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Abstract

Large-scale sense-annotated corpora are im-
portant for a range of tasks but are hard
to come by. Dictionaries that record and
describe the vocabulary of a language of-
ten offer a small set of real-world example
sentences for each sense of a word. How-
ever, on their own, these sentences are too
few to be used as diachronic sense-annotated
corpora. We propose a targeted strategy for
training and evaluating generative models pro-
ducing historically and semantically accurate
word usages given any word, sense defini-
tion, and year triple. Our results demonstrate
that fine-tuned models can generate usages
with the same properties as real-world ex-
ample sentences from a reference dictionary.
Thus the generated usages will be suitable
for training and testing computational models
where large-scale sense-annotated corpora are
needed but currently unavailable.

1 Introduction

Language is essential to almost every aspect of
human life and is often a crucial remnant of pre-
vious societies. It is through previous writings
that we can learn how societies were built and
have since evolved. But as our societies evolve,
so does our language. Great effort has been made
to support historical linguistics, for example, by
using computational approaches to model how
words change their meaning over time, a phe-
nomenon called semantic change. However, these
efforts have been severely hindered by a lack of
diachronic sense-annotated corpora, primarily be-
cause sense-annotation of historical texts requires
significant time, expertise, and effort and is thus
extremely costly (Schlechtweg et al., 2024).

Our contribution: We have brought together
the generative abilities of large language models
(LLMs) and the vast resources of a high-quality,
large-scale dictionary to train and evaluate gen-
erative models using the real-world example

sentences provided with each sense in the Oxford
English Dictionary (OED). Specifically, we:

1. introduce fine-tuned LLMs capable of
generating large and realistic diachronic,
sense-annotated datasets (Section 4);

2. provide a comprehensive suite of evaluation
tools (Section 5); and

3. show that synthetic generated usages can be
used to effectively train models (Section 7).

These resources open up the possibility of devel-
oping models for a range of different tasks, ranging
from diachronic word sense disambiguation to
semantic change detection.

Using generative models, we can produce sen-
tences in which a word is used in a semantically
and historically accurate way. Given a word and
a sense definition, these models can generate tem-
porally accurate sentences for each specified time
period. In Table 1, for different specified years
(1980–2010), we see that the same definition of
phone results in sentences using phone cradle,
phone booth, and cell phone in an accurate way
that historically represents the word phone.

We show that fine-tuned LLMs (1) can gener-
ate sentences that have the same properties as the
original example sentences from the OED with a
time error of (on average) 50 years; and (2) can be
used to simulate synthetically large-scale linguis-
tic phenomena such as semantic change, providing
accurate and diverse historical word usages. We
provide a suite of tools for testing (a) context vari-
ability, (b) temporal accuracy, and (c) semantic
accuracy of generated historical usages. We have
also released a new human-annotated dataset of
semantic relatedness between generated historical
sentences and sense definitions.1 The annotations
show empirical evidence of a correlation between

1The fine-tuned models and the tools for evaluation,
including a sentence-dating model and a WSD (Word Sense
Disambiguation) model, are available in the HuggingFace
Hub. The annotated usage-definition pairs are published in
Zendodo. The code is available in Github.

690

Transactions of the Association for Computational Linguistics, vol. 13, pp. 690–708, 2025. https://doi.org/10.1162/tacl a 00761
Action Editor: Alessandro Lenci. Submission batch: 10/2024; Revision batch: 2/2025; Published 7/2025.

c© 2025 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:pierluigi.cassotti@gu.se
mailto:nina.tahmasebi@gu.se
https://huggingface.co/collections/ChangeIsKey/sense-specific-historical-word-usage-generation-67c83f89a46cef823e886fb1
https://huggingface.co/collections/ChangeIsKey/sense-specific-historical-word-usage-generation-67c83f89a46cef823e886fb1
https://zenodo.org/records/14974455
https://github.com/ChangeIsKey/historical-word-usage-generation
https://doi.org/10.1162/tacl_a_00761


Year Usage

1980 He put the phone back in the cradle and turned
toward the kitchen.

1990 We made the telephone call from a public
telephone booth that had phones, instruments and
paper on top of each other in a jumble.

2000 I was carrying my cell phone so that I could hear
the signals if there were any.

2010 You can buy a low-priced 3G phone (the phone’s
the thing, not the service) for less than £60.
It’s no phone you’d be proud to have on your
desk, but it’ll handle text messaging, e-mail and
internet-browsing.

Table 1: Generated usages for phone with
the same definition ‘A telephone apparatus; a
telephone receiver or handset’ over time.

the hierarchical organization of senses in the OED
and human perceptions of the closeness between
the word senses.

2 Motivation

Large diachronic sense-annotated corpora are
needed to develop models for longitudinal studies.
Such corpora could be obtained through dictio-
naries that store implicitly sense-annotated word
usages via example sentences attached to each
sense. However, these usages are sparse, even in
large dictionaries. For example, in the OED each
word sense is accompanied by approximately four
sentences, which are spread across an average of
four distinct years and sometimes even fewer. For
example, the corruption sense of the word graft
appears only in a single year.

When explicitly sense-annotated datasets are
available, they are often small and synchronic
(Miller et al., 1993; Pasini and Camacho-Collados,
2020). To simulate diachronic datasets, they can
be divided into batches, but they then lack histor-
ically accurate language. To retain a historically
accurate linguistic style, efforts have been made to
derive sense information implicitly by clustering
similarity judgments between pairs of usages of
a word (Schlechtweg et al., 2021), as these are
cheaper to produce than sense annotation. How-
ever, these are also small in scale and typically
only cover two time periods.

To train and evaluate models for longitudinal
studies, for example, to detect semantic change
over time, we need sense-specific and temporally
changing word usages on a large scale, that is,
with sufficient representation of each sense across

different historical contexts. Example sentences
or small-scale sense-annotated data are insuffi-
cient for this purpose. However, using fine-tuned
LLMs, we can generate the desired number of
sentences that match the historical context and
specific senses of words for training and test mod-
els. We can thus ensure that the generated output
has a continuous and representative temporal dis-
tribution of any and all word senses across all (for
the sense’s valid) time periods.

3 Data

In this work, we used the Oxford English Dic-
tionary (OED, 1989) because it is the most
comprehensive and authoritative record of the
English language. It includes over 273,000 words
with detailed etymologies and (frequency) bands.2

For each word, there is a set of entries that contain
a group of senses that are semantically related
(see Figure 1). Multiple entries for a word reflect
either different parts of speech or homonymic
senses. For each sense, a set of example sentences
offer the reader a sense of how a word can and has
been used. A sense entry is introduced when there
is evidence of the sense in writing, and a sense is
considered rare or outdated when it is no longer in
everyday use.

