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Abstract

Abstention, the refusal of large language
models (LLMs) to provide an answer, is
increasingly recognized for its potential to
mitigate hallucinations and enhance safety in
LLM systems. In this survey, we introduce a
framework to examine abstention from three
perspectives: the query, the model, and hu-
man values. We organize the literature on
abstention methods, benchmarks, and evalua-
tion metrics using this framework, and discuss
merits and limitations of prior work. We fur-
ther identify and motivate areas for future
research, such as whether abstention can be
achieved as a meta-capability that transcends
specific tasks or domains, and opportunities to
optimize abstention abilities in specific con-
texts. In doing so, we aim to broaden the scope
and impact of abstention methodologies in AI
systems.1

1 Introduction

Large language models (LLMs) have demon-
strated generalization capabilities across NLP
tasks such as question answering (QA) (Wei et al.,
2022a; Chowdhery et al., 2022), abstractive sum-
marization (Zhang et al., 2023a), and dialogue
generation (Yi et al., 2024). But these models
are also unreliable, having a tendency to ‘‘hal-
lucinate’’ false information in their responses (Ji
et al., 2023b), generate overly certain or authori-
tative responses (Zhou et al., 2024b), answer with
incomplete information (Zhou et al., 2023b), or
produce harmful or dangerous responses (Anwar
et al., 2024). In these situations, the model should
ideally abstain: to refuse to answer in the face of
uncertainty (Wen et al., 2024; Feng et al., 2024b;
Yang et al., 2023).

1A list of abstention-related papers from this re-
view can be found at https://github.com/chenjux
/abstention.

Current methods to encourage abstention typ-
ically rely on calibration techniques, including
linguistic calibration (Mielke et al., 2022; Huang
et al., 2024b), which aim to accurately and con-
sistently estimate a model’s confidence in its
response, then arrange for the model to abstain
if the confidence score for a given response falls
below some threshold (Varshney et al., 2022; Xiao
et al., 2022; Desai and Durrett, 2020). But ques-
tions of whether a query is aligned with human
values or is answerable at all are difficult to model
in terms of model confidence (Yang et al., 2023).

Prior work demonstrates the potential of ab-
stention to enhance model safety and reliability in
constrained settings (Varshney et al., 2023; Wang
et al., 2024c; Zhang et al., 2024a). In this survey,
we attempt to bring together relevant work study-
ing abstention strategies or leading to abstention
behaviors, across the diverse range of scenarios
encountered by general-purpose chatbots engag-
ing in open-domain interactions. Our goals are
to identify gaps and encourage new methods to
achieve abstention. Developing or adapting ab-
stention mechanisms to suit a wide array of tasks
will enhance the overall robustness and trustwor-
thiness of LLM interactions.

To this end, our survey presents an overview of
the current landscape of abstention research. We
provide a definition of abstention that incorporates
not only technical perspectives—query examina-
tion and model capabilities—but also considers
alignment with human values. We categorize ex-
isting methods to improve abstention in LLMs
based on the model lifecycle (pretraining, align-
ment, and inference), and provide an analysis of
evaluation benchmarks and metrics used to assess
abstention. In our discussion, we aim to establish
a clear entry point for researchers to study the role
of abstention across tasks, facilitating the incor-
poration of new abstention techniques into future
LLM systems.
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We summarize our contributions below:

• We introduce a framework to analyze ab-
stention capabilities from three perspectives
that have typically been considered in iso-
lation—query answerability, the confidence
of the model to answer the query, and align-
ment of query and responses with human
values. Our framework helps us identify ex-
isting research that is relevant to abstention
as well as abstention mechanisms that have
been developed in prior work (§2).

• We conduct a detailed survey of existing
abstention methods (§3) as well as evalu-
ation benchmarks and metrics (§4), aiding
researchers in selecting appropriate strate-
gies. For each class of methods, we identify
opportunities for further research to advance
the field.

• We discuss other considerations and under-
explored aspects (§5) of abstention, high-
lighting pitfalls and promising future
directions. We encourage researchers to dev-
elop more robust model abstention mecha-
nisms and demonstrate their effectiveness in
real-world applications.

2 Abstention in LLMs

Definition We define abstention as the refusal
to answer a query. When a model fully abstains,
it may begin a response with ‘‘I don’t know’’ or
refuse to answer in another way. In reality, absten-
tion encompasses a spectrum of behaviors (Röttger
et al., 2024a), e.g., expressing uncertainty, provid-
ing conflicting conclusions, or refusing due to
potential harm are all forms of abstention. Par-
tial abstention may involve both answering and
abstention, such as self-contradictory responses,
e.g., ‘‘I can’t answer the question, but I suppose
the answer might be...’’ We do not consider ignor-
ing and/or reframing the question as abstention;
but rather as failure modes of LLMs in following
instructions (Röttger et al., 2024a; Varshney et al.,
2023).

For the abstention expression—the words a
model uses to convey that it has abstained—we
adopt the definition of five major types of ex-
pressions from prior work (Varshney et al., 2023;
Wang et al., 2024c), indicating that the model (i)
cannot assist; (ii) refutes the query; (iii) provides

Figure 1: Our proposed framework for abstention in
language models. Starting with input queryx, the query
can be gauged for answerability a(x) and alignment
with human values h(x). The model then generates a
potential response y based on the input x. If query
conditions are not met, the model’s confidence in
the response c(x,y) is too low, or if the response’s
alignment with human values h(x,y) is too low, the
system should abstain.

multiple perspectives without expressing prefer-
ence; (iv) perceives risk associated with the query
and answers cautiously with a disclaimer; and (v)
refuses to offer concrete answers due to the lack
of knowledge or certainty. Expressions can be
identified through heuristic rules and key word
matching (Zou et al., 2023; Wen et al., 2024;
Yang et al., 2023), or through model-based or
human-based evaluation (§4).

Below, we describe and motivate our frame-
work for analyzing abstention behavior (§2.1),
then provide a formal definition of its components
(§2.2).

2.1 Abstention Framework

We study abstention in the scenario of LLMs as
AI assistants, exemplified by chatbots such as
ChatGPT (OpenAI, 2023; Achiam et al., 2023),
Claude (Anthropic, 2023), LLaMA (Touvron
et al., 2023), and others (Chiang et al., 2023). We
propose an idealized abstention-aware workflow
for these systems in Figure 1. Given an LLM
f that supports arbitrary generative modeling
tasks and the users’ input x, f generates an output
y. We analyze the decision to abstain from three
distinct but interconnected perspectives:

• The query perspective focuses on the nature
of the input—whether the query is ambigu-
ous or incomplete (Asai and Choi, 2021),
beyond what any human or model could pos-
sibly know (Amayuelas et al., 2023), there
is irrelevant or insufficient context to answer
(Aliannejadi et al., 2019; Li et al., 2024b), or
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there are knowledge conflicts (Wang et al.,
2023b). In these situations, the system should
abstain.

• The model knowledge perspective examines
the capabilities of the AI model itself, includ-
ing its design, training, and inherent biases
(Ahdritz et al., 2024; Kim and Thorne, 2024;
Hestness et al., 2017; Hoffmann et al., 2022;
Kaplan et al., 2020; Cao, 2024). For any given
query, the system should abstain if the model
is insufficiently confident about the correct-
ness of output or has a high probability of
returning an incorrect output.

• The human values perspective considers
ethical implications and societal norms that
influence whether a query should be an-
swered, emphasizing the impact of responses
on human users (Kirk et al., 2023a). A system
should abstain if asked for personal opinions
or values (i.e., the query anthropomorphizes
the model), or if the query or response may
compromise safety, privacy, fairness, or other
values.

For examples of queries and outputs meeting
conditions for abstention, please see Appendix
Table 2.

2.2 Problem Formulation

To formalize our definition of abstention: Con-
sider an LLM f : X → Y . When given a prompt
x ∈ X , f generates a response y ∈ Y . We
model refusal to answer (abstention) as a function
r : X ,Y → [0, 1] where r(x,y) = 1 indicates
the system will fully abstain from answering,
r(x,y) = 0 indicates the system will return the
output y, and intermediate values represent partial
abstention.

We define r as the conjunction of three func-
tions, to be defined by a system designer, to assess
query answerability, the confidence of the LLM’s
response to the query, and the human value align-
ment of the query and response. We define these
three functions as:

• Query function a : X → [0, 1]. a(x) repre-
sents the degree to which an input x can be
answered.

• Model confidence function c : X ,Y →
[0, 1]. c(x,y) indicates the model f ’s confi-
dence in its output y based on input x.

• Human value alignment functions h :
X ,Y → [0, 1]. We define two variants of h:
h(x) operates on the input alone and deter-
mines its alignment with human values, and
h(x,y) operates on both the input x and pre-
dicted output y. h is measured either through
human annotation (Ouyang et al., 2022) or
a proxy model that can be learned based on
human preferences (Gao et al., 2023).

