
The Thai Universal Dependency Treebank

Panyut Sriwirote1 Wei Qi Leong2 Charin Polpanumas3
Santhawat Thanyawong4 William Chandra Tjhi2
Wirote Aroonmanakun1 Attapol T. Rutherford1∗

1Department of Linguistics, Chulalongkorn University, Thailand
panyutsriwirote@gmail.com, {awirote,attapol.t}@chula.ac.th

2AI Singapore, Singapore
{weiqi,wtjhi}@aisingapore.org

3Amazon, Japan
cebril@gmail.com

4Faculty of Humanities and Social Sciences, Prince of Songkla University, Thailand
santhawat.t@psu.ac.th

Abstract

Automatic dependency parsing of Thai sen-
tences has been underexplored, as evidenced
by the lack of large Thai dependency
treebanks with complete dependency struc-
tures and the lack of a published evalu-
ation of state-of-the-art models, especially
transformer-based parsers. In this work, we
addressed these gaps by introducing the Thai
Universal Dependency Treebank (TUD), a
new Thai treebank consisting of 3,627 trees an-
notated according to the Universal Dependen-
cies (UD) framework. We then benchmarked
92 dependency parsing models that incorpo-
rate pretrained transformers on Thai-PUD and
our TUD, achieving state-of-the-art results and
shedding light on the optimal model compo-
nents for Thai dependency parsing. Our error
analysis of the models also reveals that poly-
functional words, serial verb construction, and
lack of rich morphosyntactic features present
main challenges for Thai dependency parsing.

1 Introduction

Dependency parsing is the task of identifying
the dependencies between words in a sentence
according to the syntax of its language. Many
downstream NLP tasks rely on the support of au-
tomatic grammatical analysis of sentences, such
as event extraction (McClosky et al., 2011;
Zhang et al., 2021) and relation extraction
(Tian et al., 2021). To allow multilingual ap-
proaches to automatic syntactic analysis despite
cross-lingual variation, Universal Dependencies

∗Corresponding author.

(UD) (de Marneffe et al., 2021) provides a con-
sistent framework for annotating parts-of-speech
(POS), morphological features, and syntactic rela-
tions across all human languages. However, train-
ing an accurate dependency parser still requires
a large annotated dataset in the target language,
and dependency treebanking often requires highly
trained annotators. For these reasons, accurate de-
pendency parsing is currently only possible in
resource-rich languages.

Dependency parsing for the Thai language is
currently not viably accurate due to the lack of
large annotated datasets. We found only two pub-
licly available dependency treebanks for Thai:
Thai-PUD and Blackboard Treebank (Arreerard
et al., 2022). Thai-PUD contains 1,000 sentences
of complete dependency annotation, which might
not be enough for training dependency parsers.
Blackboard Treebank contains 38,588 sentences,
but it is only annotated with arcs and does not
comply with the standard of UD. The lack of
large and reliable training data presents a major
obstacle in the field of Thai dependency pars-
ing. In addition, we found no previous studies on
the application and evaluation of state-of-the-art
transformer-based models for Thai dependency
parsing, while transformer-based parsers have
achieved state-of-the-art performance in many
languages (Straka et al., 2019; Martin et al.,
2020; Mrini et al., 2020; Eggleston and O’Connor,
2022).

In this work, we create the Thai Universal
Dependency Treebank (TUD), a large corpus an-
notated with dependency relations according to the
UD framework. Our first challenge of this anno-
tation project is that Thai has no word or sentence

376

Transactions of the Association for Computational Linguistics, vol. 13, pp. 376–391, 2025. https://doi.org/10.1162/tacl a 00745
Action Editor: Hai Zhao. Submission batch: 7/2024; Revision batch: 9/2024; Published 4/2025.

c© 2025 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:panyutsriwirote@gmail.com
mailto:awirote@chula.ac.th
mailto:attapol.t@chula.ac.th
mailto:weiqi@aisingapore.org
mailto:wtjhi@aisingapore.org
mailto:cebril@gmail.com
mailto:santhawat.t@psu.ac.th
https://doi.org/10.1162/tacl_a_00745

boundaries. We first had to segment raw text into
words and then group them into sentences using
the boundaries implied by the annotated depen-
dencies. Our second challenge is the adaptation of
the UD framework to fit Thai syntactic idiosyn-
crasies. We provide guidelines for annotating Thai
serial verb constructions and grammatical parti-
cles, which are prevalent in the language but have
not been explicitly covered in previous works or in
the UD guideline itself. TUD is publicly released
on GitHub1 along with the source code and raw data.