We collected words, senses, and examples using
the OED Research API (OED API) from the
year 1700 onward. The dataset was split into
two distinct partitions, one for training and the
other for testing. Table 2 shows the statistics for
the training set and the test set. The training set
included all the available parts-of-speech (PoS)
entries in the OED, while the test set contained the
four PoS tags that are most susceptible to semantic
change: nouns, verbs, adjectives, and adverbs. For
the test set, we considered, for each word, only the
senses with at least five examples of usage in the
OED. We further aimed to choose a set of words
that together were as comprehensive as possible
in terms of the range of polysemy and frequency,
as well as in terms of the representation of senses
over time.

The estimation of word polysemy was based
on the number of main senses reported in the
OED, appearing on the second level or above in
the hierarchy (in yellow in Figure 1). The lem-
mas were classified into three categories: (1) those

2From Google Books Ngrams (v2). Due to a lack of sense
annotation, no sense-level frequency is available.
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Figure 1: The OED hierarchical representation of the senses of the verb stick and the relation of the example
sentence (highlighted by a red rectangle) to the respective sense definition (Exact Sense) and other sense
definitions, including Related Sense, Peer Sense, and Homograph.

Train Test

W
or

ds Lemmas 81,220 2,768
Part-of-speech 11 4

Se
ns

es Senses 301,395 13,762
Avg. definition length 128.01 146.70
Avg. number of usages per sense 3.95 6.52

U
sa

ge
s Usages 1,191,851 89,759

Avg. text length 91.22 90.29

Table 2: OED statistics. The large difference in
the avg number of usages per sense stems from
the requirement of at least 5 example sentences
when choosing test words.

with at least one new sense introduced after 1800,
(2) those with a disappeared sense, and (3) all
remaining lemmas. Stratified sampling was used
to ensure a uniform distribution across the vari-
ous classes of word frequencies, polysemy, and
introduction/extension of senses. The training and
test data were entirely distinct from one another;
the lemmas that appear in the test data and their
respective senses were removed from the training
data.

4 Generation of Usages

The primary focus of our work is a proof-of-
concept using an open source model, for which
we chose Llama. We fine-tuned the pretrained
Llama 3 8B model using the OED dataset, pro-
ducing two versions: Llama 3-Janus and Llama

3-Janus-PoS.3 Janus was trained without PoS data,
while Janus (PoS) incorporated PoS tags. Then
we tested fine-tuned models against the instructed
models. Specifically, we used the instructed Llama
3 8B Instruct, and Llama 3 70B Instruct, consist-
ing, respectively, of 8 and 70 billion parameters
(AI@Meta, 2024).

We also undertook a comparison to GPT as
a commercial tool, working with GPT-3.5 and
GPT-4o as the most efficient and effective models
provided by OpenAI (OpenAI).

4.1 Notation

A large language model is denoted by M, a target
word by w, and the respective sense definitions
by di for i = 1, 2, . . . , n. For each target word and
sense di the OED attests a validity period (ti, tj)
such that the sense di is recorded for the word w.
We denote y as a year in (ti, tj). We query the
model M with triples (w, di, y) ∈ T such that it
produces a usage u of a word w in the sense di
with language appropriate for year y (see Table 1
for examples of usages generated for a triple). The
set of usages is denoted Uw,di,y. For the OED, a
usage is an example sentence, and y is the year
in which the sentence originated. For generated
sentences, we can choose y as any and all years in
the validity period (ti, tj). To reduce the amount

3From now on, these models will be referred to as Janus
and Janus (PoS), respectively. In Roman mythology Janus is
the god of transition and time. He is depicted with two faces,
symbolizing the ability to see both the past and the future.
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of evaluation, we sampled a single year y for the
set of triples T .

4.2 Prompting Instructed Models

We prompted each of the instructed models M,
namely GPT-3.5, GPT-4o, Llama 3 8B Instruct,
and Llama 3 70 B Instruct. We used the same
prompt P for each of them, i.e., M(P,w, di, y)
for all (w, di, y) ∈ T . Additionally, for GPT-4o
we tested the few-shot strategy (Few shot GPT-4o)
providing 5 illustrative examples of the task. Fur-
ther details of the prompting, including the prompt
itself, are given in Appendix B.

4.3 Fine-tuning

We fine-tuned the pretrained Llama 3 8B model
on the 1,191,851 historical sense-annotated us-
ages extracted from the OED, which constitute
the training set described in Section 3. Specifi-
cally, the fine-tuning process uses causal language
modeling (CLM), where the model is trained to
predict the usage tokens, given the input sequence
consisting of a concatenation of the target year y,
the target lemma w, and the target sense definition
di delimited by the special token <|t|>, i.e.,

y < |t|> w < |t|> di < |s|> u < |end|>

For Janus (PoS), we provide additionally the word
part of speech p:

y < |t|> w < |t|> di < |p|> p < |p|>< |s|> u < |end|>

The designated special token <|s|> indicates the
beginning of the completion segment, i.e., the
usage field, which the model will predict in an au-
toregressive manner, ensuring that the model uses
the context provided by the year, lemma, and defi-
nition to accurately generate the subsequent usage
example. To reduce the training effort and re-
duce costs, we used quantization and low-ranking
adaptation (QLORA) (Dettmers et al., 2023). Fur-
ther details of the implementation are given in
Appendix C.

5 Evaluating Generated Usages

In this section, we present the evaluation of the
usages generated by Janus, Janus (PoS), Llama
3 8B Instruct, Llama 3 70B Instruct, GPT-3.5,
GPT-4o, and Few Shot GPT-4o. This evaluation
is based on the OED test set, as introduced in
Section 3. For each entry in the OED test set, we
added a triple with a sampled year (w, di, y) to

T . Using each model M, we then generated ten
usages for all triples in T , resulting in U(w,di,y)

containing a total of 137,620 generated usages for
each model. For each M, we evaluated the set of
generated usages U(w,di,y) focusing on:

• context variability λ: how diverse the con-
texts are within the set of generated word
usages, evaluated as λ(U(w,di,y));

• semantic accuracy σ: how accurately each
of the generated word usages conveys the
target definition di, measured as σ(u, di);

• temporal accuracy τ : how well each of the
generated word usages u is historically co-
herent with the target year y, τ(u, y). For
instance, the word airplane should never
appear in contexts before 1903.

