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Abstract

Large Language Models (LLMs) are often
aligned using contrastive alignment objectives
and preference pair datasets. The interaction
between model, paired data, and objective
makes alignment a complicated procedure,
sometimes producing subpar results. We study
this and find that (i) preference data gives
a better learning signal when the underlying
responses are contrastive, and (ii) alignment
objectives lead to better performance when
they specify more control over the model
during training. Based on these insights, we
introduce Contrastive Learning from AI Revi-
sions (CLAIR), a data-creation method which
leads to more contrastive preference pairs, and
Anchored Preference Optimization (APO), a
controllable and more stable alignment objec-
tive. We alignLlama-3-8B-Instruct us-
ing various comparable datasets and alignment
objectives and measure MixEval-Hard
scores, which correlate highly with human
judgments. The CLAIR preferences lead to
the strongest performance out of all datasets,
and APO consistently outperforms less con-
trollable objectives. Our best model, trained on
32K CLAIR preferences with APO, improves
Llama-3-8B-Instruct by 7.65%, clos-
ing the gap with GPT4-turbo by 45%. Our
code and datasets are available.

1 Introduction

Aligning language models with preferences is a
critical component in LLM development, signif-
icantly enhancing model capabilities, safety, and
adherence to human values (Christiano et al.,
2017; Ouyang et al., 2022; Bai et al., 2022). These
preferences can be expressed through preference
pairs (output yl ≺ yw for input x), which of-

∗Work done as a part of an internship at Contextual
AI. Code and Datasets publically available at https://
github.com/ContextualAI/CLAIR and APO.

fer a richer signal than individual outputs and
enable more expressive learning objectives. Re-
cently, contrastive learning objectives have made
alignment more accessible (Rafailov et al., 2024b).

Despite these advantages, alignment outcomes
can be suboptimal (Eisenstein et al., 2023; Feng
et al., 2024; Park et al., 2024). In this paper, we
reason through the nature of alignment, focus-
ing on (i) the preference signal expressed by the
data and (ii) the training dynamics of contrastive
objectives. We find that across both these axes,
conventional alignment methods are underspeci-
fied. To solve this, we argue that (i) preference data
should be minimally contrastive, and (ii) align-
ment objectives should account for distinct align-
ment situations (see Figure 1). This sheds light
on suboptimal alignment outcomes. For example,
we show in Section 5 how a model aligned using
high-quality outputs can actually degrade if the
pairs differ in multiple uncontrolled aspects.

These insights lead to two new contributions.
First, we introduce Contrastive Learning from AI
Revisions (CLAIR), a method for creating prefer-
ence pairs which minimally revises one output to
express a preference. The pairs created by CLAIR
result in a more precise learning signal, as op-
posed to conventional methods which use a judge
to select a preferred response. Second, we intro-
duce Anchored Preference Optimization (APO), a
family of contrastive objectives which explicitly
account for distinct relationships between model
and data during alignment. The tailored train-
ing dynamics of APO results in more performant
alignment compared to conventional objectives.

In order to study the role of both (i) min-
imally contrastive preference data, and (ii) dis-
tinct alignment training dynamics, we individually
align a model across four comparable preference
datasets using five alignment objectives. One da-
taset is created through our CLAIR method. We
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Figure 1: Alignment is underspecified with regard
to preferences and training objective. A: Preference
pairs can vary along irrelevant aspects, Contrastive
Learning from AI Revisions (CLAIR) creates a targeted
preference signal instead. B: The quality of the model
can impact alignment training, Anchored Preference
Optimization (APO) explicitly accounts for this.

compare this with two conventional judge-based
datasets (Reinforcement Learning from AI Feed-
back; Bai et al., 2022). Finally, we consider an
ablated version of CLAIR created to directly as-
sess the impact of contrastiveness. We consider
five distinct alignment objectives: DPO (Rafailov
et al., 2024b), KTO (Ethayarajh et al., 2024),
continued Supervised Fine-Tuning on the pre-
ferred answer, and two variants of our proposed
APO. We measureMixEval-Hard accuracy (Ni
et al., 2024) and length-controlled AlpacaEval
scores (Dubois et al., 2024) for each model, both
benchmarks correlate highly with model rankings
produced by humans (Chiang et al., 2024).

We align Llama-3-8B-Instruct (Dubey
et al., 2024) and use GPT4-turbo (Achiam et al.,
2023) for preference judgments / revisions. We
find that our strongest model, aligned on 32K
CLAIR preferences with APO, improves Llama-
3-8B-Instruct performance by 7.65% on
MixEval-Hard, closing the performance gap
with GPT4-turbo by 45%. Our analysis indicates
that the contrastiveness of CLAIR preferences is
the major driver of performance. Across every
alignment datasets considered, APO objectives
achieve the best performance. In our analysis, we
outline how to select the best APO variant given
a target model and preference dataset. Finally, we
explore recent alignment efforts and discuss how
they relate to CLAIR and APO.

2 Underspecification in Alignment

The alignment procedure creates complex inter-
actions between the target model, the preference
dataset, and the alignment objective. The present
section reflects on failure cases of all alignment
efforts which start from preferences. The section
discussed data and objective respectively.

Given a collection of prompts X , a preference
dataset is a set of triples (x, yw, yl), where yw
and yl are, respectively, a winning (more pre-
ferred) and losing (less preferred) response to
prompt x. The preference signal in such a data-
set is essentially expressed by the difference be-
tween winning and losing outputs, illustrated in
Figure 1A. However, paired outputs can differ
in many aspects, some of which can be spuri-
ous and thus irrelevant to the preference. These
spurious differences can generally create a chal-
lenging credit assignment problem. Outputs which
are minimally contrastive differ along fewer axes,
resulting in less spurious differences. Thus, if
preference pairs produce a clearer minimal
contrast, the alignment learning signal be-
comes clearer. Existing preference datasets vary
meaningfully in their contrastiveness. For exam-
ple, in the Stanford Human Preferences dataset
(Ethayarajh et al., 2022), two outputs in a pair
are simply responses to the same Reddit post,
and thus they are not guaranteed to be especially
comparable. An ideal preference dataset would
consist of a very controlled difference between
either example. This insight leads us to CLAIR
(Section 3).