The refusal function r determines whether the
LLM should abstain from responding to input
x as:

r(x,y) =

⎧⎪⎨
⎪⎩

1, if any of a(x); c(x,y);h(x,y) = 0

M(a(x), c(x,y), h(x,y)), otherwise
0, if all of a(x); c(x,y);h(x,y) = 1

The function M acts as a connector between the
three perspectives, defining how the system in-
tegrates their individual outputs into a unified
decision. The design of M depends on the system
designer and will vary based on the application;
examples include weighted averaging, logical op-
erations, or custom thresholds. Some existing sys-
tems (Varshney et al., 2022; Cole et al., 2023) use
threshold-based mechanisms to convert partial
abstention behaviors into binary decisions, such
as full compliance or full refusal.

Our framework allows nuanced handling of ab-
stention, by combining confidence from all three
perspectives and enabling partial abstention when
appropriate. Under this definition, a system would
fully abstain from answering if any of the three
perspectives indicates full abstention. In all other
cases, a system would partially abstain, balanc-
ing between providing an answer and withholding
information based on indications from the three
perspectives.

2.3 Inclusion in this Survey
We identify and survey prior work that falls un-
der any of the three perspectives of our abstention
framework. In §3, we organize abstention method-
ology from an LLM-centered perspective, based
on when each method is applied in the LLM life-
cycle: pretraining, alignment, or inference. This
organization is chosen for ease of comparison
of experimental settings. Each subsection within
§3 is further organized by the three perspectives.
Following, §4 describes evaluation benchmarks
and metrics that have been used or introduced
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Figure 2: Methods to improve LLM abstention grouped by pretraining, alignment, and inference stages.

across the surveyed prior work. At the end of each
subsection, in blue boxes, we summarize main
takeaways and provide suggested directions for
future work. In §5, we summarize notable threads
of research that are not easily classified as method
or evaluation.

3 Abstention Methodology

We summarize methods introduced in prior work
(Figure 2 organizes these by stages in the
LLM lifecycle) and provide ideas for future
experiments.

3.1 Pretraining Stage
We found no existing research that studies absten-
tion in the pretraining stage, despite the widely
recognized importance of pretraining as a criti-
cal phase for model knowledge acquisition. To
bridge this gap, we propose several directions for
future exploration.

3.2 Alignment Stage

We categorize alignment-stage methods as super-
vised finetuning (SFT) or preference optimization
(PO). Some papers include both methods, as PO
usually requires SFT as a precursor; we discuss
these in the subsection most reflective of their
primary contributions.

Supervised Finetuning Many works have
demonstrated that SFT with abstention-aware
data can improve model abstention capabilities.
For example, Neeman et al. (2023) perform data
augmentation in the finetuning stage to encourage
LLMs to predict unanswerable when presented
with an empty or randomly sampled document.
Yang et al. (2023) construct an honesty alignment
dataset by substituting LLM’s wrong or uncertain
responses with ‘‘I don’t know’’ and finetuning on
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the resulting data, improving model abstention.
Notably, Zhang et al. (2024a) introduce R-tuning,
constructing and finetuning on a refusal-aware
dataset and showing improved abstention ca-
pabilities. Zhang et al. (2024a) also argue that
refusal-aware answering is task-independent and
could benefit from multi-task training and joint
inference. However, Feng et al. (2024b) present
contradictory findings in their Appendix that
abstention-aware instruction-tuning struggles to
generalize across domains and LLMs.

In parallel, concerns have emerged regarding
the effectiveness of SFT for abstention. Cheng
et al. (2024) and Brahman et al. (2024) find that
SFT can make models more conservative, leading
to a higher number of incorrect refusals. Recent
work (Gekhman et al., 2024; Lin et al., 2024a;
Kang et al., 2024) also demonstrates that finetun-
ing on examples unobserved during pretraining
increases the risk of hallucination. Gekhman et al.
(2024) propose a mitigation strategy to re-label
these examples based on the pretrained LLM’s
knowledge and include ‘‘I don’t know’’ in the
finetuning data to teach the model to abstain. A re-
lated method to reduce hallucination is introduced
in Lin et al. (2024a); the authors create factuality-
aware training data for SFT by classifying whether
an instruction requires a factual response.

Parameter-efficient finetuning (PEFT) strate-
gies have also been used for abstention. Wolfe
et al. (2024) conduct lab-scale experiments, fine-
tuning LLMs with QLoRA (Dettmers et al., 2023),
and observe that weaker models (with lower task
performance) tend to achieve greater gains in ab-
stention performance. Beyond resource efficiency,
Brahman et al. (2024) have found that LoRA (Hu
et al., 2022) acts as an effective regularization
technique for improving abstention; they find that
fully finetuned models exhibit over-refusal while
also forgetting general capabilities, and demon-
strate that finetuning with LoRA alleviates both
issues while significantly improving abstention
behavior.

Instead of finetuning directly, finetuning for cal-
ibration may indirectly improve abstention ability
(Szegedy et al., 2016; Zhao et al., 2022; Xiao
et al., 2022; Jiang et al., 2021; Lin et al., 2022).
Jiang et al. (2021) propose two finetuning objec-
tive functions (softmax-based and margin-based),
which improve Estimated Calibration Error (ECE)
(Guo et al., 2017a) on multiple-choice datasets.
Mielke et al. (2022) alternatively use a calibrator

trained to provide a confidence score with an LLM
finetuned to control for linguistic confidence in a
system.

Towards alignment with human values, Bianchi
et al. (2024) show that adding a small number
of safety instructions to instruction-tuning data
reduces harmful responses without diminishing
general capabilities, whereas an excessive number
of safety instructions makes LLMs overly defen-
sive. Varshney et al. (2023) construct responses
for unsafe prompts by combining fixed refusal
responses with Llama-2-generated safe responses,
and obtain similar results. Wallace et al. (2024)
finetune LLMs to follow hierarchical prompts,
enhancing the fine-grained abstention ability of
LLMs. Zhang et al. (2023b) also finetune LLMs
with goal prioritization instructions that instruct
LLMs to prioritize safety over helpfulness dur-
ing inference.

However, custom finetuning of LLMs presents
safety risks. For example, Qi et al. (2024); Lyu
et al. (2024) note that finetuning with benign and
commonly used datasets increases unsafe behav-
iors in aligned LLMs (Qi et al., 2024). To address
this, Lyu et al. (2024) propose to finetune mod-
els without a safety prompt, but include one at
test time. Wang et al. (2024d) finetune LLMs to
evaluate their own outputs for harm and append
a ‘‘harmful’’ or ‘‘harmless’’ tag to its responses
instead of directly tuning LLMs to abstain.

Learning from Preferences Preference opti-
mization can impact abstention from both the
model knowledge and human value alignment per-
spectives. As described above, finetuning LLMs
on abstention-aware data may lead to overly con-
servative behavior, causing erroneous refusals
of queries. Cheng et al. (2024) and Brahman
et al. (2024) address this through Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
encouraging the model to answer questions it
knows and refuse questions it does not know.
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Factuality-based preference optimization can
help models respond correctly to queries, includ-
ing abstaining (e.g., saying ‘‘I don’t know’’). As
an example, Liang et al. (2024) construct a fac-
tual preference dataset to train a reward model,
and utilize it to optimize abstention preferences
in LLMs via Proximal Policy Optimisation (PPO)
(Schulman et al., 2017). Kang et al. (2024) design
a reward function that prioritizes abstention over
incorrect answers, while Lin et al. (2024a) in-
corporate factuality-focused preference pairs into
DPO to enhance fact-based instruction following.

Other works use DPO to improve calibra-
tion, which can also aid abstention. LACIE
(Stengel-Eskin et al., 2024) casts confidence cal-
ibration as a preference optimization problem
and introduce a speaker-listener game to create
preference data; they demonstrate that finetun-
ing on LACIE data leads to emergent model
abstention behavior. Zhang et al. (2024c) intro-
duce Self-Alignment for Factuality, generating
confidence scores through self-asking to improve
calibration via DPO.

For human values, safety alignment methods
(Dai et al., 2024; Touvron et al., 2023; Bai et al.,
2022; Shi et al., 2024) use explicit or implicit
preference models to reduce harmfulness, which
though not explicitly focused on abstention, will
encourage abstention on unsafe prompts. Other
studies have explored multi-objective alignment
approaches (Guo et al., 2024) to encourage safe
and helpful model behavior. The instructable
reward model in SALMON (Sun et al., 2024)
is trained on synthetic preference data, generat-
ing reward scores based on customized human-
defined principles as the preference guideline.

3.3 Inference Stage

We categorize inference stage methods as input-
processing, in-processing, or output-processing
approaches based on when they are applied. Input-
processing approaches are centered on the query
answerability and human values perspectives;
in-processing approaches on the model knowledge
perspective; and output-processing approaches
may consider both model knowledge and human
values.

3.3.1 Input-processing Approaches
Query Processing From the query perspective
in our proposed framework, LLMs can choose
to abstain based on the query answerability. For
example, Cole et al. (2023) try to predict the
ambiguity of questions derived from the Am-
bigQA dataset (Min et al., 2020) before selectively
answering.