Validation: To validate our results (and obtain
a baseline for λ, τ and σ), we compared the gener-
ated usages with the original usages included in the
OED test set. Furthermore, we validated context
variability and temporal accuracy, using a control
dataset without sense annotations comprising us-
ages for each (w, ∗, y) ∈ T . The control set thus
consisted of historical word usages U(w,∗,y) ex-
tracted from the Corpus of Late Modern English
texts (De Smet, 2005) (1710–1920) and the Clean
Corpus of Historical American English (Alatrash
et al., 2020) (1800–2010).

5.1 Context Variability
A key goal was that the generated usages should
have diverse contexts to penalize models that
paraphrased the same sentence over and over again
(an example of this can be found in Table 11 in
the Appendix). For each set of generated usages
U(w,di,y), we measured the variability in three
different ways:

• Lexical Overlap: The similarity between
generated usages was measured using:

– (Jaccard) The ratio of shared words
between two usages to the total number
of unique words4

– (BLEU) An extension of Jaccard that
considers word sequences (n-grams),
accounts for repetition, and applies a
brevity penalty to discourage overly
short usages

4We tokenize text using whitespace and remove stop-
words based on the NLTK stopword list https://www
.nltk.org/.
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Source Usage Definition Label

Janus No sooner had we parted than he called
up and said that he had made a decision
‘to make things stick’ in the West.

Of a plan, order, decision, etc.: to be complied
with or implemented; to be permanently effective.
Frequently in to make (something) stick.

4 (Exact Sense)

To lay sticks between (timber boards) in order to
facilitate the circulation of air during seasoning.

1 (Homograph)

OED He is the man of all others slow to admit
the thought of revolution; but let him
once admit it, he will carry it through
and make it stick.

transitive. To pierce (something) with a
sharp-pointed object; to prick, puncture.
Frequently with specifying the sharp-pointed object.

2 (Related Sense)

To be reluctant or unwilling (to do something);
to hesitate, to scruple. Chiefly in negative
constructions (e.g., he did not stick to)

3 (Peer Sense)

Table 3: Examples of both positive and negative triples derived from Janus-generated usages and the
OED test set. The examples illustrate different semantic relations, including Exact Sense, Peer Sense,
Related Sense, and Homograph. Each row shows a usage example, its corresponding sense definition,
and the label indicating the semantic relation.

• Paraphrase Index (Cosine): the similarity
of each usage pair was computed as the cosine
between the usage vectors encoded using
SBERT5 (Reimers and Gurevych, 2019)

• Semantic Similarity (BScore): the
BERTScore6 (Zhang et al., 2020) was used
to evaluate semantic similarity of usage
pairs.

The final score for each λj ∈ {Jaccard, BLEU,
Cosine, BScore} over the set of usages was cal-
culated as the average of the individual usage
pair (u, v) scores, given by 1

|Q|
∑

(u,v)∈Q λj(u, v),
where Q = {(u, v) | u, v ∈ Uw,di,y, u �= v}.

For the control dataset, which had no informa-
tion on word sense, we aggregated at the lemma
level, i.e., U(w,∗,y). For the OED test set, which
does not have enough usages for each year con-
sidered, we aggregated all years and evaluated
the diversity of usages for the specific sense, i.e.,
U(w,di,∗). When comparing the control and the gen-
erated usages, we should therefore bear in mind
that both validation datasets naturally exhibit a
greater variety of contexts than the generated uses.
The usages of the control dataset show a greater
variety along the sense dimension, whereas the
usages of the OED test set show a greater variety
along the temporal dimension.

The results in Table 4 highlight the context
variability of the usages generated by different
models compared to the control dataset and the
OED test set. For example, the latter has a Jaccard

5all-mpnet-base-v2.
6roberta-large.

index of 0.03, a cosine similarity of 0.31, and a
BScore of 0.85. Notably, Janus and Janus (PoS)
stand out with the lowest BLEU score (0.21/0.20)
of the generated data sets, only slightly less di-
verse than the control data set (0.18) and the OED
test set (0.19). This result indicates a higher con-
text variability among the generated usages of
fine-tuned models compared to the usages gen-
erated by instructed models, where the generated
sentences are more similar to each other. For ex-
ample, GPT-3.5 shows a cosine similarity score
of 0.58 and a high BScore of 0.90, suggesting that
there is a lot of repetition across the usages. The
usages generated by the Llama 3-8B and Llama
3-70B Instruct models exhibit moderate variation.
Because of their broader and more varied contexts,
the control dataset and the OED test set show the
expected high variability.

5.2 Semantic Accuracy

In this section, we want to assess the semantic
accuracy of the generated uses, i.e., how well the
meaning of each generated usage u ∈ U(w,di,y) re-
flects the provided definition di (Erk et al., 2013).
To assess the semantic accuracy of a generated
usage, we want the usage to reflect the meaning
of di but not other related meanings dj , j �= i.
For each usage u ∈ U(w,di,y) in the OED test
set, we created up to three negative usages by
sampling definitions dj from peer senses, related
senses, and homographs, respectively (see an ex-
ample in Table 3). The generated usages were then
evaluated both computationally and by human an-
notators. We measured performance using the
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Dataset Jaccard BLEU Cosine BScore

GPT-3.5 0.16 0.40 0.58 0.90
GPT-4o 0.13 0.38 0.58 0.90
Few Shot GPT-4o 0.19 0.42 0.59 0.91
Llama 3-8B Instruct 0.08 0.29 0.47 0.88
Llama 3-70B Instruct 0.17 0.36 0.51 0.90
Janus 0.04 0.21 0.35 0.86
Janus (PoS) 0.03 0.20 0.32 0.85

Control dataset 0.08 0.18 0.23 0.83
OED Test set 0.03 0.19 0.31 0.85

Table 4: Context variability. Labels from
Section 5.1. Validation datasets in italic. We ex-
pect low values for all four measures, as the
generated sentences should be diverse.

macro F1 score and Spearman’s correlation. The
macro F1 score is calculated for two classes: Exact
Sense and Different Meaning (Peer Sense, Related
Sense, Homograph). Model predictions (or human
annotation scores) below 3 were categorized as
Different Meaning. Spearman’s correlation mea-
sures the agreement between the predictions of
the WSD (word sense disambiguation) regression
model and human annotations or OED labels.
The results indicate that, while automatic evalu-
ations show that all models performed similarly
in capturing semantic relations (Section 5.2.1),
human evaluations reveal that Janus-generated
usages were semantically comparable to the orig-
inal OED usages (Section 5.2.2).

5.2.1 Computational Evaluation
Unlike traditional WSD methods that predict sense
labels, our approach mimics human annotation
by comparing usage-definition pairs, allowing for
direct comparison of human and model perfor-
mance. We trained a WSD classifier on the OED
training data. In particular, given a definition
di and a usage u, the classification model pre-
dicts the semantic relations extracted from the
OED, namely, Exact Sense (4), Peer Sense (3),
Related Sense (2), and Homograph (1). Further
details on the classification model are reported in
Appendix E.

