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Abstract
Curating datasets that span multiple languages
is challenging. To make the collection more
scalable, researchers often incorporate one or
more imperfect classifiers in the process, like
language identification models. These models,
however, are prone to failure, resulting in some
language partitions being unreliable for down-
stream tasks. We introduce a statistical test,
the Preference Proportion Test, for identifying
such unreliable partitions. By annotating only
20 samples for a language partition, we are able
to identify systematic transcription errors for
10 language partitions in a recent large multi-
lingual transcribed audio archive, X-IPAPACK

(Zhu et al., 2024). We find that filtering these
low-quality partitions out when training mod-
els for the downstream task of phonetic tran-
scription brings substantial benefits, most
notably a 25.7% relative improvement on
transcribing recordings in out-of-distribution
languages. Our work contributes an effec-
tive method for auditing multilingual audio
archives.1

1 Introduction

The development of NLP systems has been largely
uneven, mostly dominated by a handful of Western
European languages and some non-Indo-European
ones (Blasi et al., 2022). In some regards, this
is improving—only in the last few years, re-
searchers have open-sourced a number of notable
multilingual archives,2 such as MADLAD-400
(Kudugunta et al., 2024), VoxPopuli (Wang et al.,
2021), and OWSM (Peng et al., 2024).

The acquisition of these large multilingual
archives is complex, however. The data collec-

1https://github.com/smfsamir/audit-ipa.
2We refer to the entire multilingual dataset as an archive,

and each language variety’s subset as a partition. See Section 2
for discussion of this terminology.

tion pipeline needs to scale to a large number of
languages and a large volume of data for each lan-
guage. Enabling this scaling is the use of predictive
models: From language-identification models to
sentence-embedding based bitext mining meth-
ods (Kreutzer et al., 2022; Koehn et al., 2020) to
speaker diarization models (Wang et al., 2021).

These models, however, are prone to failure:
Major data collection errors in well-known ar-
chives have already been reported. In a compre-
hensive study over 5 major archives and over 70
languages, Kreutzer et al. (2022) report systematic
failures in language identification and bitext min-
ing, with greater error rates for lower-resourced
languages. Further, recent studies in multilin-
gual and long-form speech recognition found
that prominent speech archives contain substan-
tial chunks of untranscribed content, leading to a
high rate of deletion errors in speech recognition
models trained on this data (Tian et al., 2024; Fox
et al., 2024).

These studies demonstrate the complexity of
acquiring high-quality multilingual data. In this
light, the data collection pipeline itself can be
considered an imperfect approximation of the data
distribution we wish to sample from. As with any
approximation, common wisdom suggests that we
should aim to evaluate the quality of the ap-
proximation. Unlike the wealth of empirically
and theoretically established metrics and hypoth-
esis tests for comparing two models (Dror et al.,
2018), there is a remarkable dearth of methods for
evaluating the reliability of a semi-automatically
scraped dataset that may serve as ‘‘gold-standard’’
for future downstream applications.

In this work, we ask: How can we efficiently
identify languages or dialects where the data-
collection pipeline may have failed systemati-
cally? At a high level, we want to analyze a small
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subset of the partition for a language from a multi-
lingual archive, and determine whether its samples
are high quality. This analysis has two important
components. First, how do we determine if a sam-
ple is high quality? Second, how large should the
subset be to make our determination?

To answer these questions, we draw on the-
ory from statistical power analysis (Cohen, 1992;
Card et al., 2020). Specifically, we are interested
in accurately estimating preference (Bradley and
Terry, 1952): How much better does the parti-
tion capture the relationship of interest than an
existing baseline model? In particular, we elicit
preferences from human annotators to ground the
partition’s quality with judgments from domain
experts.

We ground our method in the task of phonetic
transcription, where the input is recorded speech
from any language, while the output is a tran-
scription into the International Phonetic Alphabet
(IPA). Phone recognition models have important
applications in language documentation, espe-
cially for oral languages (Bird, 2021; Lane and
Bird, 2021). The training datasets for this task are
often semi-automatically generated, so that many
languages can be represented (Section 2).

Consider the partition for one language in
such a semi-automatically populated multilingual
archive. If a knowledgeable user consistently pre-
fers the output of an existing (imperfect) base-
line model over the ‘‘ground-truth’’ transcripts
in the partition under audit (see Figure 1), then
this indicates that this language partition is un-
reliable. We refer to this statistical test as the
Preference Proportion Test, or the PPT, which
we introduce in Section 3.2. Critically, we as-
sert that only a small fraction of examples needs
to be annotated to attain a high-powered test of
whether a language partition should be flagged as
unreliable.

To illustrate the effectiveness of the PPT, we
perform a case study on a recent large multilin-
gual phonetic transcript archive—the X-IPAPACK

(Zhu et al., 2024), comprising transcribed audio
for 78 languages. Applying the PPT, we effi-
ciently identify 10 language partitions in the ar-
chive that have unreliable transcripts. We find
that a model finetuned on the filtered version of
the archive—without the unreliable 10 language
subsets—generalizes better to a test set (compris-
ing 5 held out languages) than a model trained
on the complete archive.

Figure 1: Multilingual archives have been reported
to contain a high degree of quality-control issues,
especially for lower-resourced languages. We audit
the quality of each language partition in a multilin-
gual archive by annotating a small sample from it.
Specifically, expert annotators select between the
gold-standard transcript and one generated by a

baseline model prediction . When the baseline model
predictions are consistently preferred over the gold-
standard, we conclude that the language partition
should be flagged for re-labeling.

We find two ways in which low-quality data
can be especially pernicious. First, we find the
largest improvement on the Punjabi partition of
our held-out evaluation dataset (an error reduction
of 20.3%) possibly due to omitting the unreliable
transcripts from the Sindhi partition, suggesting
that the effects of poor data quality can tamper
with performance in related language varieties.
Second, we also find a 25.4% improvement on
out-of-distribution languages after training on the
PPT-filtered archive, suggesting that low-quality
data has a considerable impact on lower-resourced
languages. Our empirical results add nuance to
the purported benefits of data-scaling (Hoffmann
et al., 2022, for example).