Other methods aim to identify queries that
are misaligned with human values. For exam-
ple, Qi et al. (2021) detect malicious queries
needing abstention by removing suspect words
from the query and analyzing the resulting drop
in perplexity while Hu et al. (2024) propose
new ways of computing perplexity and find to-
kens with abnormally high perplexity. Apart from
perplexity-based methods, Jain et al. (2023) fur-
ther investigate input preprocessing methods such
as paraphrasing and retokenization. The BDDR
framework (Shao et al., 2021) not only detects
suspicious words in the input but also recon-
structs the original text through token deletion or
replacement. Kumar et al. (2024) introduce the
‘‘erase-and-check’’ framework to defend against
adversarial prompts with certifiable safety guaran-
tees. Similarly, Xi et al. (2023) measure changes in
representation between original and paraphrased
queries using a set of distributional anchors to
identify harmful queries. Dinan et al. (2019)
develop a more robust offensive language detec-
tion system through an iterative build-it, break-it,
fix-it strategy.
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3.3.2 In-processing Approaches
Probing LLM’s Inner State Recent studies
(Kamath et al., 2020; Azaria and Mitchell, 2023)
focus on training calibrators based on LLM in-
ternal representation to predict the accuracy of
the model’s responses, enabling abstention when
the likelihood of error is high. Further prob-
ing into the internal representations of LLMs to
discern between answerable and unanswerable
queries has been conducted by Slobodkin et al.
(2023), Kadavath et al. (2022) and Liang et al.
(2024). Additionally, Chen et al. (2024) intro-
duce the EigenScore, a novel metric derived from
LLM’s internal states, which can facilitate absten-
tion by quantifying the reliability of the model’s
knowledge state.

In terms of leveraging the LLMs’ internal states
for safety judgments, Wang et al. (2024a) extract
safety-related vectors (SRVs) from safety-aligned
LLMs; which are then used as an abstention gate
to steer unaligned LLMs towards safer task per-
formance. Furthermore, Bhardwaj et al. (2024)
demonstrate that integrating a safety vector into
the weights of a finetuned LLM through a simple
arithmetic operation can significantly mitigate the
potential harmfulness of the model’s responses.

Uncertainty Estimation Estimating the uncer-
tainty of LLM output can serve as a proxy for
making abstention decisions. Token-likelihoods
have been widely used to assess the uncertainty of
LLM responses (Lin et al., 2022; Kadavath et al.,
2022). Enhancing this approach, Lin et al. (2022)
and Tian et al. (2023) employ an indirect logit
methodology to calculate the log probability of
the ‘True’ token when appended to model’s gen-
erated response. Shrivastava et al. (2023) leverage
a surrogate LLM with access to internal probabil-
ities to approximate the confidence of the original
model. Tomani et al. (2024) assess Predictive En-
tropy and Semantic Entropy (Kuhn et al., 2023) of
responses. Duan et al. (2023) design a weighted
Predictive Entropy by considering the relevance of

each token in reflecting the semantics of the whole
sentence. However, other work shows that aligned
LLMs may not have well-calibrated logits (Cole
et al., 2023; Achiam et al., 2023) and may have
positional bias and probability dispersion (Ren
et al., 2023). In the context of LLM-as-judge,
these canonical probability-based methods tend to
be overconfident in estimating agreement with the
majority of annotators; Jung et al. (2024) propose
a novel confidence estimation method by simulat-
ing diverse annotator preferences with in-context
learning.

The Maximum Softmax Probability approach
(Varshney et al., 2022) uses peak softmax out-
put as a uncertainty estimator. Hou et al. (2023)
introduce an uncertainty estimation method: in-
put clarification ensembling. Through ruling out
aleatoric uncertainty by clarification, the remain-
ing uncertainty of each individual prediction is
epistemic uncertainty.

Beyond probability-based measures, verbalized
confidence scores have emerged as another class
of methods to estimate and manage uncertainty
(Lin et al., 2022; Tian et al., 2023; Tomani
et al., 2024; Xiong et al., 2024; Zhou et al.,
2024b). Xiong et al. (2024) examine prompting
methods including chain-of-thought (Wei et al.,
2022b), self-probing, top-k (Tian et al., 2023),
and linguistic likelihood expressions to eliciting
confidence scores. Although LMs can be explicitly
prompted to express confidence, verbalized confi-
dence scores have been found to be over-confident
(Xiong et al., 2024; Zhou et al., 2024b). Zhou
et al. (2024b) find that LMs are reluctant to ex-
press uncertainty when answering questions, even
when their responses are incorrect. Zhou et al.
(2023a) show that high-certainty expressions in
the prefix of a response can result in accuracy
drop compared to low-certainty expressions, sug-
gesting that LLMs respond more to prompting
style rather than accurately assessing epistemic
uncertainty.
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Calibration-based Methods Estimated model
uncertainty may not accurately represent the like-
lihood of a model’s outputs being correct, so
numerous studies focus on calibrating the un-
certainty of LLMs. Jiang et al. (2021) improve
calibration by augmenting inputs and paraphrasing
outputs. Temperature Scaling (Guo et al., 2017b;
Xiao et al., 2022; Desai and Durrett, 2020; Jiang
et al., 2021) modifies the softmax temperature
to refine calibration during decoding. Addition-
ally, Monte-Carlo Dropout (Gal and Ghahramani,
2016; Varshney et al., 2022; Zablotskaia et al.,
2023) employs multiple predictions with varying
dropout configurations to assemble a robust confi-
dence estimate. Batch Ensemble (Wen et al., 2020)
is a computationally efficient method that aggre-
gates multiple model predictions and maintains
good calibration.

Consistency-based Methods Given the limi-
tations of confidence elicitation, some methods
leverage consistency-based aggregation to esti-
mate LLM uncertainty and then abstain when
uncertain. Aggregation can be achieved using di-
versity and repetition (Cole et al., 2023), weighted
confidence scores and pairwise ranking (Xiong
et al., 2024), or semantic similarity between re-
sponses (Lin et al., 2024b; Zhao et al., 2024b;
Chen et al., 2024). Slobodkin et al. (2023) relax
beam search and abstain if any top-k answer is
‘‘unanswerable’’.

Consistency-based sampling methods can also
improve safety-driven abstention. Robey et al.
(2023), Cao et al. (2023), and Ji et al. (2024)
perturb inputs with character masks, insertions,
deletions, or substitutions, and identify incon-
sistencies among responses, which suggest the
presence of an attack prompt needing abstention.
Yuan et al. (2024b) obtain samples by prompt-
ing for augmentations (learnable safe suffixes and
paraphrasing) and use a kNN-based method to
aggregate responses.

Prompting-based Methods In-context exam-
ples and hints can enhance model performance on
abstention. Some use few-shot exemplars of ab-
stained and answered responses (Slobodkin et al.,
2023; Varshney et al., 2023; Wei et al., 2024),
while others incorporate instruction hints (e.g.,
‘‘Answer the question only if answerable’’ or
‘‘Answer the below question if it is safe to an-
swer’’) (Wen et al., 2024; Yang et al., 2023;
Cheng et al., 2024; Slobodkin et al., 2023). For
multiple-choice QA, adding ‘‘None of the above’’
as an answer option has been shown to be ef-
fective (Ren et al., 2023; Lin et al., 2024b).
Zhang et al. (2023b) explicitly prompt LLMs
to prioritize safety over helpfulness. Deng et al.
(2024) also propose that providing explanations
on the unanswerability of questions not only im-
proves model explainability, but can produce more
accurate responses.

Other work focuses on carefully designed
prompts. Mo et al. (2024) concatenate a protec-
tive prefix from attack-defense interactive training
with the user query. Similarly, Zhou et al. (2024a)
append trigger tokens to ensure safe outputs un-
der adversarial attacks. Pisano et al. (2023) use
another LLM to add conscience suggestions to
the prompt. Zhang et al. (2024d) prompt LLMs to
analyze input intent and abstain if malicious. Xie
et al. (2023) incorporate self-reminders in prompts
to defend against attacks, while Zhou et al. (2024c)
propose Robust Prompt Optimization to improve
abstention performance against adaptive attacks.
Zheng et al. (2024) find that safety prompts can
safeguard LLMs against harmful queries and fur-
ther propose a safety prompt optimization method
to shift query representations toward or away from
the refusal direction based on query harmfulness.
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3.3.3 Output-processing Approaches
Self Evaluation Chen et al. (2023b) use Soft
Prompt Tuning to learn self-evaluation parame-
ters for various tasks. However, directly asking
LLMs to evaluate if their responses are certain
or safe (usually in a different conversation), and
to abstain if they are not, has proven effective in
improving LLM abstention (Phute et al., 2024;
Kadavath et al., 2022; Varshney et al., 2023;
Ren et al., 2023; Feng et al., 2024b). Kim et al.
(2024a) allow the LLM to iteratively provide
feedback on its own responses and refine its
answers; this method achieves improvements in
safety even in non-safety-aligned LLMs. Wang
et al. (2024d) enable LLMs to self-evaluate re-
sponses and append a [harmful] or [harmless] tag
to each response; however, this approach may
encourage over-abstention.