Our main contributions in this work can be
summarized as follows:

1. We create the largest UD-style Thai depen-
dency treebank, comprising 3,627 trees.

2. We found that the Stanza graph-based parser
(Qi et al., 2020) paired with a state-of-the-art
encoder-only language model performs best
on our dataset, achieving a unlabeled attach-
ment score (UAS) score of 90.90 and LAS
score of 84.54.

3. Our error analysis reveals that polyfunctional
words, serial verb construction, and lack of
rich morphosyntactic features present main
challenges for Thai dependency parsing.

2 Related Work

Previously, two Thai dependency treebanks were
released, namely, Thai-PUD2 and Blackboard
Treebank.3 Thai-PUD is a small treebank con-
sisting of 1,000 sentences translated from various
European languages and annotated according to
the UD framework. The size of this dataset is small
compared to other UD treebanks of high-resource
languages. It was created as part of the CoNLL
2017 and 2018 Shared Tasks (Zeman et al., 2017,
2018) but the organizer decided to exclude it from
the former due to ‘‘consistency issues,’’ the details
of which were not clarified. Blackboard Treebank
is a large non-UD treebank consisting of 130,561
Thai clauses. This dataset does not provide a

1https://github.com/nlp-chula/TUD.
2https://universaldependencies.org

/treebanks/th_pud/index.html.
3https://aiforthai.in.th/corpus.php.

complete annotation. Subordinate and relative
clauses are detached and analyzed as their own
trees separate from the main clauses. Moreover,
Blackboard Treebank only provides dependency
arcs and not dependency types.

Traditional dependency parsers are either
transition-based or graph-based. Transition-based
models attach dependencies incrementally based
on a sequence of actions called ‘‘transitions’’
while graph-based models assign scores to all pos-
sible dependencies and then extract a valid tree
with the best score (McDonald and Nivre, 2007).
Recent works have proposed novel transition sys-
tems (Ma et al., 2018; Fernández-González and
Gómez-Rodrı́guez, 2019), improved postprocess-
ing of traditionally parsed results (Zmigrod et al.,
2020; Mohammadshahi and Henderson, 2021),
incorporated higher-order information (Ji et al.,
2019; Zhang et al., 2020), and employed joint
training with related tasks (Zhou and Zhao, 2019)
to boost performance.

So far, no Thai dependency parsers have
achieved performance competitive with state-of-
the-art models in high-resource languages such as
English, for which a result as high as 97.42 UAS
and 96.26 labeled attachment score (LAS) has
been reported (Mrini et al., 2020). Singkul and
Woraratpanya (2019) utilize convolutional neu-
ral networks and long short-term memory models
as encoders for transition-based and graph-based
parsers, achieving 78.48 UAS (LAS not reported)
on Thai-PUD. Yasuoka (2023) formulates the task
as sequence labeling for Thai dependency parsing
and utilizes a pretrained transformer, achieving
77.53 LAS (UAS not reported) on Thai-PUD.
Language-agnostic models, capable of parsing any
structures in any languages, have also been tested
on Thai but tend to perform poorly. Straka (2018)
relies only on static embeddings and achieves
only 0.88 UAS and 0.65 LAS on Thai-PUD.
Kondratyuk and Straka (2019) leverage multilin-
gual BERT (Devlin et al., 2019) but still achieve
only 49.05 UAS and 26.06 LAS on Thai-PUD.

3 Annotation Guidelines for Thai
Universal Dependency Treebank

We follow the UD annotation guidelines for the
most part. However, we need to clarify parts of
the guidelines to accommodate the idiosyncrasies
of the Thai language.