Finally, we emphasize that filtering out low-
quality data, while highly effective, is not a pan-
acea for building robust multilingual models.
Some works have suggested that high-quality data
on a small number of language varieties is suf-
ficient to obtain a ‘‘universal’’ or ‘‘language-
agnostic’’ model (Taguchi et al., 2023; Li et al.,
2020). Our empirical results in phonetic transcrip-
tion, however, do not support this position. Lever-
aging a phone segment-level error metric, we find
that existing universal phonetic transcription mod-
els are instead highly attuned to sounds that are
more common in their respective training datasets,
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while making more errors on unfamiliar sounds.
Overall, this suggests that more diverse and high-
quality data collection is required for equitable
performance across languages and their varieties.

2 Related Work

Desai et al. (2024) analyze large-scale NLP
datasets through the lens of traditional archival
studies. They argue that NLP datasets can be inter-
preted as power-laden (informal) archives. These
archives not only afford the capabilities of future
generative models, but—in the case of multilin-
gual archives—also mediate our understanding of
different cultures. Thus, appraising the quality of
different language partitions of these multilingual
archives is highly important.

However, appraising the quality of NLP
archives has proven challenging due to their
immense scale. Researchers have taken to al-
gorithmic filtering methods (Desai et al., 2024,
Table 2), but a number of studies have argued
that these methods reproduce if not exacerbate
existing societal inequalities. Dodge et al. (2021)
found that the C4 corpus derived from Common-
Crawl applied algorithmic filters that excluded
different dialectal varieties of English. Recently,
Hong et al. (2024) found that CLIP-filtering re-
moves data pertaining to LGBTQ identities and
non-Western regions at higher rates.

When it comes to multilingual audio archives,
we can consider the Whisper model’s training
data (Radford et al., 2023). In compiling their
training dataset, they report filtering out audio-
transcript pairs where the transcripts were entirely
upper-cased. In doing so, the authors sought to
remove transcripts generated by speech recogni-
tion models. However, many languages do not
encode case. This filtering rule thus could only
serve as quality assurance for some language par-
titions, in particular those that employ the Roman
alphabet. Such filtering rules are a product of a
researchers’ language knowledge and proficiency,
which is known to be skewed towards Western
institutions—specifically, the languages spoken
and studied there (Held et al., 2023). There is thus
a systemically greater risk for language varieties
from certain regions to contain unrepresentative
data that was generated by a speech recognition
model. This contributes another means by which
data processing pipelines recapitulate societal and
structural inequities (Hong et al., 2024; Bender

et al., 2021; Dodge et al., 2021; Desai et al., 2024;
Benjamin, 2019).

By contrast, in a comprehensive study on sev-
eral prominent multilingual text archives, Kreutzer
et al. (2022) demonstrate the importance of inten-
tional manual appraisal. Through a collaborative
effort in annotating multiple language partitions
in these archives, they found that low-resource
language partitions in archives tended to con-
tain high rates of text that was from a differ-
ent language, or non-linguistic content altogether.
The low-resourced status of a language is influ-
enced by the sociopolitical history that defined its
marginalization (Nigatu et al., 2024). Its poor rep-
resentation in a multilingual archive thus unfor-
tunately reproduces inequity in a digital format.

In accordance with Kreutzer et al. (2022), we
thus advocate that researchers intentionally (rather
than algorithmically) appraise the quality of in-
dividual language partitions before leveraging a
multilingual archive for a downstream task. We
describe a novel comparative approach for this
appraisal in the next section, through a case study
on a recent multilingual archive. We look at the
X-IPAPACK archive (Zhu et al., 2024), compris-
ing phonetically transcribed audio for a number
of language varieties. Critically, we argue that
our comparative appraisal procedure can be com-
pleted on a small fraction of the samples in the
language partition, making the appraisal process
both feasible and effective.

Although Zhu et al. (2024) reported having
manually appraised each language partition by in-
specting 10 of its audio samples, our comparative
procedure identified subtle yet systematic tran-
scription errors in several partitions (Section 3)
that were previously overlooked. Further, we find
that removing these partitions yields major im-
provements in the downstream task of automatic
phone recognition (Section 4).

3 Case Study: Auditing X-IPAPACK

In this section, we introduce the Preference Pro-
portion Test for efficiently auditing the quality of
a multilingual archive. We ground our explana-
tion in a case study of the X-IPAPACK archive.
We first describe the X-IPAPACK archive and the
preprocessing of the text in the phonetic tran-
scripts (Section 3.1). Then, we introduce the test
(Section 3.2) and apply it to the X-IPAPACK archive
(Section 3.3).

597



Category Ex. #{Type} #{Tokens}
Valid primary p 107 21.8M
Valid one diacritic vj 282 2.1M
Valid two diacritics khj 67 62.5K
Unlikely / invalid tQQ 330 758K

Table 1: Documenting the frequency of phones
in X-IPAPACK-FLEURS. A phone is considered
valid if it is contained in the panphon database
(Mortensen et al., 2016).

3.1 X-IPAPACK Contents

Overview. The archive comprises phonetically
transcribed speech for 77 languages. The record-
ings and orthographic transcripts were provided by
Fleurs (Conneau et al., 2023), and the conversion
of the orthographic transcripts to phonetic ones
was done by Zhu et al. (2024).3 Each language
partition contains at least 3 hours of record-
ings (M = 10.12H, SD = 2.74H). Individual
recordings are at most 30 seconds (M = 12.14s,
SD = 1.68s). We next document and preprocess
the contents of the transcripts that are paired with
the recordings.

Transcript Composition. We segment each
phonetic transcript into individual phones, using
thelingpy tokenizer (List and Forkel, 2016). We
count the occurrence of each phone in each lan-
guage and categorize the phones into the taxonomy
in Table 1.

We find that the majority of the tokens (97.0%)
are valid ones. The majority of these specify a
primary place and manner of articulation. More-
over, there are a number of phones that have one
or two diacritics, for example vj, indicating pal-
atalization. Overall, the archive contains a high
degree of phonetic diversity.

