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Abstract

As NLP models are used by a growing number
of end-users, an area of increasing importance
is NLP Security (NLPSec): assessing the vul-
nerability of models to malicious attacks and
developing comprehensive countermeasures
against them. While work at the intersection
of NLP and cybersecurity has the potential to
create safer NLP for all, accidental oversights
can result in tangible harm (e.g., breaches of
privacy or proliferation of malicious models).
In this emerging field, however, the research
ethics of NLP have not yet faced many of
the long-standing conundrums pertinent to
cybersecurity, until now. We thus examine
contemporary works across NLPSec, and ex-
plore their engagement with cybersecurity’s
ethical norms. We identify trends across the
literature, ultimately finding alarming gaps on
topics like harm minimization and responsible
disclosure. To alleviate these concerns, we pro-
vide concrete recommendations to help NLP
researchers navigate this space more ethically,
bridging the gap between traditional cyber-
security and NLP ethics, which we frame as
‘‘white hat NLP’’. The goal of this work is to
help cultivate an intentional culture of ethical
research for those working in NLP Security.

1 Introduction

Securing large language models (LLMs) and NLP
technology in general has not been a priority until
recently. Yet mass adoption of this technology
has led to deployment in contexts where security
failures present a risk to individuals, organiza-
tions, and society at large—demonstrated by, inter
alia, LLM-assisted identity fraud (Ackerman,
2022), phishing campaigns (Hazell, 2023), and
automated influence operations (Goldstein et al.,
2023). If the latest NLP technologies are to
withstand an increasing barrage of threats, NLP
practitioners must now educate themselves on cy-
bersecurity and cybersecurity practitioners must

educate themselves on NLP. Yet in this process,
as one culture of research adapts to another, there
is potential for long-standing intra-community
norms to be lost in translation, including ethical
norms. In interdisciplinary research, an acciden-
tal oversight of ethical norms from one field
can risk reintroducing previously resolved ethical
dilemmas.

Discussions around ethical research conduct
have long been a concern for both cybersecurity
(Molander and Siang, 1998; Himma and Tavani,
2008; Matwyshyn et al., 2010; Bailey et al., 2012;
Christen et al., 2020; Kohno et al., 2023) and
for NLP (Wiener, 1960; Samuel, 1960; Dennett,
1997; Moor, 2006; Anderson and Anderson, 2007;
Hovy and Spruit, 2016; Leidner and Plachouras,
2017), but given that these disciplines have histor-
ically been disjoint fields, the specific ethical and
sociocultural norms of both fields have developed
in separate silos. To better understand how in-
terdisciplinary NLPSec has adapted to the ethical
norms and values across both disciplines, we ex-
amine a set of peer-reviewed NLPSec publications
from NLP venues to gauge the compliance with
norms in cybersecurity. We find that several prin-
ciples regarded by the cybersecurity community
as best practices have not been widely adopted
in NLPSec research, despite measures in the NLP
peer-review process to improve research practices.
Simultaneously, we find that NLP ethical norms
regarding lower-resourced languages are at risk
of being overlooked in NLPSec. To help save
NLPSec the potential growing pains of reinvent-
ing the wheel, in this work, we seek to address
this issue through an interdisciplinary conversa-
tion about ethics, with the goal of cultivating a
culture of white hat NLP.

Ethical NLP Security (NLPSec) In cyberse-
curity, a ‘‘white hat’’ hacker is typically a
professional hired by a company with the specific
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purpose of maintaining or increasing the existing
security of a computer system. White hat hackers,1

referred to more generally as ‘‘ethical hackers’’,
are keen to engage with vendors—either their em-
ployer or a third party—whose products they have
found flaws in. They aim to get security issues
fixed quickly and release details of their findings
to the public so defenders can evaluate their own
environments and prioritize concomitant patch-
ing and mitigation efforts. In contrast, a ‘‘black
hat’’ hacker represents a cybercriminal, and some-
where in between is the ‘‘gray hat’’ hacker, who
infiltrates others’ computer systems without per-
mission, with the intention of enhancing security
(Falk, 2004). This is generally mapped to similar
activity in the context of LLMs, where LLM red
teaming is defined as a limit-seeking, manual, and
non-malicious activity (Inie et al., 2025). Outside
the strict boundaries of ethical hackers, gray hat
hackers rely on their own moral compass, which
can lead to potentially precarious situations, like
introducing the risk of authorized system intru-
sions (Christen et al., 2020). Alarmingly, much
of the contemporary work in NLPSec is arguably
similar to the above gray hat scenario (Figure 1).
Due to the distributed and decentralized nature of
the research landscape, most NLPSec researchers
will necessarily lack a mandate from organizations
to investigate security vulnerabilities inherent to
models. Researchers also lack direct accountabil-
ity to those most affected by the security breaches
they study. While the ACM Code of Ethics2 pro-
vides overarching guidance, it naturally cannot
provide exact guidance for every ethical conun-
drum, leaving individual researchers to rely on
their own moral compass, like a gray hat hacker.
It is in this light that we aim to extend the frame-
work of ‘‘white hat’’ to NLP. We thus define the
scope of white hat NLPSec to consist of works
which are intentionally and carefully grounded
in the established ethical best practices of both
cybersecurity and NLP.

Contributions We examine the current culture
of research ethics in NLPSec through a survey
of 80 peer-reviewed works across NLP venues,
measuring their compliance with typical ethical

1This verbiage has long been common parlance in cyber-
security, though it has recently been criticized for its con-
noted colorism. As there is no widely adopted alternative,
we trust readers to accept our good faith usage of the term.

2https://www.acm.org/code-of-ethics.

Figure 1: We argue current works across NLPSec
occupy a gray area in research ethics, comparable to
the cybersecurity concept of a ‘‘gray hat’’ hacker. In
this work, we provide concrete recommendations to
help move the field of NLPSec towards more ethically
grounded research practices.

practices from cybersecurity. To start, we intro-
duce these ethical practices, and touch upon their
relevance to works in NLPSec (Section 2). We
then describe our selection process for papers in-
cluded in the survey, and our annotation process
identifying compliance with these cybersecurity
ethical best practices (Section 3). Concretely, we
find that ethical norms like harm minimization
and responsible disclosure are not widely adopted
in NLPSec (Section 4). We identify several
challenges of adopting ethical norms from both
cybersecurity and NLP to the field of NLPSec,
and we provide concrete advice to help researchers
engage in research more ethically than previously
(Section 5). While the recommendations presented
in this work cannot provide solutions to all po-
tential ethical conundrums latent to NLPSec, the
discussions in this work aim to highlight the ur-
gency for discussion on research ethics in NLPSec
and serve as a conversation starter.

2 The Culture of Ethics in Cybersecurity

Within any field, some research may have nega-
tive consequences, and foreseeable risks generally
serve as a guiding force for calibrating ethical
norms. This holds particularly true for cyberse-
curity, as a field that is largely engaged with
preempting and outmaneuvering criminals while
protecting the public. As the field is naturally
situated in a sensitive context, cybersecurity’s re-
search culture has unsurprisingly evolved to be
one that often faces difficult ethical discussions
(Bailey et al., 2012). In this section, we will in-
troduce three ethical norms commonly expected
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of works across cybersecurity. For each norm, we
further describe potential nuances, borrowing rel-
evant trolley problems directly from Kohno et al.
(2023). Our aim is to familiarize readers with these
concepts, demonstrate how best practices in cy-
bersecurity continue to be developed, and briefly
touch upon how these concepts are relevant to
works in NLPSec.

