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Abstract

Recent approaches to multilingual open-
domain question answering (MLODQA) have
achieved promising results given abundant
language-specific training data. However, the
considerable annotation cost limits the appli-
cation of these methods for underrepresented
languages. We introduce a few-shot learning
approach to synthesize large-scale multi-
lingual data from large language models
(LLMs). Our method begins with large-scale
self-supervised pre-training using WikiData,
followed by training on high-quality synthetic
multilingual data generated by prompting
LLMs with few-shot supervision. The final
model, FSMODQA, significantly outperforms
existing few-shot and supervised baselines in
MLODQA and cross-lingual and monolin-
gual retrieval. We further show our method
can be extended for effective zero-shot
adaptation to new languages through a
cross-lingual prompting strategy with only
English-supervised data, making it a general
and applicable solution for MLODQA tasks
without costly large-scale annotation.

1 Introduction

Open-domain QA has demonstrated impressive
performance by employing the retrieve-then-read
(Figure 1(a)) pipeline (Chen et al., 2017), which
is built upon dense retrievers (Karpukhin et al.,
2020) and efficient generative readers (Izacard
and Grave, 2021). However, this success has been
primarily limited to English, leaving the multi-
lingual setting under-explored. This limitation is
mainly due to the difficulty and costs of creat-
ing high-quality and balanced human-supervised
training data for languages other than English.
Moreover, multilingual open-domain QA in-
troduces additional challenges with retrieving
evidence from multilingual corpora, requiring
the underlying retrieval system to be capable of
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both cross-lingual and monolingual retrieval (Asai
et al., 2021b).

More recently, efforts have been made to create
multilingual open-domain QA benchmarks from
existing multilingual machine reading comprehen-
sion tasks (e.g., XOR-TYDI QA [Asai et al., 2021a])
and by translating English datasets (e.g., MKQA
[Longpre et al., 2021]). These datasets have en-
abled various approaches to address multilingual
open-domain QA problems, including iterative
data augmentation (Asai et al., 2021b) and ex-
tensive additional pre-training on Wikipedia texts
(Abulkhanov et al., 2023; Jiang et al., 2024).
However, these methods still heavily depend on
abundant high-quality language-specific data for
fine-tuning, making them less effective solutions
when language resources are limited. Therefore,
a more generalizable approach to multilingual
open-domain QA should aim to mitigate this re-
liance and be capable of facilitating language
adaptation with minimally supervised samples.

In this paper, we present FSMODQA, a method
for Few-Shot Multilingual Open-Domain QA us-
ing minimally-sized supervised data (i.e., up to 5
per language).1 Our approach consists of two core
components: a self-supervised pre-training objec-
tive on multilingual corpora; and a synthetic data
generation pipeline that prompts a large language
model (LLM) using few-shot supervised exam-
ples. Concretely, we generate question-answer
pairs from WikiData triples by leveraging LLMs’
In-Context Learning (ICL) ability. To facilitate
ICL prompts, we incorporate ChatBots to gen-
erate curated input-output pairs, which serve
as examples for prompting LLMs to gener-
ate millions of questions from WikiData triples
across various languages. After generating these
question-answer pairs, we identify the supported

1We use the term few-shot throughout this paper to de-
note that our method relies on only a small number of
human-annotated examples. Thus, we classify our method
as a few-shot learning approach, consistent with Dai et al.
(2023).
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Figure 1: Left: Multilingual open-domain QA pipeline. Middle: Training strategies: 1) self-supervised pre-training;
2–4) baselines using English QA data: 2) used directly; 3) machine translated into target languages; 4) used to
prompt LLMs to generate target language QA samples; 5) our method using few-shot in-language data to prompt
an LLM. Right: Result comparison (Avg. F1) on the XOR-Full dataset.

Figure 2: Full pipeline for data construction and model training: (1) generate large-scale data from Wikidata for
self-supervised pre-training; (2) use few-shot prompting to generate synthetic Q&A pairs from Wikipedia passages
of target languages, on which the pre-trained model is further fine-tuned.

Wikipedia passages through answer string match-
ing. We further gather cross-lingual answers and
evidence passages through Wikipedia language
links to facilitate cross-lingual retrieval. Employ-
ing this generated data, we train a multilingual
model with a joint objective for retrieval and
QA, producing a promising pre-trained model
(Figure 1(c)) for subsequent few-shot learning.

In few-shot learning, we employ LLMs for data
generation from few-shot examples. For each tar-
get language, we feed the few-shot examples to an
LLM and prompt it to generate question-answer
pairs from a given document. The few-shot ex-
amples are assumed to encapsulate the QA style
and distribution of the target dataset, enforcing
the LLM to generate synthetic data with similar
characteristics. With this abundant synthetic data,
the pre-trained model can be further fine-tuned
to achieve superior results (Figure 1(c)). As an
unsupervised alternative, we explore a zero-shot
cross-lingual prompting strategy that uses data
from other languages as prompts for data gener-

ation, and we show this is almost on par with
few-shot prompting (Figure 1(c)).

We evaluate FSMODQA on various datasets, in-
cluding cross-lingual and monolingual retrieval,
and multilingual open-domain QA. We observe
notable improvements over competitive few-shot
baselines, with +5.1% gain on retrieval and +8.4%
gain on multilingual open-domain QA. To further
test FSMODQA language adaptation ability, we
conduct zero-shot adaptation experiments using
our cross-lingual prompting strategy on 15 lan-
guages. This adaptation improves performance in
both monolingual retrieval and multilingual QA
significantly, achieving results that are superior or
comparable to strong translation-based methods.2

2 FSMODQA

Figure 2 presents the full pipeline for generating
self-supervised pre-training and fine-tuning data.

2Code, data, and checkpoints are available here.
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Figure 3: Pre-training data construction pipeline: (1) transform WikiData triples into QAs using LLMs for
each target language L, and (2) identify in-language and cross-lingual positive passages from the head entity’s
Wikipedia page and through language links. English translations are added for readability.

2.1 Self-Supervised Data Construction

Sampling Factual Triplets. Our self-supervised
training dataset is constructed based on Wikidata
(Vrandečić and Krötzsch, 2014), a multilingual
knowledge base consisting of fact triplets linked
to millions of entities. We manually select 50
common properties (Appendix Table 10) based
on English and consider all triples associated with
these relations. We then gather fact triplets in the
desired target languages through language links.

Generating Questions. Given a triplet T =
(s, r, o), we aim to write a question q about the
head entity s’s property r with the gold answer a
being the tail entity o. One can use relation-specific
templates to efficiently transform each triple into
natural questions (Sciavolino et al., 2021). How-
ever, this method lacks diversity, making triples
with the same properties generate questions with
similar surface forms. Instead, we adopt a gener-
ative approach by using a LLM to automatically
generate questions with more diverse styles.

Specifically, we first sample five triples
for each property and prompt ChatGPT
(gpt-3.5-turbo) to generate three questions
for each triple. This process yields a curated set
of high-quality questions: K = {si, ri, oi, qi}ki=0.