377

https://github.com/nlp-chula/TUD
https://universaldependencies.org/treebanks/th_pud/index.html
https://universaldependencies.org/treebanks/th_pud/index.html
https://aiforthai.in.th/corpus.php

3.1 How to Distinguish Morphological Units
from Syntactic Units

Unlike many writing systems, such as English,
in which word boundaries are standardized in the
orthography by having spaces appear between
each word, the Thai script does not separate
words by spaces or any other punctuation. This
creates ambiguities regarding where exactly each
‘‘word’’ starts and ends even among native speak-
ers, obscuring the boundary between morphology
and syntax. This is not ideal since the separation
between syntax and morphology is especially im-
portant in dependency treebanks as it determines if
an expression will become one or multiple tokens
in the tree. When in doubt, we apply the lexical
integrity principle, which states that subparts of a
word cannot be modified by syntactic operations,
such as negation or adverbial modification.

Some common ambiguities involve the
adjective-forming particles ‘worthy of VERB,’

‘having a mind that VERB,’ ‘tend to VERB,’
‘good at VERB,’ and ‘having a head that

VERB.’ These words are highly productive and
are sometimes discussed as ‘‘prefixes’’ (Smyth,
2002), a term that might imply morphological
units. However, by applying the lexical integrity
principle, we can see that words coming after
these so-called prefixes can either be negated,
adverbially modified, or both, meaning they
should be separated as their own tokens. Tree
(1) shows an example where the word after is
modified by an adverb.

3.2 Serial Verb Constructions in TUD

Thai syntax allows two or more verb phrases
(VPs) to be strung together in the same clause
without explicit linking words or inflectional mor-
phology. According to the UD framework, this
corresponds to either the advcl, xcomp, ccomp, or
compound relations, based on 1) whether the fol-
lowing verbs are core arguments, and 2) the ‘‘same
subject’’ criterion.

3.2.1 VP Complement

If the subject of the second verb cannot be explic-
itly stated and must be the same as the subject of
the first verb, then xcomp is used when the second
verb is a core argument. For example,

In (2), ‘eat’ is a verbal complement of ‘like,’ and
the two verbs share the same subject. Therefore,
xcomp is the dependency relation.

3.2.2 Clausal Complement

If the subject of the second verb could be different
from the subject of the first verb and the second
verb is a core argument of the first verb, then
ccomp is used. A good test for this relation is to
insert the complementizer and an appropriate
subject to see if the meaning remains the same.
For example,

In (3), we could add the complementizer
‘that’ and a subject ‘s/he’ between the two VPs
and the meaning remains unchanged.

3.2.3 Resultative Serial Verb Construction

Resultative serial verb constructions (RSVCs)
are a type of serial verb construction in which the
first VP describes an action, and the second VP
indicates the result or outcome of that action. We
use advcl for this construction because the mean-
ing of the sentence can be explicitly expressed
by inserting an appropriate (non-complementizer)

378

subordinating conjunction and a subject. For
example,

In (4), the meaning of the sentence would be
the same as when we insert the subordinating
conjunction ‘until’ and a subject ‘tree’.
Hence, advcl is the appropriate relation.

3.2.4 Other Serial Verb Constructions

In contrast to RSVCs, dependent VPs in other
Thai serial verb constructions must share their
subjects with the head VP. They differ from
VP complements (Section 3.2.1) in that they
are non-core dependents. These VPs give addi-
tional detail that is not necessary to complete the
expression, providing directional, perceptional,
purposive, and stative information or describ-
ing concurrent events (Takahashi, 2009). We use
the compound relation4 for this construction. For
example,

In (5), ‘sit’ and ‘read books’ happen simulta-
neously and ‘be home’ is the state in which the
reading of books happens. These are not required
complements so the compound relation is used.

3.3 Nominalizers

The nominalizers and are analyzed as
head nouns to whom subsequent verbs are attached
using the acl relation. They can be followed by
VP as in (6) or by clauses as in (7).

4In UD, compound:svc can be used to distinguish serial
verbs from compound words. However, the current version
of TUD does not contain relation subtypes (see Section 4).

3.4 Thai Punctuation Marks

In our treebank, (abbreviation mark) and (it-
eration mark) are labeled as having the PUNCT
part-of-speech and connect to their heads using
the punct relation. The head of is the same as
the head of the whole abbreviated expression, as
in (8), and the head of is the same as the head of
the repeated expression, as in (9).

