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Abstract

Recent advances in large language models
(LLMs) focus on aligning models with hu-
man values to minimize harmful content.
However, existing methods often rely on
a single type of feedback, such as prefer-
ences, annotated labels, or critiques, which
can lead to overfitting and suboptimal per-
formance. In this paper, we propose Diverse
AI Feedback (DAIF), a novel approach
that integrates three types of feedback—
critique, refinement, and preference—tailored
to tasks of varying uncertainty levels. Through
an analysis of information gain, we show
that critique feedback is most effective for
low-uncertainty tasks, refinement feedback
for medium-uncertainty tasks, and preference
feedback for high-uncertainty tasks. Train-
ing with this diversified feedback reduces
overfitting and improves alignment. Exper-
imental results across three tasks—question
answering, dialog generation, and text summa-
rization–demonstrate that DAIF outperforms
traditional methods relying on a single
feedback type.1

1 Introduction

In recent years, large language models (LLMs)
have demonstrated significant capabilities in ad-
dressing a wide range of information needs
(Bubeck et al., 2023; Touvron et al., 2023; Li
et al., 2023; Muennighoff et al., 2023; Tao et al.,
2024; Luo et al., 2024). A growing area of re-
search in this field focuses on aligning LLMs with
human values to reduce the risk of generating

∗ This work was conducted when Tianshu Yu was in-
terning at Tongyi Lab.

† Min Yang and Yongbin Li are corresponding authors.
1Our code and data are available at: https://github

.com/AlibabaResearch/DAMO-ConvAI/tree/main
/DAIF.

harmful or misleading content (Bai et al., 2022a;
Wang et al., 2023b). This objective has been the
focus of numerous studies (Stiennon et al., 2020;
Ouyang et al., 2022; Akyürek et al., 2023; Wu
et al., 2023). To achieve this, most current align-
ment methods rely on human-annotated (Ziegler
et al., 2019; Nakano et al., 2021) or AI-generated
(Bai et al., 2022a; Chen et al., 2024) preference
feedback, which is used in supervised training
(Stiennon et al., 2020; Rafailov et al., 2023) or
reinforcement learning (Ouyang et al., 2022).

However, a key limitation of these existing
alignment methods is their tendency to overfit
(Gao et al., 2023). To address this issue, recent
research has explored alternative forms of feed-
back, such as refinement feedback, which directly
refines model outputs (Shi et al., 2022; Welleck
et al., 2022), and critique feedback, which provides
natural language critiques to guide the model in
self-improvement (Tandon et al., 2021; Scheurer
et al., 2022; Madaan et al., 2023). Despite these
efforts, these methods have not fully resolved the
overfitting problem. Previous studies suggest that
the overfitting of LLM alignment is largely due
to the reliance on a single feedback type, which
leads to low data efficiency.

Previous research in the field of robotics has
laid a strong foundation for the integration of mul-
tiple feedback mechanisms. For example, Jeon
et al. (2020) examined the feasibility of combining
various feedback types for reward learning, high-
lighting the potential advantages of such an ap-
proach. Similarly, Bıyık et al. (2022) successfully
utilized human demonstrations and preference
feedback to enhance reward function learning,
further demonstrating the value of incorporating
diverse feedback sources. Building on this, Ghosal
et al. (2023) explored the optimization of feed-
back selection, illustrating the effectiveness of
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combining different types of feedback to improve
agent policies. However, a notable gap in the lit-
erature exists regarding the application of these
findings to the alignment of LLMs. Moreover,
existing studies have yet to investigate the most
suitable feedback type for each training sample,
which could maximize training data efficiency.

In response to these gaps, we introduce Di-
verse AI Feedback (DAIF), a novel approach that
optimizes LLM alignment by integrating three
types of feedback: critique (Critic), refinement
(Refine), and preference (Prefer). DAIF tailors
these feedback types to tasks of varying uncer-
tainty to enhance alignment with human values.
Starting with an unaligned base model, we gen-
erate outputs for a predefined set of problems.
Using the concept of information gain from active
learning (Bıyık et al., 2019), we evaluate the infor-
mation gain for each feedback type across different
uncertainty levels of problems, with perplexity, a
property that has been widely recognized in stud-
ies addressing uncertainty in language generation
tasks (Baan et al., 2023; Hu et al., 2023), serves as
a task-agnostic metric for assessing uncertainty.
Based on this analysis, we classify problems into
three uncertainty categories: ‘‘low’’, ‘‘medium’’,
and ‘‘high’’. For ‘‘low’’ tasks, critique feedback,
consisting of natural language critiques, is uti-
lized; for ‘‘medium’’ tasks, refinement feedback,
involving improvements to the model outputs, is
employed; and for the most challenging ‘‘high’’
tasks, preference feedback, drawn from annotated
preferences across multiple outputs generated by
the same model, is sought.

The primary contributions of our work are as
follows:

1. We introduce DAIF as a novel method for
enhancing the alignment process by integrat-
ing diverse feedback mechanisms.

2. We investigate the optimal strategy for com-
bining critique, refinement, and preference
feedback types, using an information gain
approach to determine the best fit for the
training dataset.

3. We propose a differentiated feedback ap-
proach that tailors the use of various feed-
back types to the uncertainty levels of the
tasks at hand.