The results in Table 5, while showcasing the
overall strong performance of the models in cap-
turing semantic relations, also reveal challenges
in the evaluation process. The results show that all
models, including Janus, exhibited strong Spear-
man’s correlation (ranging from 0.59 to 0.64)
and high F1 score (ranging from 0.74 to 0.77).

Dataset Spear. Correlation F1 score

GPT-3.5 0.64 0.77
GPT-4o 0.64 0.76
Few Shot GPT-4o 0.64 0.77
Llama 3-8B Instruct 0.62 0.76
Llama 3-70B Instruct 0.63 0.76
Janus 0.61 0.75
Janus (PoS) 0.59 0.74

OED Test set 0.76 0.83

Table 5: Semantic accuracy for each model gen-
erated dataset. Validation dataset in italic.

However, the gap between these scores and that
of the OED test set (0.76/0.83), which serves as
a reference point, indicates that while the mod-
els demonstrate proficiency in capturing semantic
relations, there remains room for improvement.

One issue relates to the labels extracted from
the OED (Peer Sense, Related Sense, and Homo-
graph), which are sometimes inconsistent. This
inconsistency stems from the lumpers and split-
ters issue in lexicography, where lexicographers
differ in the way they group senses together or
split them into finer distinctions, e.g., what could
have been an exact sense was instead labeled as
peer sense. This subjectivity can introduce noise,
potentially lowering model performance.

5.2.2 Human Evaluation
The dataset employed for the automatic eval-
uation consists of 259,489 and 1,043,311
usage-definition pairs for the OED test set and
Janus, respectively. We therefore simultaneously
subsampled a set of 2584 usage-definition pairs
both from the Janus and the OED test sets.
To make the dataset as diverse as possible we
ensured that there was only one usage for each
sense and only one positive triple for each word.
We assessed semantic accuracy by manually
annotating whether the word meaning in the
Janus-generated usages matched the definition
provided. To validate the results, we used the
OED test usages and assessed semantic accuracy
in a corresponding way. We asked annotators to
determine the semantic relatedness of the defi-
nition with respect to the provided usage, using
the DURel semantic relatedness scale proposed
by Schlechtweg et al. (2018). In particular, as
shown in Table 6, we assumed a match between
the DURel scale and the organization of the
meaning in the OED. Each usage-definition pair
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4: Identical Identity Exact Sense
3: Closely related Context variance Peer Sense
2: Distantly related Polysemy Related Sense
1: Unrelated Homonymy Homograph

Table 6: The relation between the DURel scale
(left), the respective continuum of semantic prox-
imity (middle) (Blank, 1997), and the OED derived
labels (right).

Figure 2: Ridge plot showing the distribution of OED
labels across increasing human annotated scores. The
x-axis represents the human annotated scores, while
the y-axis represents the density of different OED
labels.

was annotated by three annotators, and the final
score was obtained by averaging their ratings.

We used Amazon Mechanical Turk Amazon
Mechanical Turk for evaluation. More informa-
tion on the annotation guidelines, the cost, and
the annotator agreement statistics are reported in
Appendix F. Figure 2 shows the result of the
evaluation and the distribution of the DURel
scale scores across sense labels. For example,
when word usages with completely unrelated
senses (i.e., homonyms) are paired, the major-
ity of the humans label the relation as 1. When
evaluated against human annotations, both the
Janus-generated usages and the original OED us-
ages exhibit comparable performance in terms of
Spearman’s correlation and F1 score (Table 7).
This suggests that from a human perspective,

Dataset Spear. Correlation F1 score

Janus 0.57 0.72
OED Test set 0.58 0.72

Table 7: Annotation results. Spearman’s Corre-
lation and F1 score are calculated for the OED
labels compared to the human annotations, taking
into account both Janus and OED usages.

the OED usages and the Janus usages are effec-
tively indistinguishable by non-experts in terms
of their semantic accuracy. Similarly, in both
cases, related sense and peer sense were barely
distinguishable.

5.3 Temporal Accuracy
We next turn to temporal accuracy, referring to
whether the generated usage matches the year
given during generation. Evaluating this is typi-
cally very complex and challenging for humans,
as distinguishing between texts from different
decades, such as the 1950s as opposed to the
1990s, requires considerable expertise. Because
such expertise is difficult to find among available
annotators, we automated this task and broadened
the classification from a year to the decade in
which the year occurs.

However, measuring temporal accuracy is also
a computationally challenging task. Although con-
siderable work has been done in the past, the focus
has often been on larger segments of text, such as
paragraphs or entire documents (Vashishth et al.,
2018; Kanhabua and Nørvåg, 2009). It is gener-
ally accepted that classifying a single sentence,
as opposed to a paragraph or a full document, is
more difficult due to the limited context (Popescu
and Strapparava, 2015).

We fine-tuned roberta-large using the usages
from the OED training set to classify the decade
in which a given usage was written. The classifica-
tion spans 33 decades from 1700 to 2020. Further
details on the decade classifier can be found in
Appendix D.

Table 8 shows results with low accuracy
(0.13–0.15 on the validation datasets), highlight-
ing the complexity of correctly classifying the
exact decade. These results are in line with what
has been demonstrated in previous work. The
root mean squared error (RMSE) results are more
meaningful. The RSME results on the control
dataset show that the decade classification model
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Dataset RMSE Accuracy

GPT-3.5 143.44 0.05
GPT-4o 147.52 0.03
Few Shot GPT-4o 125.38 0.05
Llama3-8B Instruct 129.92 0.06
Llama3-70B Instruct 108.09 0.07
Janus 54.75 0.12
Janus (PoS) 52.69 0.12

Control dataset 47.97 0.13
OED Test set 52.75 0.15

Table 8: Temporal accuracy. RMSE and Accu-
racy are reported for each model. Validation
datasets in italics, generated datasets above.

Figure 3: Root mean square error over time for Janus
using different temperatures.

is valid as it predicts the decade of sentences
with an error of just 47.97 years. In this dataset,
while classification may be easier due to longer
sentences offering more context, the model is
challenged by having to classify sentences that are
filled with OCR errors, tokenized and extracted
from different resources. For the OED test set on
the other hand, the sentences are typically shorter
and we get a slightly higher RMSE of 52.75.