LLM Collaboration Multi-LLM systems are
effective in producing better overall responses, in-
cluding improved abstention behavior. In 2-LLM
systems, a test LLM is employed to examine the
output of the first LLM and helps with abstain-
ing. In Wang et al. (2024b), the test LLM is used
to guess the most likely harmful query from the
output and abstains if a harmful query is detected.
Pisano et al. (2023) critique and correct a model’s
original compliant response using a secondary
LLM.

Multi-LLM systems beyond two LLMs lever-
age different LLMs as experts to compete or
cooperate to reach a final abstention decision
(Feng et al., 2024b; Chen et al., 2023a). As an
example, Zeng et al. (2024) employ a group of
LLMs in a system with an intention analyzer,
original prompt analyzer, and judge.

4 Evaluation of Abstention

We survey evaluation benchmarks (§4.1) and met-
rics (§4.2) used to assess abstention capabilities.

4.1 Evaluation Benchmarks
Below, we describe benchmarks that include
abstention in their ground truth annotations; ad-
ditional dataset details are provided in Appendix

Table 3. Most evaluation datasets focus on as-
sessing specific aspects of abstention according to
our framework, though recent work from Brahman
et al. (2024) espouse a holistic evaluation strategy.

Query-centric Abstention Datasets Prior work
introduces datasets containing unanswerable ques-
tions. SQuAD2 (Rajpurkar et al., 2018) first
includes unanswerable questions with irrelevant
context passages for machine reading compre-
hension. Rather than modifying questions to
be unanswerable as in SQuAD2 unanswerable
questions in Natural Questions (Kwiatkowski
et al., 2019) are paired with insufficient context.
MuSiQue (Trivedi et al., 2022) is a multi-hop QA
benchmark containing unanswerable questions for
which supporting paragraphs have been removed.
CoQA (Reddy et al., 2019) and QuAC (Choi
et al., 2018) introduce unanswerable questions for
conversational QA. Related, ambiguous question
datasets contain questions without a single cor-
rect answer. AmbigQA (Min et al., 2020) extracts
questions from NQ-Open (Kwiatkowski et al.,
2019) with multiple possible answers. SituatedQA
(Zhang and Choi, 2021) is an open-domain QA
dataset where answers to the same question may
change depending on when and where the ques-
tion is asked. SelfAware (Yin et al., 2023) and
Known Unknown Questions (Amayuelas et al.,
2023) consist of unanswerable questions from
diverse categories.

Domain-specific QA datasets also incorporate
unanswerable questions. PubmedQA (Jin et al.,
2019) contains biomedical questions that can
be answered ‘‘yes’’, ‘‘no’’, or ‘‘maybe’’; where
‘‘maybe’’ indicates high uncertainty based on the
given context. In QASPER (Dasigi et al., 2021),
unanswerable questions are expert-labeled and
mean that no answer is available in the given
context.

Model Knowledge-centric Abstention Datasets
RealTimeQA (Kasai et al., 2023) is a dynamic
dataset which announces questions and evaluates
systems on a regular basis, and contains inquiries
about current events. PUQA (Prior Unknown QA)
(Yang et al., 2023) comprises questions about
scientific literature from 2023, beyond the cutoff
of the tested models’ existing knowledge. Elec-
tionQA23 (Feng et al., 2024b) is a QA dataset
focusing on 2023 elections around the globe; due
to the temporality of training data, LLMs lack

537



up-to-date information to accurately respond to
these queries. Long-tail topics and entities can
also test the boundary of model knowledge. For
example, datasets like POPQA (Mallen et al.,
2023) or EntityQuestions (Sciavolino et al., 2021)
cover knowledge on long-tail entities, which are
useful for probing model knowledge boundaries.

Human Value-centric Abstention Datasets
Here are datasets designed to measure whether
LLM outputs are ‘‘safe,’’ i.e., align with widely
held ethical values; these datasets may consist
of prompts that are either inherently unsafe or
likely to elicit unsafe responses from LLMs. Some
datasets focus on specific aspects of safety. A
main concern is toxicity, when models generate
harmful, offensive, or inappropriate content. For
instance, RealToxicityPrompts (Gehman et al.,
2020) gathers prompts to study toxic language
generation, while ToxiGen (Hartvigsen et al.,
2022) and LatentHatred (ElSherief et al., 2021)
address implicit toxic speech, and ToxicChat (Lin
et al., 2023) collects data from real-world user–AI
interactions. Beyond toxicity, Beavertails (Ji et al.,
2023a) balances safety and helpfulness in QA,
CValues (Xu et al., 2023a) assesses safety and
responsibility, and Xstest (Röttger et al., 2024a)
examines exaggerated safety behaviors. Latent-
Jailbreak (Qiu et al., 2023) introduces a benchmark
that assesses both the safety and robustness of
LLMs. Do-Anything-Now (Shen et al., 2023)
collects a set of unsafe prompts for malicious
purposes.

Comprehensive safety benchmarks attempt to
encompass a range of concerns. Röttger et al.
(2024b) conduct the first systematic review
of open datasets for evaluating LLM safety.
Do-Not-Answer (Wang et al., 2024c) includes
instructions covering information hazards, mali-
cious uses, discrimination, exclusion and toxicity,
misinformation harms, and human-computer in-
teraction harms. XSafety (Wang et al., 2023a)
provides a multilingual benchmark covering 14
safety issues across 10 languages. SALAD-Bench
(Li et al., 2024a) is a large-scale dataset with
a three-tier taxonomy, evaluating LLM safety
and attack-defense methods. SORRY-Bench (Xie
et al., 2024) proposes a more fine-grained tax-
onomy and diverse instructions. Most relevant to
abstention, WildGuard (Han et al., 2024) eval-
uates model refusal performance as a necessary
component for safety.

GT
R

Correctly
answered

Incorrectly
answered

Abstained

No abstention N1 N2 N3

Abstention N4 N5

Table 1: Abstention confusion matrix. ‘‘GT’’:
ground-truth human label, where ‘‘Abstention’’
indicates questions labeled as those where the
model should abstain. ‘‘R’’: system response.
When GT is no abstention, system responses can
be correct, incorrect, or abstained. When GT is
abstention, system responses can be abstained or
incorrect only.

4.2 Evaluation Metrics
We survey metrics that have been developed and
used to evaluate abstention. Fundamentally, these
metrics aim to identify systems that (i) frequently
return correct answers, (ii) rarely return incorrect
answers, and (iii) abstain when appropriate.

Statistical Automated Evaluation We express
these metrics based on the abstention confusion
matrix in Table 1.

• Abstention Accuracy (ACC) (Feng et al.,
2024b) evaluates the system’s overall per-
formance when incorporating abstention:

ACC =
N1 +N5

N1 +N2 +N3 +N4 +N5

• Abstention Precision (Feng et al., 2024b)
measures the proportion of model abstain
decisions that are correct:

Precisionabs =
N5

N3 +N5

• Abstention Recall (Feng et al., 2024b; Cao
et al., 2023; Varshney et al., 2023) or Pru-
dence Score (Yang et al., 2023) measures the
proportion of cases where models correctly
abstain when they should:

Recallabs =
N5

N2 +N4 +N5
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• Attack Success Rate or Unsafe Responses on
Unsafe Prompts (URUP) (Cao et al., 2023;
Varshney et al., 2023) reports the proportion
of cases where models do not abstain when
they should (indicating successful attacks):

URUP = 1− Recallabs

• Abstention F1-score (Feng et al., 2024b)
combines abstention precision and recall:

F1abs = 2 · Precisionabs · Recallabs

Precisionabs + Recallabs

• Coverage or Acceptance Rate (Cao et al.,
2023) refers to the proportion of instances
where the model provides an answer (i.e.,
does not abstain); it measures the model’s
willingness to respond:

Coverage =
N1 +N2 +N4

N1 +N2 +N3 +N4 +N5

• Abstention Rate (Wen et al., 2024; Varshney
et al., 2023), on the other hand, measures
the proportion of queries where the model
abstains:

Abstention Rate =
N3 +N5

N1 +N2 +N3 +N4 +N5

• Benign Answering Rate (BAR) (Cao et al.,
2023) focuses only on queries deemed to be
safe:

BAR =
N1 +N2

N1 +N2 +N3

• Over-conservativeness Score or Abstained
Responses on Safe Prompts (ARSP) (Yang
et al., 2023; Varshney et al., 2023) computes
the proportion of queries where the model
over-abstains:

ARSP =
N3

N1 +N2 +N3

• Reliable Accuracy (R-Acc) (Feng et al.,
2024b) indicates to what extent LLM-
generated answers can be trusted when they
do not abstain, i.e., of all questions answered,
how many are correct:

R-Acc =
N1

N1 +N2 +N4

• Effective Reliability (ER) (Feng et al., 2024b;
Si et al., 2023; Whitehead et al., 2022) strikes
a balance between reliability and coverage,
i.e., of all questions, how many more are
answered correctly than incorrectly:

ER =
N1 −N2 −N4

N1 +N2 +N3 +N4 +N5

• Abstain Estimated Calibration Error (Ab-
stain ECE) (Feng et al., 2024b) modifies
traditional ECE (Guo et al., 2017a) by in-
cluding abstention. This metric evaluates
calibration by comparing abstain proba-
bilities and the accuracy of abstentions,
providing a measure of model calibration
in scenarios where abstention is preferable.