4. We present experimental results across three
downstream tasks, demonstrating that DAIF
outperforms traditional methods relying on a
single feedback type. Additional experiments
and analyses further validate the effective-
ness of DAIF.

2 Related Work

2.1 Research on the Alignment of LLMs

In recent years, the task of fine-tuning language
models to align with human values has gained
paramount importance, driven by the imperative
to reduce the generation of incorrect, mislead-
ing, or harmful content in dialog completions (Bai
et al., 2022a; Liu et al., 2023b; Wang et al., 2023b;
Gao et al., 2024). Reinforcement learning (RL) has
become the predominant technique in numerous
prior studies tackling this challenge. RL frames
the generation process as a Markov decision pro-
cess and optimizes the policy model to maximize
a proxy reward, establishing itself as a pivotal
method in this context. For instance, Ziegler et al.
(2019) were pioneers in investigating the RLHF
method for stylistic continuation and summary
generation. Bai et al. (2022b) introduced the con-
cept of LLM alignment along with the HHH
(helpful, harmless, honest) principle, applying
RLHF to achieve alignment. Ouyang et al. (2022)
introduced InstructGPT, which was subsequently
applied to the renowned ChatGPT. In addi-
tion to RLHF, alternative training methods have
been explored. Liu et al. (2023a) proposed CoH,
which learned from both good and bad responses.
Rafailov et al. (2023) introduced the DPO algo-
rithm to mitigate the instability of PPO training,
derived from the classic Bradley-Terry model of
reward proxy learning. Song et al. (2023) extended
DPO to scenarios where a prompt can elicit more
than two possible responses with annotated hu-
man preference order.

2.2 Learning from Various
Types of Feedback

Existing literature has explored diverse forms
of feedback to enhance model predictive capa-
bilities. These methods can be classified as (i)
preferences that involve pairwise comparisons or
rankings (Bai et al., 2022a; Gao et al., 2022; Zhu
et al., 2023; Feng et al., 2024); (ii) natural lan-
guage critiques (Tandon et al., 2021; Scheurer
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et al., 2022; Saunders et al., 2022; Madaan et al.,
2023); and (iii) direct textual refinements of gen-
erated outputs (Shi et al., 2022; Welleck et al.,
2022). Saunders et al. (2022) introduced a learning
paradigm known as Self-Critique, where a model
evaluated its own outputs in natural language and
then refined itself based on these critiques, while
Chen et al. (2024) and Wu et al. (2024) studied
Self-Play, which encourages a model to improve
its ability by playing against instances of itself.
Ethayarajh et al. (2024) and Jung et al. (2024)
proposed algorithms to align LLMs by simple
‘‘accept’’ and ‘‘disapproving’’ signals. Special-
ized feedback types have also been developed
for task-specific applications. For instance, Gao
et al. (2022) employed accuracy metrics in extrac-
tive question-answering as feedback for policy
fine-tuning, while Uesato et al. (2022) used the
correctness of both the solution process and the
final outcomes as feedback.

2.3 Active Learning for LLM Training

Active learning (Settles, 2009) has gained signif-
icant attention in improving the data efficiency
of training LLMs, particularly in scenarios where
labeled data is scarce or expensive. Gleave and
Irving (2022) attempted to apply active learning on
language reward modeling using ensemble-based
methods and Thompson sampling to reduce the
amount of training data. Mehta et al. (2023)
formalized the problem of RLHF into dueling
contextual bandit learning and developed an ac-
tive exploration method that samples the most
informative prompt and answer pair for prefer-
ence labeling. Das et al. (2024) derived a method
for active problem selection and answer pair
sampling under the framework of Bradley-Terry
model (Bradley and Terry, 1952). Melo et al.
(2024) improved the traditional Bayesian ac-
tive learning algorithm for preference modeling,
considering both feature space entropy and prefer-
ence model uncertainty. However, those methods
mainly focuses on training with preference feed-
back, and most of them require additional training
to determine the uncertainty of problems.

Unlike prior methods, we present DAIF to align
LLMs with human values through a differentiated
feedback mechanism. DAIF distinguishes itself
by incorporating three distinct types of feedback,
each calibrated to the problem’s uncertainty level,
enhancing the effectiveness of model training.

3 Preliminary

In this section, we first introduce the dataset
used in our experiments, along with the various
feedback types employed. We then present the
information gain methodology utilized to deter-
mine the optimal feedback type for each problem.
Subsequently, we conduct a preliminary study to
evaluate the information gain associated with cri-
tique, refinement, and preference feedback types.
Based on the results of this analysis, we propose
an effective strategy for combining these diverse
feedback mechanisms.

3.1 The Construction of Problem Dataset

To commence our study, we assemble a problem
dataset, denoted as D, for the purposes of feed-
back collection and model training. We consider
three specific datasets for our three distinct tasks
within the realm of natural language process-
ing: the WebGPT-comparison dataset for question
answering, the HH-RLHF dataset for dialogue
generation, and the OpenAI-Summarize-TLDR da-
taset for text summarization. We randomly select
10,000 samples from each of these datasets and
combine them to create a comprehensive prob-
lem dataset D, which forms the experimental
foundation of our study.