Fine-tuned Janus models proved able to gener-
ate usages that were comparable to the validation
datasets, with an RMSE of (54.75/52.69), similar
to that of the OED test set (52.75). All other mod-
els had an RMSE at least twice that of the Janus
models, with the Llama 3 70B Instruct slightly
ahead of 8B Instruct.

The RMSE of Janus for different temperature
settings is shown in Figure 3. The values were very
low around the year 1700, where it is likely that
the capitalization of nouns allows the classifier
to correctly assess the decade, but spike about
50 years later. This spike is probably due to the

challenges of generating texts from that era, which
are masked by the prevalent noun capitalization
of the early 18th century. After the year 1800, the
values normalize and we find a temperature effect:
The higher the temperature, the more temporally
accurate the generated sentences. This could stem
from the training data being dominantly modern.
To access less-likely phrasing and wording, a
higher temperature setting is needed to allow the
model to access long-tail knowledge.

6 In-depth Analysis

Semantic Accuaracy and Word Types We
conducted a detailed analysis of semantic ac-
curacy based on the scores obtained from the
WSD model, across factors such as part of speech,
word frequencies, and outdated senses. We mea-
sured the average predicted scores within the same
sense where we expected perfect scores close to
4. To assess the statistical significance of the
mean differences among different groups, we used
ANOVA tests, all of which yielded statistically
significant results (p-value < 0.01). In terms of
parts of speech, the average predicted scores were
lower for adverbs (average score of 3.70) com-
pared to nouns (3.78), verbs (3.80), and adjectives
(3.84) indicating difficulty recognizing the same
sense of an adjective across different usages. Word
frequency also played a role: More frequent words
(bands 1–5) achieved higher scores (3.85) than less
frequent words (bands 6–14), which scored an av-
erage of 3.78. Additionally, the ability to identify
usages of the same outdated sense–those consid-
ered archaic or obsolete–was lower (average score
of 3.37) compared to non-outdated senses (3.80).

However, when we examined the human eval-
uation data, the differences were not statistically
significant for any of the studied dimensions. This
may be due to the fact that (i) in the computational
evaluation, the difference we observe between the
groups is due to a bias in the WSD model used
for the evaluation rather than in Janus; or (ii)
the annotated sample size is insufficient to derive
significant differences.

Temporal Effect on Semantic Accuracy We
found that the temporal dimension significantly
impacts the annotation process. In previous work,
including our own, it has been assumed that the
nature of annotation (WiC-style) is so general that
extensive knowledge of the historical period is
unnecessary. As a result, employing annotators
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Figure 4: Semantic accuracy over time (human anno-
tation). The bar chart represents the number of sen-
tences evaluated in each time interval (left axis), while
the line chart shows the semantic accuracy correlation
for Janus and OED dataset (right axis) across histori-
cal periods.

Figure 5: Semantic accuracy over time (computa-
tional evaluation). Correlation over time, computed be-
tween WSD model scores and OED scores. OED test
set (top), generated usages (bottom).

with specific expertise in history or historical
linguistics has not been considered essential for
this task. However, in Figure 4, we report semantic
accuracy (Spearman correlation) calculated based
on the year each sentence was written, with results
grouped into 50-year intervals. Semantic accuracy
improves over time, rising from 0.45 to over 0.7.
Examples generated by Janus and those from the
OED exhibit a similar trend, both reflecting this
upward progression. For completeness, Table 13
in Appendix F also reports the agreement between
annotators, calculated based on examples from
different time periods. Notably, the period from
1900 to 2000 shows the highest level of agreement
among annotators.

The historical period also influences compu-
tational evaluation. In Figure 5, we show the
correlation of Semantic Accuracy, calculated by
the WSD model, based on the usages generated

Figure 6: Temporal word choice. The figure shows ar-
chaic pronouns (thee, thy, thou, thine) declining sharply
after 1800 and nearly disappearing by the late 19th cen-
tury, while modern pronouns (you, your) rise steadily
from the 18th century.

by the models and the OED test set. The Semantic
Accuracy for the WSD model increases over time,
particularly up until 1850, after which it appears
to stabilize. In general, we observe the same trend
for all models, indicating that fine-tuned models
behave similarly to instructed models over time
while achieving higher temporal accuracy. The
decrease in performance in earlier periods can-
not be attributed to stylistic changes, as noted in
Section 5.3, where we observed that instructed
models exhibit a gap of over 100 years. Instead,
it is more likely due to a greater prevalence of ar-
chaic word senses in historical texts, which models
trained primarily on contemporary data struggle
to handle.

Temporal Analysis of Language and Semantic
Shifts in the Janus-generated Usages We an-
alyzed how Janus uses temporal cues to generate
historically accurate texts. We generated a di-
achronic corpus from 1700–2010 with 100 usages
per decade for each entry in the OED test set. We
focused on context words (excluding the target
word w) to assess the fine-tuned models implicit
understanding of language across decades. For
example, we examined the frequency of archaic
pronouns like thee, thy, thou, and thine (Figure 6)
and found a decreasing frequency, while you / r
had an increasing frequency. We explored Janus’s
awareness of temporal shifts in word meaning
(Figure 7) by noting that it uses a context word
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Figure 7: Temporal sense-awareness. Cosine similarity
trends between awful / mess and awful / impressive
computed using XL-LEXEME (Cassotti et al., 2023)
embeddings, show a semantic shift. Initially linked to
impressive, awful began associating with mess around
1850, similar to what was found in Hamilton et al.
(2016).

Figure 8: Temporal relevance. The plot shows mentions
of US presidents over time: Adams is consistently
mentioned from 1790, Jackson gains prominence from
1820, and Obama only appears after 2010, reflecting
their historical timelines.

like awful in a temporally accurate way. Addi-
tionally, we evaluated how Janus handles relevant
named entities over time, such as US presidents
(Figure 8). We found that Janus correctly ref-
erences presidents in their appropriate historical
contexts, mentioning Obama only after 2010 and
Nixon after 1960.

Out-of-distribution Usage Generation Build-
ing on studies like Periti et al. (2024), which
highlight the challenges of LLMs with unseen
meanings, we explored Janus’s ability to gener-
ate usages beyond its training distribution. We
analyzed seven cases where Janus was tested on
fictional or historically inaccurate word senses
(Table 10 in the Appendix). When there is a
strong semantic link to existing senses, in, e.g.,
generalization or auto-antonym shifts, Janus relies
more heavily on pretrained knowledge and ignores
the definition provided by generating ambiguous
sentences (w = train, di = ‘A conveyance, a form of

transport.’ u = I’m a huge fan of the train and believe
it is the future of public transport in London.) or using
negation in the case of auto-anonym shift (w =

good, di = ‘Of poor quality or little worth.’ u = I
hope your year isn’t good, I hope it’s great, I hope
you go a long way and see things you’ve never seen.).
When we instead introduce a domain shift, e.g.,
metaphorical extension, the sentences are nicely
aligned with the definition provided (w = zebra,
di = ‘A mixture of dissimilar qualities or traits.’ u =

The zebra of his playing: a big and powerful stroke on
one side, and a delicate tap on the other).