We additionally generate questions with
Yes/No answers from the same set of sampled
triples. It is easy to generate Yes questions. For
No questions, we need to create false fact triples
from existing triples. Specifically, we randomly
replace a triple’s head or tail entity with the most
similar Wikidata entity, and check the perturbed
triple is not a valid fact according to Wikidata. We
then generate questions using ChatGPT as before.
Examples are included in Appendix Table 11.

Subsequently, these curated questions are used
as ICL examples to prompt a smaller LLM to
transform all sampled triples into natural ques-
tions. We use Gemma-7B (Gemma Team et al.,
2024) as the LLM and include the prompts we
used in Appendix Table 12.

Multilingual Positive Passage Identification.
As shown in Figure 3, for a question qja and
answer aja derived from a triple (sja, r, oja), we
gather all passages from the Wikipedia page Wja

linked by sja and add passages containing aja as
positive Dja

q . If no such passage exists, we use
partial match and select the one with the highest
lexical overlaps with aja as positive. We further
include positive passages in other languages to
facilitate cross-lingual retrieval. We first translate
the triple into target languages (sL, r, aL) using
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language links and identify cross-lingual positives
by searching aL in the Wikipedia page WL linked
by sL as above. This derives monolingual and
cross-lingual positive passages Dq = Dja

q ∪ DL
q .

We generate 18.7M (q, a,Dq) triples across 8
languages in total, denoted as MLWIKIQA.3

2.2 Few-shot Synthetic Data Generation

Few-shot Setting. The main idea of FSMODQA
is to amplify a limited number of annotated
examples into a substantially larger volume of
synthetic data by prompting LLMs. In this work,
we consider XOR-TYDI QA (Asai et al., 2021a)
as our target dataset. For each language in
XOR-TYDI QA, we randomly sample five triples
K = {(qLi , aLi , dLi )}5i=1 from the training set as
few-shot examples. Each triple contains the ques-
tion, answer, and the ground truth passage. We
ensure that three examples are span answers, while
the remaining two areYes andNo answers to align
with XOR-TYDI QA distribution.

Prompt-based Question & Answer Generation.
We populate a hand-engineered template with our
few-shot language-specific examples K and use
them as the ICL examples to prompt LLM. Given
a randomly sampled passage dL from language L,
we append dL to the template, and the LLM is
expected to generate a relevant question qL and
answer aL in language L. We further constrain the
answer aL to be a span within dL, a property of
the original XOR-TYDI QA dataset.

Many questions classified as unanswerable in
Clark et al. (2020) can be answered by refer-
ring to English Wikipedia (Asai et al., 2021a).
These questions are included as cross-lingual
questions in XOR-TYDI QA. To simulate this sce-
nario, we generate synthetic cross-lingual data
from English passages. We first use Google
Translate to translate the few-shot examples
to English: K′ = {(qEn

i , qLi , a
En
i , aLi , d

En
i )}5i=1.

Subsequently, we use these translated few-shot
examples K′ to fill another template and instruct
the LLM to generate QA from a randomly sampled
English passage dEn, first in English (qEn, aEn)
and then in target language (qL, aL). Similarly,
we restrict aEn to be a span within dEn. We in-
clude the prompts we used in Tables 13 and 14 in
Appendix.

3We classify MLWIKIQA as a silver-standard dataset
rather than a synthetic one, as it is derived from the structured
information in WikiData and Wikipedia.

Data Filtering. We employ a method based on
Natural Language Inference (NLI) to enhance the
quality of our synthetic data. NLI techniques aim
to classify whether a hypothesis text is entailed by,
neutral, or contradictory to a given premise text
(Bowman et al., 2015). They have been widely
used for identifying factual errors in text summa-
rization (Laban et al., 2022) and hallucinations in
machine-generated texts (Honovich et al., 2022).
In this study, we employ NLI methods for data
filtering (Yoran et al., 2024). Given a synthetic
example (q, a, d), we consider the source passage
d as the premise and the concatenation of the
generated question q and answer a as the hypoth-
esis. We retain an example only when the premise
entails the hypothesis.

In more detail, we apply a novel local-to-global
filtering mechanism. In local filtering, we evalu-
ate whether the originating passage d entails the
synthetic QA (q, a) pairs. We take the output
probability of the entailment label as the score
and keep examples when the entailment score ex-
ceeds a threshold Tl. In global filtering, we use a
pre-trained model (i.e., the self-supervised model
in Figure 1(b)) to perform retrieval for the question
q and obtain a set of passages D̂q. We compute
an entailment score vector x ∈ R|D̂q |, with each
entry being the entailment score between (q, a)
and a retrieved passage d ∈ D̂q. We then apply a
maximum pooling operation max(x) to derive the
final score. The intuition behind this is that a valid
(q, a) should be supported by at least one of the re-
trieved passages, which aligns with open-domain
settings. Similarly, we retain only those examples
whose scores surpass a predefined threshold Tg.
In this way, we end up having 1.7M synthetic data
in total across 7 languages, denoted as FSMLQA.

2.2.1 Zero-shot Cross-lingual Prompting
Our few-shot setting relies on a few annotated
examples to generate synthetic QA pairs in tar-
get languages. However, this approach encounters
significant challenges when the target language
is extremely low-resourced, making it nearly im-
possible to obtain even a few examples. For this
setting, we explore zero-shot prompting, which
uses cross-lingual examples to prompt LLMs to
generate synthetic QA pairs in target languages.

We consider two zero-shot prompting settings.
In English-Prompting setting, we use English QA
data to fill up a template and use it as the prompt
to ask LLMs to generate QA pairs from passages
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randomly sampled from the target language. In
Multilingual-Prompting setting, we assume access
to a handful of examples in a held-out language
set. We randomly sample five multilingual ex-
amples from this held-out set to populate another
template, and prompt LLMs to generate QA pairs
in target languages. We include the prompts used
in Tables 15 and 16 in Appendix.

2.2.2 Data Sampling
Our synthetic dataset, FSMLQA, exhibits a
strongly skewed distribution towards shorter an-
swer lengths (often single tokens), whereas the
human-annotated answers in XOR-TYDI QA tend to
be substantially longer. To address this mismatch,
we resample the training data from FSMLQA
according to answer length, using a geometric dis-
tribution, l ∼ Geo(p), to achieve a better balance
between short and long answers.4

2.3 FSMODQA Model

Model Structure. As shown in Figure 4, we em-
ploy a single encoder-decoder model to perform
both passage retrieval and QA tasks. The first half
of the encoder functions as a dual-encoder with
shared parameters, which separately encodes the
question q and the passage corpus D. Addition-
ally, we append an instruction to the question to
inform the language of the target answer: ‘‘Answer
in {lang}’’. A LayerNorm operation, followed by
average pooling, is applied to compress the in-
puts into single vectors: Eq and {Edi

|di ∈ D},
which are used for matching via dot products. The
top-k most relevant passages to the question are
selected: Dq = arg topkdi∈D(Eq · Edi

). The em-
beddings of the question and each top-k passage
in Dq are concatenated and fed into the remaining
cross-encoder layers. Finally, the cross-encoder
embeddings are flattened and incorporated into
the decoder through cross-attention to generate
the answer a, following the Fusion-in-Decoder
approach (Izacard and Grave, 2021).