Transcript Normalization. There is, however,
a long tail of 330 unrecognized phonetic strings
(according to the panphon database) out of a to-
tal 786 phone types. This represents 3.0% of the
total tokens in the corpus (approx. 758K/25M).
Some of these are invalid unicode representations
(e.g., ASCII g is different from the IPA velar

3The X-IPAPACK builds on data from three prior datasets:
MSWC (Mazumder et al., 2021), DoReCo (Paschen et al.,
2020), and Fleurs (Conneau et al., 2023). We focus on
auditing the Fleurs portion since it is the largest in terms of
the number of languages.

plosive g; 31,525 occurrences). Other times, there
are repetitions of diacritics, e.g., tQQ (129 occur-
rences). Another common error is non-standard
diacritics, e.g., oN (instead of oN; 264 occurrences).
We correct these invalid phones manually. After
our vocabulary cleaning, we arrive at an archive
with 473 unique, valid phones. We also document
the mapping from an invalid phone to a valid
phone.4

The occurrence of invalid or implausible phones
in the archive may be an artifact of the G2P mod-
els applied for converting the orthographic tran-
scripts in Fleurs to the phonetic transcripts in
X-IPAPACK. For example, one of the Grapheme-
to-Phoneme (G2P) models, CharsiuG2P (Zhu
et al., 2022), was a byte-level neural model with
no constraints mandating that only valid phones
be predicted.

3.2 Preference Proportion Test (PPT)

We now introduce the statistical test for assess-
ing whether a language partition in X-IPAPACK is
of reliable quality. Specifically, we ask whether
the transcripts are reasonably descriptive of the
recordings in the partition. The phonetic tran-
scripts were automatically generated using G2P
models from the orthographic transcripts and thus
there is a distinct possibility that the phonetic
transcripts do not closely reflect the recording.
As seen in prior work on multilingual G2P con-
version, performance is far from uniform across
language varieties (e.g., the error rate for Egyptian
Arabic is more than quadruple that of Spanish in
some models; Zhu et al., 2022).

Problem Setup. Formally, we have an archive
D with L partitions, one for each language in
X-IPAPACK – D1, . . . ,DL. The archive D com-
prises pairs (x,G(t)), where x is an audio record-
ing while G(t) is a phonetic transcript generated
by applying a G2P model to an orthographic tran-
script t. However, some of the partitions may be
corrupted from systematic G2P conversion errors,
making it unreliable for downstream tasks where a
tight correspondence between audio (x) and pho-
netic transcript (G(t)) is important. We would like
to efficiently identify highly unreliable partitions,

4The mapping is available here. We note that there are rare
cases of some phonemes such as zh that are attested (Jacques,
2011) (though rare), but considered invalid in panphon.
However, such occurrences are rare in both type and token
frequency. For example, zh only occurs 6 times.
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annotating only a small sample of Si ⊂ Di, where
|Si| << |Di|. We first describe the setup of the
annotation for each datapoint (x,G(t)), followed
by the construction of Si.

Annotating the Quality of a Transcript. Di-
rectly annotating the quality of a phonetic
transcript G(t) in its correspondence with the
audio x is challenging, as there is no reference
baseline for what makes a transcript high qual-
ity. Instead, we turn the task to one of pairwise
comparison, by asking an annotator to choose be-
tween two transcripts: the ground-truth (G(t))
or one generated by a reasonably-good qual-
ity phone-recognition model (M(x)), like that
of Xu et al. (2022) or Taguchi et al. (2023).
Eliciting preferences through comparisons rather
than absolute judgments has been championed in
other work, most notably in Reinforcement Learn-
ing from Human Feedback, where others have
commended the strategy for providing consistent
choices (Christiano et al., 2017). In Figure 1, the
transcripts deviate from one another—for exam-
ple, the top transcript begins with a rhotic while
the bottom begins with a lateral—and the annota-
tor can listen to the recording to determine which
transcript is more faithful.

Hypothesis Testing. In order to efficiently de-
termine whether Di is an unreliable partition of
X-IPAPACK, we annotate only a random sample Si.
Intuitively, if the annotator consistently prefers the
model-generated transcript over the X-IPAPACK

ground-truth version, (M(x) � G(t)), then
we may want to discard Di from applications
in downstream tasks until the transcripts are
improved.

Although G(t) is considered the gold-standard
transcript in X-IPAPACK, both G(t) and M(x)
are essentially (error-prone) predictions for the
phonetic transcript of x. We can thus assess the
reliability of G(t) by performing a model compar-
ison hypothesis test (Card et al., 2020) between
the two approximations. Specifically, the null
hypothesis is that the annotator has no prefer-
ence for the ground-truth transcript G(t) over
the model-generated one M(x), and the alter-
native hypothesis is that G(t) is significantly
unfavorable. We can model the degree to which
the annotator prefers the ground-truth X-IPAPACK

transcripts as θG, where 0 ≤ θG ≤ 1. When
θG << 0.5, we can conclude that Di is an unre-

liable language partition.5 We refer to this as the
Preference Proportion Test, or the PPT.

Listing 1: Prints the critical value (k) and statistical
power of a hypothesis test under a hypothetical effect
size (theta alt vs. theta null) and tolerance for
false positives (α), for varying numbers of trials (n).

For setting the sample size of the subset to an-
notate Si, we perform a power analysis (Cohen,
1992). We provide the code for the analysis
in Listing 1. The power analysis is a func-
tion of three arguments. First is the tolerance
for false positives α. Next is the effect size,
which is defined by two parameters: the differ-
ence between the preference ratio under the null
hypothesis (θ0G) and the alternative hypothesis
(θAG). We can then supply all three parame-
ters, for example, ppt sample size(0.05,
0.5, 0.2). We can then test a wide range of po-
tential sample sizes (for loop on line 4). For each
sample size, we can determine the critical value
(k; line 5), under which the null hypothesis (equal
preference for ground-truth or model-generated)
would be rejected. We must also compute the
power of this test (line 6), which tells us how likely
this outcome is under the alternative hypothesis
(model-generated is preferable).