Preference triples only specify that one output
is better than another. This creates ambiguity,
since it is not known if the more preferred answer
was actually good. To see how this can impact
alignment, suppose we have a dataset of triples
where yw tends to score 8/10 on some quality
scale and yl tends to score 6/10. A target model
that generally scores 9/10 may become worse
if the likelihood of yw would increase during
training, as illustrated in Figure 1B. Therefore,
alignment training needs to be aware of how de-
sirable any individual answer is, regardless of
its preference relationship. To take a salient
example, ≈80% of winning outputs in Ultra-
Feedback (Cui et al., 2024) are generated
by a less performant model than Llama-3-
8B-Instruct (as measured by Chatbot
Arena Elo; Chiang et al., 2024). Naively aligning
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Figure 2: An answer produced by Llama-3-8B-Instruct for a prompt, and corresponding GPT4-turbo
revision of this answer. The differences between answer and revision are highlighted. The revision generally
follows the same outline as the answer but improves it where possible. For example, the revision correctly alters
the count of Parisian restaurants from 2 to 3 in the second line of the answer.

Llama-3-8B-Instruct on this dataset may
thus worsen performance. Examples like this one
lead us to Anchored Preference Optimization
(APO; Section 4).

In summary, current alignment approaches are
underspecified along two key axes: (i) prefer-
ences may be weakly expressed due to non-
contrastive data and (ii) alignment objectives need
to account for the model-data relation. In what
follows, we set out to improve alignment across
both axes.

3 Contrastive Learning from Revisions

We now introduce Contrastive Learning from
AI Revisions (CLAIR), a general procedure for
creating minimally contrasting preference pairs.

Let M be the target model we will align. Given
a prompt x, we sample the losing output yl di-
rectly from the model. Then, we use a Reviser
to minimally revise and improve yl, resulting in
the winning output yw:

yl = M(x)

yw = Reviser(x, yl).
(1)

In this work, we use a stronger LLM to perform
revisions, prompted to enhance the clarity, cor-
rectness, and engagement of the output (prompts
and dataset details given in Appendix A).
Figure 2 shows an example triple created us-
ing this method. The losing output was generated

by Llama-3-8B-Instruct and revised by
GPT4-turbo. The revision keeps most of the ini-
tial output intact, while improving details. Re-
cently, Dubey et al. (2024) used human revisions
in the development of the llama-3.1 model
family, though their process seems oriented to-
wards enhancing quality differences rather than
creating minimal contrasts.

CLAIR differs markedly from more familiar
approaches to collecting preference data. For ex-
ample, in the on-policy judge paradigm (as used
in Reinforcement Learning from AI Feedback;
Bai et al., 2022), two generations are sampled
from M(x), and a Judge (often another LLM) de-
cides which is the winner and which is the loser:

y1, y2 = M(x),M(x)

yw, yl = Judge(x, y1, y2).
(2)

We use this approach as one of our baselines,
with a prompt comparable to the revision prompt
used by CLAIR. Additionally, we consider an
off-policy judge version of (2) where the outputs
are generated by models other than the target
model:

y1, y2 = M ′(x),M ′′(x)

yw, yl = Judge(x, y1, y2).
(3)

Both the on-policy and off-policy judge ap-
proaches provide useful comparison points for
CLAIR. In addition, we evaluate a baseline that
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helps us understand the role of contrastiveness in
particular. For CLAIR, the Reviser is generally a
stronger model than the model we are aligning.
This means that the winning examples yw are al-
ways generated by a stronger model. To decou-
ple this factor from the contrastiveness induced
by the revision process, we also evaluate a base-
line that we call Stronger Preferred, where the
stronger model provides the winning example for
each pair without revision:

yl = M(x)

yw = Stronger(x)
(4)

For the alignment experiments reported in
Section 5, we created four preference datasets
following (1)–(4). Each dataset is created using
the same 32K prompts uniformly sampled from
UltraFeedback (Cui et al., 2024), a widely
used preference dataset with prompts spanning a
broad range of domains. We take the target model
M to be Llama-3-8B-Instruct, one of the
most competitive open source models available at
the time of writing. We use GPT4-turbo to act
as the Judge, Reviser, and Stronger model when
creating these datasets. For the off-policy judge
dataset, we use already judged outputs available
in UltraFeedback. Approximately 80% of
these winning outputs are generated by a model
weaker thanLlama-3-8B-Instruct (as mea-
sured by Chatbot Arena Elo; Chiang et al.,
2024). Thus, this off-policy judge dataset gen-
erally contains lower quality outputs compared to
the model.

Part of the goal of Section 5 is to study the
behavior of each of these datasets in the context
of alignment efforts. However, one of the high-
level goals of CLAIR is to generate examples that
are minimally contrastive. We can assess this di-
rectly using some simple heuristics: the Jaccard
similarity (token intersection over union) between
yw and yl and the single-character Levenshtein
edit distance between yw and yl. The dataset with
better minimal contrasts should result in a higher
Jaccard similarity and a lower Levenshtein dis-
tance. Table 1 summarizes these analyses. By
these measures, CLAIR delivers the best contrast-
ive data by a wide margin.

4 Anchored Preference Optimization

A preference triple (x, yw, yl) expresses the be-
lief that yw is a more preferred output than yl

Preference Jaccard Levenshtein
Dataset (↑ better) (↓ better)

CLAIR 43.11 1108
On-policy judge 39.06 1258
Off-policy judge 18.05 1203
Stronger Preferred 24.35 1607

Table 1: Average token-level Jaccard similarity
(intersection over union) and average character-
level Levenshtein edit-distance between winning
yw and losing yl answers for four comparable
preference datasets built on top of Llama-3-
8B-Instruct. The CLAIR dataset produces
the best contrasts on both metrics. The off-policy
judge dataset has shorter answers compared to
the others, causing a lower Levenshtein distances
compared to its Jaccard similarity.

for prompt x. Alignment objectives use this re-
lationship to align a model. Different objectives
achieve this in very different ways, with deep
consequences for the alignment process.