Model Training. FSMODQA is first pre-trained
on MLWIKIQA and later fine-tuned on FSMLQA.
In self-supervised pre-training, we use a simple
contrastive loss and answer generation loss to
train FSMODQA. The dual-encoder is updated by

4Empirically, we set p = 0.4 (μ = 2.5) for all languages
except for Japanese, where we set p = 0.1 (μ = 10) to
favor longer answers. When computing the distribution, we
truncate the answer length to 30.

Figure 4: The unified model for passage retrieval and
question answering.

contrasting the paired question passage against
the targets of other questions in one training batch
(i.e., in-batch negative). Formally, for i-th training
example, the loss function Li

ssl is:

− log
e(Eqi

·Edi
)

∑N
j=1 e

(Eqi
·Edj

)
− log

∏T

t=1
P (ai

t|ai
<t, qi,di)

The pre-trained FSMODQA is subsequently
fine-tuned on our synthetic data through an
end-to-end training mechanism. The dual-encoder
is trained using signals derived from the answer
generation task, with the cross-attention score
from the decoder serving as the target for assess-
ing question-passage relevance. For i-th training
example, the loss function is formally defined as:

Li
ret = KL(Pret(·|qi,Dqi

||Pca(·|qi,Dqi
)),

Pret(·|qi,Dqi
) = softmax(Eqi

·Ed1
, . . . , Eqi

·Ed|Dqi |),

Pca(·|qi,Dqi
) =

∑H

h=0

∑|dj |

t=0

SG(CA(0, h, t))

H
|dj ∈ Dqi

,

where Dqi
is the passages returned by the

dual-encoder itself and Pca is the target distribu-
tion gathered from the decoder’s cross-attention
scores. SG signifies stop-gradient, which prevents
the decoder from being affected by the retriever
loss, and CA denotes the cross-attention score at
the last decoder layer. The term 0 refers to the first
output token, H is the number of cross-attention
heads, and |dj | stands for the length of passage
dj .

The entire model is optimized to generate the
target answer ai given qi and relevant passages
Dqi

. The final loss is: Li
e2e = Li

ret + Li
ans, where

Li
ans = log

∏T
t=1 P (ai

t|ai
<t, qi,Dqi

).
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3 Experiments

3.1 Datasets and Metrics

We evaluate on the XOR-TYDI QA dataset
(Asai et al., 2021a), with XOR-Retrieve for
cross-lingual retrieval and XOR-Full for multi-
lingual open-retrieval QA. We conduct zero-shot
evaluations on two benchmarks, MIRACL (Zhang
et al., 2023) for monolingual retrieval and
MKQA (Longpre et al., 2021) for multilingual
open-domain QA. For XOR-Retrieve, we use the
February 2019 English Wikipedia dump as the
retrieval corpus and the same dumps from 13 lan-
guages for XOR-Full and MKQA (Asai et al.,
2021a). For MIRACL, we use the monolingual
Wikipedia preprocessed by Zhang et al. (2023).
Following prior work, we evaluate models at Re-
call@5kt (top 5000 tokens) on XOR-Retrieve;
F1, exact match (EM) and BLEU on XOR-Full;
nDCG@10 on MIRACL; and F1 on MKQA.

3.2 Baselines

We evaluate three ranges of representative base-
lines based on the type of supervised data used:
(i) Zero-shot baselines (‘‘-En’’) fine-tuned on
supervised English-only data (i.e., Natural Ques-
tions (Kwiatkowski et al., 2019)). (ii) Supervised
baselines that fine-tuned on human-annotated
multilingual data (i.e., XOR-TYDI QA). (iii)
Few-shot models that improve zero-shot baselines
with only a few supervised multilingual instances.

Retriever Baselines. For XOR-Retrieve, we
include: (1) Zero-shot retrievers: translate-test
methods: DPR+MT (Asai et al., 2021a) and
ReATT+MT (Jiang et al., 2022); models pre-
trained on multilingual Wikipedia: CLASS-En
(Jiang et al., 2024) and LAPCA (Abulkhanov
et al., 2023). (2) Supervised retrievers: multilin-
gual dense retrievers: mDPR (Asai et al., 2021a),
CORA (Asai et al., 2021b), Sentri (Sorokin et al.,
2022), QuiCK (Ren et al., 2022); token-level dense
retrievers: DrDecr (Li et al., 2022) pre-trains Col-
BERT on WikiMatrix (Schwenk et al., 2021).
(3) Few-shot retrievers: SWIM-X (Thakur et al.,
2024) generates massive synthetic data from
LLMs through a summarisation-then-ask tech-
nique. CLASS (5-shot) fine-tunes CLASS-En
on our 5-shot examples. For MIRACL (Zhang
et al., 2023), we include two supervised retrievers:
fine-tuned mContriever (Izacard et al., 2022) and

Hybrid that combines the results of BM25, mDPR,
and mColbert (Khattab and Zaharia, 2020).

Reader Baselines. (1) Zero-shot baselines:
translate-test methods MT+DPR, ReAtt+MT,
and GMT+GS generate answers from English
retrieved passages with question and answer trans-
lations. (2) Supervised baselines: BM25 does
in-language retrieval with an extractive multilin-
gual QA model; MT+Mono first applies BM25
and then MT+DPR if no answer was gener-
ated. Fusion-in-decoder methods (i.e., CORA,
CLASS, Sentri, LAPCA) use retrieval-augmented
generation, generating target language answers
from multilingual retrieved passages. (3) Few-shot
readers: Gemma (5-shot) (Gemma Team et al.,
2024) and LLaMa3 (5-shot) (Touvron et al., 2023)
prompt LLMs with few-shot examples and re-
trieved passages using the template in Appendix
Table 17; CLASS (5-shot) fine-tunes CLASS-En
on few-shot examples. We use the same 5-shot
examples for all methods.

3.3 Implementation Details

With the proposed self-supervised data construc-
tion method, we generate 18,735,159 triplets for
pre-training across 8 languages, with statistics in
Appendix Table 19. We initialize our model from
the mT5-large checkpoint (Xue et al., 2021) and
pre-train it using the loss function Lssl for 100K
steps with a batch size of 800 on 16 A100 GPUs
for 64 hours. We set the learning rate to 5× 10−5

with 10% steps of warm-up, and linear decay to 0.
With our few-shot data generation method, we

obtain 1,746,156 question-answer pairs across 7
languages included in XOR-TYDI QA after data fil-
tering with Tl = 0.5 and Tg = 0.8, with detailed
statistics shown in Table 19 in Appendix. For
fine-tuning, we first train the pre-trained model
using NQ data for 8K steps and then on FSMLQA
for 6K–14K steps depending upon the size of the
sampled training dataset, with the loss function
Le2e. We set the batch size to 128 and the learning
rate to 5× 10−5. We apply an asynchronous pas-
sage update mechanism, where we periodically
refresh the retrieved passages for each training
query using the most recent checkpoint every 1K
steps.

3.4 Retrieval Results

XOR-Retrieve. Table 1 shows that FSMODQA,
fine-tuned on 100K synthetic data, surpasses the
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R@5kt

Method Backbone # Total Params Pre-training Data Fine-tuning Data Ar Bn Fi Ja Ko Ru Te Avg.