As illustrated in Figure 2, our statistical power
increases with the effect size (θ0G − θAG) or the
number of samples. When we suspect some

5We choose the null hypothesis to be no preference
(θG = 0.5) becauseM(x) can, for certain languages, serve as
a very strong baseline. For example, as we show empirically
in Section 4, Xu et al. (2022) and Taguchi et al. (2023) train
very strong models for English and Japanese, respectively.
Thus, it is plausible that the annotator would be unbiased
with respect to G(t) compared to M(x), even if G(t) was
reliable for these two languages.
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Figure 2: Number of samples that have to be annotated
for the Preference Proportion Test (PPT; Section 3.2)
for different effect sizes, assuming a fixed false positive
tolerance of α = 0.05. We aim to achieve at least 80%
statistical power. We use an effect size of 0.3 for
auditing the X-IPAPACK archive; see Section 3.3.

language partitions to have considerable quality
impairments, we can use a large effect size (small
θAG) and detect such partitions by annotating only
a few samples.

3.3 Applying the PPT to X-IPAPACK

We now aim to identify any unreliable language
partitions Di of the X-IPAPACK archive with the
Preference Proportion Test (PPT). We describe
the selection of the language partitions to audit,
the number of samples to annotate in each parti-
tion, and how we format the datapoints to elicit
annotations.

Selecting Languages to Audit. We first select
some language partitions in X-IPAPack to audit.
To do so, we apply leverage existing phone recog-
nizers, and select languages where the recognizer
predictions have a high rate of discrepancies com-
pared to the gold-standard transcripts. To compute
the discrepancy, we follow Taguchi et al. (2023)
and use the Phonetic Feature Error Rate (PFER)
with phonetic feature vectors from panphon
(Mortensen et al., 2016). We normalize the er-
ror rates by the length of the X-IPAPACK transcript
in terms of number of phones, ensuring that the
variation in error rates is not an artifact of length.
In Figure 3, we plot the error rates for all lan-
guages in X-IPAPACK using the phone recognizers
of Taguchi et al. (2023) and Xu et al. (2022),
which we denote XLS-R ND and XLS-R FAIR,
respectively. We use these recognizers as they
demonstrated competitive performance against

Figure 3: Benchmarking the models of Taguchi et al.
(2023) (x-axis) and Xu et al. (2022) (y-axis) on
X-IPAPACK. Error rates for both models are measured
by phonetic feature discrepancies (Mortensen et al.,
2016) between the model-generated transcripts and the
transcripts in X-IPAPACK. In Section 3.2, we audit the
languages with relatively high-error rates (top-right
quadrant, in red), to determine whether the errors may
be attributed to poor-quality transcripts in X-IPAPACK.

human transcribers in recent work (Taguchi et al.,
2023).

We find that there is a substantial amount
of variation in performance across languages
for both models. In the top right of Figure 3,
language datapoints coded in red (e.g., Malay-
alam; length-normalized PFER: 0.20) achieve
error-rates more than double that of languages on
the bottom left (e.g., Swahili; length-normalized
PFER 0.08). As shown in Figure 3, this variation
is mostly robust to the choice of the recognition
model, which have a correlation of r = .84. We
thus select all languages with an error rate in the
third quantile of either model (.15 for Xu et al.
(2022) and .17 for Taguchi et al. (2023)) for anno-
tation with the PPT,L = 22 languages in total. For
each language, we generate transcripts using the
model that performs better for that language, for
example Xu et al. (2022) for English and Taguchi
et al. (2023) for Japanese.

Setting Parameters for PPT (n = 20; k = 5).
We are auditing for Di where there are system-
atic discrepancies between the audio x and the
ground-truth transcript G(t), so the value of θAG
for the alternative hypothesis should be much
lower than the null hypothesis θ0G value of 0.5.
We thus set θAG = 0.2 for the alternative hypoth-
esis, an effect size of θ0G − θAG = 0.3.6 With a

6Since this is a one-sided hypothesis test, our test will
detect θG ≤ 0.2.
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false positive error tolerance of α = 0.05, we find
that we can achieve a test with a statistical power
of 80.4% through annotating n = 20 samples
(Figure 2), which is considered a high-powered
test (Card et al., 2020). Specifically, we draw
n = 20 random samples from the partition
(without replacement); then we annotate the sam-
ples and reject the null hypothesis when only
k = 5 times or fewer do we prefer the X-IPAPACK

transcript G(t) over the model-generated one
M(x).7

Aligning Gold-standard and Baseline Tran-
scripts. Unlike an X-IPAPACK transcript G(t)
that contains space-delimited phone strings, the
corresponding phonetic language model transcript
M(x) is a phone string with no spaces. In order
to facilitate the comparison of the two tran-
scripts, we induce spaces in the model-generated
transcript using the Needleman-Wunsch align-
ment algorithm (Needleman and Wunsch, 1970;
Kleinberg and Tardos, 2006) to align the model
transcript with the transcript.8 Since the algorithm
requires computing the similarity between pairs
of phones, we employ articulatory feature vectors
from panphon. That is, we encode phones as
binary feature vectors – for example, whether the
phone is voiced or unvoiced) – enabling a graded
measure of similarity by computing the hamming
distance between the vectors (Mortensen et al.,
2016; Taguchi et al., 2023).

Annotation Process. For every datapoint, the
annotator selects between G(t) and M(x) as the
preferable transcript for an audio recording from
X-IPAPACK. We demonstrate the annotation inter-
face and instructions in Appendix B. They could
replay the recording as many times as desired
before making their choice, and could config-
ure the recording to play at normal speed or at
0.25/0.50/0.75 speed. Both G(t) and M(x) re-
flected a broad or phonemic transcription style,
as they are either the result of G2P conversion
(in the case of G(t)) or were trained on G2P

7It would also be plausible to select a slightly smaller or
slightly larger θG for the alternative hypothesis—this would
only require slightly fewer or more samples to be annotated,
respectively. The overall point is that for detecting large
quality dropoffs for G(t) (relative to M(x)), only |Si|
rather than |Di| samples need to be annotated.

8We could also remove spaces from both transcripts, but
this makes the transcripts very difficult to read.