3.2 Feedback Types Description

Initially, in our experiment, we use the Vicuna-7B
model as our base model. For a given problem q
in our dataset D, we first get an initial answer a
by greedy sampling from our base model. Then,
we collect each type of feedback following the
methods given below:

• Critique: This feedback type provides con-
structive suggestions for enhancing answer
a, enabling our base model to further re-
fine itself. We solicit the API to provide
improvement suggestions s for answer a.
Subsequently, the base model generates an
improved answer ac based on q, a, and s.

• Refinement: In this feedback category, we
receive an improved version of the a. We
make an API query to enhance the answer a,
resulting in the refined answer ar.

• Preference: In this approach, the model se-
lects the superior answer among two distinct
answers generated for the same prompt. To
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this end, we follow the traditional process of
RLHF to sample two distinct answers a1, a2
under question q from our base model. Sub-
sequently, we employ the API to determine
whether a1 or a2 is the better option.

3.3 The Information Gain Framework

The information gain approach has demonstrated
its effectiveness and superiority over traditional
active learning methods (Palan et al., 2019),
by selecting the comparison pair (a+, a−) that
maximizes the information gain IG(a+, a−|q) as
defined by the following equation:

IG(a+, a−|q) = H(a+, a−|q)−H(a+, a−|q, π∗)

Here, H(a+, a−|q) represents the entropy asso-
ciated with the base model π determining that
answer a+ is preferred over a−, while H(a+,
a−|q, π∗) denotes the entropy under the optimal
model π∗ where a+ is preferred over a−:

H(a+, a−|q) =− p(a+ � a−;π) log p(a+ � a−;π)

− p(a− � a+;π) log p(a− � a+;π)

H(a+, a−|q, π∗) =− p(a+ � a−;π∗) log p(a+ � a−;π∗)

− p(a− � a+;π∗) log p(a− � a+;π∗)

By combining the Bradley-Terry model (Bradley
and Terry, 1952) with the energy-based model
(LeCun et al., 2006), we derive the follow-
ing expressions for p(a+ � a−;π) and p(a+ �
a−;π∗):

p(a+ � a−;π) =
π(a+|q)

π(a+|q) + π(a−|q)

p(a+ � a−;π∗) =
π∗(a+|q)

π∗(a+|q) + π∗(a−|q)

We adopt the optimal solution from Rafailov et al.
(2023), where π∗(a|q) ∝ π(a|q) exp

(
1
βR(a|q)

)
,

as the representation of the optimal policy π∗.
Hence, we have

π∗(a+|q) = π(a+|q) exp
(
1

β
R(a+|q)

)

π∗(a−|q) = π(a−|q) exp
(
1

β
R(a−|q)

)

In our experiment, all three types of feedback are
converted into comparison pairs. This allows us
to compute the information gain for each feed-

back type and subsequently select the feedback
type that maximizes the information gain.

3.4 Information Gain of Diverse
Feedback Types

However, when training on a new problem data-
set, we lack prior knowledge regarding the type
of feedback that will be received for each prob-
lem. Additionally, obtaining all feedback types
before deciding on the most appropriate one can
be costly. Therefore, a preliminary study is con-
ducted to investigate the information gain of each
feedback type, which aids in selecting the optimal
feedback for each training problem.

For this study, we randomly sample 500 prob-
lems that are distinct from the primary problem
dataset D, denoted as Dpre. We follow the feed-
back collection procedures outlined in Section 3.2
to gather all three feedback types for these prob-
lems. The uncertainty of problem is used as the
basis for determining the appropriate feedback
type. To assess uncertainty, we employ perplexity
PPL(a, q), calculated using the formula:

PPL(a, q) =

(
l∏

i=1

p(ai|a<i, q)

) 1
l

where l denotes the length of the answer a. For
the reward score R(·|q), we use the open-source
reward model OpenAssist-6.9B, trained on the
tasks described earlier. We then plot the re-
lationships between PPL(a, q), H(a+, a−|q),
H(a+, a−|q, π∗), and IG(a+, a−|q) as scatter
plots in three subfigures of Figure 2, respec-
tively. Vertical lines are drawn to evenly divide
the problems into three uncertainty groups: low,
medium and high.

From the plots, we observe the following: For
problems with the lowest uncertainty, critique
feedback slightly outperforms the other two feed-
back types, primarily due to its higher H(a+,
a−|q). For problems of medium uncertainty,
refinement feedback outperforms critique and
preference feedback, as evidenced by its lower
H(a+, a−|q, π∗). For the most uncertain prob-
lems, preference feedback exhibits the highest
information gain, surpassing the other two types,
likely due to its ability to sample more informa-
tive pairs. These findings provide a solid foun-
dation for developing the feedback combination
strategy in our proposed DAIF method.
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Figure 1: The illustration of our method, DAIF, describing our feedback collection process.

Figure 2: Scatter plot of H(a+, a−|q), H(a+, a−|q, π∗) and information gain IG(a+, a−|q) of every problem in
Dpre. Blue ‘‘·’’ stands for preference feedback, orange ‘‘+’’ stands for refinement feedback, and green ‘‘Y’’
stands for critique feedback.

4 Method

In this section, we provide a detailed explanation
of our proposed DAIF method, which is depicted
in Figure 1.