Zero-shot Retrievers
DPR+MT† mBERT 220M – NQ 52.4 62.8 61.8 48.1 58.6 37.8 32.4 50.6

ReAtt+MT∗ T5-L 583M – NQ 67.3 71.0 29.3 61.8 67.0 61.2 66.4 60.6

CLASS-En∗ mT5-L 410M Wikipedia NQ 66.7 78.6 66.6 60.2 63.2 58.2 78.2 67.4

Supervised Retrievers
CORA mBERT 557M – NQ + XOR 42.7 52.0 49.0 32.8 43.5 39.2 41.6 43.0

mDPR† mBERT 557M – NQ + XOR 48.9 60.2 59.2 34.9 49.8 43.0 55.5 50.2

Sentri XLM-R 560M – NQ + TQA + XOR 56.8 62.2 65.5 53.2 55.5 52.3 80.3 60.8

QuiCK mBERT 557M – NQ + XOR 63.8 78.0 65.3 63.5 69.8 67.1 74.8 68.9

DrDecr XLM-R 278M WikiMatrix NQ + XOR 70.2 85.9 69.4 65.1 68.8 68.8 83.2 73.1

LAPCA XLM-R 560M Wikipedia NQ + XPAQ + XOR 70.2 83.8 79.6 69.7 73.6 75.5 83.1 76.5

CLASS mT5-L 410M Wikipedia NQ 70.6 84.9 71.0 66.0 72.6 70.0 81.9 73.9

Few-shot Retrievers
SWIM-X (7M) mT5-B 580M mC4 SWIM-IR 57.9 75.0 65.6 59.3 58.9 64.6 74.4 65.1

CLASS (5-shot) mT5-L 410M Wikipedia NQ + XOR (5-shot) 67.0 78.6 65.6 59.0 63.6 59.0 79.5 67.5

FSMODQA (100K) mT5-L 410M MLWIKIQA NQ + FSMLQA 66.3 79.3 67.8 66.4 65.6 73.8 75.2 70.6
FSMODQA (1.7M) mT5-L 410M MLWIKIQA NQ + FSMLQA 63.4 80.6 67.5 66.0 66.7 74.3 75.6 70.6

Table 1: Results on XOR-Retrieve dev sets. Best performance is in bold. † and ∗ denotes results reported
by Asai et al. (2021a) and Jiang et al. (2024), respectively. Others are copied from original papers.

Seen Languages Unseen Languages

ar bn en fi ja ko ru te es fa fr hi id sw th zh de yo Avg.

Supervised Retrievers
Hybrid 67.3 65.4 54.9 67.2 57.6 60.9 53.2 60.2 64.1 59.4 52.3 61.6 44.3 44.6 59.9 52.6 56.5 37.4 56.6

mContriever 66.4 68.4 44.2 65.2 56.8 58.8 51.2 79.0 42.8 48.9 46.2 45.0 45.8 67.7 70.7 49.4 42.3 48.4 55.4

Few-shot Retrievers
SWIM-X (180K) 60.2 57.1 34.7 40.6 40.8 43.3 49.7 55.9 33.4 36.3 64.3 33.0 39.5 40.0 56.3 63.3 50.2 36.5 46.4

FSMODQA (100K) 64.4 63.6 45.4 64.7 55.1 49.6 50.0 76.2 40.5 43.7 36.5 43.2 42.6 50.2 60.4 43.2 36.7 60.2 51.5

Table 2: Monolingual retrieval results on MIRACL dev sets. Best performance is in bold. Hybrid scores
are taken from Zhang et al. (2023). mContriever and SWIM-X are copied from Thakur et al. (2024).

few-shot SWIM-X (7M) by 5.5% at Recall@5kt,
despite the latter using substantially more syn-
thetic data generated by a significantly larger
proprietary LLM (PaLM2). This indicates our
method’s great efficiency in training and data
generation. Further scaling up the training data
to full size does not improve retrieval accuracy.
In addition, we find that fine-tuning CLASS, a
sophisticated pre-training method, on the same set
of 5-shot examples, lags FSMODQA by 3.1 points.
This shows our method of amplifying data through
LLM prompting is superior to direct fine-tuning.

MIRACL. Table 2 shows that FSMODQA sur-
passes the few-shot retriever SWIM-X by 5.1%,
although SWIM-X generates synthetic data on
each MIRACL language through 3-shot prompt-
ing, whereas FSMODQA is exclusively trained on
synthetic data generated from 5-shot examples of
XOR-TYDI QA and thus, evaluated on a zero-shot
manner. We further divide languages into seen
and unseen groups based on FSMODQA’s training

data. It outperforms SWIM-X on all seen lan-
guages and 7 out of 10 unseen languages, except
on zh, fr, and de. We suspect SWIM-X ben-
efits significantly from large-scale synthetic data
generation on these high-resource languages.

3.5 Multilingual QA Results

XOR-Full. In Table 3, we show FSMODQA
achieves the best results in few-shot settings, out-
performing CLASS-En (directly fine-tuning on
5-shot examples) by 8.4% and directly few-shot
promoting LLMs for QA by 18%. Compared to
supervised readers, FSMODQA surpasses CORA
and other pipeline methods while achieving results
comparable to the rest. It is also noteworthy that
in two low-resource languages, FSMODQA outper-
forms comparable supervised baselines in Bengali
and achieves a closer match in Telugu, indicat-
ing the effectiveness of our method in handling
low-resource languages.
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F1 Macro Average

Method Backbone # Total Params Pre-training Data Fine-tuning Data Ar Bn Fi Ja Ko Ru Te F1 EM BLEU

Zero-shot Readers
MT+DPR† mBERT – – NQ 7.2 4.3 17.0 7.9 7.1 13.6 0.5 8.2 3.8 6.8
ReAtt+MT∗ T5-L 1.19B – NQ 15.0 10.5 1.8 13.1 14.9 15.4 8.2 11.3 5.5 9.5
GMT+GS† – – – NQ 18.0 29.1 13.8 5.7 15.2 14.9 15.6 16.0 9.9 14.9

Supervised Readers
BM25† – – – XOR 31.1 21.9 21.4 12.4 12.1 17.7 – – – –
MT+Mono† mBERT – – NQ + XOR 15.8 9.6 20.5 12.2 11.4 16.0 0.5 17.3 7.5 10.7
CORA mBERT+mT5-B 1.14B – NQ + XOR 42.9 26.9 41.4 36.8 30.4 33.8 30.9 34.7 25.8 23.3
CLASS mT5-L 1.23B Wikipedia NQ + XOR 49.1 32.0 46.7 44.1 38.4 39.9 41.1 41.6 32.5 28.2
Sentri XLM-R+mT5-B 1.14B – NQ + TQA + XOR 52.5 31.2 45.5 44.9 43.1 41.2 30.7 41.3 34.9 30.7
LAPCA XLM-R+mT5-B 1.14B Wikipedia NQ + XPAQ + XOR 53.4 50.2 49.3 44.7 49.5 49.3 38.9 47.8 38.7 35.5

Few-shot Readers
Gemma (5-shot) Gemma 7B – – 13.4 19.0 21.7 20.2 20.5 23.0 23.4 20.2 12.2 15.3
LLaMA3 (5-shot) LLaMA3 8B – – 22.7 13.2 22.9 17.8 19.0 19.2 28.9 20.5 12.8 15.6
CLASS (5-shot) mT5-L 1.23B Wikipedia NQ + XOR (5-shot) 32.3 28.1 29.9 25.7 29.5 27.7 24.7 29.8 20.5 21.2
FSMODQA mT5-L 1.23B MLWIKIQA NQ + FSMLQA 41.3 35.4 39.6 41.5 35.0 38.2 36.3 38.2 27.9 24.4

Table 3: Multilingual QA results on the XOR-Full dev set. Best performance is in bold. † and ∗ denotes
results taken from Asai et al. (2021b) and Jiang et al. (2024). Others are copied from original papers.