2.1 Harm Minimization

A familiar concept to cybersecurity practitioners
is that the ‘‘maliciousness’’ of tools is context-
dependent. It is well documented that black hat
hackers often misuse legitimate software (Martin,
2017; Bailey et al., 2012) for their own purposes.
For instance, remote desktop management soft-
ware is commonly used to facilitate remote trou-
bleshooting for users. However, these very same
tools can be used by malicious actors to maintain
a foothold in a victim network. A critical part of
cybersecurity methodology is establishing normal,
secure usage patterns for these tools to minimize
the potential risk associated with them.

To minimize harm, one must first identify
the potential dangers. For example, Singla et al.
(2023) aim to examine the impact of the ongoing
Russia-Ukraine war on Ukrainian critical infras-
tructure by scanning web traffic. They observe
that one potential risk inherent to such work in-
cludes the accidental disruption of end systems,
which could exacerbate the current plight of non-
combatant Ukrainians under the war. To mini-
mize harm, Singla et al.’s (2023) methodology
ensures uninterrupted web traffic, allows end-
users to opt-out of scans, and safeguards sensitive
data recovered by the scan, meanwhile collab-
orating with an NGO to help with responsible
disclosure to Ukrainian authorities before pub-
lication. Here, potential victims of cyberattacks
are protected to the greatest extent possible,
largely through strategic choices laid out in the
methodology.

While causing some amount of harm—how-
ever inadvertent—may be inevitable, grappling
with these potential ethical considerations early
on can help researchers to avoid ethical dilemmas
and minimize that harm. To this end, Kohno et al.
(2023) propose a security trolley problem: in the
context of an AI-based employment software tool,
if a data breach compromised sensitive user data,
should security researchers study the leaked data

(prioritizing a potential benefit to the public, if
unfair bias can be established from the data) or
not study it (prioritizing the affected users’ right
to privacy)? Kohno et al. (2023) demonstrate that
both conclusions can be justified through moral
philosophy frameworks, specifically consequen-
tialist and deontological ethics,3 respectively. The
goal of this exercise is not to encourage moral rela-
tivism; on the contrary, it is to stress the necessity
for continuous and principled conversations on
research ethics in cybersecurity. This discussion
reinforces the notion that much research in cy-
bersecurity will demand researchers to assess not
only the potential harm inflicted by their work,
but also the potential harm inflicted by foregoing
a study. In the absence of strict governing boards,
who grant permission to researchers for specific
studies, it remains the duty of an ethical researcher
to remain vigilant to this characteristic of cyber-
security research and adapt accordingly. Other
common strategies for harm minimization include
anonymizing published datasets (Mirsky et al.,
2016), limiting what information is published
(Burstein, 2008), and foregoing a study entirely
(Macnish and Van der Ham, 2020). Ultimately,
these strategies reflect a culture of research ethics
that has been developed over time.

Similar to cybersecurity, the list of potential
harms considered in NLPSec can range from
immediate misfortunes (e.g., models inverted to
reveal private data or prompt injection leading to
remote code execution) to systemic harms associ-
ated with AI systems (e.g., LLMs being weapon-
ized to generate hate speech about a marginalized
group). We explore in detail the potential risks
identified by NLPSec researchers in Section 4.1
and the implications of harm minimization in
NLPSec in Section 5.2.

2.2 Coordinated Vulnerability Disclosure

In traditional cybersecurity, a key aspect of ‘‘white
hat’’ ethical hacking is the clear and timely dis-
closure of relevant information through a process
known as coordinated vulnerability disclosure
(CVD) (ISO 29147:2018). In CVD, when an is-
sue is found, it is reported to the vendor on a

3In Kohno et al. (2023), utilitarianism is adopted to
conduct consequentialist analyses, centering the outcome of
an action, whether it produces the greatest net positive well-
being; the deontological analyses follow Kantian moral philo-
sophy, whereby humans, as rational beings, have an absolute
moral duty to justice regardless of consequences.
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best-effort basis before findings are published.
This gives those responsible for the affected soft-
ware an opportunity to address the discovered
issue ahead of any public disclosure, often on
some agreed-upon timeline. When the vulnera-
bility is disclosed by a vendor, researcher, or in
a joint release, information about remediation or
prevention is included so affected parties can min-
imize or mitigate their exposure to the issue. To
this end, CVD offers security researchers a way
to maintain transparency, without assisting mali-
cious actors, as the published vulnerabilities will
hopefully have already been patched.

In the real world, of course, CVD can be compli-
cated by a variety of factors. For example, Kohno
et al. (2023) detail another pertinent trolley prob-
lem: imagine an industrial researcher is assigned
to review an anonymous manuscript, which re-
veals a severe security vulnerability in software
supported by the industrial researcher’s employer.
Should the researcher disclose the security vul-
nerability to their employer (thus prioritizing the
safety of a large number of end-users, who would
otherwise be exposed) or not disclose it (thus
prioritizing the authors’ rights with respect to
peer-review)? As pointed out by the Menlo Re-
port (Bailey et al., 2012), in such circumstances,
different stakeholders are likely to have differ-
ent priorities, and sometimes the most ethical
action may be in direct conflict with one’s best
interests. Accordingly, the above trolley problem
can be reexamined from the perspective of dif-
ferent stakeholders to even further explore the
ethical consequences of one decision over an-
other. Perhaps this ethical conundrum could have
been avoided entirely, if the imagined authors had
planned to do CVD from the start. In most cases,
however, cybersecurity practitioners are highly
incentivized to complete CVD. From bug bounty
programs to vulnerability disclosure leaderboards,
CVD is a well-established norm, which helps com-
panies and organizations secure these systems,
while being highly prestigious for researchers.

In the context of NLPSec, at face value, CVD
is relevant to works examining security vulnera-
bilities of proprietary language technologies. We
discuss the presence and ramifications of CVD in
NLPSec in Sections 4.2 and 5.3, respectively.

2.3 Public Disclosure
Another common practice in cybersecurity as
part of, or (less desirably) in lieu of, CVD is

public disclosure. The essential idea is that at-
tackers, particularly those motivated by criminal
or national security desires, are incentivized to
take a potentially interesting or useful vulnerabil-
ity and uncover ways to exploit it. In contrast,
defenders are generally already busy triaging
alerts, responding to incidents, managing defen-
sive infrastructure, and other important tasks that
constrain their ability to develop a way to test
for and detect potentially vulnerable systems. In
other words, defenders, stymied by other respon-
sibilities, may move at a much a slower pace than
attackers. As reported by Rapid7 (2022), more
than half of widely exploited vulnerabilities were
leveraged by attackers against victims in less than
one day after disclosure. This puts defenders at
a distinct disadvantage in terms of the speed at
which they can react to emerging threats, placing
the fate of their security in the hands of software
vendors and leaving them at the mercy of their own
scheduled patching cycles. In this way, defenders
can be informed of potential threats quickly and
benefit greatly from the help of white hat hackers
who share their findings in a responsible manner.

One such example where public disclosure may
be called for, in lieu of CVD, is in the case a
vulnerability is identified in relation to a com-
pany that no longer exits and so there is no entity
with which to coordinate. Such a scenario is not
unthinkable in the real world, as Kohno et al.
(2023) introduce another security trolley prob-
lem whereby security researchers have identified
a vulnerability in an imagined medical device
that is embedded in sizable population of patients
but is no longer serviceable, as the manufacturer
is out of business. Should the researchers pub-
licly disclose the vulnerability (thus prioritizing
the patients’ right to informed consent and bod-
ily autonomy) or not disclose it (prioritizing the
patients’ peace-of-mind and happiness)? Again,
Kohno et al. (2023) demonstrate that both deci-
sions can be reached via different frameworks of
moral philosophy; the purpose of this illustration
is equivocally not to show that any decision taken
by the researchers can be simply justified after the
fact, but rather to again underline the importance
of a cybersecurity research landscape, which is
actively engaged in conversations on ethics. In
practice, similar scenarios to the above trolley
problem have led to the formation of Computer
Emergency Response Teams (CERTs). If a prac-
titioner identifies a bug which has no obvious
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path for CVD, and the bug is likely to be abused
by malicious actors upon public disclosure, they
may opt to disclose the bug only to a CERT
or to a trusted community. The creation of such
CERTS or trusted communities in critical spaces
again underscores that the act of disclosure is
highly important and carefully considered across
cybersecurity.