7 Application of Generated Usages

We aim to verify whether automatically gener-
ated word usages can be used effectively for
training and evaluating models in downstream
applications. Specifically, we choose the Lexi-
cal Semantic Change Detection (LSCD), where
the aim is to determine how much a word has
changed over time based on usages from differ-
ent time periods. The LSCD pipeline typically
involves, for each word, sampling of usages from
two different time periods. Next, these usages are
compared pairwise (either from within each time
period, or across periods) and assigned a score
using the DuREL scale (1–4, Table 6). Consid-
ering these usages as nodes and the scores as
edges, a Diachronic Word Usage Graph (DWUG)
is constructed and the usages are clustered us-
ing graph clustering. Change scores are obtained
by analyzing (frequency) changes of the resulting
clusters.

For this study, we focus on the first step,
the pairwise comparison of usages, commonly
known as graded Word-In-Context (WiC) task.
We first evaluate using the standard English LSCD
dataset, the DWUG EN dataset (Schlechtweg
et al., 2022a), which consists of 46 words with
annotated usage graphs with sentences sampled
from time periods 1810–1860 and 1910–1960.
Next, for the same 46 words, we take exam-
ple sentences from the OED, WordNet (Miller,
1992) and SemCor (Miller et al., 1993) and con-
struct WiC datasets. These are constructed such
that example sentences from the same sense are
labeled as 1 and from difference senses are la-
beled as 0. The example sentences from OED are
taken from two historical periods (1800–1900 and
1900–2000), while WordNet+SemCor have only
modern sentences. Using these datasets, we want
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Model WordNet+SemCor OED DWUG EN
1800–1900 1900–2000 1810–1860 1910–1960 All

roberta-large 0.37 0.32 0.39 0.36 0.45 0.38
+ WN 0.36 0.51 0.63 0.41 0.52 0.46
+ OED (1800) 0.46 0.62 0.68 0.48 0.55 0.50
+ OED (2000) 0.49 0.62 0.73 0.48 0.59 0.53
+ OED (ALL) 0.46 0.65 0.73 0.48 0.58 0.52

Table 9: Spearman correlation for roberta-large and its fine-tuned versions on the Word-in-Context
(WiC) task. The fine-tuned models are trained on synthetic usages generated by Janus using definitions
from WordNet (WN) and the Oxford English Dictionary (OED). The models are evaluated on real-world
usages from WordNet+SemCor, OED, and DWUG EN.

to know if Janus generated, synthetic usages can
help improve model performance on the graded
word-in-context task.

To fine-tune the models, we generate Janus
usages for the 46 words of DWUG EN using defi-
nitions from both WordNet (WN) and the Oxford
English Dictionary (OED). Since WordNet is a
synchronic dataset, we generate examples for the
year 2000. For the OED, we generate usages cor-
responding to the years 1800 and 2000, as well as a
combined set (OED ALL) that includes examples
from both time periods. For each word-definition
pair in these datasets, we generate 100 usages.

For model training, we adopt a Siamese encoder
approach following Cassotti et al. (2023). The tar-
get word is highlighted using special tokens (<t>
and </t>) surrounding it. Each usage pair is en-
coded with roberta-large, and the centroid of the
subword vectors is used as the final usage repre-
sentation. The model is trained with a contrastive
loss to ensure that vectors of word usages with
the same meaning are closer in space, while those
with different meanings are farther apart.

Table 9 presents the performance of different
models: roberta-large and its fine-tuned ver-
sions using generated usages (+WN, +OED).
The baseline roberta-large model achieves mod-
erate performance, with scores ranging between
0.32 and 0.45, performing best on DWUG EN
(1910–1960). Fine-tuning roberta-large on syn-
thetic usages derived from small datasets leads
to notable improvements, despite the limited
training data (only 46 words from DWUGs).
roberta-large+WN exhibits stronger performance
on OED (1800–1900) and OED (1900–2000),
while roberta-large+OED achieves the highest
scores, particularly in OED (1900–2000) and
DWUG EN (1910–1960).

8 Related Work

Generating Dictionary Examples Barba et al.
(2021) represents the first attempt to employ gen-
erative models for producing novel word usage
examples for previously unseen dictionary entries.
Specifically, this work fine-tunes BART (Lewis
et al., 2020), an encoder-decoder model, and the
evaluation process focuses on: (i) estimating the
semantic accuracy of the generated sentences by
classifying them using a WSD model based on
BERT (Devlin et al., 2018), and (ii) assessing
fluency (whether the sentence is logical and gram-
matically correct) and coherence (whether the
word’s meaning aligns with its given definition).
He and Yiu (2022) introduce the first constrained
generation approach for example generation. The
constraints are designed to generate sentences that
optimally reflect the reader’s educational level,
offering control over both readability and sen-
tence length. Cai et al. (2024) evaluate example
generation by prompting various LLMs. Their
evaluation combines automatic methods with hu-
man validation, assessing whether the generated
sentences are preferred over real-world examples.
The results indicate a preference for the generated
sentences.

These previous studies relied on a smaller subset
of the OED dictionary without temporal informa-
tion (Gadetsky et al., 2018). Our work goes beyond
previous work by generating example sentences
over long timespans while taking the temporal
language into account. For this reason, we created
a new dataset using the OED API that preserves
the year from which the example sentences stem.
Our dataset differs from previous ones in both
size (it is significantly larger) and OED version
(using a later version). Unfortunately, the absence
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of sense identifiers in the previous dataset makes
direct comparison challenging.

Our work is the first to assess both temporal
accuracy and context diversity–two fundamental
aspects in LSCD applications. Furthermore, unlike
previous studies, our evaluation of semantic ac-
curacy extends beyond ensuring that the sentence
aligns with the provided definition. We also focus
on ensuring that the sentence is unambiguous and
does not express other meanings. Therefore, our
method penalizes cases where the usage does not
distinctly reflect the intended meaning. For exam-
ple, the term meat used to refer broadly to food but
has narrowed to mean flesh. The OED provides
clear examples of this shift, such as ‘‘First take all
the meat out of the lobster,’’ where meat clearly
refers to flesh. However, in broader contexts like
‘‘He had meat and drink enough,’’ the meaning
of meat becomes more ambiguous. By accounting
for the word’s other meanings, we make our eval-
uation more robust and better suited for testing the
creation of semantic change datasets.