3.5 Thai ‘‘Adjectives’’

In Thai linguistics, ‘‘adjectives’’ are often ana-
lyzed as ‘‘adjectival verbs’’ rather than being its
own category. This is due to the fact that so-called
adjectives in Thai have almost identical syntac-
tic distribution to normal verbs (Prasithrathsint,
2000).

However, in our treebank, we decided to label
adjectival verbs as ADJ rather than VERB because
it is the most versatile—that is, end users can
collapse ADJ and VERB into VERB if a different

379

analysis is desired whereas the reverse cannot
easily be done.

3.6 Foreign Multi-word Names

For foreign multi-word names that have been
borrowed into Thai, we follow the ‘‘borrowed
analysis’’ as described in the UD guidelines.5

This choice is motivated by the perception of
native Thai speakers and the low prevalence of
genuine code-switching in Thai society. All tokens
in a foreign multi-word name are labeled using
identical POS, which is the same as the POS of the
whole expression, and all tokens are connected to
the first token in the name using the flat relation
as in Tree (10).

3.7 Parataxis

In UD, the parataxis relation is used when elements
are ‘‘placed side by side without any explicit
coordination, subordination, or argument relation
with the head word.’’6 However, because the Thai
writing system does not mark sentence boundaries,
every syntactically complete element in the same
paragraph is always ‘‘side by side,’’ making most
parataxis textually indistinguishable from the act
of saying the elements separately. Rather than
labeling them all as parataxis, which is not very
useful, we only use the parataxis relation in the
following two cases:

1. When an element clearly intervenes inside
another sentence. For example,

‘He - can’t remember who
he was - called me.’

2. When there is a pair of parentheses surround-
ing an element, which marks the element
as being related to another element. For

example, ‘He
called me (can’t remember when that was).’

5https://universaldependencies.org
/foreign.html.

6https://universaldependencies.org/u
/dep/parataxis.html.

Note that these two cases are not mutually ex-
clusive. An intervening element itself being sur-
rounded by a pair of parentheses is also common.

3.8 Differences from Thai-PUD
Despite both being based on the UD frame-
work, some differences between the annotation
of Thai-PUD and our TUD are worth noting.
Some appear to be due to mistakes in Thai-PUD,
namely, labeling relative pronouns, such as ,

, , all meaning ‘which,’ as DET instead of
PRON, labeling subordinating conjunctions, such
as ‘that’, ‘if’, ‘if’, ‘so that’, as
ADP instead of SCONJ, and labeling serial verbs
using the acl relation instead of compound. Others
are due to difference in analysis. Thai-PUD ana-
lyzes as a symbol (SYM) and the words and

in (6) as gerund-forming prefixes. There-
fore, and are combined with subsequent
verbs into single tokens and labeled as verbs. We
decided not to follow this analysis since and

can be separated from the verbs as shown in
(6) and (7).

4 Thai Universal Dependency Treebank
Creation Process

Our text sources cover a wider range of document
types and more diverse domains than Thai-PUD.
The raw text for TUD was taken from two sources:
the Thai National Corpus (Aroonmanakun et al.,
2009) and the November 2020 dump of Thai
Wikipedia. We randomly sampled 5,000 para-
graphs from selected documents while making
sure the documents were from a wide range of doc-
ument types, including news articles, Wikipedia
articles, essays, advertisement, interviews, and
stories. The selected documents covered diverse
topics, such as politics, crime, entertainment,
sport, history, religion, culture, and science. Then
each paragraph was automatically tokenized us-
ing the dictionary-based (newmm) tokenizer from
the library PyThaiNLP (Phatthiyaphaibun et al.,
2016).

Annotation was done on Datasaur’s labeling
platform.7 We initially recruited a total of 10 an-
notators, all of whom either completed at least
a bachelor’s degree education in linguistics or
were in the process of getting one, and one an-
notation manager/instructor specialized in Thai

7https://datasaur.ai/.