Direct Preference Optimization (DPO; Rafailov
et al., 2024b) is a widely used and empirically suc-
cessful alignment objective. The core stipulation
of DPO is that the likelihood change of winning
outputs during training needs to be greater than
the likelihood change of losing outputs. This like-
lihood change for a prompt and output is denoted
as the reward rθ(x, y), which captures the log-
ratio of likelihoods between the model during
training πθ(x | y) and the model before training,
also called reference, πref(x | y):

rθ(x, y) = β log
πθ(y | x)
πref(y | x) (5)

Here, β is a hyperparameter which scales this
log-ratio. This leads to the following DPO
objective:

LDPO(x, yw, yl; θ) = (6)

− log σ
(
rθ(x, yw)− rθ(x, yl)

)

The DPO authors report that the gradient of
this objective intuitively leads to an increased
winning likelihood and decreased losing likeli-
hood. However, this is only one possibility out
of three distinct scenarios. Alternatively, DPO
can increase the winning likelihood more than it
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Figure 3: Comparison of gradients between DPO (equation A), APO-zero (equation B), and APO-down
(equation C). Each gradient term is decomposed in a direction and magnitude factor. Direction: Either APO
variant specifies explicitly if winning and losing likelihoods should increase or decrease during training. DPO
only increases the likelihood difference, causing ambiguity with regard to the actual movement of these likeli-
hoods during training. This explicit specification of direction is core to APO variants, and allows for a tighter fit
between model and data during alignment. Magnitude: Each term in APO is scaled with a delta function. Here,
δ(x) = σ(x)(1− σ(x)) is a function with a global maximum at x = 0 that tends to 0 for x → ±∞. This causes
APO gradients to saturate whenever the quantities being optimized have changed a lot compared to the beginning
of training. Ethayarajh et al. (2024) theorize that such scaling leads to more robust optimization.

increases the losing likelihood, or decrease the
winning likelihood less than it decreases the los-
ing likelihood (Feng et al., 2024). These scenarios
may end up producing vastly different models.
As discussed in Section 2, a winning output is
not necessarily better than what the model pro-
duces before alignment. In this case, DPO may
hurt performance if it increases the likelihood of
undesirable outputs.

To help researchers navigate these interactions,
we introduce Anchored Preference Optimization
(APO). In essence, APO is a family of alignment
objectives which offer fine-grained control over
each of the rewards, thus controlling the absolute
increase or decrease in likelihood during training.
In this paper, we focus in particular on variants
that we call APO-zero and APO-down:

LAPO
zero (x, yw, yl; θ) = (7)

−σ
(
rθ(x,yw)

)
+ σ

(
rθ(x, yl)

)

LAPO
down(x, yw, yl; θ) = (8)

σ
(
rθ(x, yw)

)
− σ

(
rθ(x, yw)− rθ(x, yl)

)

APO-zero explicitly pushes for an increased
likelihood of winning outputs and decreased
likelihood of losing outputs during training. In
contrast, APO-down decreases the likelihood of
winning outputs and decreases the likelihood of
losing outputs even more. If answers from the
model are on average better than the winning out-
puts (yw ≺ πθ), APO-down will intuitively be
a better objective. If winning outputs are better
than the model answers (yw � πθ), APO-zero
will be better. Figure 3 provides an interpre-
tation of the gradients produced by both APO
methods and compares these with DPO.

One can define additional APO objectives. In
general, any contrastive objective (i.e., greater
reward for winning outputs) which specifies ad-
ditional constraints on either reward to achieve a
tighter link between model and data (e.g., winning

446



rewards should be positive) can be seen as a form
of Anchored Preference Optimization. In Section 6
we consider different alignment objectives and
discuss how they relate to APO.

One interesting variant of APO can be de-
rived from the Kahneman–Tversky Optimization
(KTO) objective of Ethayarajh et al. (2024). As
originally defined, KTO does not operate on pref-
erence pairs, but rather requires only one unpaired
answer and a label indicating if it was preferred
or not; the goal of KTO is to push the winning /
losing reward above / below the Kullback–Leibler
(KL) divergence between the model during train-
ing and the reference model. The APO perspective
helps us see that there is a natural paired variant
of KTO in which the KL-divergence functions as
the anchor:

LKTO-pair(x, yw, yl; θ) = (9)

−σ
(
rθ(x, yw)− β KL

)
− σ

(
β KL − rθ(x, yl)

)

This KL term is non-negative, and thus the win-
ning reward is pushed to be positive; the losing
reward can still be either positive or negative.

The KTO authors report that KTO leads to good
alignment without an initial phase of Supervised
Fine-Tuning (SFT) on the winning outputs, while
DPO does benefit from this SFT phase in their
experiments. APO sheds new light on this find-
ing: an increase in likelihood of winning outputs
is already built into KTO, whereas it is not guar-
anteed for DPO alone. However, this is only a
desirable property of an alignment objective if the
winning output quality is better than the target
model’s quality, as described in Section 2. When
aligning a strong model on preferences which con-
tain generally lower quality outputs, a KTO-style
objective runs the risk of deteriorating the model.

5 Alignment Experiments

To study the effectiveness of CLAIR and APO,
we align Llama-3-8B-Instruct across the
four comparable preference datasets described in
Section 3, created from 32K UltraFeedback
prompts. We use GPT4-turbo to act as the Judge,
Reviser, and Stronger model when creating these
datasets. For the off-policy judge dataset, we use
the already judged outputs included in Ultra-
Feedback. For every dataset, we align the model
using the four different objectives described in

Section 4. Additionally, we consider Supervised
Fine-Tuning (SFT) on only the winning outputs
as a baseline alignment objective.