In NLPSec, publication in open-access venues
such as the ACL or ArXiv is a form of public
disclosure. Like defenders in cybersecurity, the
majority of NLPSec researchers have limited re-
sources, putting them at a relative disadvantage to
bad actors. In this way, researchers can help each
other by open-sourcing code, where appropriate.
We examine the prevalence of fully open-source
works in Section 4.3 and revisit public disclosure
in Section 5.1.

3 Methodology

We examine 80 pertinent, peer-reviewed works
across NLPSec for common trends and themes
pertaining to discussions on research ethics. All
papers were manually gathered from the ACL
Anthology,4 by querying keywords associated
with common attack types (i.e., ‘‘security’’ +
{‘‘adversarial’’, ‘‘backdoor’’, ‘‘data recreation’’,
‘‘inversion’’, ‘‘instance encoding‘‘}) to ensure
they fall within the scope of NLPSec. We specif-
ically did not include ‘‘attack’’ or ‘‘defense’’ in
our keyword search, to avoid influencing the re-
sults. For each keyword search, we examined the
relevance-sorted list of results. As terms like ‘‘ad-
versarial’’ or ‘‘inversion’’ can be used in a wide
variety of contexts beyond NLPSec, we first re-
view each paper title, and keep those which are
obviously relevant to NLPSec; where relevance
is unclear from the title alone, we further scan
the abstract to determine relevance. Papers dated
between 2019 and 2023 were obtained from the
anthology in January 2024 (n= 60). To include pa-
pers published in 2024, we used the same proce-
dure in November 2024, following the publication
of the EMNLP 2024 proceedings (n = 20). Accord-
ingly, all 80 papers for this study are guaranteed
to be relevant and peer-reviewed. While a sub-
stantial number of publications in NLPSec—
particularly those concerning attack methods—are
published in preprint archives like ArXiv, such
papers do not necessarily go through peer review

4https://aclanthology.org/.

(e.g., Zou et al., 2023; Mehrotra et al., 2023).
We intentionally limit ourselves to peer-reviewed
publications to ensure rigorous publications whose
claims have been vetted, rather than considering
preprints whose claims we must take at face value.
Additionally, publications in major conferences
and journals are obliged to abide by the ACM Code
of Ethics; as such, we assume good intent by the
authors to meet a standard of ethics that is accept-
able to the scientific community. For each of the
80 papers, we manually annotate the following:

Attack Scenario. (Values: Adversarial,
Backdoor, or Data Reconstruction
attack). This is coded in accordance with the
keyword which was used to retrieve the paper.

Main Contribution. (Values: Attack, De-
fense, or Both). We assign this value based
on the text of the title and abstract only. For
example, a paper which discusses exclusively an
attack method in the title and abstract is coded
as Attack, even if a defense is offered later in
the paper, for example in the list of contributions,
or in an analysis. In this way, our coding process
intends to mirror the authors’ framing of their
own work.

Discussion of Ethical Concerns. (Values:Yes,
No). Here, we first look for the presence of a
dedicated ethics section; if the paper has one, it
is coded Yes. If the paper does not have such
a dedicated section, we continue to search for
discussions on ethics by looking for a broader
impacts section, then reading the conclusion, the
limitations, and the introduction, as these sections
typically contain high-level reflections on topics
such as ethics. If a discussion of ethics has still not
been identified in the aforementioned sections,
we finally search the document for the lemma
‘‘ethic’’ and examine all possible matches to de-
termine whether the paper discusses ethics. Oth-
erwise, if there are no matches, the paper is coded
as No.

Dual Use and Misuse. (Values: Yes, No). The
coding process for dual use and misuse occurs in
step with that of the ethics discussion. That is,
we first check the ethics section (if it exists), as
this is where an outright dialogue on misuse is
most likely to occur. If we do not find it there,
we then check the conclusion, limitations, and
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introduction, accordingly. If we still have not lo-
cated discourse on dual use or misuse in these
sections, we search the full document for the lem-
mas ‘‘use’’, ‘‘leverage’’, and ‘‘malicious’’, and
check the context of any matches. If no discussion
has been identified through this process, the paper
is coded No. Note that we annotate dual use as
misuse separately (definitions in Section 5.1).

Coordinated Vulnerability Disclosure. (Val-
ues: Yes, No). For this variable, we check the
introduction, conclusion, ethics/broader impact,
limitations, and also footnotes. If CVD is not
identified, we search for the following lemmas:
‘‘disclose’’, ‘‘contact’’, ‘‘reach’’, ‘‘communi-
cate’’, and ‘‘company’’, in an attempt to locate
discussions on coordinated vulnerability disclo-
sure. If still nothing is found, the paper is coded
No for CVD.

Open-Source Code. (Values: Yes, Empty,
No). Open-source papers typically link to the
project’s Github page in a footnote on the first
page. Accordingly, we search for ‘‘github’’, and
cross-reference any repositories with the associ-
ated footnote, to confirm that the linked code is
contributed by the authors. When a Github repos-
itory is found, we follow this link to examine
the availability and contents of the repository. If
the link is broken, we code the value Empty
(Broken Link). If the repository contains
only a README and no scripts, we code it as
Empty (Empty Repository). When a re-
pository cannot be located through the footnotes,
we further search the following lemmas: ‘‘code’’,
‘‘provide’’, and ‘‘publish’’, and check the sur-
rounding context, before ultimately coding the
paper No, for no code.

Other Metadata. This includes author affilia-
tions, datasets used, languages involved, and the
models attacked. For each paper, we document the
unique set of affiliations and their associated coun-
tries. Datasets are collected from the descriptions
of experiments and corroborated directly against
tables presented in a given work. Accordingly, we
also record the languages present for each dataset,
as described by the paper in the experiments, or
otherwise inferred from the scope of the paper;
most papers work solely on English alone, and
those with a wider scope of languages tend to very
clearly document this. Victim models are identi-

Figure 2: Half of sampled works across NLPSec in-
clude no discussion of ethics (41/80), even when in-
troducing attacks that could be misused by bad actors,
demonstrating the pressing need to assess and discuss
ethics in this space.

fied in the same manner as datasets, through the
description of the experiments and the associ-
ated tables.

Resulting from the annotation process, in
Figure 2, we observe that approximately half
(51%) of the works include no discussion on
ethical considerations, underscoring the critical
need for a broader dialogue on research ethics in
NLPSec. Note that these findings refer to our sam-
ple, covering papers vetted by reviewers which
should adhere to established ethical standards.
We fear that the situation beyond reputable, peer-
reviewed venues may be substantially worse. For
the full list of sampled papers and their associ-
ated annotations, we refer readers to Appendix A
Tables 1, 2, and 3. Additionally, Appendix B pro-
vides notable metadata concerning the sampled
papers, such as years and venue of publication
(Figures 8 and 9), the global distribution of author
affiliations (Figure 10), and the most used data-
sets (Figure 11).

3.1 Survey Coverage

To ensure that our sample of 80 papers is repre-
sentative of works across NLPSec, we employ a ci-
tation crawler5 through the Semantic Scholar API
(Kinney et al., 2023). We begin with 11 seed pa-
pers, widely cited across NLP (i.e., Mikolov et al.,
2013a,b; Devlin et al., 2019a; Sanh et al., 2019;
Liu et al., 2019; Raffel et al., 2019; Workshop
et al., 2023; Touvron et al., 2023a,b; Jiang et al.,
2023; Achiam et al., 2023). The citation networks
for the seed papers points us to 223,078 citing
works (as of December 2024), which can be con-
sidered to be broadly topical to NLP. From the
resulting citations, we apply additional filters, in
order to further narrow the scope from NLP to
NLPSec. Concretely, we check each paper’s title

5https://gist.github.com/hclent/.