380

https://universaldependencies.org/foreign.html
https://universaldependencies.org/foreign.html
https://universaldependencies.org/u/dep/parataxis.html
https://universaldependencies.org/u/dep/parataxis.html
https://datasaur.ai/

linguistics. Each annotator had four tasks: 1)
correct tokenization errors resulting from the pre-
processing step, 2) label each token’s Universal
POS (UPOS), 3) identify dependency arcs, and
4) label each arc’s Universal Dependency rela-
tion (DEPREL) without a subtype. The LEMMA
field of CoNLL-U format was not annotated be-
cause the Thai language does not have inflectional
morphology.

To train the annotators, they were first in-
structed to study the manual and review the
concepts of head-dependent relationship, syntac-
tic distribution, and polyfunctional words. The
instructor also provided some parsed examples
from the real data. After that, the annotators were
assigned to annotate a set of pilot sentences specif-
ically designed to test their understanding. Once
pilot sentences were completely annotated, the
instructor would identify common errors in the pi-
lot annotation and re-emphasize what the correct
annotation should be. However, after a manual
quality review of each annotator’s work, only two
were identified as producing the highest-quality
annotations. Consequently, we chose these two an-
notators to complete the remainder of the dataset.
To assess annotation consistency after training,
we randomly sampled 20 sentences, containing
399 tokens, from the treebank and had them
fully annotated separately by the two annotators.
For UPOS and dependency relations, the Cohen’s
Kappa scores (Cohen, 1960) were 0.92 and 0.84,
respectively. For dependency arcs, we could not
use Cohen’s Kappa since the arcs can be arbi-
trarily long. Instead, we calculated the ‘‘UAS’’
and ‘‘LAS’’ scores by treating one annotator as a
‘‘gold-standard’’ annotation. Our UAS was 0.85
and our LAS was 0.78. We considered these
four scores to be reasonably high given the com-
plex nature of dependency annotation. Finally, the
annotators went on to annotate real sentences pre-
pared in the previous step. During annotation, any
perceived errors or ambiguities not covered by the
annotation manual were recorded and adjudicated
on a case-by-case basis.

After all paragraphs had been annotated, the
data was exported into CoNLL-U format and then
automatically split into separate trees based on
the annotated dependency links, i.e., all connected
tokens were grouped as individual trees. Any
resulting trees that either 1) contained only a
single token, 2) were not completely labeled, or 3)
were not valid dependency trees such as trees that

UPOS Train Dev Test UPOS Train Dev Test
NOUN 18777 2270 2310 CCONJ 2063 239 270
VERB 14881 1802 1867 ADJ 1575 223 197
ADP 4517 530 560 PART 1366 156 169
ADV 4498 557 521 NUM 1161 165 118
AUX 3424 401 421 DET 1140 137 144
PRON 2796 322 350 PUNCT 871 104 125
SCONJ 2438 321 335 SYM 16 1 1
PROPN 2488 293 295

Table 1: UPOS distribution in each split of TUD.

DEPREL Train Dev Test DEPREL Train Dev Test
nmod 6268 781 810 punct 865 104 122
obj 5474 655 663 cop 834 83 94
advmod 5366 692 644 flat 709 72 88
compound 5272 656 666 clf 539 79 74
nsubj 4529 548 568 fixed 442 69 60
acl 4539 485 563 xcomp 349 43 46
case 4442 522 548 list 348 29 21
root 2902 362 363 dep 74 5 7
obl 2811 328 322 discourse 67 10 8
mark 2720 326 360 dislocated 64 11 8
aux 2548 311 319 orphan 71 3 6
conj 1992 208 249 csubj 59 11 9
cc 1898 221 254 appos 63 5 9
advcl 1784 225 211 iobj 50 5 6
amod 1449 215 168 parataxis 27 2 3
ccomp 1304 168 174 expl 14 2 2
det 1117 135 145 vocative 1 1 1
nummod 1020 149 92

Table 2: DEPREL distribution ineachsplitof TUD.

contained loops or more than a single root were
corrected. A final layer of quality control was done
by randomly sampling 50 trees from the treebank
and having their annotation errors identified by the
instructor. The identified errors were then targeted
for manual correction throughout the treebank by
searching for the involved tokens and/or labels.
The final treebank consists of 3,627 valid and
completely labeled trees.