5.1 Evaluation Methodology
Human judgments are ultimately the best indicator
of how well a model is aligned with human pref-
erences. Chatbot Arena (Chiang et al., 2024) uses
thousands of pairwise human judgments to pro-
duce a ranking of model performance. However,
collecting these judgments can be prohibitively ex-
pensive. To overcome this obstacle, we measure
model performance through benchmarks which
correlate highly with this Chatbot Arena ranking.
MixEval-Hard (Ni et al., 2024) is a bench-

mark with very high Chatbot Arena correlation
(0.96 rank correlation). MixEval-Hard fea-
tures hard queries with known answers across
a wide range of domains and uses a GPT3.5-turbo
(Brown et al., 2020; Ouyang et al., 2022) model
to evaluate if predicted answers correspond with
this ground-truth. This makes MixEval-Hard
more grounded in human knowledge and signifi-
cantly cheaper to run compared to other popular
evaluation frameworks such as AlpacaEval
(Li et al., 2023; Dubois et al., 2024). Under
the hood, MixEval-Hard utilizes queries sam-
pled from MATH (Hendrycks et al., 2021), BBH
(Suzgun et al., 2023), DROP (Dua et al., 2019),
GSM8k (Cobbe et al., 2021), AGIEval (Zhong
et al., 2024), TriviaQA (Joshi et al., 2017),
MBPP (Austin et al., 2021), MMLU (Hendrycks
et al., 2020), HellaSwag (Zellers et al., 2019),
BoolQ (Clark et al., 2019), GPQA (Rein et al.,
2023), PIQA (Bisk et al., 2020), OpenBookQA
(Mihaylov et al., 2018), ARC (Clark et al., 2018),
CommonsenseQA (Talmor et al., 2019), and
SIQA (Sap et al., 2019).

Our evaluation of Llama-3-8B-Instruct
before any additional alignment achieves a score
of 41.45% on the 2024-06-01 version of
MixEval-Hard. The gap between Llama-3-
8B-Instruct and GPT4-turbo is 17%. On the
2024-08-11 split, Llama-3-8B-Instruct
achieves 40.5%.

Additionally, we consider the length-controlled
LC-AlpacaEval2.0 win rate (Dubois et al.,
2024). However, two factors lead us to favor
MixEval-Hard as our primary evaluation tool.
The first is practical: LC-AlpacaEval2.0
is prohibitively expensive to run, we thus use
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ME-Hard 2024-06-01 ME-Hard 2024-08-11 LC-AlpacaEval2.0

Dataset Objective Max Δ Mean Δ Max Δ Mean Δ Score Δ Length Δ

Judge DPO 1.10 −0.74 (1.15) 4.30 2.85 (0.75) 2.94 −158
off-policy KTO-pair −1.00 −2.89 (0.96) 4.05 1.18 (1.67) −5.69 −437

SFT −1.95 −1.63 (1.06) 2.85 0.42 (1.20) −22.29 12,669
APO-zero 0.80 −1.99 (1.23) 4.65 1.26 (1.62) −2.42 −395
APO-down 2.70 0.64 (0.98) 4.80 3.52 (0.85) 2.40 −203

Judge DPO 4.00 0.56 (1.61) 5.20 2.71 (1.41) 4.98 341
on-policy KTO-pair 2.45 −0.51 (1.26) 5.05 1.13 (1.70) 3.02 452

SFT 0.65 −0.91 (1.01) 4.20 2.55 (0.70) 1.34 156
APO-zero 4.65 0.02 (1.66) 5.35 2.19 (1.28) 5.51 484
APO-down 3.65 1.60 (0.95) 4.25 3.06 (0.76) 7.63 386

CLAIR DPO 0.55 −1.68 (1.73) 5.05 2.77 (1.40) 2.65 966
KTO-pair 2.15 0.79 (0.98) 4.65 2.92 (0.86) 4.33 160
SFT 0.95 −1.63 (1.03) 2.70 0.92 (1.21) −0.47 6,108
APO-zero 7.65 2.93 (1.98) 5.95 4.39 (0.89) 5.08 520
APO-down −1.05 −5.22 (1.55) −1.20 −3.61 (1.05) −6.30 2,559

Stronger DPO −5.00 −6.94 (1.03) −3.10 −4.40 (0.98) −2.89 597
Preferred KTO-pair −1.20 −5.21 (1.27) 2.25 0.50 (1.13) 0.71 153

SFT 2.45 0.49 (1.31) 5.05 2.73 (1.21) 6.99 1,883
APO-zero −1.70 −2.72 (1.40) −4.85 −12.02 (5.38) 0.89 243
APO-down −6.50 −12.51 (4.97) 1.65 0.16 (1.22) 1.87 10,001

Table 2: Max and mean MixEval-Hard improvements for the 2024-06-01 and 2024-08-11
splits, aggregated over 18 epochs of aligning Llama-3-8B-Instruct. Best overall performance
bold, best performance per dataset underlined, standard deviation in parentheses. While MixEval-
Hard functions as our primary evaluation tool, we also report the average LC-AlpacaEval2.0 score
increase over the two best MixEval-Hard checkpoints, and average length increase (in characters)
of the responses. CLAIR leads to the greatest overall performance improvement on MixEval-Hard.
APO methods achieve the best performance across both Judged and CLAIR datasets.

MixEval-Hard for the bulk of our evalua-
tion. The second concerns the assessment itself:
while both benchmarks are highly correlated with
human-produced model rankings, MixEval-
Hard utilizes questions with known ground-truth
answers whereas LC-AlpacaEval2.0 uses an
LLM judge without any ground-truth to decide
correctness.

5.2 Training Specifications
Llama-3-8B-Instruct is trained for a total
of 18 epochs on each preference dataset and align-
ment objective, with a checkpoint saved every
single epoch. The β hyperparameter, common to
all alignment objectives except SFT, is set to 0.1.
Prompt and responses are truncated to 512 tokens
each. Each model is trained using an effective
batch size of 16 across one node of 8 NVIDIA
H100 GPUs, using the RMSProp optimizer with
a learning rate of 2 × 10−7, linearly decaying to

0 over the 18 epochs. All training is implemented
using the TRL library (von Werra et al., 2020).