Figure 4: Number of samples where the X-IPAPACK

transcript was preferred to one generated by a phone
recognizer. The bottom 10 languages have ≤ k sam-
ples (where k = 5) where the X-IPAPACK transcript is
preferred over the phone recognizer transcript, and thus
they fail the Preference Proportion Test.

Language G(t) M(x)

Egyptian Arabic taStahir teSteher

Malayalam Ùa:rinte Ùa:Riïãi

English tuflaI t@flaiI

Table 2: Examples of cases where the model-
generated transcript M(x) is preferable to the
ground-truth transcript G(t) from X-IPAPACK.
Note that transcripts and predictions are generally
longer (full sentences); see Figure 1 for a realistic
example of the annotation task.

transcripts (in the case of M(x)). The annotator
completed all 20 samples for a language parti-
tion Si from X-IPAPACK before moving onto the
next annotation subset Sj (j �= i).

Identifying Unreliable Language Partitions.
Figure 4 shows that out of the L = 22 languages,
we reject the null hypothesis for 10, indicating
that the X-IPAPACK transcript for these languages
is unreliable. We demonstrate examples where
we prefer the model in Table 2. For example, in
Egyptian Arabic (θG = 0/20), we find that the
vowels are systematically mis-transcribed, often
substituting open vowels (a) for close-mid ones
(e). In Malayalam (θG = 2/20), we find that the
transcripts regularly mistake retroflex consonants
for alveolar ones, in addition to misidentifying
voicing (t instead of d). We also find that the
model-generated transcript M(x) may be prefer-
able over the ground-truth transcript even when
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the ground-truth transcript G(t) reasonably rep-
resents the audio recording. For example, for
American English (θG = 12/20), while the
X-IPAPACK transcripts are generally reliable,
M(x) often provides a more faithful transcrip-
tion since it can identify cases of co-articulation
or reduction (@ instead of e).

Agreement on the PPT Annotations. In order
to assess the agreement that the flagged languages
were indeed of low quality, we had a second
co-author independently annotate 50 datapoints.
Specifically, they annotated 10 datapoints for 5 of
the flagged languages: Egyptian Arabic, Danish,
Gaelic, Malayalam, and Sindhi. We find that the
annotators largely agree, providing the same pref-
erence on 43/50 datapoints.

Summary. We demonstrate that annotation of
20 samples per language can enable identifying
unreliable language partitions in multilingual da-
tasets. Using our PPT procedure, we efficiently
identify a number of languages with low quality
transcripts (Malayalam, Egyptian Arabic, among
others) in the X-IPAPACK dataset. We thus rec-
ommend that these partitions be omitted from use
until their phonetic transcripts are remediated.

4 Data Quality Effect on
Downstream Performance

We now assess the downstream effect of remov-
ing the L′ = 10 unreliable language partitions
D1, . . . ,DL′ from the X-IPAPACK archive D. We
do so by training two phone recognition models,
one on D and one on D− (D1 ∪ · · · ∪DL′). More
specifically, we finetune two Whisper (small;
Radford et al., 2023) models on these datasets.
We refer to the former as Whisper and the latter
as Whisper-PPT. Further, we train an additional
model, also with L′ partitions removed, but on
partitions that were not flagged by the PPT. We
randomly selected and removed Tamil, Xhosa,
Cantonese, Hindi, Mandarin, Bengali,
Finnish, Hungarian, Italian, Kyrgyz,
and Maori; we refer to this model Whisper-
Anti-PPT. We provide hyperparameter details in
Appendix A. To contextualize our results, we also
compute performance for two other models that
demonstrated strong performance on multilingual
phone recognition: Taguchi et al. (XLS-R ND;
2023) and Xu et al. (XLS-R FAIR; 2022).

Model Th. En. Ja Pa. Am. Avg
XLS-R FAIR 20.3 7.0 15.9 15.1 18.2 15.3
XLS-R ND 19.0 15.2 10.5 15.2 18.6 15.7
Whisper 15.1 13.7 11.5 13.8 16.6 14.1
Whisper-PPT 15.2 12.3 11.2 11.0 16.4 13.2
Whisper- 34.8 14.8 14.8 14.0 17.3 19.1
Anti-PPT

Table 3: Performance on held-out languages from
IPAPack-Fleurs, as measured by Phonetic Feature
Error Rate (Median). We use the small variant of
the Whisper model. The macro-average is com-
puted by averaging the error rate across all 5
languages, with each language given equal weight.

For our evaluation dataset, we select 5 language
partitions from Section 3.3 that passed the PPT,
indicating they are trustworthy for evaluation.
Specifically, we evaluate on a test set Dtest com-
prising the X-IPAPACK evaluation partitions for
Thai, English, Japanese, Punjabi, and Amharic.
We hold these languages out from training of the
two Whisper-based phone recognition models. To
evaluate our models, we again compute the PFER
using phonetic feature vectors from panphon
(Mortensen et al., 2016).

4.1 Results

In Table 3, we demonstrate the performance of
the four models (XLS-R FAIR, XLS-R ND, Whis-
per, Whisper-PPT) on the 5 held out languages.
Averaging across the 5 partitions, we find that
Whisper-PPT achieves the best performance. Im-
portantly, it improves upon Whisper, despite the
latter being trained with more datapoints (drawn
from the low-quality transcript languages identi-
fied in Section 3.2) and 12% more optimization
steps (3982 vs. 4466, respectively, for completing
2 epochs of training on their respective datasets).

Low-quality Data Impairs Performance.
Comparing Whisper and Whisper-PPT, we find
the largest improvement on Punjabi (13.82 vs.
11.01 PFER), a relative improvement of 20.3%.
One likely reason for this sizeable improvement is
that through the PPT (Section 3.2), we pinpointed
in X-IPAPACK a related language (Sindhi) that
contained low-quality transcripts, and removed
it from the training set for Whisper-PPT. Both
Punjabi and Sindhi are Indo-Aryan languages
(Dryer and Haspelmath, 2013). Malayalam may
have also had an impact. Although it is from a
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different language familiy (Dravidian), it is also
spoken in the Indian subcontinent and may share
some common phonetic features from broad areal
effects (Everett et al., 2015). We also observe
improvements (albeit smaller ones) on English,
Japanese, and Eritrean, with Thai being the only
language where Whisper achieves a slightly
higher PFER over Whisper-PPT.