We randomly split TUD into three splits, train,
dev, and test, using an 8:1:1 ratio. The most com-
mon UPOS tags by far are NOUN and VERB,
representing main content words, while the least
common tag is SYM (Table 1). All SYM tokens
are mathematical symbols, such as the percent
(%) and addition (+) signs. DEPREL distribution
is generally smooth with a sharp drop in frequency
for the last 10 relations (Table 2). Vocatives are
the most rare, with only one instance present in
each split. Most of the dependencies are local.
The average distance between a head and its de-
pendent is 2.48 (Figure 1). Most heads are on the
left of the dependent, consistent with the fact that
the Thai language is generally head-initial. The
dependency arcs are overwhelmingly projective,
with only 0.07% being non-projective. Conse-
quently, only 1.5% of the trees contain at least one
non-projective arc.

381

Figure 1: Dependency length distribution in TUD.

5 Thai Dependency Parsing Models

The models to be evaluated in our experiment
can be categorized into two types: 1) baseline
models and 2) strong open-source models. We
used the baseline models to identify the effects
of individual components and methods on Thai
dependency parsing performance. We tested the
strong open-source models to test the quality of our
dataset and find out the accuracy rates that could
be expected. All models used the gold-standard
tokenization that comes with the treebank.

5.1 Baseline Models

Feature extractors convert natural language in-
puts into numeric representations. Each token in
an input sentence is mapped to a set of embed-
dings that are then concatenated to create the final
representation. The possible embeddings are:

1. Word embedding. It is obtained from a state-
of-the-art pretrained Thai transformer, which
is either WangchanBERTa (Lowphansirikul
et al., 2021) or PhayaThaiBERT (Sriwirote
et al., 2023). WangchanBERTa is based on
the RoBERTa architecture (Liu et al., 2019)
and is pretrained on a large Thai corpus.
PhayaThaiBERT improves upon Wangchan-
BERTa by adding new vocabulary and
further pretrained it on a larger corpus.

2. UPOS embedding. An embedding is assigned
for each possible UPOS tag. To test the
importance of UPOS tag quality, the model
received either gold-standard tag, automatic
tag, or no tag at all (and hence no UPOS
embedding).

3. Sentence embedding. Each token’s embed-
ding is optionally augmented with a sentence
embedding shared between all tokens of the
same sentence, following Altıntaş and Tantuğ
(2023). The embedding for the special token
<s> is taken as the sentence embedding.

4. Super-token embedding. Also following
Altıntaş and Tantuğ (2023), each token’s
embedding is optionally augmented with
‘‘super-token embeddings’’ that represent
groups of 2–5 surrounding tokens. These
embeddings are obtained by passing con-
volutional neural network (CNN) filters
of varying sizes through the sequence of
embeddings obtained prior.

Parsers predict a sentence’s dependency structure
given a sequence of its token embeddings. They
can be classified into two parsing methods:

1. Graph-based parsers. We implemented the
deep biaffine attention architecture proposed
by Dozat and Manning (2017). Our architec-
ture is identical to the one proposed in the
original paper, but we replace the BiLSTM
encoders with the feature vectors described
above. A root-constrained algorithm pro-
posed by Zmigrod et al. (2020) is used
to extract maximum arborescence from the
adjacency matrices produced by the parsers.

2. Transition-based parsers. They can be
further classified based on the transition sys-
tem they use. We tested arc-standard and
arc-eager systems (Nivre, 2008). The oracles
in both cases are simple feedforward neural
networks that greedily predict an appropri-
ate transition based on the features of three
tokens. The first two are determined by the
transition system while the third is the one
that comes immediately after the first two
tokens.

The hyperparameters for baseline models
(Figure 2) are shown in the Appendix (Table 8).

5.2 Strong Open-source Models
We trained UDPipe 2.1.0 (Straka, 2018),8 Stanza
1.8.2 (Qi et al., 2020),9 and Trankit 1.1.1 (Nguyen
et al., 2021).10 All of these models are graph-based

8https://ufal.mff.cuni.cz/udpipe/2.
9https://stanfordnlp.github.io/stanza/.