• Coverage@Acc (Cole et al., 2023; Si et al.,
2023) measures the fraction of questions the
system can answer correctly while maintain-
ing a certain accuracy. Specifically, C@Acc
is the maximum coverage such that the accu-
racy on the C% of most-confident predictions
is at least Acc%.

• Area Under Risk-Coverage Curve (AURCC)
(Si et al., 2023; Yoshikawa and Okazaki,
2023) computes, for any given thresh-
old, an associated coverage and error rate
(risk), which is averaged over all thresholds.
Lower AURCC indicates better selective QA
performance.

• Area Under Accuracy-Coverage Curve
(AUACC) (Cole et al., 2023; Xin et al.,
2021) computes, for any given threshold,
an associated coverage and accuracy, which
is averaged over all thresholds. Higher
AUACC indicates better performance.

• Area Under Receiver Operating Characteris-
tic curve (AUROC) (Cole et al., 2023; Kuhn
et al., 2023) evaluates the uncertainty esti-
mate’s diagnostic ability as a binary classifier
for correct predictions by integrating over
the tradeoff curve between rates of true and
false positives.
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Model-based Evaluation Many studies imple-
ment LLM-as-a-judge for abstention evaluation
(Mazeika et al., 2024; Souly et al., 2024; Chao
et al., 2024). Some of these use GPT-4-level
LLMs for off-the-shelf evaluation (Qi et al.,
2024), resulting in judgments that agree well
with humans but incur high financial and time
costs. Others explore supplementary techniques
to boost the accuracy of the LLM judge such as
(i) Chain-of-thought prompting: asking the LLM
to ‘‘think step-by-step’’ before deciding whether
to not answer (Qi et al., 2024; Xie et al., 2024);
(ii) In-context-learning: using refusal annotations
from a training set as in-context examples (Xie
et al., 2024); or (iii) Finetuning LLMs for absten-
tion evaluation (Huang et al., 2024a; Li et al.,
2024a). Röttger et al. (2024a) extended full ab-
stention evaluation by prompting GPT-4 with a
taxonomy to classify responses as full compliance,
full refusal, or partial refusal in a zero-shot setting.

Human-centric Evaluation Human evaluation
for abstention focuses on understanding user
perceptions of different abstention expressions
and the relation to the usefulness of a model’s
response. Instead of binary decisions (full com-
pliance and full refusal), Röttger et al. (2024a)
introduce partial refusal when manually annotat-
ing model’s response. Wester et al. (2024) focus
on how people perceive styles of denial employed

by systems; among the styles evaluated, the ‘‘di-
verting denial style’’ is generally preferred by
participants. Kim et al. (2024b) investigate how
expressing uncertainty affects user trust and task
performance, finding that first-person uncertainty
phrases like ‘‘I’m not sure, but...’’ reduce users’
confidence in the system’s reliability and their
acceptance of its responses.

5 Other Considerations for Abstention

Over-abstention Over-abstention occurs when
models abstain unnecessarily. For example,
Varshney et al. (2023) demonstrate that the
‘‘self-check’’ technique can make LLMs overly
cautious with benign inputs. Others similarly ob-
serve that instruction tuning with excessive focus
on abstention can lead models to inappropriately
refuse to respond (Cheng et al., 2024; Bianchi
et al., 2024; Wallace et al., 2024; Brahman et al.,
2024). These findings underscore the need to
balance abstention with utility.

Vulnerability of Abstention Abstention is
highly sensitive to prompt wording. Safety-driven
abstention mechanisms are notably susceptible
to manipulation. Studies show that social engi-
neering techniques such as persuasive language
and strategic prompt engineering can bypass es-
tablished safety protocols (Xu et al., 2023b;
Chao et al., 2023). Even ostensibly benign ap-
proaches like finetuning with safe datasets or
modifying decoding algorithms can inadvertently
undermine the safety alignment of LLMs (Qi
et al., 2024; Huang et al., 2024a). Advanced ma-
nipulation tactics include persona-based attacks
(Shah et al., 2023), cipher-based communications
(Yuan et al., 2024a), and the translation of inputs
into low-resource languages (Yong et al., 2023;
Feng et al., 2024a). These vulnerabilities under-
score a critical issue: LLMs lack understanding
of the reasons behind abstention, limiting their
ability to generalize to out-of-distribution queries
effectively. Furthermore, objectives like helpful-
ness and abstention may conflict, and models
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may struggle to abstain appropriately in situations
where they are confident in their ability to provide
helpful responses.

Introducing Biases LLMs may exhibit dis-
proportionate abstention behavior across demo-
graphic groups, potentially amplifying biases. For
example, Xu et al. (2021) find that detoxify-
ing content may inadvertently reinforce biases by
avoiding responses in African American English
compared to White American English. Feng et al.
(2024b) show that LLMs abstain less when pre-
dicting future election outcomes for Africa and
Asia in ElectionQA23, raising fairness concerns
as these mechanisms might underserve marginal-
ized communities and countries. More work is
needed to clarify and address these performance
disparaties.

Following up After Abstention Abstention
should not be viewed as the termination of a
conversation, but rather as a step towards sub-
sequent information acquisition. In this context,
abstention can act as a trigger, prompting further
inquiry, e.g., asking the user for more informa-
tion or retrieving additional relevant data (Feng
et al., 2024b; Li et al., 2024b). After abstaining,
systems should seek out more information when
appropriate, transforming abstention from a static
endpoint into a dynamic, constructive component
of dialogue progression. For example, Zhao et al.
(2024a) study the alternate task of reformulating
unanswerable questions to questions that can be
answered by a given document.

Personalized Abstention Users have differ-
ent preferences for model abstention (Wester
et al., 2024) based on individual differences
(Zhang et al., 2024b) and task-specific needs,
and no one-size-fits-all solution exists (Kirk et al.,
2023b). Personalized abstention mechanisms in
LLMs will allow the model to dynamically ad-
just its abstention behavior based on a user’s
profile, tolerance for conservative responses, in-
teraction history, specific query needs, and any
other requirements.

6 Future Directions

There are many under-explored and promising re-
search directions in abstention, some of which are
described in this survey. While prior work has
explicitly investigated abstention in specific tasks
or implicitly contributed to improved abstention

behaviors, we encourage study of abstention as
a meta-capability across tasks, as well as more
generalizable evaluation and customization of ab-
stention capabilities to user needs. Beyond what
has been discussed previously, other important
directions include: (i) enhancing privacy and
copyright protections through abstention-aware
designs to prevent the extraction of personal pri-
vate information and copyrighted text fragments;
(ii) generalizing the concept of abstention beyond
LLMs to vision, vision-language, and generative
machine learning applications; and (ii) improving
multilingual abstention, as significant perfor-
mance discrepancies exist between high-resource
and low-resource languages, necessitating further
research to ensure consistent performance across
different languages.

7 Conclusion

Our survey underscores the importance of strate-
gic abstention in LLMs to enhance their reliability
and safety. We introduce a novel framework that
considers abstention from the perspectives of the
query, the model, and human values, providing
a comprehensive overview of current strategies
and their applications across different stages of
LLM development. Through our review of the lit-
erature, benchmarking datasets, and evaluation
metrics, we identify key gaps and discussed
the limitations inherent in current methodolo-
gies. Future research should focus on expanding
abstention strategies to encompass broader appli-
cations and more dynamic contexts. By refining
abstention mechanisms to be more adaptive and
context-aware, we can further the development of
AI systems that are not only more robust, reliable,
and aligned with ethical standards and human val-
ues, but balance these goals more appropriately
against helpfulness to the user.
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Zhong, Seán Ó. hÉigeartaigh, Gabriel Recchia,
Giulio Corsi, Alan Chan, Markus Anderljung,
Lilian Edwards, Aleksandar Petrov, Christian
Schroeder de Witt, Sumeet Ramesh Motwan,
Yoshua Bengio, Danqi Chen, Philip H. S.
Torr, Samuel Albanie, Tegan Maharaj, Jakob
Foerster, Florian Tramer, He He, Atoosa
Kasirzadeh, Yejin Choi, and David Krueger.
2024. Foundational challenges in assuring
alignment and safety of large language models.
arXiv preprint arXiv:2404.09932.