Method Da De Es Fr He Hu It Km Ms Nl No Pl Pt Sv Th Tr Vi cn hk tw Avg

Supervised Readers
CORA 30.4 30.2 32.0 30.8 15.8 18.4 29.0 5.8 27.8 32.1 29.2 25.6 28.4 30.9 8.5 22.2 20.9 5.2 6.7 5.4 21.8

CLASS 28.3 32.3 33.3 31.2 10.3 23.1 30.6 7.1 24.7 30.2 28.4 25.6 29.3 28.9 14.1 24.8 19.0 8.0 7.8 6.7 22.2

Few-shot Readers
FSMODQA 34.8 33.3 38.5 34.8 19.5 28.4 31.9 7.5 36.7 34.1 35.5 18.4 33.4 37.2 15.1 24.8 9.9 9.1 8.6 7.9 25.0

Table 4: Zero-shot multilingual QA results (F1) on MKQA. Best performance is in bold. ‘‘cn’’: ‘‘Zh-cn’’
(Chinese, simplified). ‘‘hk’’: ‘‘Zh-hk’’ (Chinese, Hong Kong). ‘‘tw’’: ‘‘Zh-tw’’ (Chinese, traditional).

XOR-Full XOR-Retrieve

In-LG Cross-LG All Retrieval CL-Retrieval
Avg. F1 Avg. F1 Avg. F1 RM@100 R@5kt

FSMODQA 46.8 31.2 36.9 75.0 70.6
- CL Queries 49.3 30.0 36.8 72.0 68.4

Table 5: The effects of generating cross-lingual
queries from English passages, at 100K data scale.

MKQA. In Table 4, FSMODQA achieves the
best zero-shot results on MKQA in almost all lan-
guages, with an improvement of +2.8% compared
to supervised CORA and CLASS. This suggests
that training on our synthetic data can well gen-
eralize to other new languages, indicating that
generating synthetic data for each target language
may not be necessary for language adaptation.

3.6 Ablation

We perform ablation studies to justify each of our
designs, with results shown in Tables 5 and 6.

Cross-lingual Data Improves Cross-lingual
Ability. Excluding cross-lingual synthetic train-
ing data enhances performance in answering

Ar Bn Fi Ja Ko Ru Te Avg.

FSMODQA 40.6 34.3 38.4 40.7 32.9 37.7 33.9 36.9
- Data Filtering 39.0 31.7 37.4 39.2 32.3 35.5 35.3 35.8

- Geo Sampling 37.9 35.9 36.7 38.5 34.1 35.0 33.5 36.0

- MLWIKIQA 11.2 7.2 10.2 17.5 7.9 8.5 4.4 9.6

Table 6: Ablations by removing one component
of our method, at 100K data scale.

questions that require only the retrieval of
in-language passages. However, the result on
questions relying on cross-lingual passage re-
trieval declines, reducing the overall results. This
is further evidenced by retrieval results RM@100,
where the accuracy of finding evidence in any lan-
guage (e.g., English and in-language) drops, with
additional support from the cross-lingual passage
retrieval results.

Data Filtering Improves Data Quality. By us-
ing the raw synthetic data from LLMs without any
quality control, the performance suffers in every
examined language except Telugu. We suspect
that the NLI model is deficient in this language.
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Figure 5: Performance when trained with different sizes
of our synthetic data.

Geometry Sampling Improves Long-answer
Generation. Sampling data according to geom-
etry distribution over answer length leads to a
0.9% gain on average. In languages that contain
a significant number of long answers (i.e., ar,
fi, ja, ru), geometry sampling shows gains of
up to 2.7%. Conversely, in bn, and ko, where
short answers dominate, random sampling is
usually better.

Pre-training is Crucial. We observe extremely
poor results in all languages without pre-training
on our MLWIKIQA, primarily due to the model’s
low retrieval accuracy in identifying relevant pas-
sages. We believe pre-training enables the model
to achieve good initial retrieval accuracy, which
is essential in the subsequent fine-tuning process.

3.7 Training Data Scaling

Performance Improves with More Synthetic
Data. To investigate the effect of our data scale
on models, we train FSMODQA on subsets rang-
ing from 0.05M to the entire 1.7M QA pairs,
Results on each language and the average per-
formance are shown in Figure 5. As the data
size increases, FSMODQA shows enhanced aver-
age performance up to the 0.6M data scale and
gradually decreases afterward. We observe that
as data size increases, the proportion of examples
with short answers increases (78.4% → 95.3%),
and the result on long-answer examples drops
from 18.0% to 15.1%, indicating overfitting to
short answers.

Our geometric sampling method (§2.2.2) at-
tempts to balance the answers by length, however
its use of sampling without replacement means the
few long answer instances are quickly exhausted,
such that larger sampled datasets become skewed
toward shorter answers. To mitigate this issue, we
employ sampling with replacement. This method

Figure 6: Performance comparison when sampling data
with or without replacement by using our geometric
sampling strategy.

Figure 7: Results when trained with varying sizes of
supervised data. The average together with the best and
worst languages are reported.

upsamples longer-answer examples such that the
length distribution follows the precomputed ge-
ometric distribution.5 As a result, it effectively
increases the number of training epochs for data
points with longer answers. As shown in Figure 6,
sampling with replacement significantly improves
performance on longer answers (≥4 tokens) while
maintaining comparable performance on shorter
answers relative to the current method.

Few-shot Prompting Is Superior to Direct
Fine-tuning and Benefits from More Super-
vised Data. In Figure 7, we show that directly
fine-tuning on the 5-shot examples is beneficial
(28.6% → 33.5%) but remains inferior to our
few-shot method. When increasing the size of su-
pervised data, both methods achieve consistent
improvements although the performance gap nar-
rows. With full-sized training data, FSMODQA
surpasses CLASS (43.0% v.s. 41.6%), achiev-
ing new state-of-the-art results. See Appendix
Table 21 for results in each language.

5We do not cap the number of repeats.
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3.8 Zero-shot Prompting Strategies
We compare our few-shot prompting strategy
with two zero-shot cross-lingual prompting meth-
ods in §2.2.1. In English-Prompting, we consider
NQ training data and TYDI QA English train-
ing data as prompting sources, respectively. In
Multilingual-Prompting, we use 5-shot exam-
ples from all languages in XOR-TYDI QA (i.e.,
those used in our few-shot setting) for prompting.
When generating synthetic data for each target
language, we exclude its 5-shot examples from
the prompting source. We compare the success
rate of generating valid examples using differ-
ent prompting strategies in Appendix Table 20,
with few-shot prompting achieving the highest
rate and English-Prompting with NQ yielding the
lowest rate.

