̄∼p(·|x<t,θ

∗
L1
)
∇2

θ − log p(x̄ | x(n)
<t , θ

∗
L1
)

≈
N∑
n=1

Tn+1∑
t=1

E
x̄∼p(·|x<t,θ

∗
L1
)
∇θ log p(x̄ | x(n)

<t , θ
∗
L1
)∇θ log p(x̄ | x(n)

<t , θ
∗
L1
)ᵀ (9a)

≈
N∑
n=1

Tn+1∑
t=1

1

K

K∑
k=1

∇θ log p(x̄
(k) | x(n)

<t , θ
∗
L1
)∇θ log p(x̄

(k) | x(n)
<t , θ

∗
L1
)ᵀ (9b)

def
= F̃θ∗

L1
(9c)

Eq. (9b) is a standard Monte Carlo approximation where x̄(k) ∼ p(· | x(n)
<t , θ

∗
L1
). When K � |Σ̄|,

the sample-based approximation results in a significant speed-up. Finally, to avoid O(d2) computation
time, we only approximate the diagonal of F̃θ∗

L1
, which has O(d) entries.

A Simple Regularizer. Synthesizing the above, we arrive at a simple regularizer that should promote
a language model, previously trained on L1 data, to retain its knowledge during training on L2 data

R(θ) =
1

2

d∑
i=1

(
F̃θ∗

L1

)
ii
· (θ − θ∗

L1
)2i︸ ︷︷ ︸

REWC

+
1

2σ2
θᵀθ︸ ︷︷ ︸

RL2

(10)

The second term corresponds exactly to the well-known L2 regularization term resulting from the
prior over the parameters θ. In practice, we generalize the coefficient 1

2 into a tunable regularization
coefficient λ and the coefficient 1

2σ2 into a tunable regularization coefficient μ. We tune λ on held-out
data, but set μ = 0 throughout the experiments and therefore omit it from the main text.20

19By Schwarz’s lemma, if a function is twice continuously differentiable, its Hessian is symmetric—hence, the big-O.
20Based on empirical observations this hyperparameter did not have an effect on the results.
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