4.1 Uncertainty Assessment and Grouping

To evaluate the uncertainty level of each problem
in the dataset D, we first generate an answer
a for each problem q in D using a greedy
search algorithm. Then, we calculate the perplex-
ity PPL(a, q) for each answer a. After computing
the perplexity score for each problem in D, we
first organize the problems in ascending order of
perplexity. We then evenly distribute them into
three groups: the low group L comprising prob-
lems with the lowest perplexity; the medium group

M containing problems with moderate perplex-
ity; and the high group H including problems with
the highest perplexity scores.

4.2 Feedback Collection

In the next stage of our experiment, we concentrate
on collecting diverse feedback for the answers
generated by the model. According to the idea of
information gain solution and the results discussed
in Section 3, we obtain the Critic feedback for
problems in the low group L, the Refine feedback
for the medium group M, and the Prefer feedback
for the high group H. Given the financial and
logistical challenges linked to human annotation,
we choose to employ the feedback generated by
the GPT-3.5-turbo API.
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4.3 Training

The final phase of our approach involves model
training using the amassed feedback dataset. To
demonstrate the effectiveness of our proposed
method, we conduct experiments by employ-
ing two distinct training methods: Proximal
Policy Optimization (PPO) and Direct Prefer-
ence Optimization (DPO), which are denoted as
RM-PPODAIF and DPODAIF , respectively.

4.3.1 RM-PPO Training

Considering that the supervised fine-tuning pro-
cess has already been performed on our base model
Vicuna-7B, we follow the second and third steps
of the standard RLHF training procedure. Initially,
we train a reward model using the gathered feed-
back. Subsequently, we fine-tune the policy using
the PPO algorithm.

Comparison Dataset Construction. To train a
reward model, we initially convert the collected
feedback into a comparison format, following
Ouyang et al. (2022). This involves the follow-
ing formats for different types of feedback: (i)
for preference feedback, we use the answer pair
(a1, a2), where the API designates the preferred
answer; (ii) for refinement feedback, we adopt
the answer pair (ar, a), where ar is the improved
answer indicated by the API; (iii), for critique
feedback, we use the answer pair (ac, a), where
ac represents the preferred version.

Reward Model Training. Before training the
reward model, we partition the feedback dataset
into a training set including 90% of the samples
and a validation set comprising the remaining
10%. Then, we proceed to train the reward model
for five epochs, starting from the base model.
The model checkpoint with the highest valida-
tion accuracy is chosen for the subsequent PPO
training phase.

Policy Model Training. In a manner similar
to how we curated the dataset D, we collect an
additional 30,000 prompts that are distinct from D
to train the policy model. Due to the limited data
available in the WebGPT-comparison dataset, we
also use alternative sources such as eli5, trivia-qa,
and ARC for question-answering prompts. The
base model is then trained on these prompts for
one epoch using the PPO algorithm. To address
concerns related to overfitting, we employ the

PPO-ptx strategy Ouyang et al. (2022). The overall
training objective can be formally expressed as:

JPPO = E(q,a)∼Dppo

[
rθ(q, a)− β log

(
πppo(a|q)
π0(a|q)

)]
+ γEx∼Dptx [log πppo(x)]

In this equation, Dppo represents the dataset of
collected prompts, Dptx signifies the pretrain-
ing distribution, πppo represents the learned PPO
policy, and π0 refers to the base model.

4.3.2 DPO Training
We also train our base model using the DPO al-
gorithm (Rafailov et al., 2023), as DPO offers
improved training stability for optimizing the
alignment target. DPO is trained on the train-
ing split of the comparison dataset, and the overall
training objective can be formally expressed as:

JDPO = E(q,aw,al)∼D

[
log σ

(
β

(
log

πdpo(aw|q)
π0(aw|q)

− log
πdpo(al|q)
π0(al|q)

))]
+ γEx∼Dptx [log πdpo(x)]

where (aw, al) denotes the answer pair of the
problem q ∈ D and aw is the preferred one.

5 Experiments

5.1 Evaluation Settings
We conduct experiments that specifically target
three downstream tasks: question answering (QA),
dialogue generation (Dial.), and text summariza-
tion (Summ.). To assess the effectiveness of our
alignment strategy, we construct a separate test
set comprising 3,000 prompts. This test set in-
cludes 1,000 prompts sampled for each of the
three tasks and is entirely distinct from those
used in both D and Dppo. We compare the per-
formance of DAIF against the golden response
annotated in the original dataset and our base
model (Vicuna-7B). To further demonstrate the
benefits of integrating multiple feedback types,
we also conduct RM-PPO and DPO training
using the datasets restricted to single types of
feedback, which are denoted as (RM-PPOPrefer,
RM-PPORefine, RM-PPOCritic) and (DPOPrefer,
DPORefine, DPOCritic), respectively. To accom-
plish this, we gather critique, refinement, and
preference feedback for all problem-answer pairs
in D.

Additionally, we carry out comparisons
against Random settings (RM-PPORandom and
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Model GPT-4 Scoring RM Scoring

Avg. Summ. Dial. QA. Avg. Summ. Dial. QA.