Importantly, we find that specifically removing
language partitions identified by the PPT results
in improved performance. Removing randomly
selected language partitions (Whisper-Anti-PPT),
results in far worse performance than any of the
baseline models, with a macro-averaged PFER of
19.1, a full 6 points below Whisper-PPT.

Multilingual Phone Recognition Models are not
Language-agnostic. Comparing Whisper-PPT
with XLS-R FAIR and XLS-R ND, we find that
the former achieves better performance in all but
two: English for XLS-R FAIR and XLS-R ND
for Japanese. This is likely due to XLS-R FAIR
having English in its training set (Xu et al., 2022)
and XLS-R ND having Japanese in its training set
(Taguchi et al., 2023).9 Moreover, when we train
another Whisper-PPT on all languages, including
X-IPAPACK-English, we obtain better performance
on English than XLS-R FAIR (PFER of 6.95 vs.
6.32). Thus, we find that despite all the models
having been trained on a reasonably diverse set of
languages, performance still varies depending on
the exact training data composition.

4.2 Evaluation on IPAPACK-DORECO

Next, we evaluate the models on another parti-
tion of X-IPAPACK, the DoReCo partition (rather
than the FLEURS partition we have been using up
to this point, Zhu et al., 2024) to further assess
model capabilities on an out-of-distribution set of
languages. X-IPAPACK-DoReCo comprises pho-
netically transcribed speech for 44 endangered
languages (Paschen et al., 2020). The utterances
tend to be shorter than X-IPAPACK-Fleurs (Zhu
et al., 2024). Note that we don’t apply the PPT
on X-IPAPACK-DoReCo, since its construction had
oversight from expert linguists for each language
(Zhu et al., 2024; Paschen et al., 2020). This eval-
uation sheds further light on model performance

9It’s worth noting that Japanese is also in the XLS-R
FAIR training set. Despite this, its performance compared
to Whisper-PPT and XLS-R ND is considerably worse.

Model PFER (Median) Var. (IQR) Best

XLS-R FAIR 5.19 4.21 29/44
XLS-R ND 5.48 4.18 5/44
Whisper-PPT 5.60 4.39 10/44
Whisper 7.54 66.89 0/44
Allosaurus 7.53 5.04 0/44

Table 4: Evaluation results on X-IPAPACK-
DoReCo (44 languages). PFER: Phonetic Feature
Error Rate (Mortensen et al., 2016). IQR: In-
terquartile Range. Highest refers to the number of
times the model performed the best within one of
the X-IPAPACK-DoReCo languages.

since these languages were never seen during fine-
tuning for any of the models; they are also highly
unlikely to have been observed during the mul-
tilingual pretraining stages for Whisper (Radford
et al., 2023) and XLS-R (Babu et al., 2022).

Poor Data Quality Impairs Out-of-distribution
Performance. In Table 4, we see that Whisper-
PPT significantly outperforms Whisper (PFER
5.60 vs. 7.54, representing a 25.7% error rate im-
provement). We emphasize that the improvement
arises solely from having removed the low-quality
language partitions from finetuning (Section 3.3),
as no other factors were manipulated. We find
that trained on the unfiltered X-IPAPACK archive,
Whisper performs no better than a much older
model, Allosaurus. We also find that Whisper is
prone to entirely degenerate predictions, such as
empty strings and predictions of the same charac-
ter ad-nauseam, leading to some predictions that
incur an extremely high error and a high variance
(Interquartile Range; IQR) of 66.89. Whisper-PPT
is also susceptible to degenerate predictions, but
to a much lesser degree, given its reasonable IQR
(4.39). Overall, our results suggest that degen-
erate predictions are exacerbated by low-quality
training data.10

XLS-R FAIR Achieves Strongest Out-of-
distribution Performance, though there is
Language-conditional Variance. In Table 4,
taking the median across all datapoints in all 44
languages, we find that XLS-R FAIR achieves the
best performance, with a median PFER of 5.19.
Whisper-PPT and XLS-R ND achieve similar
performance (PFER 5.60 and 5.48, respectively).

10All of our experiments use greedy generation for all
models. We did not find substantive improvements from
beam search.
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Click Freq. Whisper-PPT XLS-R FAIR XLS-R ND
{ 35 .83 0.00 0.00
| 87 .73 0.00 0.00
! 102 .89 0.00 0.00

Table 5: Recall on predicting click consonants.
Only the model trained on X-IPAPACK is able to
predict clicks, which manifest in Zulu and Xhosa
in the X-IPAPACK data.

Overall, while XLS-R FAIR exhibits domi-
nance in this test split, we note that there is lan-
guage conditional variability. There are 10/44
and 5/44 languages where Whisper-PPT or
XLS-R ND obtain better performance.

5 Dataset Coverage Limits
Downstream Performance

Our analyses in training phone recognizers in
Section 3 demonstrated that poor-quality data im-
pairs generalization. However, filtering out low-
quality data from multilingual archives does not
necessarily guarantee multilingual generalization.
Prior work had claimed universal phone recog-
nition capacity from training on a small number
of languages on high-quality data (Taguchi et al.,
2023), but we demonstrate that multilingual gener-
alization remains limited by the training data com-
position. The number of attested sounds across the
world’s languages is large (Moran and McCloy,
2019), and their frequencies have a Zipfian dis-
tribution (Macklin-Cordes and Round, 2020),
making them challenging to learn from limited
data. We demonstrate these challenges through
two phone segment-level error analyses.