5.3 Results

We report the maximal and mean MixEval-
Hard improvement over all checkpoints from
the same training run. This helps us understand
both the best-case and average impact of align-
ment across the entire training procedure. We use
both 2024-06-01 and 2024-08-11 versions
of MixEval-Hard, which each feature a distinct
set of queries. Due to the increased cost associated
with LC-AlpacaEval2.0, we only measure
the win rate for the two best MixEval-Hard
checkpoints and report their average. We use no
system prompt for both evaluations. Our analy-
sis is summarized in Table 2 for every dataset
and objective; we now discuss these results in
more detail.
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5.3.1 Preference Data
To assess the quality of a particular dataset,
we consider the performance of that dataset
when paired with its best objective. Using the
APO-zero objective, the contrastive CLAIR
dataset leads to the greatest improvement.
On the 2024-06-01 split of MixEval-Hard,
CLAIR leads to the greatest maximal im-
provement of +7.65% and the greatest average
improvement of +2.93% out of all our experi-
ments. This improvement of +7.65% closes the
relative gap with GPT4-turbo by 45% using only
32K pairs.

We noted in Section 1 that uncontrolled con-
trastiveness can degrade model performance. We
see this dramatically in the results for the Stronger
Preferred dataset, which can heavily degrade
model performance. Like CLAIR, this dataset has
all winning outputs produced by a stronger model.
Unlike CLAIR, though, its examples provide no
guarantee of relevant minimal contrasts. Thus,
the contrastiveness induced by the CLAIR re-
vision process is a major driver of performance.

Both on-policy judge and off-policy judge da-
tasets lead to improved performance when paired
with their best alignment objective, but on-policy
preferences lead to better performance com-
pared to off-policy preferences. This is intui-
tive; judgments about the target model’s outputs
are in general more relevant.

The LC-AlpacaEval2.0 results generally
follow a similar trend compared to MixEval-
Hard, although the on-policy judge dataset at-
tains a higher score compared to CLAIR. While
both benchmarks correlate highly with human rat-
ings of models, MixEval-Hard is our primary
and most significant evaluation tool – we are
able to evaluate every model checkpoint across
two MixEval-Hard splits due to its low cost.
Additionally, we remark on a potential issue
with the robustness of LC-AlpacaEval2.0 in
Appendix D. A performance breakdown in func-
tion of MixEval-Hard’s constituent bench-
marks is given in Appendix B.

5.3.2 Alignment Objectives
On MixEval-Hard, Anchored Preference
Optimization (APO) consistently leads to the
greatest performance increase for every pref-
erence dataset, with the exception of the Stronger
Preferred dataset, where all contrastive objec-
tives underperform SFT. The relation between the

preference dataset and the target model controls
which variant of APO is best for any dataset,
as predicted in Section 2. APO-down results in
the best performance when winning outputs
are generally worse than the target model’s
answers, as is the case for the off-policy judge
dataset. APO-zero is the best objective when
winning outputs are generally better than the
target model’s answers, as is the case for CLAIR
and on-policy judge datasets. The difference be-
tween alignment objectives is less salient for the
on-policy judge dataset as compared to CLAIR,
since winning on-policy judge outputs are only
slightly better than Llama-3-8B-Instruct
on average. Winning CLAIR outputs may be
vastly better than Llama-3-8B-Instruct
since they are produced by a stronger model,
making the different in alignment objectives more
noticeable.

5.4 Analysis

To more deeply understand how the target model
is changed during training, we can study the tra-
jectories of winning / losing likelihoods and re-
wards on held-out preferences. Figure 4 plots
these trajectories for the APO-down, APO-zero,
and DPO experiments on each preference data-
set, using 100 held-out preference pairs from that
dataset.

5.4.1 Preference Data
First, we observe that the likelihoods help char-
acterize the type of preference dataset. In the
on-policy judge dataset, all answers are sampled
from the target model and thus have a high like-
lihood. The off-policy variant has no answers
coming from the target model, and hence all
likelihoods are low. Both CLAIR and Stronger
Preferred have losing outputs with high likelihood
and winning outputs with low likelihood.

Any initial discrepancy between log-likelihoods
is normalized by the reward, which tracks changes
in likelihood and thus starts at exactly 0. The
margin between winning and losing reward in-
dicates how much more the winning likelihood
increased during training. Positive reward margins
can still produce negative log-likelihood margins,
if any initial disparity between winning / losing
log-likelihood is not overcome. This ends up be-
ing the case for our CLAIR dataset. This insight
relates to reference-free alignment objectives,
which we discuss in Section 6.
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Figure 4: Log-likelihood and reward on held-out winning and losing outputs for Llama-3-8B-Instruct
trained on CLAIR, on-policy judge, off-policy judge, and Stronger Preferred preference datasets, using
APO-down, APO-zero, or DPO alignment objectives. The reward is proportional to the change in log-likelihood
during training. All alignment objectives increase the margin between winning and losing rewards during training,
but the absolute values of the rewards and log-likelihoods differ starkly due to the exact semantics of the align-
ment objective and preference dataset. The trend produced by each objective is consistent across datasets, yet no
single objective performs best across all datasets (see Table 2).

The training dynamics for CLAIR and Stronger
Preferred look very similar, yet the downstream
performance on MixEval-Hard is completely
different. This is because contrastive alignment
objectives will exploit any difference between
winning and losing outputs to decrease loss. Most
of these differences in CLAIR are directly re-
lated to improving performance, because CLAIR
itself is a minimally contrastive dataset. Many of
the differences in Stronger Preferred may not be
relevant.