714

https://gist.github.com/hclent/682e87c4a8f72f9af95b84c7438a32bf


Figure 3: An approximation of the broader field of
NLPSec, across the 10 most frequent venues. Where
multiple venues exist for a single paper, the Semantic
Scholar API prioritizes publisher venues (e.g., ACL)
over preprint repositories (e.g., ArXiv), when available.
A ‘‘Null’’ value is returned by the API when Semantic
Scholar lacks reliable venue metadata for that paper.
Against this approximation, we also show a subset of
our 80 sampled papers, which specifically belong to the
displayed venues (‘‘Ours’’). Here, we include Findings
papers in the counts for EMNLP, ACL, and NAACL,
as the API did not distinguish between them.

and abstract for matches with the following
lemma: ‘‘secur’’, ‘‘attack’’, ‘‘defen’’. Again, we
intentionally avoid ambiguous search terms like
‘‘adversarial’’, as they are widely used outside
of an NLPSec context. Through this filtering pro-
cess, we identify 2,782 unique publications, which
gives us a coarse-grained estimation of the broader
scope of NLPSec. These citations are dated from
2020–2024, with a reasonable share at ACL* ven-
ues. We find that 70 of our sample papers are pre-
sent in the∼200 works at ACL* venues (Figure 3),
demonstrating that our survey represents upwards
of 35% of works in main ACL* venues, provid-
ing a healthy sample size to draw conclusions on
trends pertaining to ethics across NLPSec.

4 NLPSec Survey Results

Despite NLPSec’s position as an interdisciplinary
field, we find that the works in our survey have
largely failed to adopt ethical norms of cybserse-
curity research.

4.1 NLPSec Disagrees on Potential Harms

The attempt to minimize harm requires first an
assessment of what constitutes harm, in a given

Figure 4: Across our sample, most papers do not men-
tion or discuss the potential for misuse. No works
discuss dual use.

context. We find that explorations of risk assess-
ment vary widely across surveyed NLPSec works.
Many cite misuse—the potential for malicious ac-
tors to weaponize their proposed methods or code
towards criminal ends—as harm that could possi-
bly arise as a result of public disclosure (e.g., Xu
et al., 2021; Zeng et al., 2021; Li et al., 2023d).
Though, the recognition of misuse as a potential
harm varies across attack types within our sample,
with works related to Backdoor attacks being the
most concerned, and works related to Adversarial
attacks being the least (see Figure 4). At the same
time, some authors assert that there are no inherent
risks to their work (e.g., Liu et al., 2023; Zhang
et al., 2022b). Such claims of risk-free research
are more often found in manuscripts introducing
defense mechanisms, as the authors may mention
how defenses are unlikely to be misused by the
public (e.g., Qi et al., 2021a), impossible to misuse
(e.g., Jin et al., 2022), or even morally noble (e.g.,
Li et al., 2021c). In direct contrast, Yang et al.
(2021a) discuss the liability that their proposed de-
fense mechanism could be directly studied by bad
actors, wishing to sidestep such safety measures.

The above findings illuminate that NLPSec
researchers disagree on what potential harms
may exist, and whether potential harms exist
at all. How can the norm of harm minimization
thus be adopted in NLPSec, in the context of such
nonagreement?; and who is at risk of suffering
harms, if this nonagreement is left unresolved?
In Section 5.1, we expand on misuse NLPSec in
more detail; in Section 5.2, we discuss how cur-
rent trends in NLPSec research further jeapordize
vulnerable communities.

4.2 NLPSec Lacks a Culture of CVD

Among our sample of 80 works in NLPSec, we
find no outright declarations of CVD. In part, this
can likely be explained by the kinds of victim
models researchers choose to experiment on (see
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Figure 5: Distribution of victim (or suspect) models,
across the sampled works in NLPSec. Models pre-
pended with an asterisk ‘‘*’’ are ones trained individu-
ally, rather than downloaded from pre-trained weights.
For the purposes of this annotation, we do not disam-
biguate between model sizes, for example, BERT-large
versus BERT-small. Similarly the GPT-� label repre-
sents the set of all GPT-based models across our sam-
ple (i.e., text-embeddings-ada-002, GPT-2,
GPT-J, GPT2-XL, GPT3.5, and GPT-NEO1.3). For
visualization purposes, we exclude the long tail of
models that have been attacked (or defended) by only
one or two papers.

Figure 5). Some are simple, self-trained mod-
els, without pre-trained weights (e.g., Bi-LSTMs),
while others are long-time, staple LMs (e.g.,
BERT (Devlin et al., 2019b) and RoBERTa (Liu
et al., 2019)), which no longer represent the state-
of-the-art. Still, as models like BERT and
RoBERTa are still in heavy circulation, with
official versions in circulation from businesses
(Google and Meta, respectively), they are candi-
dates for CVD, at face value. Moreover, works
engaging with newer, proprietary models (e.g.,
those from OpenAI), still do not state clearly
whether or not CVD occurred as a part of the
publication process. Thus it is clear that the eth-
ical norm of CVD in cybersecurity has not yet
reached the world of NLPSec, which entails alarm-
ing ramifications: there is an opportunity for
cybercriminals to weaponize the security vul-
nerabilities revealed by works in NLPSec. We
examine potential challenges for CVD in NLPSec
in Section 5.3).

4.3 NLPSec Falls Short on Public Disclosure

While researchers may not agree on the presence
or severity of hazards resulting from the pub-
lication of their work, it is generally accepted

Figure 6: Proportion of papers with open-source repos-
itories from our sample of peer-reviewed papers.

that work in this domain is justified by the need
to ‘‘raise awareness’’ of newly uncovered secu-
rity vulnerabilities (e.g., Yang et al., 2021b; Qi
et al., 2021b,c; Chen et al., 2022b). If we accept
the norm from cybersecurity—that a full public
disclosure should typically come with the neces-
sary code to assist other ethical researchers and
practitioners—NLPSec falls short of this ideal.
From our sample of works, 36% are functionally
closed-source (see Figure 6). As a consequence,
white hat NLPSec researchers and practition-
ers may be at a disadvantage when it comes to
securing systems. Depending on the severity of a
vulnerability discussed in a given work, malicious
actors may be able to benefit from the latency
of white hat engineers re-implementing a paper’s
threat model. The relationship between public
disclosure and harm minimization is explored in
Section 5.1.

5 Discussion

While NLPSec is an interdisciplinary field with an
indisputable connection to cybersecurity, there are
cases where the parallels between these fields di-
verge. In this section, we explore some areas where
the analogy between NLPSec and cybersecurity
fails, with the goal of illuminating the urgent need
for a broader conversation about ethics in NLPSec.
To help initiate such a conversation, we conclude
with some concrete recommendations for NLPSec
researchers, towards adopting better practices for
more ethical NLPSec research.

5.1 To Name It Is To Own It: Misuse and
Other Harms

In our survey, misuse was the most commonly
cited potential harm inherent to research in
NLPSec (37% of works in Figure 4). The threat of
misuse can be understood to result from pub-
lic disclosure, as malicious actors are known
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weaponize information therein (Kokkinakis et al.,
2022). With the goal of preventing misuse, one
reactionary approach would be to resign ourselves
from publicly sharing such sensitive work (i.e., se-
curity through obscurity (Guo et al., 2018)). This
approach has been largely rejected by the wider
cybersecurity community, as security through ob-
scurity is difficult to maintain, creates a false
sense of security, and clashes with the scien-
tific value of transparency (e.g., Courtois, 2009).
Works in NLPSec are thus caught in what has
been dubbed The Devil’s Triangle (Thieltges
et al., 2016; Leidner and Plachouras, 2017): The
path towards model security hinges upon trans-
parency, which is required for researchers to make
progress, but is also advantageous for cybercrim-
inals, while innocent actors can be harmed in the
cross-fire. To help NLPSec escape the Devil’s
Triangle, we look to existing works in NLP on
misuse, and examine whether these suggestions
make sense in NLPSec.