Zero-shot prompting is comparable to few-shot
prompting. Table 7 shows that all three
zero-shot prompting variants achieve consistent
improvements over FSMODQA-EN with up to 8.1%
gains, highlighting the versatility of our method
in zero-shot language adaptation. Prompting with
English datasets created with the same guidelines
achieves better results (TYDI-En v.s. NQ-En), and
using multilingual examples for prompting (i.e.,
XOR-TYDI-*) is comparable to FSMODQA. Specif-
ically, the diversity and QA styles in prompts
are more important for fi and te, while for
other languages, employing in-language prompts
usually leads to the best performance.

English-prompting is the best way of using
English data and is complementary to exist-
ing methods. We compare three different ways
of using TYDI QA English data for zero-shot
learning, direct English fine-tuning, fine-tuning on
machine-translated data from English, and English
Prompting. Table 8 shows the benefits of all three
methods, with our English-Prompting approach
yielding the best results in all languages. Addi-
tionally, combining data from all three methods
results in improvements over any of them when
used independently, and matches the performance
of our few-shot setting.

4 Zero-shot Language Adaptation

In §2.2.1, we propose a zero-shot prompting
strategy that uses few-shot examples from other
languages to generate synthetic data for a dis-
tinct target language. The effectiveness of this

Ar Bn Fi Ja Ko Ru Te Avg.

FSMODQA-EN 30.7 30.2 31.0 24.3 26.2 29.6 28.5 28.6

FSMODQA 41.7 34.7 38.7 39.4 34.7 35.0 33.5 36.8
NQ-En 38.8 33.9 40.1 33.0 33.0 34.9 34.3 35.4

TYDI-En 39.1 34.4 41.2 35.6 31.9 34.6 36.0 36.1

XOR-TYDI-* 42.5 33.9 40.3 37.9 33.7 34.6 34.3 36.7

Table 7: XOR-Full performance comparison when
using zero-shot prompting strategies for synthetic
data generation, at 100K scale. FSMODQA-EN in-
dicates the model pre-trained on MLWIKIQA and
fine-tuned on the English NQ dataset.

Ar Bn Fi Ja Ko Ru Te Avg.

FSMODQA-EN 30.7 30.2 31.0 24.3 26.2 29.6 28.5 28.6

+ Fine-tuning 36.8 30.7 35.5 29.1 28.6 30.4 29.4 31.5

+ Translate-train 31.5 31.2 29.9 26.5 28.8 27.7 31.5 29.6

+ English-prompt 39.1 34.4 41.2 35.6 31.9 34.6 36.0 36.1

+ All 41.9 36.2 43.0 37.3 33.7 37.0 37.4 38.1

Table 8: Result comparison on XOR-Full for
different means of using TYDI-En data.

approach is demonstrated in §3.8. In this section,
we evaluate the impact of this strategy in adapting
FSMODQA to a diverse range of previously unseen
languages, using only English labeled data.

4.1 Experimental Setup

Languages We select ten languages unseen
by FSMODQA from the MIRACL dataset for
monolingual retrieval adaptation. We choose ten
unseen languages from the MKQA dataset with
high, medium, and low resources for multilingual
open-domain QA adaptation.

Data Generation We consider the English
NQ training data as the source for prompts.
For each target language, we randomly sam-
ple five-shot examples from the NQ dataset
to prompt the generation of Q&A pairs from
selected Wikipedia passages, following the pro-
cedure described in §2.2. This approach yields
128,000 training instances for each target lan-
guage. Additionally, we compare this method
to the translate-train baseline (MT), which uses
Google Translate to translate the NQ training data
into the target languages.

Model Training For both methods, we fine-tune
FSMODQA for 3K steps following the same proce-
dure used in FSMLQA (§3.3). The final checkpoint
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High Medium Low

MIRACL De Es Fr Zh Fa Hi Id Sw Th Yo Avg.

FSMODQA 36.7 40.5 36.5 43.2 43.7 42.6 43.2 50.2 60.4 60.2 45.7

+ MT 41.3 41.8 37.1 41.7 40.7 42.4 44.1 50.7 60.5 23.9 42.4

+ Adapt 38.8 41.6 38.6 47.0 47.7 45.9 44.2 62.3 66.6 78.3 51.1

High Medium Low

MKQA De Es Fr Zh He Pl Tr Vi Km Th Avg.

FSMODQA 33.3 38.5 34.8 8.5 19.5 18.4 24.9 9.9 7.5 15.1 21.0

+ MT 42.6 41.6 41.2 12.8 32.1 29.5 39.9 39.5 13.8 22.1 31.5

+ Adapt 42.1 42.1 43.0 12.0 27.4 39.7 40.4 40.4 13.3 22.7 32.3

Table 9: Zero-shot adaptation to unseen lan-
guages in monolingual retrieval (nDCG@10) and
multilingual open-domain QA (F1).

obtained at the last training step is used for eval-
uation. Note that separate models are created per
language in this experiment.

4.2 Results

Monolingual Retrieval Adaptation. As shown
in the upper part of Table 9, the zero-shot
adaptation significantly improves FSMODQA’s
monolingual retrieval results by an average of
5.4% across ten unseen languages. These improve-
ments are particularly pronounced in low-resource
languages (i.e., th, yo, sw), whereas the MT
baseline results in notable declines both in
these languages (e.g., −36.3% in yo) and over-
all (−3.3%). Note that MIRACL was created
by native speakers from texts in the target
languages, which aligns with our data genera-
tion process. This explains the consistent gains
achieved by our method and shows its superiority
to translation-based approaches.

Multilingual Open-domain QA Adaptation.
As shown in the bottom of Table 9, the adaptation
effectively enhances multilingual open-domain
QA performance across seven languages, achiev-
ing an average improvement of 11.3%. MT-based
approaches yield results comparable to our adap-
tation, which is expected since MKQA was
translated from NQ and the machined-translated
data share the same topic distributions (i.e.,
American-centric). In contrast, our method gen-
erates data from Wikipedia texts written in
target languages to simulate how native speak-
ers ask questions, which is more common for
real-world scenarios.

Figure 8: Quality validation results on the synthetic
FSMLQA (with and without filter), comparing against
the silver-standard pre-training data MLWIKIQA. We
employ Model-as-Judge to evaluate the quality of gen-
erated data on a three-level rating scale (0–2) based on
two factors: fluency and relevance.

5 Data Analysis

5.1 Quality Validation

To assess the overall quality of our synthetic data,
we randomly sample 1,000 examples from the sil-
ver pre-training data (MLWIKIQA) and few-shot
synthetic data (FSMLQA). These samples are eval-
uated using the GPT-4o mini to assess quality
based on: 1) Fluency (0–2): assessing whether
the query is understandable, readable, and free of
spelling or grammatical mistakes; 2) Relevance
(0–2): evaluating the alignment between the gen-
erated query-answer pair and the passage used for
data generation. The prompts employed for quality
assessment are included in Appendix Table 18.