5.4.2 Alignment Objectives
All three alignment objectives display systematic
behavior across each dataset. APO-zero consis-
tently leads to the greatest winning and losing
rewards. APO-down consistently produces the
lowest rewards. Both of these behaviors are as
intended. DPO has a slightly more complicated
dynamic, which is nonetheless consistent across
datasets. In the initial steps of training, DPO
tracks the behavior of APO-zero (high rewards)
before following APO-down (low rewards) dur-
ing the remainder of training. This explains why
downstream DPO performance correlates most
with APO-down. However, DPO is never the best

method on any dataset, because it falls between
the distinct modes of APO-zero and APO-down.

Training models with contrastive alignment
objectives is considerably more complex than
conventional supervised fine-tuning. The result
is dependent on the semantics of the alignment
objective, the contrastive signal in the training
data, and the relationship between data quality
and target model. Our results show that paying
attention to the interplay between these attributes
is essential.

6 Related Work

We now characterize relevant alignment efforts
and outline how they relate to Contrastive Learn-
ing from AI Revisions (CLAIR) and Anchored
Preference Optimization (APO).

Reinforcement Learning from Human or AI
Feedback (RLHF / RLAIF; Ouyang et al., 2022;
Bai et al., 2022; Yuan et al., 2024) is a technique
used to align models with human preferences.
Fundamentally, these approaches first train a
reward model using preference judgments and
subsequently optimize a Language Model for this
reward using Reinforcement Learning (Schulman
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eta l., 2017). To side-step the need for an explicit
reward model, Direct Preference Optimization
(DPO; Rafailov et al., 2024b) aligns an LM
directly using a contrastive training objective.

We articulated two core insights concerning (i)
the role of contrastive preference data, and (ii)
the need to anchor alignment depending on model
and data. These insights translate to any align-
ment effort which uses comparative preferences.
For example, a reward model trained on spurious
preference signals may be a less accurate proxy
for real rewards, contributing to problems such as
reward overoptimization or hacking (Gao et al.,
2023; Rafailov et al., 2024a).

For the remainder of this review, we first focus
on contrastive alignment methods and their vari-
ants (of which Wang et al., 2024 provide a detailed
overview). Finally, we discuss related preference
datasets and how they were created.

Changing the LM More / Less: Amini et al.
(2024) and Wu et al. (2024a) recognize that pref-
erence pairs can vary. Both works study how much
more preferred the winning output is, and seek
to incorporate this into the objective by changing
the model more / less depending on this preference
strength. Using the difference in gold rewards as
a substitute for preference strength, Amini et al.
(2024) add an instance-level margin to the con-
trastive objective while Wu et al. (2024a) scale
the β parameter at a batch-level. Other works also
utilize a margin in the contrastive loss, but specify
this as a static hyperparameter (Zhao et al., 2023;
Azar et al., 2024; Meng et al., 2024). These contri-
butions complement our own; they focus on how
much a model should change, whereas CLAIR cre-
ates better learning signals and APO more fully
specifies the intended training dynamics.

Controlling Training Dynamics: The ten-
dency of DPO to decrease the winning likelihood
has been remarked and analyzed in several works
(Feng et al., 2024; Pal et al., 2024). Some works
use an additional loss term to explicitly increasing
the likelihood of winning outputs (Hong et al.,
2024; Pentyala et al., 2024; Adolphs et al., 2023;
Zhao et al., 2023; Xu et al., 2024). While these
methods can be seen as variants of Anchored
Preference Optimization, they do not recognize
the need to anchor the objective differently de-
pending on dataset and model, and they do not
offer methods that explicitly decrease the winning

likelihood when required. Both Rafailov et al.
(2024a) and Azar et al. (2024) generalize a set
of alignment methods, but neither allow for any
anchoring.

Learning from Unpaired Data: Ethayarajh
et al. (2024), Richemond et al. (2024), and Jung
et al. (2024) use unpaired examples and rewards
for alignment instead of paired examples. Zhang
et al. (2024) and Duan et al. (2024) operate solely
on undesirable examples in this unpaired set-
ting. In contrast, our work exclusively operates
on paired preferences. However, the core in-
sights of APO do apply to unpaired data. For
example, Ethayarajh et al. (2024) use binary de-
sired / undesired labels for each answer. We ar-
gue this desirability is inherently relative to the
model: the same example of desirable behavior
used to improve a weak model may actually be
an example of undesirable behavior compared to
a stronger model, causing the need for anchoring.

Length-controlled Optimization: Preference
pairs created through a judging paradigm can be
biased towards preferring more verbose answers
(Saito et al., 2023). To prevent aligned models
from inheriting this bias, Meng et al. (2024) and
Park et al. (2024) explicitly control for the length
of generations during training. These constraints
on generation length can be seamlessly integrated
into APO methods as well. In addition, CLAIR
revisions could further help with these efforts to
reduce the verbosity bias. For example, the Reviser
could be designed to not increase length.

Reference-free Optimization: Several objec-
tives have opted to directly optimize the
contrastive relation between winning / losing like-
lihoods instead of rewards, removing the need for
a secondary reference model (Meng et al., 2024;
Zhao et al., 2023; Hong et al., 2024; Xu et al.,
2024). Since all these methods are contrastive,
the insights from CLAIR and APO directly ap-
ply. Additionally, the CLAIR dataset used in
our experiments may shed light on the nature
of reference-free optimization. Figure 4 shows
that our models are sufficiently aligned on the
CLAIR dataset when considering rewards, but
the absolute likelihood of losing outputs is still
greater. This is due to the initial discrepancy in
likelihoods produced by the revision process. In
many cases, the need for a reference model will
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be closely linked to the need for regularization:
do we want to align until the absolute likelihoods
have changed enough, or do we only want to
nudge the likelihoods? This is not clear, but our
CLAIR dataset would make a good case-study
into reference-free alignment.

Iterative Optimization: Updating the reference
model during training can improve results (Kim
et al., 2024; Rosset et al., 2024; Wu et al., 2024b).
All of these insights are applicable to our work.