Dual Use and Misuse in NLP NLP technolo-
gies like LLMs can be leveraged for a wide
variety of applications, ranging from the virtuous
(e.g., improving accessibility), to the reprehen-
sible (e.g., proliferating hate speech) and the
innocuous (e.g., generating fan fiction). That these
models can simultaneously be utilized for both
‘‘legitimate’’ and ‘‘illegitimate’’ purposes is com-
monly referred to as dual use (Riecke, 2023).
Traditionally, dual use has been viewed primarily
through the lens of a ‘‘civilian’’ versus ‘‘mili-
tary’’ dichotomy in terms of applications, but due
to the mass availability of NLP tools, there are
also opportunities for civilian black hats to use the
technology in unsavory ways outside the scope
of warfare. In the context of NLP, dual use has
only recently been discussed in depth by Kaffee
et al. (2023). In their work, they define dual use in
NLP as ‘‘malicious reuse’’ (i.e., misuse, where the
intended purpose of the technology is violated).
Examples of misuse across NLP include: manipu-
lating models for automated influence operations
(e.g., misinformation) (Goldstein et al., 2023),
surveillance of marginalized groups (Sannon and
Forte, 2022), and by-passing safety features to
generate hate speech or otherwise engage in ille-
gal activities (e.g., phishing) (Yong et al., 2024).
As black hat hackers are known to misuse white
hat software (Martin, 2017), the threat of misuse
against NLPSec research is palpable.

To this end, Kaffee et al.’s (2023) work focuses
on traditional NLP, and thus the scope of their
exploration is not configured to accommodate
the unique position of NLPSec, as an interdisci-
plinary field. While the authors briefly mention
Henderson et al. (2023) (who propose a defense
method for preventing malicious use-cases of
LLMs), as well as the possible criminal applica-
tions of LLMs for phishing, Kaffee et al.’s (2023)
proposed checklist does not help NLPSec practi-
tioners to better navigate the problems of misuse.
For example, their checklist for preventing mis-
use includes the following questions:

1. Can any scientific artifacts you create be used
for military6 application?

2. Can any scientific artifacts you create be
used to harm or oppress any and particularly
marginalised groups of society?

3. Can any scientific artifacts you create be used
to intentionally manipulate, such as spread
disinformation or polarize people?

In the context of NLPSec, the answer to the
above questions will typically be ‘‘yes’’. Ad-
ditionally, we observe that most papers only
consider dual use or misuse as an afterthought,
if at all, in line with the results of Kaffee et al.
(2023). This concerning trend further stresses the
importance of a discussion on misuse, tailored to
NLPSec.

Other Potential Harms in NLPSec The find-
ings of our survey indicate that practitioners in
NLPSec widely disagree about what potential
harms are inherent to this research, making it
difficult to ask NLPSec to blanketly minimize
harm. Part of this nonagreement may stem from a
historical understanding of how harm minimiza-
tion is typically discussed in NLP. Traditionally
in NLP, practices of harm minimization have con-
cerned very different issues than cybersecurity.
Where cybersecurity is concerned with criminal-
ity, NLP has historically focused on fair pay-
ment of crowd-workers (Shmueli et al., 2021), and
the prioritization of researching techniques that

6Military funding has a long and complicated history in
the sciences (Smit, 1995). While we do not examine the
sources of funding across our sample of papers, we note
the presence of institutions associated with the military and
defense industry among the author affiliations.
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directly combat known flaws of LLMs (Weidinger
et al., 2021), like dissemination of harmful social
biases (Brown et al., 2020; Abid et al., 2021; Lucy
and Bamman, 2021) and misinformation (Lewis
and Marwick, 2017; Kenton et al., 2021). As dis-
cussed by Leidner and Plachouras (2017), it is
important that NLP researchers proactively plan
to avoid unethical scenarios. As NLPSec com-
bines the potential harms of NLP with those of
cybersecurity, the need to anticipate and mitigate
risks is crucial.

To promote both effective and ethically respon-
sible NLPSec research, we emphasize minimizing
harm as a design principle. Specifically, conversa-
tions about harm minimization should take place
throughout a given project’s research life-cycle,
from the initial planning, funding, and designing of
a project, to publishing and disseminating the con-
clusions (Galinkin, 2022). This process ensures
that research ethics remain core considerations
throughout the work, rather than a mere rhetorical
post-hoc ethical statement (Peters et al., 2020).
Additionally, Gardner et al. (2022) emphasize the
role of funding agencies in ensuring trustworthy
AI, by mandating ethical assessments throughout
the application, evaluation, and implementation
phases, both from applicants and the funding
agencies, aided by experts in ethics. Presently,
such strict ethical requirements are not the norm
in NLP, however. Until there are strong ethics
review requirements across the field, as with other
sciences, it is imperative that researchers clearly
articulate the potential for dual use and misuse in
their works, and provide viable defenses for the
most vulnerable scenarios.

In NLPSec, positive examples of harm min-
imization have prioritized user safety, avoiding
scenarios which could expose sensitive data or sce-
narios that directly affect end-users. For example,
Parikh et al.’s (2022) methodology intentionally
avoids exposing sensitive data of real-world users
in a data reconstruction attack by planting syn-
thetic ‘‘canaries’’ (i.e., fake instances of private
data) into their training data. Similarly, in their
work exploring adversarial attacks, Song et al.
(2021) do not experiment with real-world sys-
tems, such that no end users are harmed.

5.2 The Victims of English-Centric NLPSec

Below, we explore the role of multilinguality
in NLPSec, the urgency of unresolved security

Figure 7: Of the victim languages investigated across
the sample of 80 papers, we identify 22 natural lan-
guages. Languages not displayed above (as n = 1)
are Japanese (Zeng and Xiong, 2021), Tibetan (Cao
et al., 2023), Javanese, Indonesian, Malaysian, Taga-
log, Tamil (Wang et al., 2024b), and the remaining
languages of the XNLI dataset: Greek, Bulgarian, Rus-
sian, Turkish, Vietnamese, Thai, Hindi, Swahili, and
Urdu (Lin et al., 2024).

vulnerabilities in relation to lower-resourced lan-
guages, and how traditional norms of consent in
NLP may conflict with those of cybsersecurity.