Golden 2.79 2.98 3.03 2.35 −0.218 0.005 −0.207 −0.452
Vicuna-7B 3.23 3.34 3.08 3.26 0.456 0.526 0.355 0.487

RM-PPOCritic 3.58 3.31 3.79 3.64 0.683 0.589 0.741 0.719
RM-PPORefine 3.62 3.27 3.89 3.70 0.708 0.564 0.792 0.767
RM-PPOPrefer 3.83 3.74 3.92 3.83 0.731 0.630 0.799 0.765
RM-PPORandom 3.69 3.65 3.80 3.63 0.695 0.623 0.754 0.707
RM-PPOFull 3.56 3.34 3.78 3.57 0.662 0.592 0.724 0.671
RM-PPODAIF (Ours) 3.96 4.02 3.94 3.91 0.836 0.891 0.796 0.822

DPOCritic 3.68 3.67 3.54 3.83 0.689 0.627 0.633 0.806
DPORefine 3.60 3.44 3.42 3.95 0.694 0.562 0.590 0.930
DPOPrefer 3.78 4.11 3.52 3.70 0.798 1.013 0.608 0.772
DPORandom 3.69 3.71 3.49 3.88 0.724 0.708 0.613 0.850
DPOFull 3.59 3.36 3.51 3.91 0.671 0.582 0.587 0.843
DPODAIF (Ours) 4.16 4.32 3.99 4.17 1.010 1.186 0.852 0.993

Table 1: Evaluation results of DAIF and baselines trained with RM-PPO and DPO algorithms in terms
of GPT-4 and RM evaluation.

DPORandom) and Full settings (RM-PPOFull and
DPOFull), in order to eliminate the influence of
different source of chosen answers (Vicuna-7b in
Critic & Prefer feedback and GPT-3.5-Turbo
in Refine feedback). In Random settings, we
randomly choose a feedback type from Critic,
Refine and Prefer for every prompt without
grouping them by uncertainty. In Full settings,
we adopt all three feedback data of every prompt
in D for training.

5.2 Evaluation Metrics

We present our experimental results using
three evaluation metrics: automatic assessment,
model-based evaluation, and human-based eval-
uation. Our primary metric is based on an
open-source reward model called OpenAssist,2

which automatically evaluates the quality of the
generated content. We denote this metric as RM
evaluation. In addition, recent studies have demon-
strated the effectiveness of GPT-4 in evaluating
chat assistant responses and aligning with hu-
man preferences (Zheng et al., 2023; Wang et al.,
2023a). Therefore, we incorporate GPT-4 to rate
the generated content on a scale from 1 to 5, where
higher scores indicate better alignment with hu-
man values. We denote this metric as GPT-4
evaluation. Finally, we acknowledge that human
judgment serves as the gold standard for assessing

2https://huggingface.co/OpenAssistant
/oasst-rm-2-pythia-6.9b-epoch-1.

alignment with human values. To address this,
we engage 6 NLP researchers to perform pairwise
comparisons among the top-performing models
identified in automated evaluations. Due to the
expensive cost, we only sample 300 test examples
(100 for each task) for human evaluation.

5.3 Main Results

Table 1 presents a summary of performance
metrics for our DAIF method and the com-
pared benchmarks, evaluated using OpenAssist
and GPT-4. In both RM-PPO and DPO train-
ing scenarios, DAIF consistently outperforms all
baseline models in terms of average reward and
GPT-4 scores.

As shown in Table 1, DAIF significantly
improves alignment performance over the base
model Vicuna-7B across all tasks. Remarkably,
DAIF also exceeds the human-favored answers in
the original dataset, demonstrating the effective-
ness of using diverse feedback types for training.

When compared to single-feedback approaches,
DAIF’s combination of multiple feedback types
provides a clear advantage, particularly in the
Random and Full settings, where the task-specific
feedback tailored to uncertainty levels enhances
performance.

Performance analysis within the RM-PPO and
DPO paradigms further highlights DAIF’s effec-
tiveness, especially in dialog generation under the
DPO framework. DPO addresses training instabil-
ity in PPO, mitigating distribution shifts seen in
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Ours Win (%) Tie (%) Ours Lose (%) Gap (%)

RM-PPODAIF vs Golden

Dial. 70.0 15.6 14.4 +55.6
QA. 75.8 13.7 10.5 +65.3
Summ. 74.4 12.2 13.3 +61.1
Avg. 73.5 13.8 12.7 +60.8

RM-PPODAIF vs RM-PPOPrefer

Dial. 22.5 63.0 14.5 +8.0
QA. 32.3 52.3 15.4 +16.9
Summ. 46.6 29.6 23.8 +22.8
Avg. 33.8 48.3 17.9 +15.9

DPODAIF vs Golden

Dial. 80.0 11.1 8.9 +71.1
QA. 76.8 10.5 12.6 +64.2
Summ. 77.8 8.9 13.3 +64.5
Avg. 78.2 10.2 11.6 +66.6

DPODAIF vs DPOPrefer

Dial. 55.8 32.4 11.8 +44.0
QA. 55.4 23.6 21.0 +34.4
Summ. 43.1 32.5 25.4 +18.7
Avg. 51.4 29.5 19.1 +32.3

Table 2: Human evaluation results. This table shows the performance of RM-PPODAIF and DPODAIF

against their counterparts across different contexts, showcasing Win, Tie, Lose, and Gap percentages.
Here, Gap stands for the difference between Win and Lose percentages.