Preference Datasets: Chiang et al. (2024) re-
lease a dataset of human preference judgments
across conversations between humans and several
AI assistants. To alleviate the need for human
judges, some efforts focus on scaling prefer-
ence annotations with LLM-based judges (Cui
et al., 2024; Zhu et al., 2023) or metric-based
judges (Jiang et al., 2023). Unlike our CLAIR
method, these works do not create preferences
through revisions. Bai et al. (2022) use a set
of predetermined criteria (called a constitution)
to prompt an LLM to revise answers and make
them safer (see also Lambert et al., 2024). Dubey
et al. (2024) used human revisions in the devel-
opment of the llama-3.1 model family. While
both efforts create preferences through revisions,
we particularly focus on revisions that create a
minimal contrast and studied the effect of this
contrastiveness on alignment outcomes.

7 Future Work

In this work, we have presented two variants of
the APO objective family. Each method accounts
for a distinct relationship between target model
and preference pair during training. However,
real world preference datasets may contain a wide
range of different preference pairs, thus the dataset
as a whole may not perfectly correspond with
any single APO variant. To tackle this, a natural
extension of APO could be to select the optimal
APO variant at the preference pair level, instead
of at the dataset level. Heuristically, this could be
achieved using an off-the-shelf reward model to
score each preference pair before training.

We used prompted LLMs to create our datasets
through revisions or judgments. The distinction
between a model and a system of models is arbi-
trary, and future work could improve CLAIR’s
performance by using a system of models to
produce a revision of higher quality instead.

Additionally, there is a natural trade-off be-
tween how much change a revision introduces and
how much quality it adds. In many cases it can be
challenging to minimally improve a given answer,
it is not clear what level of revision would be
optimal for alignment. This can be studied empir-
ically by creating different versions of our CLAIR
dataset with increasingly intense revisions.

8 Conclusion

Alignment performance is significantly impacted
by (i) the contrastiveness of the preference pairs
and (ii) the relationship between target model and
alignment data. We introduce Contrastive Learn-
ing from AI Revisions (CLAIR), a data-creation
method which produces better contrasting prefer-
ence pairs, and Anchored Preference Optimization
(APO), a family of alignment objectives with tai-
lored training dynamics. Our experiments aligning
Llama-3-8B-Instruct show that CLAIR
preferences lead to the highest performance im-
provement out of four comparable preference
datasets, and APO methods consistently outper-
form conventional alignment objectives.
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Type Prompt
Reviser You are a teacher and your task is to minimally improve a student’s answer. I will give you a {{task}}

and a {{student solution}}. Your job is to revise the {{student solution}} such that it is clearer, more
correct, and more engaging. Copy all non-corrected parts of the student’s answer. Do not allude to the
{{corrected student solution}} being a revision or a correction in your final solution.\n\n{{task}}: <in-
struction x> \n\n{{student solution}}: <losing output yl> \n\n—————–\n\nLet’s first think step
by step with a {{teacher reasoning}} to decide how to improve the {{student solution}}, then give
the {{corrected student solution}}. Mention the {{teacher reasoning}} and {{corrected student solution}}
identifiers to structure your answer.\n\n

Judge You are a teacher and your task is to pick the best student’s answer. The best answer is the most clear, most correct,
and most engaging answer. I will give you a {{task}} and {{student solution 1}} and {{student solution 2}}.
Your final answer must contain [1] if {{student solution 1}} was best, else [2].\n\n{{task}}: <instruc-
tion x> \n\n{{student solution 1}}: <first output y1> \n\n{{student solution 2}}: <second output y2>
\n\n—————–\n\nLet’s first think step by step with a {{teacher reasoning}} to decide which solution is
better, and then answer [1] or [2].\n\n

Table 3: Prompt templates used for creating preference triples (x, yl, yw) with the Reviser and Judge
function of Equation 1 and 2. The variables in the prompt template are bolded and bracketed. Both
prompts target clear, correct, and engaging outputs. The Reviser prompt instructs that a losing output
yl should be minimally improved to create the winning output yw. Instead, the Judge prompt picks
the winning / losing output out of two candidates y1 & y2. Both prompts also instruct a model to pro-
duce a reasoning before revising or judging.

A Preference Dataset Creation

A.1 Prompts
The prompts we use for the Reviser and Judge function of Equation 1 and 2 are given in Table 3.
Both prompts contain instructions to prefer more clear, more correct, and more engaging outputs. The
Reviser prompt creates a preference pair by minimally revising and improving an output according
to these preferences. Instead, the Judge prompt selects a more preferred output given two candidate
answers.

A.2 Preference Pair Filtering
We reject revisions or judgments if the LLM failed to follow formatting guidelines specified in the
revising or judging prompt. Additionally, we reject revisions if they altered the length of the original
output too much; we found this mainly happens when the LLM misunderstands the revision prompt.
Starting from the same 32K instructions sampled from UltraFeedback, this procedure creates 29K
CLAIR pairs, 29K Stronger Preferred pairs, 29K off-policy Judge pairs, and 32k on-policy Judge pairs.
We adapted the code by Williams (2023) to efficiently query closed-source LLMs in parallel over API.
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MixEval-Hard split # query Llama-3-8B + CLAIR + Judge + Judge + Stronger
-Instruct (on-policy) (off-policy) Preferred

Overall score 988 41.45 49.10 46.10 44.15 43.90
TriviaQA 267 34.30 49.20 42.40 43.70 39.80
MMLU 231 43.70 39.00 42.00 36.80 34.60
DROP 167 50.20 58.70 64.30 64.90 58.90
AGIEval 71 31.00 38.00 38.00 39.40 38.00
HellaSwag 61 29.50 37.70 26.20 29.50 27.90
CommonsenseQA 50 60.00 72.00 60.00 48.00 58.00
BoolQ 37 40.50 45.90 32.40 21.60 27.00
GSM8k 22 60.00 80.00 69.50 63.20 84.10
SIQA 20 45.00 50.00 40.00 15.00 40.00
MATH 16 47.50 63.70 51.30 58.80 73.10
BBH 16 51.30 68.80 57.50 60.60 66.90
OpenBookQA 8 62.50 62.50 50.00 62.50 75.00
GPQA 8 12.50 25.00 25.00 25.00 37.50
PIQA 8 50.00 62.50 62.50 62.50 75.00
ARC 4 0.00 0.00 0.00 0.00 0.00
MBPP 2 0.00 0.00 0.00 0.00 0.00
Objective used: / APO-zero APO-zero APO-down SFT