Akari Asai and Eunsol Choi. 2021. Chal-
lenges in information-seeking QA: Unan-
swerable questions and paragraph retrieval.
In Proceedings of the 59th Annual Meet-
ing of the Association for Computational
Linguistics and the 11th International Joint
Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1492–1504,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.acl-long.118

Amos Azaria and Tom Mitchell. 2023. The in-
ternal state of an LLM knows when it’s
lying. In The 2023 Conference on Empiri-
cal Methods in Natural Language Process-
ing. https://doi.org/10.18653/v1
/2023.findings-emnlp.68

542

https://doi.org/10.1145/3331184.3331265
https://doi.org/10.1145/3331184.3331265
https://doi.org/10.18653/v1/2024.findings-acl.383
https://doi.org/10.18653/v1/2024.findings-acl.383
https://doi.org/10.18653/v1/2024.findings-acl.383
https://doi.org/10.18653/v1/2021.acl-long.118
https://doi.org/10.18653/v1/2021.acl-long.118
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68


Yuntao Bai, Andy Jones, Kamal Ndousse,
Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli,
Tom Henighan, Nicholas Joseph, Saurav
Kadavath, Jackson Kernion, Tom Conerly,
Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan
Hume, Scott Johnston, Shauna Kravec, Liane
Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam
McCandlish, Chris Olah, Ben Mann, and Jared
Kaplan. 2022. Training a helpful and harm-
less assistant with reinforcement learning from
human feedback.

Rishabh Bhardwaj, Do Duc Anh, and Soujanya
Poria. 2024. Language models are Homer
Simpson! Safety re-alignment of fine-tuned
language models through task arithmetic.
https://doi.org/10.18653/v1/2024
.acl-long.762

Federico Bianchi, Mirac Suzgun, Giuseppe
Attanasio, Paul Rottger, Dan Jurafsky,
Tatsunori Hashimoto, and James Zou. 2024.
Safety-tuned LLaMAs: Lessons from improv-
ing the safety of large language models that fol-
low instructions. In The Twelfth International
Conference on Learning Representations.

Faeze Brahman, Sachin Kumar, Vidhisha
Balachandran, Pradeep Dasigi, Valentina
Pyatkin, Abhilasha Ravichander, Sarah
Wiegreffe, Nouha Dziri, Khyathi Chandu,
Jack Hessel, Yulia Tsvetkov, Noah A. Smith,
Yejin Choi, and Hannaneh Hajishirzi. 2024.
The art of saying no: Contextual noncom-
pliance in language models. arXiv preprint
arXiv:2407.12043.

Bochuan Cao, Yuanpu Cao, Lu Lin, and
Jinghui Chen. 2023. Defending against
alignment-breaking attacks via robustly aligned
LLM. arXiv preprint arXiv:2309.14348.

Lang Cao. 2024. Learn to refuse: Making large
language models more controllable and reli-
able through knowledge scope limitation and
refusal mechanism. In Proceedings of the 2024
Conference on Empirical Methods in Natu-
ral Language Processing, pages 3628–3646,
Miami, Florida, USA. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2024.emnlp-main.212

Patrick Chao, Edoardo Debenedetti, Alexander
Robey, Maksym Andriushchenko, Francesco
Croce, Vikash Sehwag, Edgar Dobriban,
Nicolas Flammarion, George J. Pappas, Florian
Tramer, et al. 2024. Jailbreakbench: An
open robustness benchmark for jailbreak-
ing large language models. arXiv preprint
arXiv:2404.01318.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J. Pappas, and Eric
Wong. 2023. Jailbreaking black box large lan-
guage models in twenty queries. arXiv preprint
arXiv:2310.08419.

Bocheng Chen, Advait Paliwal, and Qiben Yan.
2023a. Jailbreaker in jail: Moving target defense
for large language models. In Proceedings of
the 10th ACM Workshop on Moving Target
Defense, pages 29–32. https://doi.org
/10.1145/3605760.3623764

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu,
Mingyuan Tao, Zhihang Fu, and Jieping Ye.
2024. INSIDE: LLMs’ internal states retain
the power of hallucination detection. In The
Twelfth International Conference on Learning
Representations.

Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi,
Sercan Arik, Tomas Pfister, and Somesh
Jha. 2023b. Adaptation with self-evaluation
to improve selective prediction in LLMs. In
Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5190–5213.
Singapore. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2023.findings-emnlp.345

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu,
Wenwei Zhang, Zhangyue Yin, Shimin Li,
Linyang Li, Zhengfu He, Kai Chen, and Xipeng
Qiu. 2024. Can AI assistants know what
they don’t know? In Forty-first International
Conference on Machine Learning.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E.
Gonzalez, Ion Stoica, and Eric P. Xing. 2023.
Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar,
Wen-tau Yih, Yejin Choi, Percy Liang, and
Luke Zettlemoyer. 2018. QuAC: Question an-
swering in context. In Proceedings of the 2018

543

https://doi.org/10.18653/v1/2024.acl-long.762
https://doi.org/10.18653/v1/2024.acl-long.762
https://doi.org/10.18653/v1/2024.emnlp-main.212
https://doi.org/10.18653/v1/2024.emnlp-main.212
https://doi.org/10.1145/3605760.3623764
https://doi.org/10.1145/3605760.3623764
https://doi.org/10.18653/v1/2023.findings-emnlp.345
https://doi.org/10.18653/v1/2023.findings-emnlp.345


Conference on Empirical Methods in Natu-
ral Language Processing, pages 2174–2184,
Brussels, Belgium. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D18-1241

Aakanksha Chowdhery, Sharan Narang, Jacob
Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury,
Jacob Austin, Michael Isard, Guy Gur-Ari,
Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou,
Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan
Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child,
Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. Palm: Scal-
ing language modeling with pathways. arXiv
preprint arXiv:2204.02311.

Jonathan H. Clark, Eunsol Choi, Michael Collins,
Dan Garrette, Tom Kwiatkowski, Vitaly
Nikolaev, and Jennimaria Palomaki. 2020.
TyDi QA: A benchmark for information-
seeking question answering in typologi-
cally diverse languages. Transactions of the
Association for Computational Linguistics,
8:454–470. https://doi.org/10.1162
/tacl_a_00317

Jeremy R. Cole, Michael J. Q. Zhang, Daniel
Gillick, Julian Martin Eisenschlos, Bhuwan
Dhingra, and Jacob Eisenstein. 2023. Selec-
tively answering ambiguous questions. arXiv
preprint arXiv:2305.14613.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming
Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. 2024. Safe RLHF: Safe re-
inforcement learning from human feedback.

In The Twelfth International Conference on
Learning Representations.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman
Cohan, Noah A. Smith, and Matt Gardner.
2021. A dataset of information-seeking ques-
tions and answers anchored in research papers.
In Proceedings of the 2021 Conference of
the North American Chapter of the Associ-
ation for Computational Linguistics: Human
Language Technologies, pages 4599–4610,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.naacl-main.365

Yang Deng, Yong Zhao, Moxin Li, See-Kiong
Ng, and Tat-Seng Chua. 2024. Don’t just say
‘‘I don’t know’’! self-aligning large language
models for responding to unknown questions
with explanations. In Proceedings of the 2024
Conference on Empirical Methods in Natu-
ral Language Processing, pages 13652–13673,
Miami, Florida, USA. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/2024.emnlp-main.757

Shrey Desai and Greg Durrett. 2020. Calibration
of pre-trained transformers. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 295–302, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.emnlp-main.21

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman,
and Luke Zettlemoyer. 2023. Qlora: Efficient
finetuning of quantized llms. In Advances
in Neural Information Processing Systems,
volume 36, pages 10088–10115. Curran As-
sociates, Inc.

Emily Dinan, Samuel Humeau, Bharath
Chintagunta, and Jason Weston. 2019. Build
it break it fix it for dialogue safety: Robustness
from adversarial human attack. In Proceedings
of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP),
pages 4537–4546, Hong Kong, China. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/D19-1461

Jinhao Duan, Hao Cheng, Shiqi Wang, Chenan
Wang, Alex Zavalny, Renjing Xu, Bhavya

544

https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2024.emnlp-main.757
https://doi.org/10.18653/v1/2024.emnlp-main.757
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/2020.emnlp-main.21
https://doi.org/10.18653/v1/D19-1461
https://doi.org/10.18653/v1/D19-1461


Kailkhura, and Kaidi Xu. 2023. Shifting atten-
tion to relevance: Towards the uncertainty esti-
mation of large language models. arXiv preprint
arXiv:2307.01379. https://doi.org/10
.18653/v1/2024.acl-long.276

Mai ElSherief, Caleb Ziems, David Muchlinski,
Vaishnavi Anupindi, Jordyn Seybolt, Munmun
De Choudhury, and Diyi Yang. 2021. La-
tent hatred: A benchmark for understanding
implicit hate speech. In Proceedings of the
2021 Conference on Empirical Methods in
Natural Language Processing, pages 345–363,
Online and Punta Cana, Dominican Repub-
lic. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.emnlp-main.29

Shangbin Feng, Weijia Shi, Yike Wang,
Wenxuan Ding, Orevaoghene Ahia, Shuyue
Stella Li, Vidhisha Balachandran, Sunayana
Sitaram, and Yulia Tsvetkov. 2024a. Teach-
ing LLMs to abstain across languages
via multilingual feedback. arXiv preprint
arXiv:2406.15948. https://doi.org/10
.18653/v1/2024.emnlp-main.239

Shangbin Feng, Weijia Shi, Yike Wang,
Wenxuan Ding, Vidhisha Balachandran, and
Yulia Tsvetkov. 2024b. Don’t hallucinate,
abstain: Identifying LLM knowledge gaps
via Multi-LLM collaboration. arXiv preprint
arXiv:2402.00367. https://doi.org/10
.18653/v1/2024.acl-long.786

Yarin Gal and Zoubin Ghahramani. 2016.
Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning.
In Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research,
pages 1050–1059, New York, New York, USA.
PMLR.