Figure 8 illustrates that both types of our
generated queries exhibit fluency and strong
grounding in the corresponding positive pas-
sages. The silver-standard MLWIKIQA, derived
using heuristics from WikiData (§2.1), consis-
tently achieves higher scores across both metrics
in all languages compared to the unfiltered syn-
thetic FSMLQA (w/o Filter columns). However,
the quality of FSMLQA improves significantly
after applying our tailored filtering mechanism
(w/ Filter columns), almost matching the quality
and fluency scores for MLWIKIQA. This finding
underscores the critical role of the filtering pro-
cedure in producing a synthetic dataset of quality
comparable to the silver-standard dataset.

5.2 Query Distribution Comparison

To examine the distributional differences between
our synthetic FSMLQA and the gold-standard
data in XOR-TYDI QA, we randomly sample up
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Figure 9: Distribution comparison between FSMLQA
and XOR-TYDI QA in Japanese. We show that the
synthetic data is diverse and significantly overlaps
with the gold standard.

to 20,000 examples from both datasets and vi-
sualize their distributions using t-SNE (van der
Maaten and Hinton, 2008), which projects the
queries onto a two-dimensional space. Figure 9
highlights several key findings: 1) The synthetic
queries exhibit sufficient diversity, as they are
scattered across the plot, indicating that our ap-
proach is capable of generating queries of various
types using only five labeled examples. 2) The
synthetic data shows significant overlap with the
gold-standard data, demonstrating that it retains
the core characteristics of the gold distribution. 3)
The gold-standard data exhibits greater diversity
than the synthetic data, suggesting that there is
still room for improvement in enhancing diversity
and variation during the data generation process,
which we leave for future work. Similar findings
are observed in the other languages (see Appendix
Figure 10).

5.3 Safety
We employ Llama-Guard-26 as the content
safety classifier to assess the presence of unsafe
content within our synthetic dataset. Our analysis
reveals that 98.9% of the 1,746,156 queries in
FSMLQA are classified as safe.

6 Related Work

Pre-training for Open-domain QA. Open-
domain QA requires retrieving relevant passages
and extracting answers from them. This necessity

6https://huggingface.co/meta-llama
/Meta-Llama-Guard-2-8B.

has driven various methods that jointly train re-
trievers and readers. REALM (Guu et al., 2020),
RAG (Lewis et al., 2020), EMDR2 (Sachan et al.,
2021), YONO (Lee et al., 2022), ReAtt (Jiang
et al., 2022), and Atlas (Izacard et al., 2024) first
pre-train retrievers or initialize from pre-trained
(Izacard et al., 2022) and fine-tuned retrievers.
Subsequently, both components are fine-tuned
jointly: the reader is trained using an answer
generation loss, and the retriever is trained to
promote passages that increase the likelihood of
generating correct answers. Recently, this joint
training mechanism has been adapted for mul-
tilingual open-domain QA (Jiang et al., 2024),
where retrievers are initially trained by learning
from English teachers using multilingual par-
allel data, followed by a joint training stage
with query-answer pairs generated by LLMs.
Our approach follows this joint training paradigm
for model pre-training but differs significantly.
We use WikiData as a source to generate
more informative natural questions and answers.
Additionally, our pre-training method is more ef-
ficient by eliminating knowledge distillation from
English models.

LLMs for Few-shot Data Generation. Prompt-
ing LLMs to generate synthetic data has been
widely adopted to improve the performance of
retrieval and QA tasks. UPR (Sachan et al., 2022)
and InPars (Bonifacio et al., 2022) use zero-shot or
few-shot prompting for passage reranking. PROMPT-
AGATOR (Dai et al., 2023) and SWIM-X (Thakur
et al., 2024) prompt LLMs with few-shot ex-
amples to generate massive synthetic queries,
either in English or in multiple languages, for
retriever fine-tuning. Gecko (Lee et al., 2024)
prompts LLMs to generate synthetic instructions
and queries from Web documents and create
high-quality labels for retriever fine-tuning. Be-
yond retrieval, LLMs are employed to generate
QA data, where QAMELEON (Agrawal et al., 2023)
prompts a 540B LLM to generate multilingual
QA pairs from only five examples. Neverthe-
less, these methods primarily focus on retrieval
tasks and the more narrowly defined machine
reading comprehension tasks. In our work, we
rigorously investigate how LLMs can improve
the more challenging multilingual open-domain
QA tasks under few-shot settings. In addition, we
explore zero-shot prompting, demonstrating that
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cross-lingual prompting using English data or lim-
ited multilingual data from held-out languages can
yield results comparable to few-shot prompting,
and we show this technique can also be leveraged
for effective zero-shot language adaptation.

7 Conclusion and Limitation

In this work, we propose FSMODQA, a few-shot
learning approach for multilingual open-domain
retrieval tasks. We present a novel self-supervised
pre-training framework that exploits WikiData to
effectively initialize both multilingual retrieval
and QA capabilities. This process is followed
by few-shot synthetic multilingual QA genera-
tion from LLMs using only five human-annotated
examples. We demonstrate that the resulting
model achieves competitive multilingual retrieval
and QA performance through fine-tuning on the
high-quality synthetic data. We further show that
this few-shot approach generalizes to zero-shot
settings that only require English-supervised
data. This mechanism serves as an effective
approach for language adaptation, enabling the
adapted model to achieve both boosted retrieval
and end-to-end QA performance across fifteen
previously unseen languages.

This work uses LLMs for synthetic data gener-
ation, which may propagate undesirable biases to
generated data. We believe such biases will not be
amplified as we sample prompts from XOR-TYDI

QA, a dataset annotated with strict guidelines. Our
preliminary safety analysis also reveals that only
less than 1% data contains potentially harmful
queries, as identified by Llama-Guard-2.
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Wikidata: A free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85.
https://doi.org/10.1145/2629489

Linting Xue, Noah Constant, Adam Roberts,
Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. 2021. mT5: A

496

https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2022.naacl-main.30
https://doi.org/10.18653/v1/2022.naacl-main.30
https://doi.org/10.18653/v1/2024.naacl-long.426
https://doi.org/10.18653/v1/2024.naacl-long.426
https://doi.org/10.1145/2629489


massively multilingual pre-trained text-to-
text transformer. In Proceedings of the 2021
Conference of the North American Chapter
of the Association for Computational Lin-
guistics: Human Language Technologies,
pages 483–498, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2021.naacl-main.41

Ori Yoran, Tomer Wolfson, Ori Ram, and
Jonathan Berant. 2024. Making retrieval-
augmented language models robust to irrel-

evant context. In The Twelfth International
Conference on Learning Representations.