Table 4: Breakdown of MixEval-Hard performance (version 2024-06-01) in function of which
dataset the queries originate from. Analysis given for Llama-3-8B-Instruct and our best models
on the CLAIR, Judge (on-policy), Judge (off-policy), and Stronger Preferred datasets. While individual
splits may not always indicate the best model (particularly when the amount of queries is low), the
overall score correlates highly with human judgments about model performance (Chatbot Arena Elo;
Chiang et al., 2024). MixEval-Hard uses a GPT3.5-turbo model to rate if a response to a query
agrees with a known gold-truth response.

B MixEval-Hard Performance Breakdown

MixEval-Hard features queries from a wide range of established benchmarks, as outlined in
Section 5.1. Previously, we reported on the overall MixEval-Hard performance. Table 4 breaks
down this overall performance in function of these different benchmarks. While MixEval-Hard
often incorporates only a few queries from any given benchmark, the overall performance correlates
highly with human judgments.
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ME-Hard 2024-06-01 ME-Hard 2024-08-11

Dataset Objective Max Δ Mean Δ Max Δ Mean Δ Train Time
Judge KTO 2.10 −2.70 (1.67) 4.75 1.31 (1.61) 19h 18m 10s
off-policy APO-zero-unpaired −0.40 −3.67 (1.68) 4.35 0.66 (1.44) 12h 32m 58s
Judge KTO 3.50 1.28 (1.11) 4.85 2.70 (1.35) 19h 40m 10s
on-policy APO-zero-unpaired 4.35 1.31 (1.44) 5.60 3.92 (0.99) 13h 49m 55s
CLAIR KTO 3.75 1.47 (1.39) 5.80 4.12 (1.09) 17h 33m 24s

APO-zero-unpaired 1.40 −1.49 (1.77) 3.20 1.13 (1.21) 12h 31m 03s
Stronger KTO −3.25 −4.73 (1.01) 0.30 −1.18 (0.75) 19h 07m 29s
Preferred APO-zero-unpaired −2.70 −4.57 (1.32) 2.95 0.50 (1.25) 12h 38m 49s

Table 5: Max and mean MixEval-Hard improvements for the 2024-06-01 and 2024-08-11
splits, aggregated over 18 epochs of aligning Llama-3-8B-Instruct. Best overall performance
bold, best performance per dataset underlined, standard deviation in parentheses. KTO is the best un-
paired loss given the off-policy Judge and CLAIR datasets, while APO-zero-unpaired performs better
when given the on-policy Judge and Stronger Preferred datasets. KTO can take 60% longer to train for
the same configuration.

C Unpaired APO

In this work, we designed datasets and alignment objectives for paired preferences (output yl ≺ yw
for input x). The original KTO objective (Ethayarajh et al., 2024) was designed to operate on desir-
ability data (output y for input x was desirable or not), which does not use such paired preferences.
We consider an unpaired variant of our APO-zero loss, called APO-zero-unpaired, which resembles the
KTO objective but which fixes the KL term to zero. Table 5 compares KTO with APO-zero-unpaired,
keeping everything else comparable with our main results in Table 2. To turn our paired datasets
into unpaired datasets, we turn each datapoint consisting of two outputs into two datapoints with one
output.

There is no clear winner between KTO and APO-zero-unpaired across the board. Within each data-
set however, there always is a clear winner. This reflects the main findings of our work, differ-
ent alignment objectives have distinct semantics, and different datasets require different semantics.
APO-zero-unpaired consistently trains faster, due to not calculating the KL term. In some cases, the
KTO objective can take 60% longer to train.
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D How Well Does AlpacaEval Control for Response Lengths?

GPT4 as a judge is known to favor more verbose responses, which can artificially inflate AlpacaEval
win rates for verbose models (Dubois et al., 2024). To counteract this bias, Dubois et al. (2024) estimate
a length-controlled AlpacaEval win rate, which we report on in Table 2. Specifically, the authors
adopt a causal inference framework to answer the question ‘‘What would the AlpacaEval metric be,
if the outputs of all models had the same length as those of the baseline?’’ (Dubois et al., 2024).

In order to meaningfully apply causal inference, a few key assumptions need to be met. The Positivity
assumption (Hernán and Robins, 2006) states that, when estimating the effect of a treatment, there are at
least some subjects which receive the treatment for all covariates. Intuitively, the Positivity assumption
applied to the length-control question states that you need to observe at least some long and some
short responses for every model in order to accurately estimate how the response length influences the
model’s win rate.

The AlpacaEval framework does not check if this Positivity assumption is met, potentially giving
bad estimates for the length-controlled win rates in some settings. If a certain model consistently
generates responses longer than those of the baseline, it is impossible to accurately estimate how good
the responses would be if they were as long as the baseline.

This may give us insights into some of our length-controlled AlpacaEval win rates. For example,
the SFT result on the Stronger Preferred dataset in Table 2 seems disproportionately high in comparison
to the MixEval-Hard results for that same experiment. This model is considerably more verbose than
Llama-3-8B-Instruct, as evident from the large response length increase associated with this
experiment (+ 1883 characters on average). It is possible the Positivity constraint was not met for this
experiment, causing the length-controlled framework of AlpacaEval to provide inaccurate estimates.

While a more thorough study of length-controlled win rate is out of scope for this work, one potential
avenue towards a more robust length-controlled win rate would be to specifically prompt models to
generate shorter or longer answers if the Positivity constraint is not met.
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