Security As Strong As Its Weakest Link As
one of the most well represented languages in
NLP, it is no surprise that English is present in 97%
of the works sampled (see Figure 7). Emerging
research examining multilingual NLPSec, how-
ever, suggests that that multilingual models may
be more vulnerable to attacks than their mono-
lingual (English) counterparts, as demonstrated in
the context of embedding inversion attacks (Chen
et al., 2024b, 2025) and backdoor attacks (He et al.,
2024). Additionally, recent works also show how
lower-resourced languages can be weaponized to
bypass LLM safety features (Yong et al., 2024),
as well as introduce backdoors (Wang et al.,
2024b), creating further cause for concern. To
this end, Yong et al. (2024) discuss the apparent
shift in consequences for poor performance over
lower-resourced languages: previously, a lack of
competitive models to handle these languages
culminated primarily in technological disparity,
affecting only the community in question. This
inequality can be exploited by malicious actors,
resulting in a threat to everyone. In other words,
the security of NLP models is now only as strong
as its weakest link. Alarmingly, such weaponiza-
tion of under-performing language technologies is
already being observed (Nigatu and Raji, 2024).
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Higher Stakes For Lower Resourced Scenarios
Low-resource languages can often be situated in
vulnerable contexts, which brings heightened need
to protect the communities speaking them. For ex-
ample, previous works in NLP have exposed cor-
relations between GDP and data availability (Blasi
et al., 2022; Ranathunga and de Silva, 2022), un-
derscoring how the gap between higher- and
lower-resource languages is part of a broader
picture of global inequality. At the same time,
even within wealthier nations, minority languages
(often low-resource) may require revitalization
efforts in order to stave off extinction (e.g., In-
digenous languages of Australia (Meakins and
O’Shannessy, 2016)); and other widely adopted
languages may battle stigma, obstructing their
inclusion in language technology (e.g., Creoles
(Lent et al., 2024)). Practitioners in low-resource
NLP have developed their own ethical norms in
response to such concerns, grounded in the pri-
oritization of a community’s specific needs and
aspirations for language technology, as well as the
preservation of their autonomy (Bird, 2022; Lent
et al., 2022; Mager et al., 2023).

Research Traditions Collide: Consent Con-
sent is highly context-dependent in both cyberse-
curity and general NLP research ethics, leading
to potential conflicts when these fields intersect
in NLPSec. In traditional cybersecurity, the ne-
cessity of consent largely depends on the nature
of the system being tested. When testing systems
running on third-party infrastructure, such as web
services or cloud platforms, obtaining explicit
consent is expected in order to, e.g., avoid legal or
ethical issues. However, consent is not typically
required for, e.g., research involving hardware or
software running locally on the researcher’s in-
frastructure, even if it violates end-user license
agreements (EULAs) or terms-of-service (ToS)
contracts (Kozhuharova et al., 2022). For example,
reverse engineering or probing locally deployed
systems for vulnerabilities is widely accepted as
a valid and necessary practice, provided it priori-
tizes public safety and minimizes harm.

In contrast, multilingual NLP research has
increasingly emphasized community consent, par-
ticularly regarding low-resource languages or
marginalized groups. These efforts are grounded
in the principle of respecting the autonomy and
cultural context of the communities whose lan-
guages and data are being studied. NLPSec intro-

duces scenarios where these norms may conflict.
For example, securing LLMs for low-resource
languages is vital for ensuring downstream safety
of their communities. However, using a language
for security testing without explicit consent risks
reducing it to a mere tool for experimentation, po-
tentially alienating the communities involved and
exacerbating existing inequalities (Bird, 2020).

This aspect is largely ignored in NLPSec to
date. Among our sample, only one work engaged
with a truly low-resource language (see Figure 7).
In this study, Cao et al. (2023) aim to raise aware-
ness about the threatened security of minority
languages by contributing a script-based adversar-
ial attack method for Tibetan, a notably vulnerable
language7 against CINO (Yang et al., 2022).8

Ultimately, the ‘‘white hat’’ versus ‘‘black hat’’
paradigm in cybersecurity is further complicated
when extended to NLPSec. While cybersecu-
rity often frames consent as an ethical trade-off,
NLPSec researchers must also mind the long-
standing ethical norms of NLP, particularly for
lower-resourced or otherwise marginalized lan-
guages. Balancing these differing research norms
around consent demands careful consideration. On
the one hand, engaging with language community
representatives and aligning research with their
needs can ensure that low-resource languages are
not exploited in ways that harm or undermine their
speakers. On the other hand, delaying research to
secure consent could leave vulnerable languages
at greater risk of exploitation by malicious actors.
Given the present and severe threat of weaponiza-
tion of lower-resourced languages, however, this
issue must not remain unaddressed by NLPSec;
prioritization of ethical research practices will be
critical for harm minimization.

5.3 Obstacles for CVD in NLPSec
The results of our survey showed that no works
report whether efforts to do CVD (see Section 2.2)
occurred. Outside the scope of our survey, positive
examples of CVD in NLPSec do exist, such as
Carlini et al. (2024), who state clearly in their

7Tibetan has relatively few speakers (1.2 million native
speakers according to https://en.wikipedia.org
/wiki/Lhasa_Tibetan and 6 million speakers in to-
tal (Tournadre, 2013)), is actively undergoing revitalization
(Roche and Bum, 2018), and is situated in a delicate socio-
political context (Roche, 2017; Jia and Qie, 2021).

8CINO a pre-trained multilingual LLM for handling lan-
guages spoken across China (i.e., Mandarin, Cantonese,
Korean, Mongolian, Uyghur, Kazakh, Zhuang, and Tibetan).
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manuscript that the discovered vulnerability was
reported to OpenAI and that the release of the
paper followed the company’s response to and
mitigation of the risk described in their work. In
this section, we aim to explore some reasons why
CVD is a potentially nontrivial in NLPSec.

Not Fixable by One Line of Code Models are
one part of complex computer software systems
subject to more general cybersecurity vulnerabil-
ities, e.g., remote code execution, as has been
observed in the llama-cpp-python library.9

In such instances, CVD offers NLPSec researchers
a way to maintain transparency, without assisting
malicious actors, as the published vulnerabilities
will hopefully have already been patched. In NLP
and the broader machine learning space, how-
ever, this remediation and mitigation process is
complicated by the fact that discovered issues
may be endemic to the target of evaluation or
require prohibitively expensive retraining to fix.
As opposed to traditional software, one cannot
simply write a patch that fixes a discovered issue
entirely, and instead, guidance must be provided
to users in order to allow them to accept or miti-
gate risk appropriately. In one recent example, the
LAION 5B dataset was found to contain child sex
abuse material (Birhane et al., 2021, 2023). The
dataset was accordingly taken offline by its authors
(LAION.ai, 2023; Thiel, 2023). Consequently, all
models trained on this dataset were at known risk
of producing illegal, harmful materials. Model
providers, upon being made aware of this risk,
had the obligation to decide whether to retrain the
model or accept the risk—this was not something
that could be managed by updating a few lines of
code. Still, disclosure of the risk allows affected
parties to make informed decisions.

An Open Problem for Open Models While
CVD is most relevant for research using propri-
etary models, it also remains relevant for open-
weight, freely available models. As the majority
of works in NLPSec have thus far been concerned
with attacking or defending open-weight models
(see Figure 5), CVD may seem less applicable
to models that are not actively maintained by
the organization hosting them. In such a case
where the practical steps towards CVD may be

9https://github.com/abetlen/llama-cpp
-python/security/advisories/GHSA-56xg
-wfcc-g829.

unclear, an open question in NLPSec is how to
best disclose risks—if at all—both to the perti-
nent organizations and to the broader scope of
users. Similar to the trolley problem introduced
by Kohno et al. (2023) (Section 2.2), there may be
instances where CVD requires careful considera-
tion, for example in critical sectors like healthcare.
However in the majority of NLP, where a model
can typically be replaced with another with rel-
ative ease, it is difficult to give a generalized
conjecture on such cases. For our part, we recom-
mend that NLP researchers engage in best-effort
attempts to alert model providers to potential risks.
Most companies that provide models as a service
have a channel for external users to file bug re-
ports. In cases where the model is produced by
a smaller entity, opening issues on the platform
where the model is shared, e.g., Github, Hugging-
Face, or emailing authors of a paper tied to the
model serves as a good channel for attempting this
coordination before publication of results.

Another complication for CVD in NLPSec is
scalability. As a field, NLP places immense value
on scalability (Kogkalidis and Chatzikyriakidis,
2024). Researchers are often expected or en-
couraged to massively scale their experiments
to an increasing number of models and languages.
While scaling experiments largely hinges upon
the availability of compute resources, the process
of CVD does not scale so. Ideally, CVD entails
intentional, personal communication between the
researcher and the affected organization. Respon-
sible disclosure to CERTs or other trusted commu-
nities functions the same way. The human aspect
of this process cannot simply be outsourced and
automated to a machine, thus conflicting with
the expectations for massive scalability within
NLPSec.