Resources for LSCD While semantic change
can be modeled on any temporal dataset, prior to
2020 evaluation relied on small datasets of words
with attested meaning changes in lexicographic
resources (Hamilton et al., 2016; Rudolph et al.,
2016; Yao et al., 2018; Frermann and Lapata,
2016). SemEval-2020 Task 1 (Schlechtweg et al.,
2020) marks the first systematic approach to eval-
uation grounded in the texts themselves using the
DURel framework (Schlechtweg et al., 2018).

Despite this progress with follow-ups in several
languages, two key limitations remain: (1) explicit
word sense labels, and (2) longitudinal datasets
covering multiple time periods. The former can be
addressed by splitting synchronic sense-annotated
corpora (Schlechtweg and Schulte im Walde,
2020), but inherits the limitation of both the small
size and the synchronic nature of the corpus. The
latter is addressed using diachronic corpora and
the introduction of synthetic changes by altering
word frequencies or contexts using a replacement
schema (Kulkarni et al., 2015; Shoemark et al.,
2020; Dubossarsky et al., 2019). Although this
produces a naturally changing linguistic style,
the sentences are not natural (e.g., the chair was
purring loudly).

Generative Models for LSCD When modeling
semantic change, LLMs are usually used in one

of two ways (Periti and Montanelli, 2024): (1) as
computational annotators, where instruct-based
models have been used to predict the annotation
between sentence pairs (Karjus, 2023; Wang and
Choi, 2023; Periti and Tahmasebi, 2024); or (2)
to generate definitions for each usage of a word,
either using prompting or fine-tuning (Giulianelli
et al., 2023; Fedorova et al., 2024). Despite these
advances, there is a notable gap in the literature
regarding the ability of these models to augment
data for historical texts. Although LLMs have ac-
cess to vast amounts of data, historical data is
underrepresented compared to modern data, as the
majority of their training data is sourced from
the Web. This paper shows that LLMs specifi-
cally fine-tuned to model the temporal dimension
can generate text that is temporally accurate to a
substantial degree.

9 Conclusion

In this paper, we have demonstrated signifi-
cant progress in the generation of sense and
time-specific text using LLMs. We have shown
that Llama, when fine-tuned, can generate histor-
ically accurate text and that higher temperature
settings improve stylistic authenticity at the ex-
pense of semantic accuracy—a consequence of
the long-tail distribution problem. We have suc-
cessfully developed a model capable of generating
historical texts with properties that closely mirror
example sentences found in the OED. Qualitative
investigation of the generated sentences shows that
in the context of a target word w, the model uses
temporally accurate clues such as word choices
(e.g., thee, thou, you); and correct senses of the
context words (e.g., gay used as happy, awful as
impressive).

Our contributions include the development
of a time classifier, a sense classifier, and a
robust methodology that can be utilized in fu-
ture research and adapted for new models of
historical text generation. Additionally, we pro-
vide a human-annotated dataset of word usages
paired with the corresponding sense definitions, a
valuable resource for further studies. Our em-
pirical evidence confirms a strong alignment
between the DURel scale and the hierarchical
structure of the OED, reinforcing the validity
of our approach. Janus opens new avenues for
the study of lexical semantic change by enabling
model training and testing with accurate historical
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sense-annotated data over extensive time periods,
where previously, no such data existed.

Our findings demonstrate that the temporal
dimension influences both model performance
and annotation outcomes. Future research should
consider these factors by more thoroughly in-
vestigating the role of temperature settings in
models and by employing experienced annota-
tors. The ambiguity of the OED labels, influenced
by the lumpers and splitters issue, presents in-
triguing avenues for research. Moreover, while
our work currently focuses on English, there is
potential to extend it to other languages by testing
Janus’s zero-shot capabilities or by fine-tuning on
additional languages.
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A OED Test Set Statistics

The dataset consists of 2,768 lemmas, which in-
clude 357 adverbs, 760 verbs, 773 adjectives, and
994 nouns. Within this dataset, there are a total
of 13,762 senses, of which 6,607 are identified
as main senses, 2,697 were introduced after 1800,
and 355 have become outdated. In Figure 9, we
present the distribution of words according to their
frequency band and the number of main senses.
The highest concentration of words (as indicated
by the yellow color) appears in the region where
the frequency band is around 10 and the number
of main senses is around 4. As we move from left
to right on the x-axis (increasing frequency band),
there is a general trend of increasing word count
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Figure 9: Heatmap showing the distribution of words
based on their frequency band (x-axis) and the num-
ber of main senses (y-axis) in the dataset. The
color intensity indicates the number of words within
each category, with yellow representing the highest
concentration.

until around band 10, after which it diminishes.
Similarly, as we move up the y-axis (increasing
number of main senses), the number of words
seems to initially increase but then decreases,
indicating that while some words have multiple
senses, it is less common for very frequent words
to have many senses.

B Prompting

We used the n parameter of the OpenAI API’s
GPT-3.5 and the num return sequences pa-
rameter of the HuggingFace API to generate
multiple responses to the same prompt, creat-
ing different examples for the same definition,
lemma, and year. The prompt is:

Retrieve a sentence from the year yearwhere the
word lemma means definition. If you can’t
find one, create a fictional sentence. The answer
should only contain the sentence.

Here, year, lemma, and definition are
replaced with the target values from the OED.
We consistently used the system prompt: You are
a helpful assistant. For Few-shots GPT-4o, we
provided five input-output pairs as examples7 to
guide the model in generating relevant sentences.
We post-processed the output from instruct-based
models using regular expressions, looking for
sentences within quotation marks or following
a specific pattern, like text after a colon. Once a
sentence was found, it was cleaned by removing
extra characters such as newlines and quotes. We

7The full prompt is provided in the Github repository.

then verified that the target word appears in the
cleaned sentence, noting its position.

C Fine-tuning

We fine-tuned the Llama3-8B pretrained model
using QLORA with 4-bit precision (nf4 quantiza-
tion) and half-precision (float16) computations, so
reducing memory usage and enabling training on
less powerful hardware. The tokenizer was cus-
tomized with special tokens <|s|>, <|t|>, <|end|>,
and [PAD], and <|p|> for Janus (PoS) to denote the
part of speech tag. Sequences were left-padded for
consistency. Input data were formatted with spe-
cific markers for sections such as year, lemma, and
definition, and tokenized to a maximum length of
512 tokens. Training was configured with a batch
size of 4, gradient accumulation over 2 steps, and
a learning rate of 0.0002, running for 1 epoch with
checkpoints saved at the end of each epoch. The
LORA configuration includes an alpha set to 16,
a dropout of 0.1, and a rank of 8.