Xinyu Zhang, Nandan Thakur, Odunayo
Ogundepo, Ehsan Kamalloo, David Alfonso-
Hermelo, Xiaoguang Li, Qun Liu, Mehdi
Rezagholizadeh, and Jimmy Lin. 2023. MIR-
ACL: A multilingual retrieval dataset cov-
ering 18 diverse languages. Transactions of
the Association for Computational Linguis-
tics, 11:1114–1131. https://doi.org/10
.1162/tacl_a_00595

497

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.1162/tacl_a_00595
https://doi.org/10.1162/tacl_a_00595


Property ID Description Property ID Description

P264 record label P175 performer

P176 manufacturer P112 founded by

P127 owned by P840 narrative location

P495 country of origin P20 place of death

P407 language of work or name P582 end time

P69 educated at P159 headquarters location

P740 location of formation P17 country

P136 genre P800 notable work

P36 capital P570 date of death

P190 twinned administrative body P4552 mountain range

P915 filming location P3086 speed limit

P84 architect P2046 area

P569 date of birth P86 composer

P515 phase of matter P2048 height

P40 child P580 start time

P828 has cause P50 author

P2067 mass 108 employer

P170 creator P2049 width

P364 original language of film or TV show P277 programmed in

P276 location P413 position played on team / speciality

P131 located in the administrative territorial entity P26 spouse

P106 occupation P607 conflict

P942 theme music P571 inception

P6 head of government P19 place of birth

P1830 owner of P61 discoverer or inventor

Table 10: List of English properties used for generating MLWIKIQA. Note that we do not generate data
for a property if it does not exist in the Wikidata of target languages.

Table 11: Examples of using ChatGPT to generate questions from triples. We use the same prompt as
Yes questions to generate No ones by sampling perturbed triples. Highlighted texts indicate system
outputs.
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Table 12: An example of prompting Gemma-7B to generate questions with ICL examples from
ChatGPT. Highlighted texts indicate system outputs.

Table 13: Complete prompt for few-shot question answer generation from passages in target language.
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Table 14: Complete prompt for few-shot cross-lingual question answer generation from English
passages.

Table 15: An example for zero-shot English Prompting. Highlighted texts indicate system outputs.
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Figure 10: Distribution comparison between FSMLQA and XOR-TYDI QA in the rest languages. We demonstrate
that the diverse synthetic data can be expanded from only five-shot examples and retains the core characteristics
of the gold distribution.

Table 16: An example for zero-shot Multilingual Prompting. Highlighted texts indicate system outputs.
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Question: {Example question #1}
Answer: {Example answer #1}
· · ·
Question: {Example question #5}
Answer: {Example answer #5}

Passage #1 Title: {Passage #1 Title}
Passage #1 Text: {Passage #1 Text}
· · ·
Passage #N Title: {Passage #N Title}
Passage #N Text: {Passage #N Text}

Task description: predict the {Test Question Language} answer to the following question. The answer
should be a minimal span extracted from the document. You should only output the answer.

Question: {Test question}
Answer:

Table 17: Prompt template for few-shot multilingual QA with LLMs.

Relevance Assessment

You are given a Q&A pair and a paragraph. Your goal is to Rate the relevance of the Q&A pair to the paragraph on a scale from 0 to 2.

0: Very low relevance, the Q&A pair and paragraph are almost unrelated.

1: Moderate relevance, the Q&A pair and paragraph share some overlap.

2: High relevance, the Q&A pair are strongly grounded by the paragraph.

Output Format:

Relevance (0–2)

Only provide the final result in the above structured format without any additional explanations.

Paragraph: {Paragraph}
Q: {Synthetic Query}
A: {Synthetic Answer}

Fluency Assessment

You are given a question. Your goal is to Rate the fluency of the question on a scale from 0 to 2.

0: Poor fluency, the question is unclear, contains significant grammatical errors, or is incomprehensible.

1: Moderate fluency, the question has minor grammatical errors or awkward phrasing but is still understandable.

2: High fluency, the question is clear, well-structured, and grammatically correct.

Output Format:

Fluency (0–2):

Only provide the final result in the above structured format without any additional explanations.

Question: {Synthetic Query}

Table 18: Prompt template for quality validation of synthetic data using Model-as-Judge.
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MLWIKIQA FSMLQA

# Q-A Paris Question Length Answer Length # Q-A Paris Question Length Answer Length

Arabic 1,803,765 7.00±2.13 1.65±0.84 80,575 8.20±2.86 1.57±1.30

Bengali 407,496 6.13±1.80 1.65±0.85 127,562 8.97±2.99 1.63±1.44

English 7,963,985 7.95±2.54 1.78±1.01 – – –

Finnish 2,135,790 6.02±1.75 1.32±0.64 270,627 5.83±2.09 1.38±0.90

Japanese 2,735,635 14.74±3.57 3.57±1.73 143,265 10.19±2.18 3.96±4.69

Korean 1,018,348 5.46±1.78 1.55±0.80 192,002 5.72±2.29 1.42±0.92

Russian 2,561,925 6.94±2.17 1.70±1.10 792,914 7.34±2.64 1.44±1.03

Telugu 108,215 5.60±1.84 1.50±0.74 139,211 6.48±2.48 1.49±1.17

Table 19: Dataset statistics of our pre-training data MLWIKIQA and few-shot synthetic data FSMLQA in
each language.

Prompting Strategy Ar Bn Fi Ja Ko Ru Te Avg.

FSMODQA 5.9% 13.9% 16.9% 7.7% 21.4% 15.4% 13.2% 13.4%

NQ-En 3.4% 8.8% 8.2% 1.2% 8.3% 5.9% 4.2% 5.3%

TYDI-En 5.0% 13.6% 12.8% 1.9% 17.0% 6.3% 5.9% 7.0%

XOR-TYDI-* 10.2% 14.6% 14.2% 2.5% 22.7% 9.1% 10.7% 9.8%

Table 20: Success Rate of synthetic data generation across seven languages with different prompting
strategies. Success Rate = valid examples after data filtering / total examples (i.e., # Documents).
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Method F1 Macro Average

Ar Bn Fi Ja Ko Ru Te F1 EM BLEU

5-shot
FSMODQA-EN 35.6 32.7 35.5 35.1 30.2 33.6 31.8 33.5 23.8 23.0

FSMODQA 41.3 35.4 39.6 41.5 35.0 38.2 36.3 38.2 27.9 24.4

16-shot
FSMODQA-EN 38.3 31.0 39.4 38.3 35.2 34.9 34.6 35.9 26.1 24.1

FSMODQA 42.0 35.6 41.4 41.7 35.3 39.2 40.0 39.3 29.3 26.6

32-shot
FSMODQA-EN 42.4 31.2 40.8 38.1 33.0 37.9 34.9 36.9 26.3 25.5

FSMODQA 43.6 35.6 42.2 42.5 34.1 38.6 37.0 39.1 28.8 26.6

128-shot
FSMODQA-EN 42.0 28.8 41.7 40.3 34.6 34.7 36.0 36.9 27.0 25.2

FSMODQA 45.3 32.8 44.3 43.8 34.0 39.9 42.1 40.3 30.5 27.4

1024-shot
FSMODQA-EN 45.0 30.8 45.1 39.2 34.1 39.1 37.5 38.7 29.3 26.5

FSMODQA 47.5 33.7 46.7 41.4 35.9 40.2 40.1 40.8 31.3 27.9

full
FSMODQA-EN 48.9 33.3 47.7 42.9 39.6 40.0 41.7 42.0 32.7 28.5

FSMODQA 50.8 33.3 47.8 45.0 38.9 42.0 43.1 43.0 33.4 29.6

Table 21: Detailed results in each language when trained with varying sizes of supervised data.
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