RM and PPO data, thus further enhancing DAIF’s
alignment capabilities.

5.4 Human Evaluation
Although automated reward models such as Open-
Assist and GPT-4 offer scalability, they possess
inherent limitations, including positional and ver-
bosity biases. Consequently, human evaluations
play a vital role in accurately gauging alignment
with human preferences. To facilitate human an-
notation processes, our focus shifts to comparing
DAIF with key baselines within the RM-PPO and
DPO training scenarios:

DAIF vs. Golden: This comparison assesses
whether DAIF, benefiting from diverse simulated
feedback types, can surpass the human-preferred
responses annotated in the original datasets.

DAIF vs. Singular Feedback: This analy-
sis aims to confirm the effectiveness of DAIF’s
multifaceted feedback approach in comparison to
models trained exclusively on a single feedback
type. Notably, RM-PPOPrefer and DPOPrefer

emerge as the optimal individual feedback types
for RM-PPO and DPO training, respectively.

Table 2 presents the human evaluation re-
sults, highlighting DAIF’s consistent superiority
and its distinct advantages. Remarkably, human
evaluators rate DAIF’s predictions higher than

the human-preferred responses from the orig-
inal datasets in both training scenarios. This
underscores DAIF’s ability to capture human
preferences as reflected in the data effectively.
Furthermore, DAIF’s dominance over the base-
line models trained with a single type of feedback
reinforces the hypothesis that leveraging diverse
feedback types significantly enhances alignment
performance.

In addition, a detailed analysis highlights
DAIF’s notable performance, especially in text
summarization where Vicuna-7B has not received
comprehensive pertaining when compared with
the models trained on a single feedback type. This
underscores DAIF’s ability to address tasks that
were not extensively covered during the pretrain-
ing or supervised fine-tuning phases. However,
this trend does not hold when comparing DAIF
to human-annotated golden answers, indicating a
noticeable difference between human and GPT-4
preferences in the context of text summarization.

6 Analysis

6.1 Over-optimization in RM-PPO Training
Previous studies have acknowledged over-
optimization as a common issue in RM-PPO
training (Gao et al., 2023; Dubois et al., 2023).
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Feedback Critic Refine Prefer Random Full DAIF

Accuracy 86.45 83.22 73.47 80.76 77.95 88.52

Table 3: Reward model accuracy of DAIF and baselines in RM-PPO training. The first row stands for
the corresponding RM-PPO training setting (e.g., ‘‘Critic’’ represents RM-PPOCritic).

We postulate that DAIF’s superior performance,
compared to the methods relying on singular
feedback types, primarily stems from its capacity
to alleviate over-optimization. To evaluate this
hypothesis, we conduct additional experiments
specifically targeting the aspects of the RM-PPO
training process, namely, the reward model and
RM-PPO training.

Analysis of the Reward Model. For the re-
ward model, we assess the precision of models
trained with DAIF and individual feedback types
on a separate test set. This test dataset, comprising
2,700 comparison answer pairs derived from 300
uniquely sampled problems across each task, was
structured to assess feedback variations—critique,
refinement, preference—on problem answers. As
illustrated in Table 3, the reward model of DAIF
exhibits superior performance, suggesting its ca-
pacity to more comprehensively capture human
values in contrast to all other baselines, including
models relying on a singular feedback type, ran-
domly selecting feedback types or incorporating
all feedback, thus enhancing policy training.

Analysis of RM-PPO Training. In the con-
text of RM-PPO training, we analyze the learning
dynamics of various training configurations, il-
lustrating the correlation between proxy reward
(x-axis) and OpenAssist evaluation score (y-axis)
across PPO iterations in Figure 3. Our findings
confirm that our RM-PPODAIF model effectively
optimizes the proxy reward, enhancing the RM
score until the onset of over-optimization, af-
ter which the RM score changes slightly despite
improvements in the proxy reward. In contrast,
all other baselines show a notable susceptibility
to over-optimization, evident in the occurrence
of premature over-optimization points during the
PPO training phase.

6.2 Ablation Study

To further investigate the impact of two critical
components in our proposed method–grouping
strategy and feedback type selection–we conduct

Figure 3: The correlation between RM score (y-axis)
and proxy reward (x-axis) across RM-PPO iterations
of DAIF and baselines.

ablation studies by modifying the experimental
settings for each factor independently.

Grouping Strategy. We explore two variations
of the grouping strategy to assess its effectiveness:

1. Grouping by Task Type: In the ‘‘By Task’’
condition, we group prompts based on their
task type, resulting in three distinct groups:
dialog, QA, and summarization. We select
Critique feedback for the dialog tasks with
the lowest uncertainty, Refinement feed-
back for QA tasks with medium uncertainty,
and Preference feedback for summarization
tasks with the highest uncertainty, follow-
ing the uncertainty distribution presented in
Appendix B.

2. Grouping by Uncertainty within Task
Type: In the ‘‘Within Tasks’’ condition,
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Model
RM-PPO results DPO results

Avg. Summ. Dial. QA. Avg. Summ. Dial. QA.