D Decade Classification

We fine-tuned the roberta-large model for
sequence classification with 33 labels. The dataset
was tokenized using a tokenizer from the base
model, with texts truncated and padded to a set
length. The data were split into 90% for training
and 10% for validation. We trained the model for
one epoch using a learning rate of 1e-6 and a batch
size of 32. Evaluation and model saving occurred
at every 10% of the total steps, with performance
measured by the weighted F1 score after each
evaluation.

E Sense Classification

We fine-tuned roberta-large for a regression task,
predicting the OED labels (Homograph (1), Peer
Sense (2), Related Sense (3), or Exact Sense (4)).
The model was trained using the MSE loss, treat-
ing the task as a continuous prediction problem.
The tokenizer was extended with two special to-
kens (<t> and </t>) to mark the target word
in the input text. The model’s token embeddings
were resized to include these tokens. The dataset
was split 90-10 into training and validation sets,
and the text was tokenized with truncation and
padding. We trained the model for one epoch with
a learning rate of 2e-5, a batch size of 32, and a
weight decay of 0.01.
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Case Year Lemma Definition Generated Usage

Auto-antonym shift
(Not attested)

2020 good Of poor quality or little worth. I really did not like the new good quality product
on the car.
What does your mother think of this good looking
man?
I hope your year isn’t good, I hope it’s great, I
hope you go a long way and see things you’ve
never seen.

Auto-antonym shift
(Not-attested Period)

1800 awful Used to emphasize something
unpleasant or negative.

He was so angry at his son’s conduct that he
threatened an awful blow.

Auto-antonym shift
(Not-attested Period)

2020 awful Demonstrating or indicative of
profound reverence or respect.

The ceremony begins with the awful entry into
the chamber of a priestess.

Neologism 2020 tably Of a surface: Without curvature, in-
dentation, or protuberance; plane,
level.

He was on tably level ground.

Metaphorical shift
(Not attested)

2020 zebra A mixture of dissimilar qualities or
traits.

The zebra of his playing: a big and powerful
stroke on one side, and a delicate tap on the other.

Generalization shift
(Not attested)

2020 train A conveyance, a form of transport. He’d rather drive a four-wheel-drive, six-speed,
automatic train with a big engine and lots of
body.
I’m a huge fan of the train and believe it is the
future of public transport in London.

Specialization shift
(Not-attested Period)

1800 record The known history of the life or
career of a person, esp. a public
figure.

He is one of the most amiable, gentle and benev-
olent men that ever lived and, in the record of
his life ...

Table 10: Generated usages for different cases of pretrained knowledge testing.

F Annotation

We used Amazon Mechanical Turk to collect
annotations from crowd workers based in the
United States, Canada, the United Kingdom, or
Australia. Workers spent an average of 16 seconds
per sentence pair, earning 3.5 cents per pair. The
study cost a total of $926.35, with $573.09 going
to workers, $168.13 to MTurk fees, and $185.31
to taxes.

The annotators were provided with the follow-
ing guideline:

Determine how closely the definition matches
the meaning of the bolded word in the sentence,
using a scale from 1 (Unrelated) to 4 (Identical),
or select ‘Cannot decide’ if you are unsure.

The annotation results, as summarized in
Table 12, highlight key differences between the
DWUG datasets and our study. Unlike the DWUG
EN, SV, and DE datasets, which are annotated
word usage pairs, our study focused on sense
definition usage pairs, similar to the DWUG LA
dataset. However, DWUG LA achieved a higher
Krippendorff’s alpha (0.62) than ours (0.52).
This difference may stem from DWUG’s use of
highly skilled annotators, such as PhD students,
and smaller, carefully selected groups, leading to
more consistent annotations. Our larger pool of
over 100 annotators introduced more variability,
likely reducing overall agreement and impacting
Krippendorff’s alpha. Additionally, in Table 13
we report the Krippendorff’s alpha computed
over time.
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Model BScore Generated Sentences

Few-Shot GPT4-o 0.89 The chimney did reek thick smoke into the evening air, much to the
dismay of the townsfolk.; The factory chimneys reek out thick clouds
of smoke, darkening the sky.; Forth from those jovial fair Assemblies,
where the gay reeked out full in their Faces, the hot and reeking Scents
of Wine and Meat.; The chimneys now reek out the dense fog that
covers the village each evening.; The chimney did reek out a thick,
black smoke that darkened the sky.; The reeking pest moistens the
ambient air, while the thick sulphur clouds ascend in curling wreaths.;
Factory chimneys, belching and reeking out their noxious plumes,
darkened the sky above the industrial town.; The chimneys did reek
out a thick and murky smoke that clouded the village.; War was but a
pastime, a sport, reeking out blood and fire.; The factory did seem to
reek out great clouds of noxious smoke, casting a pall over the entire
village.

Janus 0.82 I have often remarked how many of the principal towns in England
are smokeless and unhealthful, owing to a want of chimnies, and not
reeking the smoak of their own fires, the houses remain damp and
cold.; I was sitting i’ my chair, and smoking my pipe with my gudeman,
when in came a man reeking out his fum.; That the whole of this vapour
or gas is not reekin up to the top of the mountain is apparent.; The
smoke he reeks out is far more sweet than that which arises from his
own faggots.; I reekit the stink of the stoor as I saunter about.; A
watter, that a body may haud in the mou and reeke in the air for a lang
time.; The steam of a cold stove will reek more strongly out of a clean
than a soiled pan.; The sma’, Reikin thro’ the crumblin’ glou’ a snaw.;
As for the reek of Peculiarities I do not see what you are about?; The
fire will reek more than smoke, if any one of your old family were so
poor as to go to begg.

Table 11: Example of context variance. Usages generated for the word reek in the year 1769, based on
the definition: transitive. To exhale, emit, or give out (smoke, fume, vapour, etc.). Frequently with out.
Frequently figurative and in extended use.

Dataset KRI

DWUG LA (McGillivray et al., 2021) 0.62
DWUG EN (Schlechtweg et al., 2022a) 0.61
DWUG SV (Tahmasebi et al., 2022) 0.56
DWUG DE (Schlechtweg et al., 2022b) 0.53

This paper 0.52

Table 12: Annotators’ agreement. The Krippen-
dorff’s alpha for ordinal data (KRI) is reported for
different datasets. Higher is better.

Year 1700 1750 1800 1850 1900 1950 2000

KRI 0.50 0.50 0.45 0.52 0.54 0.53 0.55

Table 13: Annotators’ agreement over time.
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