5.4 Recommendations for
NLPSec Practitioners

Thusfar, the field of NLPSec has largely been
operating in a ‘‘gray hat’’ manner, where the
individual researcher is compelled to rely on their
own moral compass. This is in part due to the
overwhelming bulk of AI regulatory documents
(Larsson, 2021), which often do not directly relate
to a security angle, as well as the rigidity of ap-
plying certain cyber security ethical norms to the
unique problems of NLPSec. In response to this
pressure point, we aim to provide some concrete
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recommendations to help the field take concrete
steps towards more ethical NLPSec. To this end,
we hope future works will benefit from, and build
upon, the following recommendations:

1. Plan Ahead to Minimize Harm: Ethical
considerations should not be relegated to
a post-hoc ethics statement. First, consider
the harms entailed in conducting a study
and in foregoing it. Design experiments with
harm minimization in mind from the start. In-
clude these details in the main body of your
work. Beyond reducing the potential harms
of research and helping researchers avoid
downstream ethical conundrums, this ap-
proach also promotes a culture of responsible
research.

2. Prioritize Multilingual Equity: Include
multilingual models and lower-resourced
languages in NLPSec work to build towards
comprehensive security coverage for all. Pri-
oritize typologically diverse language sam-
ples (Ploeger et al., 2024). Engage with the
communities speaking these languages to
seek consent and avoid exploitation. Con-
sider whether a particular community might
be jeopardized as a result of your work. Re-
searchers should respect the autonomy of
these communities, while working to address
the established heightened vulnerabilities in
such low-resource scenarios.

3. Approach Disclosure Responsibly: (a)
Consider the most appropriate options for
disclosure. If you can complete CVD, con-
tact relevant parties about security breaches
60–90 days prior to any publication and
clearly acknowledge that CVD occurred di-
rectly in the published manuscript. Even for
open-weight models, best-effort attempts to
alert stakeholders should be made, such as
model providers or the platforms hosting
the models. If you cannot complete CVD, at-
tempt responsible disclosure to other affected
parties. Decide whether public disclosure is
appropriate, and act accordingly. Commu-
nicate this thought process in your paper.
(b) When appropriate, release accompany-
ing proof-of-concept code to help NLPSec
researchers better defend against attacks.
While black hats will always make time
to re-implement attacks for nefarious gains,

white hats are time-constrained and defense
becomes harder without clear & explicit re-
sources. If not appropriate, explain why in
your manuscript. Ask yourself if public dis-
closure is still warranted, if open-sourcing
code is not.

6 Conclusion

In the burgeoning field of NLPSec, most works
consider scenarios where a malicious attacker
seeks to undermine a system’s intended behavior,
with the goal of causing harm. Research output in
NLPSec thus stands to be highly consequential in
the face of mass-adoption of language technolo-
gies such as LLMs, and its relevance to public
safety necessitates heightened scrutiny when it
comes to best practices for ethical research. Given
NLPSec’s position as a truly interdisciplinary
field, practitioners in this space can benefit from
the rich traditions of research ethics from both
cybersecurity and NLP. In this work, however, we
find that NLPSec works published in NLP venues
generally fall short of the ethical standards set by
cybersecurity (Section 4), signaling a higher-level
disconnect between NLP and cybersecurity prac-
titioners for work in this area. This failure to
inherit ethical best practices can arise from a vari-
ety factors (Section 5), but largely stem from the
differences between traditional cybersecurity and
NLPSec, which underscores the limitations of the
‘‘white versus black hat’’ paradigm of cyberse-
curity as applied to NLPSec. Still, we argue that
the repercussions of the current research patterns
are grim: works in NLPSec may benefit would-be
attackers more than the public (Section 2), with
dire consequences for everyone, but especially for
already-marginalized communities (Section 5.2).
By highlighting these problems and exploring
their nuances, this work aims to persuade the
field of the urgency of the present situation and
to spark a much-needed conversation across the
field of NLPSec. To kick off this conversation,
we provide some concrete recommendations to
help practitioners transition from gray hat to white
hat NLP.

Limitations

Defining Ethical Hacking While ethical hack-
ing is, on its face, a noble venture, it is a term that
features some subjectivity and may find itself
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at odds with the desires of particular groups
or individuals. For instance, the definition of an
ethical hacker as one who is ‘‘trustworthy for
business and lawful’’ (Christen et al., 2020) may
run headlong into both trust and the law. Re-
garding trust, many organizations have adopted
an approach that is far more friendly to security
researchers, but there are organizations who are
notorious to this day for their attempts to keep the
discovery of vulnerabilities in their products quiet.
As it concerns the law, there are two primary is-
sues to contend with. First, what is ‘‘lawful’’ will
necessarily change across jurisdictions, with laws
differing not merely between countries, but some-
times across provinces and states. For example,
the ethics of government-associated cybersecurity
research (e.g., government hacking) can be a topic
of debate, even when practitioners are acting un-
der the color of law. Another example includes
the exemption for security research in the United
States, which is not written into law, but is rather
part of the US Department of Justice’s prosecution
guidelines (U.S. Department of Justice, 2022), up-
dated in 2022, indicating that good faith security
research should not be prosecuted. In other words,
much ethical hacking in the US may be considered
unlawful but will simply not be prosecuted. The
second issue is time. Across jurisdictions, laws are
likewise positioned to evolve over time, especially
as the list of known cyber-threats grows to include
attacks against NLP models. In general, as it is
often difficult for the law to keep up with rapid
technological progress, ethics training must be pri-
oritized in both the NLP (Bender et al., 2020) and
cybersecurity curriculum (Blanken-Webb et al.,
2018).

Risks of Monocultural Ethics Discourse As AI
becomes further entrenched in daily life, the risks
imposed from research and commercial activities
in AI are also a global issue. Similar to how
correspondents of Kaffee et al.’s (2023) survey
are overwhelmingly from a Western audience,10

the bulk of AI governance documents are also
overwhelmingly of Western origin (e.g., Larsson,
2021; UNESCO, 2021). In contrast, Figure 10
(Appendix B) reveals that the majority of NLPSec
research comes from Asia. However, historical
and cultural differences have led to fundamentally
different approaches to addressing AI risks across

10Of 48 participants, only 3 hailed from Asia and 1 from
Africa, with the remainder from Europe or North America.

these regions.11 For example, while the deploy-
ment of technologies such as facial recognition
is illegal and considered strictly unethical in the
EU because of GDPR (European Parliament and
Council of the European Union, 2016), it is widely
deployed in countries such as China (Dudley,
2020), Iran (George, 2023), Canada (CCLA,
2001), and the US (GAO, 2023), where the local
personal data is collected, raising concerns over
human rights. Still, models trained on such data
may be imported to the EU and deployed with-
out any legal consequences, highlighting a global
ethical risk, termed ethics dumping (Commission
et al., 2013; ECDGRI, 2016), where non-ethical
practices are shifted to countries lacking certain
ethics regulations. This divide between AI gov-
ernance and the regions impacted by AI calls
for inclusion of diverse perspectives, especially
in a burgeoning and cross-disciplinary field like
NLPSec. Of course, cross-cultural AI ethics is
notably diverse. For example, African Ubuntu
philosophy promotes communal values in the use
of AI (Gwagwa et al., 2022), Abrahamic religious
views stress that AI use should respect human
dignity (Goltz et al., 2020; Raquib et al., 2022),
and Buddhist AI philosophy advocates for reduc-
ing pain and suffering using AI (Hughes, 2012;
Hongladarom, 2021). When faced with seemingly
irresolvable conflicts of ethical values across cul-
tures, we urge NLPSec researchers to look towards
the UN Declaration of Human Rights, which out-
lines the fundamental rights and freedoms of all
human beings.
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A Reproducibility of Results