Purported Universal Phone Recognizers
Cannot Transcribe Clicks. Since XLS-R
FAIR and XLS-R ND were not trained on
any Bantu languages or any other language
or dialect containing click consonants, we
find they are incapable of predicting clicks in
(Table 5). By comparison, X-IPAPACK contains
Zulu and Xhosa transcripts. Moreover, they
pass the PPT test (Section 3.2), indicating
that they are reliable. Indeed, we find that
Whisper-PPT performs well at identifying clicks
in the evaluation dataset for these languages
when they are present in the recording. This
demonstrates training a universal phone transcrip-
tion model is more challenging than previously
thought, since it requires accurate identification

Tgt. Lang. EPR (Whisper- Maj.
phone PPT/FAIR/ND) label

ú pa in 0.09/0.25/0.21 ú, t, ú

úh pa in 0.14/0.21/0.36 úh, t, k
ã pa in 0.15/0.26/0.19 ã, d, ã

D en us 0.25/0.08/0.32 d, D, d

ô en us 0.23/0.14/0.36 r, ô, -
I en us 0.19/0.11/0.25 I, I, i

C ja jp 0.25/0.20/0.16 S, S, C

e: ja jp 0.04/0.13/0.10 e:, e, e:

e ja jp 0.07/0.14/0.06 e, e, e

Table 6: Models vary in their ability to predict
certain phones, with Whisper-PPT better at Pun-
jabi (pa in); XLS-R ND at Japanese (ja jp); and
XLS-R FAIR at English (en us). EPR: Expected
Phone Error for the three models (Whisper-
PPT/XLS-R FAIR/XLS-R ND). Maj. label: the
phone most commonly predicted by each of the
three models (same order as EPR).

of typologically rare sounds that may not be prev-
alent in prior archives.

To provide finer-grained measurements of ef-
ficacy at recognizing a certain sound, we use the
Expected Phone Error (EPR) metric, defined as
follows. Given a phone q, we identify all its oc-
currences in the ground-truth transcripts G(t). As-
suming that q appears at position i in transcript
G(t), we then compute the error as the phonetic
feature distance (using panphon; Mortensen
et al., 2016) between G(t)i and the phone in
M(x) that is aligned to G(t)i. We then average
the error from each occurrence of q in the dataset.
We apply the Needleman-Wunsch algorithm for
the alignment.

Models Vary Widely in the Phonetic Details
they can Capture. In Table 6, we show three
languages where one of the three models excels.
For Punjabi, we see that Whisper-PPT is highly
effective at identifying retroflex consonants, even
distinguishing between aspirated and unaspirated
stops (úh and ú), an important phonemic distinction
in Punjabi (Jain and Cardona, 2007). By compar-
ison, XLS-R FAIR predicts unmarked alveolar
stop (t) in both cases. For Japanese, we find that
both Whisper-PPT and XLS-R ND can distinguish
between e and e: (another phonemic distinction)
while XLS-R FAIR cannot. For English, we find
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that XLS-R FAIR is significantly better at distin-
guishing between dental stops and fricatives, as
well as high-front and near-high-front vowels (i
and I) than the other two models. This is unsur-
prising since it is the only model with English in
its training dataset.

Summary. Our results indicate that the train-
ing data composition remains relevant; training
models even on fairly large multilingual archives
(Xu et al., 2022) does not enable fine-grained
cross-linguistic generalization. Thus, acquiring
language-specific training data remains impor-
tant. Moreover, our results in Section 4.1 dem-
onstrate that a systematic audit of the quality
of acquired data is highly beneficial for down-
stream performance. Our Preference Proportion
Test (Section 3.2) enables systematic and sample-
efficient quality auditing for this purpose.

6 Conclusion

We present the Preference Proportion Test (PPT;
Section 3.2) for efficiently and systematically au-
diting the quality of data from specific languages
in a large multilingual archive. We apply the
PPT for efficiently identifying low-quality lan-
guage partitions in the recent X-IPAPACK archive
(Zhu et al., 2024). Our audit is effective, ef-
ficiently identifying language partitions whose
complete removal brings substantial improve-
ments in the downstream task of automatic phone
recognition. Appraising the quality of multilin-
gual archives is critical stewardship, ensuring that
they are reliable, trustworthy, and representative
(Kreutzer et al., 2022; Desai et al., 2024). Overall,
our method contributes an important procedure
for statistically-principled multilingual archive
auditing.

7 Limitations

Managing Partitions that Fail The PPT. One
concern with the PPT is clear: Annotating only a
small fraction of samples in a language partition,
yet using this as a judgment to discard the en-
tire partition. In our study on phonetic transcript
archives, this was justifiable as it became transpar-
ent that there were systematic cases of insertions,
deletions, and substitutions for language varieties
that failed the test (Figure 4). These errors were not
straightforwardly repairable. However, we recog-
nize that this is a highly context-specific decision.

In other cases, it is possible that the systematic
errors can be easily repaired with a rule-based data
preprocessing script, making it possible to salvage
the partition. Or the negative result may be the
quality of a particularly poor-quality sample. We
clarify that (failing) the PPT only indicates that
the partition should be treated differently relative
to the rest of the archive. Whether the treatment
of that partition should be outright rejection (our
case) or repair will vary depending on the task or
dataset.

What Does it Mean to Pass the PPT? Passing
the PPT does not suggest that the partition should
be free from further scrutiny. Appraisal is contex-
tually dependent (Desai et al., 2024), so a positive
appraisal for one task does not suggest a positive
one for all tasks. Moreover, the baseline for a
positive appraisal can change over time. Finally,
and importantly, if there is considerable variance
in the quality of a language partition’s samples,
then the PPT would also give different results
depending on the random sample that it is applied
to. Still, we believe it is a net positive to apply the
PPT nonetheless, since it forces practitioners and
researchers to carefully and intentionally engage
with the contents of the dataset, as opposed to al-
gorithmically filtering and categorizing it (Desai
et al., 2024, see Section 2).

Selecting an Effective Baseline for The PPT.
Another concern is the ambiguity inherent in se-
lecting a baseline model in order to pursue the
comparative approach espoused by the PPT. We
recognize that for our computational task of pho-
netic transcription, there was a sizeable and still
growing body of literature, making it straightfor-
ward to select a performant baseline model.11 This
was important, as it served as a cognitive forcing
function to ensure that the annotators (co-authors)
paid close attention to whether substrings in the
transcripts truly reflected the audio.