Ours 0.836 0.891 0.796 0.822 1.010 1.186 0.852 0.993
By Task 0.775 0.810 0.656 0.805 0.872 0.968 0.785 0.863
Within Tasks 0.754 0.711 0.740 0.809 0.847 0.738 0.824 0.980
By Score 0.769 0.753 0.778 0.775 0.972 1.149 0.825 0.942

Table 4: Evaluation results of DAIF compared to ablation settings on grouping method trained with
RM-PPO and DPO algorithms in terms of RM evaluation.

Feedback type RM-PPO results DPO results

L M H Avg. Summ. Dial. QA. Avg. Summ. Dial. QA.

Critic Refine Prefer 0.836 0.891 0.796 0.822 1.010 1.186 0.852 0.993
Critic Prefer Refine 0.765 0.780 0.767 0.748 0.858 0.898 0.786 0.890
Refine Critic Prefer 0.659 0.696 0.482 0.799 0.787 0.941 0.699 0.721
Refine Prefer Critic 0.627 0.614 0.511 0.756 0.704 0.611 0.756 0.745
Prefer Refine Critic 0.639 0.602 0.482 0.833 0.665 0.591 0.598 0.806
Prefer Critic Refine 0.804 0.865 0.707 0.840 0.890 0.924 0.809 0.937

Table 5: Evaluation results of DAIF compared to other permutations of feedback types trained with
RM-PPO and DPO algorithms in terms of RM evaluation. The first row of the results stands for our
proposed method and other rows are ablation settings.

we apply the grouping strategy described in
Section 4.1 independently for each specific
task. This results in nine distinct groups: Lq,
Mq, and Hq for QA, Ld, Md, and Hd for
dialog, and Ls, Ms, and Hs for summa-
rization. We then aggregate the low groups
Lq, Ld, and Ls into an overall low group
L, and similarly aggregate the medium and
high groups into medium (M) and high (H)
groups, respectively.

We present the results of our reward model scor-
ing for both the proposed method and the ablation
variants in Table 4. The findings indicate that
our method outperforms both ablation settings,
supporting the following conclusions: (1) Uncer-
tainty, rather than task type, serves as a more
reliable criterion for grouping, aligning with hu-
man learning paradigms. (2) It is unnecessary to
consider the specific task type when determining
the uncertainty group to which a problem should
be assigned.

Feedback Type Selection Method. To validate
the efficacy of our feedback type selection strat-
egy based on information gain, we compare all
possible permutations of the three feedback types

Figure 4: Experimental results on varying the propor-
tion of different feedback types. The horizontal axes
in both subfigures denote the proportion of refinement
feedback.

(Critique, Refinement, and Preference) within dif-
ferent uncertainty groups. The results, shown in
Table 5, highlight the superiority of our feedback
combination strategy. By maximizing information
gain through the optimal combination of di-
verse feedback types, our method outperforms
the other strategies, achieving better preference
scores according to the reward model.

6.3 The Proportion of Different
Feedback Types

To further evaluate the effectiveness of differ-
ent feedback types, we conducted experiments by
varying the proportions of each type of feedback.
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Case #1: Low
Input Prompt Human: Can you describe what happened in the war of 1812 Assistant: Sure, that’s a pretty

good story. The war was very unpopular in the United States. Human: tell me about it Assistant:
......

Initial Answer a The war ended in 1815 with the signing of the Treaty of Ghent, which was a peace treaty that
ended the war. The treaty did not address the issues that had caused the war, but it did establish
peace between the two countries. (RM score: −0.2739)

Critique Feedback To improve the response, the assistant could provide more details about the war, such as the
major battles, the reasons for the conflict, and the consequences ......

Improved Answer ac The War of 1812 was a conflict between the United States and Great Britain that lasted from
1812 to 1815. The war was largely fought in the United States and ended
with the signing of the Treaty of Ghent ...... (RM score: 0.6846)

Refinement Feedback (ar) The War of 1812 ended in 1815 with the signing of the Treaty of Ghent, which was a peace
treaty between the United States and Britain. The treaty ......(RM score: 0.5166)

Answer a′ The war was very unpopular in the United States, and many people wanted to end it. The Treaty
of Ghent was ...... (RM score: −0.8306)

Preference Feedback The initial answer a is better.

Case #2: Medium
Input Prompt Human: What happens in our brains when we feel inferior, even when we consciously know

we shouldn’t? For example, ......

Initial Answer a It’s possible that when we feel inferior, our brains release certain chemicals that trigger certain
responses, such as ......(RM score: 0.5674)

Critique Feedback There are a few areas where improvements can be made:
1. Provide more specific information: ......

Improved Answer ac It’s possible that when we feel inferior, our brains release certain chemicals that trigger certain
responses, such as avoidance behaviors. This could be ...... (RM score: 1.7549)

Refinement Feedback (ar) When we feel inferior, our brains may release certain chemicals that trigger specific responses,
such as avoidance behaviors. This can be attributed to ......(RM score: 2.7188)

Answer a′ When we feel inferior, our brains can trigger a response known as the ‘‘fight or flight’’ response.
This response is ...... (RM score: 1.6504)

Preference Feedback Answer a′ is better.