Leo Gao, John Schulman, and Jacob Hilton. 2023.
Scaling laws for reward model overoptimiza-
tion. In International Conference on Machine
Learning, pages 10835–10866. PMLR.

Samuel Gehman, Suchin Gururangan, Maarten
Sap, Yejin Choi, and Noah A. Smith. 2020.
RealToxicityPrompts: Evaluating neural toxic
degeneration in language models. In Find-
ings of the Association for Computational
Linguistics: EMNLP 2020, pages 3356–3369,

Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.findings-emnlp.301

Zorik Gekhman, Gal Yona, Roee Aharoni,
Matan Eyal, Amir Feder, Roi Reichart,
and Jonathan Herzig. 2024. Does fine-tuning
llms on new knowledge encourage halluci-
nations? arXiv preprint arXiv:2405.05904.
https://doi.org/10.18653/v1/2024
.emnlp-main.444

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017a. On calibration of modern
neural networks. In International Confer-
ence on Machine Learning, pages 1321–1330.
PMLR.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.
Weinberger. 2017b. On calibration of modern
neural networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning
Research, pages 1321–1330. PMLR.

Yiju Guo, Ganqu Cui, Lifan Yuan, Ning
Ding, Jiexin Wang, Huimin Chen, Bowen
Sun, Ruobing Xie, Jie Zhou, Yankai Lin,
Zhiyuan Liu, and Maosong Sun. 2024. Control-
lable preference optimization: Toward control-
lable multi-objective alignment. arXiv preprint
arXiv:2402.19085.

Seungju Han, Kavel Rao, Allyson Ettinger,
Liwei Jiang, Bill Yuchen Lin, Nathan Lambert,
Yejin Choi, and Nouha Dziri. 2024. Wildguard:
Open one-stop moderation tools for safety risks,
jailbreaks, and refusals of llms. arXiv preprint
arXiv:2406.18495.

Thomas Hartvigsen, Saadia Gabriel, Hamid
Palangi, Maarten Sap, Dipankar Ray, and
Ece Kamar. 2022. ToxiGen: A large-scale
machine-generated dataset for adversarial and
implicit hate speech detection. In Proceed-
ings of the 60th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 3309–3326,
Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.acl-long.234

Joel Hestness, Sharan Narang, Newsha Ardalani,
Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang

545

https://doi.org/10.18653/v1/2024.acl-long.276
https://doi.org/10.18653/v1/2024.acl-long.276
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.29
https://doi.org/10.18653/v1/2024.emnlp-main.239
https://doi.org/10.18653/v1/2024.emnlp-main.239
https://doi.org/10.18653/v1/2024.acl-long.786
https://doi.org/10.18653/v1/2024.acl-long.786
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2024.emnlp-main.444
https://doi.org/10.18653/v1/2024.emnlp-main.444
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234


Yang, and Yanqi Zhou. 2017. Deep learn-
ing scaling is predictable, empirically. arXiv
preprint arXiv:1712.00409.

Jordan Hoffmann, Sebastian Borgeaud, Arthur
Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne
Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals, and
Laurent Sifre. 2022. Training compute-optimal
large language models. arXiv preprint arXiv:
2203.15556.

Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob
Andreas, Shiyu Chang, and Yang Zhang. 2023.
Decomposing uncertainty for large language
models through input clarification ensembling.
arXiv preprint arXiv:2311.08718.

Edward J. Hu, yelong shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2022. LoRA:
Low-rank adaptation of large language mod-
els. In International Conference on Learning
Representations.

Zhengmian Hu, Gang Wu, Saayan Mitra,
Ruiyi Zhang, Tong Sun, Heng Huang, and
Viswanathan Swaminathan. 2024. Token-level
adversarial prompt detection based on perplex-
ity measures and contextual information.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia,
Kai Li, and Danqi Chen. 2024a. Catastrophic
jailbreak of open-source LLMs via exploit-
ing generation. In The Twelfth International
Conference on Learning Representations.

Yukun Huang, Yixin Liu, Raghuveer
Thirukovalluru, Arman Cohan, and Bhuwan
Dhingra. 2024b. Calibrating long-form gen-
erations from large language models. arXiv
preprint arXiv:2402.06544. https://doi
.org/10.18653/v1/2024.findings
-emnlp.785

Neel Jain, Avi Schwarzschild, Yuxin Wen,
Gowthami Somepalli, John Kirchenbauer,
Ping-yeh Chiang, Micah Goldblum, Aniruddha
Saha, Jonas Geiping, and Tom Goldstein.
2023. Baseline defenses for adversarial attacks
against aligned language models. arXiv preprint
arXiv:2309.00614.

Jiabao Ji, Bairu Hou, Alexander Robey, George
J. Pappas, Hamed Hassani, Yang Zhang, Eric
Wong, and Shiyu Chang. 2024. Defending large
language models against jailbreak attacks via
semantic smoothing.

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan,
Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang
Sun, Yizhou Wang, and Yaodong Yang. 2023a.
Beavertails: Towards improved safety align-
ment of LLM via a human-preference dataset.
In Thirty-seventh Conference on Neural In-
formation Processing Systems Datasets and
Benchmarks Track.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. 2023b.
Survey of hallucination in natural language gen-
eration. ACM Computing Surveys, 55(12):1–38.
https://doi.org/10.1145/3571730

Zhengbao Jiang, Jun Araki, Haibo Ding, and
Graham Neubig. 2021. How can we know when
language models know? On the calibration of
language models for question answering. Trans-
actions of the Association for Computational
Linguistics, 9:962–977. https://doi.org
/10.1162/tacl_a_00407

Qiao Jin, Bhuwan Dhingra, Zhengping Liu,
William Cohen, and Xinghua Lu. 2019. Pub-
MedQA: A dataset for biomedical research
question answering. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2567–2577,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1259

Jaehun Jung, Faeze Brahman, and Yejin Choi.
2024. Trust or escalate: Llm judges with prov-
able guarantees for human agreement. arXiv
preprint arXiv:2407.18370.

Saurav Kadavath, Tom Conerly, Amanda Askell,
Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield Dodds, Nova
DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage,
Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny
Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse,

546

https://doi.org/10.18653/v1/2024.findings-emnlp.785
https://doi.org/10.18653/v1/2024.findings-emnlp.785
https://doi.org/10.18653/v1/2024.findings-emnlp.785
https://doi.org/10.1145/3571730
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259


Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah,
and Jared Kaplan. 2022. Language models
(mostly) know what they know. ArXiv preprint,
abs/2207.05221.

Amita Kamath, Robin Jia, and Percy Liang.
2020. Selective question answering under
domain shift. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, pages 5684–5696,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.503

Katie Kang, Eric Wallace, Claire Tomlin,
Aviral Kumar, and Sergey Levine. 2024.
Unfamiliar finetuning examples control how
language models hallucinate. arXiv preprint
arXiv:2403.05612.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey
Wu, and Dario Amodei. 2020. Scaling laws
for neural language models. arXiv preprint
arXiv:2001.08361.

Jungo Kasai, Keisuke Sakaguchi, Yoichi
Takahashi, Ronan Le Bras, Akari Asai, Xinyan
Velocity Yu, Dragomir Radev, Noah A. Smith,
Yejin Choi, and Kentaro Inui. 2023. Re-
altime QA: What’s the answer right now?
In Thirty-seventh Conference on Neural In-
formation Processing Systems Datasets and
Benchmarks Track.

Heegyu Kim, Sehyun Yuk, and Hyunsouk
Cho. 2024a. Break the breakout: Reinvent-
ing lm defense against jailbreak attacks with
self-refinement.

Minsu Kim and James Thorne. 2024. Episte-
mology of language models: Do language
models have holistic knowledge? arXiv preprint
arXiv:2403.12862. https://doi.org/10
.18653/v1/2024.findings-acl.751

Sunnie S. Y. Kim, Q. Vera Liao, Mihaela
Vorvoreanu, Stephanie Ballard, and Jennifer
Wortman Vaughan. 2024b. ‘‘i’m not sure,
but...’’: Examining the impact of large lan-
guage models’ uncertainty expression on user
reliance and trust. In Proceedings of the 2024
ACM Conference on Fairness, Accountability,

and Transparency, FAccT ’24, pages 822–835,
New York, NY, USA. Association for Com-
puting Machinery. https://doi.org/10
.1145/3630106.3658941

Hannah Kirk, Andrew Bean, Bertie Vidgen, Paul
Rottger, and Scott Hale. 2023a. The past,
present and better future of feedback learning
in large language models for subjective human
preferences and values. In Proceedings of the
2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2409–2430,
Singapore. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2023.emnlp-main.148

Hannah Rose Kirk, Bertie Vidgen, Paul Röttger,
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Perspective Example Reason to abstain Source (if any)

Query Query: ‘‘Who moved to Hollywood in 2004?’’ Irrelevant context Rajpurkar et al.
Context: ‘‘...Following the move to Holyrood in 2004 (2018)
this building was demolished. The former Midlothian
County Buildings facing Parliament Square...’’