It is conceivable that for other language vari-
ety and task combinations, no suitable baseline
model will be available. However, it is impor-
tant to acknowledge efforts both in industry and
academia towards supporting more language va-
rieties. Hayase et al. (2024) show that language

11In addition to the works of Xu et al. (2022) and Taguchi
et al. (2023), there is also Allophant (Glocker et al., 2023)
and the hierarchical model of Li et al. (2021).
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models’ data mixtures are increasing the hetero-
geneity of their training datasets with respect to
language varieties, making them more widely ap-
plicable for downstream tasks. BLOOM, a model
collaboratively developed across several research
organizations, was reportedly trained on 46 lan-
guages (Muennighoff et al., 2023). mT5 was
reportedly trained on 101 languages (Xue et al.,
2021). Even if these models are not effective out-
side of the box, finetuning even (relatively) small
models like mt5-base significantly improves
their effectiveness (Asai et al., 2024, Table 4).
When it comes to speech recognition models, the
OWSM model is trained on over 150 language
varieties (Peng et al., 2024), while the model of
Zhao et al. (2025) is trained on over 1,000 lan-
guage varieties.

Another important consideration, in light of our
results of the effectiveness of small-sample audit-
ing, is to recruit language-proficient annotators.
While researchers often invoke costs as they per-
tain to scalability for annotating massive datasets
(Scheuerman et al., 2021), this argument is less
forceful for annotating only dozens of samples for
the purposes of auditing.

Case Study Limitations. Our study was limited
to the X-IPAPACK dataset, since it is among the
most recently published and thus actively main-
tained. There are other archives which we did
not audit with the PPT, including VoxClamantis
(Salesky et al., 2020) and VoxCommunis (Ahn and
Chodroff, 2022), comprising over 600 language
varieties and 36 language varieties, respectively.
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A Hyperparameter Settings

See Table 7. We performed a hyperparameter
sweep using the validation sets in X-IPAPACK

for the evaluation languages. Our hyper-
parameter sweep was over batch sizes of
{8, 16, 32, 64, 128, 256}, precision of either FP16
or BF16, and warmup steps of {500, 1000}
and uniformly distributed learning rates of
{1e− 5, 3e− 4}.

Hyperparam. Setting
Batch size 64
Num. epochs 2
Learning rate 1e− 4

FP16 True
Max gen. length 225
Grad. checkpointing True
Warmup steps 500

Table 7: Hyperparameter settings for finetuning
the Whisper models in Section 4.

B Annotation Interface

We show the interface for performing the an-
notations in Figure 5. The annotator must select
from one of four options. One of the transcripts
is the gold-standard transcript from X-IPAPACK,
while the other is generated from a baseline model
(either XLS-R FAIR or XLS-R ND). We ran-
domize whether the gold-standard or the baseline
prediction is displayed first.

As long as the annotator picks either the
gold-standard or the baseline model prediction,
and not one of the abstention options, they are
given the opportunity to select which word(s)
most influenced their selection (Figure 6). We
store these selections purely for documentation of
the annotation, it does not influence any of the
analyses in the main text.
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Figure 5: Interface for performing annotations.

Figure 6: Selecting substrings that were influential in the decision once a decision is made.
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First, we thank you for agreeing to helping us with providing your preference annotations!
Your expertise in phonetic transcription is valuable and appreciated. Please read the following
instructions carefully.

Options. The annotation task will comprise 50 datapoints of the form: (audio, transcript1,
transcript2). You’ll listen to the audio and then pick one of four options:

1. TranscriptA > TranscriptB

2. TranscriptA < TranscriptB

3. TranscriptA = TranscriptB (both are equally good)

4. TranscriptA = TranscriptB (both are equally poor)

You may replay the audio as many times as you like. You can also change the playback speed of
the audio using the ‘‘kebab menu’’ (three dots).

Justification. When you select (1), you will then select which word(s) in the transcript were
better represented in TranscriptA compared to TranscriptB. (Analogous for Option 2). No need
to be exhaustive here, just select some of the word(s) that seemed most well represented to you
(relative to the other transcript).

Avoid abstaining (options 3 and 4) if possible. Try to select option (1) or (2) when possible,
only resorting to (3) or (4) when you find it impossible to pick between the two. (Ideally, no more
than 10 samples should have the (3) or (4) option). When both TranscriptA and TranscriptB have
problems, try to select the transcript that has fewer problems.

Transcript spacing. When comparing the two transcripts, don’t use the whitespace segmen-
tation of the transcripts in informing your decision. The spaces are automatically inserted to
improve readability of the transcripts, and there may occasionally be some spacing errors in
TranscriptA relative to TranscriptB (or vice-versa). For example, one of the transcripts may
segment the phrase ‘‘the car’’ into ‘‘D@k Ar’’ instead of ‘‘D@ kAr’’. Please try to ignore these
spacing discrepancies in making your determination, instead focusing on whether the phonetic
segments accurately represent the speech audio. For example, if TranscriptA = ‘‘Ti kEr’’ while
TranscriptB = ‘‘D@k Ar’’, you should prefer TranscriptB since it has more accurate phonetic
segments (assuming a Standard American English pronunciation), and ignore the fact that the
space is inserted after the ‘‘k’’ in kAr rather than after the vowel in ‘‘D@’’. Note that the spacing
can also result in affricates (‘‘Ã’’) being broken up (‘‘d Z’’), so if you clearly hear an affricate
but don’t see a tie bar in the transcript, the affricate may well be represented but (inadvertently)
broken up between two words.

Going back to previous annotations. The interface contains back and forward buttons. When
you hit the back button to navigate to the previous sample, you’ll see that your prior annotation
is stored. If you want to select a different option (1–4), you can do so and hit submit. If you
want to leave it as is, you can just hit the ‘‘Forward’’ button again. When you use ‘‘Back’’, the
‘‘Submit’’ button will be disabled unless you change your selection.

Display. On rare occasions, some of the transcripts can be a bit long and rendered incorrectly.
Ensuring that the window is full-screen and using a larger external monitor (if possible) should
mitigate this.
When you are ready, execute the next cell to begin. At the bottom of the cell, the interface for
performing the annotations will appear. Your progress will be saved as you work through the
annotations, so feel free to take breaks.
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