Case #3: High
Input Prompt Human: Please summarize the following Reddit post in no more than 100 words.

SUBREDDIT: r/relationships TITLE: Me with my girlfriend 4years, she doesn’t want relation-
ship because she is confused POST: hi everyone I need help from everyone who is reading
this...... Assistant: TL;DR:

Initial Answer a Boyfriend’s girlfriend is confused and doesn’t want a relationship, causing him to be depressed
and unsure of what to do. (RM score: −1.3057)

Critique Feedback The intended summary effectively condenses the post, but it could be improved by removing
redundant information and clarifying the main conflict.

Improved Answer ac A boyfriend is depressed due to his girlfriend’s confusion about their relationship and her
feelings for a close friend. She wants to be just friends, and he is unsure of how to handle the
situation. (RM score: −1.1826)

Refinement Feedback (ar) The boyfriend’s girlfriend is unsure about their relationship and wants to be just friends due to
feelings for a close friend. The boyfriend is depressed and seeking advice on how to handle the
situation and not lose her.(RM score: −0.7271)

Answer a′ The author is in a 4-year relationship with their girlfriend, but she is unsure about the future of
their relationship due to her own confusion and ......(RM score: 0.3186)

Preference Feedback Answer a′ is better.

Table 6: Three cases chosen from the training set, with one from each uncertainty group.

Specifically, we implemented two experimental
settings: (1) maintaining a constant proportion
of critique feedback while gradually varying the
proportions of refinement and preference feed-
back, and (2) maintaining a constant proportion of
preference feedback while gradually varying the

proportions of critique and refinement feedback.
Due to space limitations, we report only the av-
erage RM score from the DPO training algorithm
and present the results in Figure 4. The results indi-
cate that our strategy, with a refinement feedback
proportion of approximately 0.333, is closest to
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the optimal compared to other proportions tested.
This demonstrates that an optimal balance of each
feedback type enhances overall performance in
our experimental settings.

6.4 Case Analysis

To verify our motivation about the performances
of different feedback types, we conduct nuanced
case analyses, focusing on different feedback
types corresponding to problems of varying un-
certainty levels. We have chosen one example
from each of the low, medium, and high groups.
The specifics of each example include the origi-
nal problem q, its original answer a, along with
the critique, refinement, and preference feedback,
which are provided in Table 6.

Generally, we have the following observations.
(1) A detailed analysis of the least challenging
problems under critique feedback indicates that
our model provides a more effective generation of
improved answers ac compared to refined feed-
back as. However, the cases also show that as the
uncertainty increases, it becomes apparent that the
refined answers as progressively outshine the im-
proved answers ac. This suggests the crossing of
a threshold in self-improvement capability as the
uncertainty level escalates. (2) On the contrary, the
comparative analysis of the answer a and the an-
swer a′ from preference feedback accentuates its
increasing relevance with the escalation of prob-
lem uncertainty. As shown by the cases in Table 6,
while the solutions for easier problems tend to be
largely similar, the disparity in quality becomes
evident as the complexity of problems increases.
This highlights the distinct advantage of incorpo-
rating annotated preferences for model learning,
particularly in more challenging scenarios. (3)
These instances validate our initial analyses and
underscore the rationale behind our strategic feed-
back approach. They emphasize the adaptability
and effectiveness of our method in aligning LLMs
with varying levels of problem uncertainty.

7 Conclusion

In this paper, we introduced DAIF, an inno-
vative data collection methodology designed to
improve the alignment of LLMs with human
values. We proposed a differentiated feedback
approach, where various types of feedback are
utilized based on the varying uncertainty levels of
the problems. We presented experimental results

across three downstream tasks, demonstrating that
DAIF achieved superior performance even with a
smaller dataset. Further experiments and analyses
provided additional evidence of the effectiveness
of DAIF. We believe that our method opens up
new possibilities for the effective utilization of
feedback in aligning LLMs.
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A Analysis of Experimental Settings

In this experiment, we use uncertainty as the
basis for grouping and feedback type selection.
Alternative metrics, such as the base model’s task
performance, could also be applied, introducing
potential variability. To assess the impact of the
chosen uncertainty metric, we conduct a com-
parative analysis of DAIF’s performance using
the reward score of an open-source model as an
alternative uncertainty indicator.

In the ‘‘By Score’’ condition, we deviate from
the conventional approach of evaluating problem
uncertainty, PPL(a, q), and instead employ the
OpenAssist-6.9B reward model to assign a reward
score to the answer a in response to the ques-
tion q. We interpret the negative value of this
reward score as the indicator for grouping. The
results of the comparison between our method
and the ‘‘By Score’’ settings, as presented in
Table 4, demonstrate that perplexity outperforms

Task Summ. Dial. QA.

L 12 6,225 3,763
M 790 3,076 6,128
H 9,198 693 109

Table 7: The number of problems from different
tasks in every uncertainty group.

the open-source reward model as the basis for
grouping and feedback type selection.

B Distribution of Uncertainty Across
Different Tasks

Table 7 presents the distribution of examples
across the different uncertainty groups for each
task. The data clearly indicates that, for our
base model Vicuna-7B, the summarization task
exhibits the highest average uncertainty, while
dialog generation is identified as the easiest task.
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