We provide our exact annotations for trans-
parency and reproducibility. The papers sampled
in this work are listed in Table 1 (adversarial at-
tacks), Table 2 (backdoor attacks), and Table 3
(Data Reconstruction attacks, which include both
embedding inversion attacks and instance encod-
ing/embedding encryption), below. Among these
80 papers, we found zero discussion of dual
use and zero instances of coordinated vulnera-
bility disclosure (CVD), so we do not list out the
annotations for these two categories.
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Paper Contribution Ethics Misuse Open Source Languages

Ren et al. (2019) Attack No No Yes Eng
Wallace et al. (2019) Attack No No Yes Eng
Han et al. (2020) Both No No Yes Eng
Zang et al. (2020) Attack No No Yes Eng
Li et al. (2020) Attack No No Yes Eng
Xu et al. (2021) Both Yes Yes Yes Eng
Zeng et al. (2021) Attack Yes Yes Yes Eng, Zho
Chen et al. (2021) Attack Yes Yes Yes Eng
Song et al. (2021) Attack Yes Yes Yes Eng
Li et al. (2021a) Attack No No Yes Eng
Zhou et al. (2021) Defense No No No Eng
Keller et al. (2021) Defense No No Yes Eng
Zeng and Xiong (2021) Attack No No No Eng, Zho, Jpn
Swenor and Kalita (2021) Defense No No No Eng
Bao et al. (2021) Defense No No Yes Eng
Raina and Gales (2022) Defense Yes No Yes Eng
Choi et al. (2022) Attack No No No Eng, Prog.
Lei et al. (2022) Attack No No Yes Eng
Xu et al. (2022) Defense No No No Eng
Xie et al. (2022) Attack Yes No Yes Eng
Fang et al. (2023) Attack Yes No Yes Eng
Cao et al. (2023) Attack Yes No Yes Bod
Li et al. (2023c) Defense No No No Eng
Wang et al. (2023) Defense No No No Eng
Tsymboi et al. (2023) Attack No Yes Yes Eng
Gao et al. (2024) Attack No No No Eng
Sadrizadeh et al. (2024) Attack Yes Yes Yes Eng, Fra, Deu
Zhang et al. (2024) Defense No No No Eng
Chen et al. (2024a) Attack No No No Eng
Wang et al. (2024c) Attack Yes Yes Yes Eng
Xu and Wang (2024) Attack Yes Yes Yes Eng
Yu et al. (2024) Attack No No Yes Eng
Alshahrani et al. (2024) Attack No No Yes Ara

Table 1: Papers sampled pertaining to adversarial attacks. Under languages, ‘‘Prog.’’ is short for
programming language(s).
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Paper Contribution Ethics Misuse Open Source Languages

Yang et al. (2021b) Attack Yes No Yes Eng
Qi et al. (2021c) Attack Yes Yes Yes Eng
Qi et al. (2021b) Attack Yes Yes Yes Eng
Qi et al. (2021d) Attack Yes Yes Yes Eng
Yang et al. (2021a) Defense Yes Yes Yes Eng
Qi et al. (2021a) Defense Yes Yes Yes Eng
(Li et al., 2021c) Defense Yes Yes Empty repo Eng
Li et al. (2021b) Attack No No No Eng
Chen et al. (2022b) Attack Yes Yes Yes Eng
Yoo and Kwak (2022) Attack No No No Eng
Gan et al. (2022) Attack Yes Yes Yes Eng
Chen et al. (2022a) Defense Yes No Yes Eng
Zhang et al. (2022a) Defense No No No Eng
Lyu et al. (2022) Defense No No Yes Eng
Jin et al. (2022) Defense Yes Yes Broken link Eng
Zhang et al. (2022b) Defense Yes No No Eng
Liu et al. (2023) Defense No No No Eng
Zhao et al. (2023) Attack Yes Yes Yes Eng
Mei et al. (2023) Attack Yes Yes Yes Eng
He et al. (2023a) Defense No No Yes Eng
You et al. (2023) Both No No No Eng
Li et al. (2023d) Attack Yes Yes Yes Eng, Prog.
Yan et al. (2023) Both Yes Yes Yes Eng
Li et al. (2023b) Defense Yes Yes Yes Eng
He et al. (2023b) Defense No No Yes Eng
Huang et al. (2024a) Attack Yes Yes Yes Eng
Li et al. (2024) Attack Yes Yes Yes Eng
Du et al. (2024) Attack Yes Yes No Eng
Graf et al. (2024) Defense Yes Yes Empty repo Eng
Zeng et al. (2024) Defense Yes Yes Broken link Eng, Prog.
Yi et al. (2024) Defense Yes No Yes Eng
Wu et al. (2024) Defense Yes No Yes Eng
Wang et al. (2024a) Attack No No No Eng, Jav, Ind,

Msa, Tgl, Tam

Table 2: Papers sampled pertaining to backdoor attacks. Under languages, ‘‘Prog.’’ is short for
programming languages.
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Paper Contribution Ethics Misuse Open Source Languages

Huang et al. (2020) Defense No No Yes Eng
Xie and Hong (2021) Attack Yes Yes No Eng
Xie and Hong (2022) Defense No No No Eng
Hayet et al. (2022) Attack No No Yes Eng
Parikh et al. (2022) Both Yes Yes No Eng
Kim et al. (2022) Defense No No No Eng
Morris et al. (2023) Attack No No Yes Eng
Li et al. (2023a) Attack Yes No Yes Eng
Zhou et al. (2023) Defense No No Yes Eng
Zhang et al. (2023) Defense No No Yes Eng
Chen et al. (2024b) Both Yes Yes Yes Eng, Fra, Deu, Spa
Huang et al. (2024b) Attack No No Empty repo Eng
Elmahdy and Salem (2024) Attack No No No Eng

Eng, Fra, Deu,
Spa, Ell, Bul,

Lin et al. (2024) Attack No No No Rus, Tur, Ara,
Vie, Tha, Zho,
Hin, Swa, Urd

Table 3: Papers sampled pertaining to data reconstruction attacks, which includes both embedding
inversion and embedding encryption (i.e., instance encoding).
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B Complementary Results

In this Appendix, we provide more general in-
formation about the sampled papers, for further
transparency. First, Figure 8 shows the relative age
of publications, and Figure 9 shows their distribu-
tion across venues within the ACL* community.
Figure 10 presents the continent associated with
every unique affiliation in the author list, so that
we may provide rough demographic information
about our sample. Finally, Figure 11 show the most
common evaluation datasets across our sample of
works in NLPSec.

Figure 8: Distribution of sampled papers across their
year of publication.

Figure 9: Distribution of sampled papers published
in different venues across the ACL* community. For
the Findings papers specifically, 11 are at ACL, 8 at
EMNLP, 2 at NAACL, and 1 at EACL.

Figure 10: We show the distribution of author af-
filiations across continents, rather than countries, for
easy comparison against Kaffee et al. (2023). Most
research from our sample of NLPSec works hails from
institutions residing in Asia. Conversely, governance
documents come overwhelmingly from the EU and US
(Jobin et al., 2019), and discussions on dual-use and
ethics in NLP are also Western-centric (n = 3 from
Asia and n = 1 from Africa in a survey of 48 people
by Kaffee et al., 2023). This highlights the need for
a wider dialogue across the field. When cross-cultural
values conflict and best practices become unclear, prac-
titioners should consider the UN Declaration of Human
Rights.

Figure 11: Distribution of datasets used to validate
experiments across the sampled works in NLPSec. For
the purposes of visualization, we do not display the
long tail of datasets which were used by only one
paper.
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