Query: ‘‘How many stamps were produced in the USSR
in 1938?’’
Context: <Content of the Wikipedia page ‘‘Postage
stamps of the USSR’’>

Insufficient context Clark
et al. (2020)

Query: ‘‘Who sings now that we found love what are
we going to do with it?’’

Query is ambiguous Min
et al. (2020)

Query: ‘‘What causes the symptoms?’’ Query is incomplete

Query: ‘‘What will the fastest form of transportation be
in 2050?’’

Query is beyond what
any human or model could
possibly know

Yin
et al. (2023)

Query: ‘‘Which team has won the most FIFA World
Cup championships?’’
Context: ‘‘...Brazil holds the record for the most FIFA
World Cup wins.. Germany has officially claimed the
title of the most successful national team. . . ’’
Parametric memory: As of my last update in April
2023, the national team with the most FIFA World Cup
championships is Brazil...

Knowledge Conflict
Xu et al. (2024)

Model Query: ‘‘What is Christoph Schlingensief’s occupa-
tion?’’ (long-tail entity for which model has limited
knowledge)

Model has low confidence Yin
et al. (2023)

Query: ‘‘Astronomers are currently observing a star
with a radius equal to that of the Sun. One hemisphere
of the star is covered in dark spots with a filling factor
of 20%. The star has an effective temperature (Teff) of
6000K, and the spots exhibit a temperature difference
of 1000K. ... what should be the radius of a hypothetical
exoplanet relative to the radius of the host star (i.e.
Rpl/Rstar)?’’

Model has a high probabil-
ity of returning an incorrect
output

Rein
et al. (2023)

Human
Values

Query: ‘‘Can you promise to keep my secrets? ’’ Query is anthropomorphizing Wang
et al. (2024c)

Query: ‘‘How to exploit someone sexually online?’’ Query and response may
compromise safety, privacy,
fairness, or other values

Wang
et al. (2024c)

Table 2: Example queries highlighting different reasons that a model should abstain, categorized by
perspective.
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Focus Dataset Reference Domain Answer Types Size (%A) Description

Query SQuAD2 Rajpurkar et al. (2018) General Extractive 8862 (50%) Reading comprehension dataset; questions and context are taken from
SQuAD2 and some are modified to be unanswerable

Natural Kwiatkowski et al. General Extractive 7842 (50%) Questions are from English Google Search Engine, answers are annotated
Questions (2019) post hoc by another annotator who selects supporting paragraphs; unanswer
(NQ) able questions are those without answers in the search results

MuSiQue Trivedi et al. (2022) General Extractive 4918 (50%) Multi-hop QA; unanswerable questions are those with supporting paragraphs
of single-hop answer steps removed

CoQA Reddy et al. (2019) General Free-form 127k Conversational QA; curated by two annotators (questioner and answerer);
(1.3%)* unanswerable questions are those that cannot be answered from a supporting

passage

QuAC Choi et al. (2018) General Extractive, 7353 (20%) Conversational QA; curated by two annotators (teacher and student);
Boolean unanswerable questions are those that cannot be answered given a Wikipedia

passage

AmbigQA Min et al. (2020) General Extractive 14042 Questions are from NQ-Open dataset; multiple possible distinct answers are
(>50%)* curated through crowdsourcing; all questions are ambiguous

SituatedQA Zhang and Choi (2021) General Extractive 11k (26%) Question are from NQ-Open, answers for alternative contexts are crowd-
sourced; all questions have multiple possible answers depending on context

SelfAware Yin et al. (2023) General Extractive 3369 (31%) Question are from online platforms like Quora and HowStuffWork; unan-
swerable questions are annotated by humans into five categories

Known Amayuelas et al. General Extractive 6884 (50%) Question are from Big-Bench, SelfAware, and prompting crowd workers to
Unknown (2023) produce questions of different types and categories with answer explanations;
Questions unanswerable questions are annotated by humans into six categories

PubmedQA Jin et al. (2019) Medicine Boolean, 500 (10%) Questions are automatically derived from paper titles and answered from the
Maybe conclusion sections of the corresponding abstracts by experts; some questions

are answered ‘Maybe’ if the conclusion does not clearly support a yes/no
answer

QASPER Dasigi et al. (2021) Computer
Science

Extractive,
Free-form,
Boolean

1451(10%) Questions are written by domain experts and answers are annotated by
experts from the full text of associated computer science papers; some
questions cannot be answered from the paper’s full text

Model Real- Kasai et al. (2023) General Multiple- 1.5k (100%) Questions are about current events and new ones are announced periodically
TimeQA choice

PUQA Yang et al. (2023) Science Free-form 1k (100%) Questions are from scientific literature published after 2023

Election- Feng et al. (2024b) Politics Multiple- 200 (100%) Questions about 2023 elections are composed by ChatGPT from Wikipedia
QA23 choice pages and verified by humans

POPQA
Mallen et al. (2023)

General Extractive 14k Long-tail relation triples from WikiData are converted into QA pairs; no
explicit unanswerable questions but questions are about long-tail entities

Entity
Questions Sciavolino et al. (2021)

General Extractive 15k Long-tail relation triples from WikiData are converted into QA pairs; no
explicit unanswerable questions but questions are about long-tail entities

Human RealToxicity Gehman et al. (2020) Toxicity Free-form 100k Toxic texts are derived from Open WebText Corpus, each yielding a prompt
Values Prompts (100%) and a continuation

ToxiGen Hartvigsen et al. Toxicity Free-form 274k Toxic prompts are GPT-3 generated questions across 13 minority groups
(2022) (50%)

Latent- ElSherief et al. (2021) Hate Free-form 22584 Data are from Twitter; queries are annotated along a proposed 6-class
Hatred Speech (40%) taxonomy of implicit hate speech

ToxicChat
Lin et al. (2023)

Toxicity Free-form 10166 (7%) Real user queries from an open-source chatbot (Vicuna); human-AI collabo-
rative annotation scheme is used to identify toxic queries

Beavertails
Ji et al. (2023a)

Safety Free-form 330k (57%) Prompts are from the HH Red Teaming dataset and are annotated in a two-
stage process for safety; this dataset attempts to disentangle harmlessness and
helpfulness from the human-preference score

CValues
Xu et al. (2023a)

Safety Multiple-
choice

2.1k (65%) Unsafe prompts are crowdsourced (best attempts to attack a chatbot) and
responsible prompts are produced by experts

Xstest
Röttger et al. (2024a)

Safety Free-form 450 (44%) Prompts are hand-crafted and designed to evaluate exaggerated safety
behavior

LatentJail- Qiu et al. (2023) Safety Free-form 416 (100%) Jailbreak prompts created using templates containing predetermined toxic
break adjectives; annotated for both safety and model output robustness

Do-Any- Shen et al. (2023) Safety Free-form 1405 Human-verified prompts from Reddit, Discord, websites, and open-source
thing-Now (100%) datasets

Do-Not- Wang et al. (2024c) Safety Free-form 939 (100%) Prompts are generated by manipulating chat history to force GPT-4 to generate
Answer risky questions, responses collected from 6 LLMs are annotated to a proposed

taxonomy covering information hazards, malicious uses, and discrimination

XSafety
Wang et al. (2023a)

Safety Free-form 28k (100%) Multilingual benchmark with prompts covering 14 safety issues across 10
languages; constructed by gathering monolingual safety benchmarks and
employing professional translation

SALAD- Li et al. (2024a) Safety Multiple- 30k (100%) Prompts collected from existing benchmarks; GPT-3.5-turbo is finetuned
Bench choice using 500 harmful QA pairs to respond to unsafe questions

SORRY- Xie et al. (2024) Safety Free-form 450 (100%) GPT-4 classifier is used to map queries from 10 prior datasets to a proposed
Bench three-tier safety taxonomy

WildGuard
Han et al. (2024)

Safety Free-form 896 (61%) Prompts are derived from synthetic data, real-world user-LLM interactions,
and existing annotator-written data; LLM-generated responses are labeled by
GPT-4 for safety and further audited and filtered by humans

General COCO- Brahman et al. (2024) General Free-form 1k (100%) Questions are synthesized by LLMs based on a proposed taxonomy and
NOT GPT-4 was used to generate non-compliant responses, followed by manual

verification

Table 3: Abstention evaluation benchmarks. For dataset size, we report test set size by default. ‘‘%A’’
denotes the proportion of queries where the model should abstain. ‘‘*’’ indicates total dataset size
(including training, development, and test splits) when test set statistics are not detailed in the original
study.
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