10https://trankit.readthedocs.io/en
/latest/index.html.

382

https://ufal.mff.cuni.cz/udpipe/2
https://stanfordnlp.github.io/stanza/
https://trankit.readthedocs.io/en/latest/index.html
https://trankit.readthedocs.io/en/latest/index.html

Figure 2: General architecture of our baseline mod-
els. Components marked with asterisks (*) were
optional, i.e., some models might not incorporate them
depending on their design choices.

parsers. These toolkits currently do not support
Thai parsing out of the box. Minimal modification
to their training scripts was done so that the models
took advantage of the state-of-the-art pretrained
Thai language model. The default hyperparame-
ters were used. UDPipe and Trankit models use the
same intermediate representations to jointly pre-
dict both UPOS tags and dependency structure.
They do not use POS tag at inference time, so they
were only trained using gold-standard POS tags
and not tested using automatic POS tags. They are
also allowed to use XPOS and FEATS tags, which
exist only in Thai-PUD.

Thai-PUD TUD

UPOS W P W P

ADJ 0.7978 0.8508 0.6486 0.6852
ADP 0.9578 0.9677 0.9206 0.9272
ADV 0.8528 0.8705 0.7665 0.7792
AUX 0.9565 0.9710 0.8483 0.8508
CCONJ 0.9434 0.9636 0.8675 0.8813
DET 0.9469 0.9596 0.9007 0.9122
NOUN 0.9597 0.9711 0.9640 0.9672
NUM 1.0000 1.0000 0.9391 0.9264
PART 0.9556 0.9663 0.8395 0.8402
PRON 0.9552 0.9925 0.9330 0.9418
PROPN 0.9341 0.9375 0.9037 0.9223
PUNCT 1.0000 1.0000 0.9881 0.9843
SCONJ − − 0.8205 0.8479
SYM 1.0000 1.0000 1.0000 1.0000
VERB 0.9502 0.9610 0.9240 0.9292

Macro Average 0.9458 0.9580 0.8843 0.8930

Table 3: F1 scores of our UPOS taggers on each la-
bel and treebank. W stands for WangchanBERTa.
P stands for PhayathaiBERT. Note that the SCONJ
tag does not exist in Thai-PUD because the ADP
tag is used instead for subordinating conjunctions.

5.3 UPOS Tagger

We trained our own POS tagger. We for-
mulated the task as a token classification
(sequence tagging) and fine-tuned a pretrained
language model to predict POS tags. We ex-
perimented with two competitive Thai pretrained
language models: WangchanBERTa and Phaya-
ThaiBERT. The hyperparameters are shown
in the Appendix (Table 9). Our experiment
showed that PhayaThaiBERT yields better UPOS
accuracy than WangchanBERTa (Table 3). There-
fore, only the UPOS tags predicted by the
PhayathaiBERT-based taggers were used to train
the parsers that relied on automatically tagged
UPOS.

5.4 Benchmarking Treebanks

We experimented with Thai-PUD and our TUD.
We did not experiment with Blackboard Treebank
due to its lack of dependency relation types. Since
Thai-PUD does not have official train-dev-test
splits, we randomly split it into three subsets
using an 8:1:1 ratio.

6 Results and Discussion

In running these series of experiments, we want
to know 1) Which parsing method is better for
Thai? 2) Is PhayaThaiBERT a better Thai encoder

383

Thai-PUD TUD

Model Gold POS Auto POS No POS Gold POS Auto POS No POS

T vs G S vs E ∅ vs A W vs P UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

T S ∅ W 88.14 80.39 85.28 76.65 85.60 75.45 89.47 82.60 86.27 76.22 86.59 76.81
T S A W 88.83 82.23 88.14 80.20 86.25 76.60 89.82 83.18 86.59 76.52 86.80 76.87
T E ∅ W 87.40 80.53 88.00 79.60 84.54 75.03 89.20 82.27 86.33 76.53 86.02 76.02
T E A W 88.42 81.91 87.77 80.39 86.39 78.08 89.41 82.62 86.24 76.70 86.37 76.55
T S ∅ P 89.57 82.33 87.91 79.51 84.73 75.27 90.15 83.57 87.05 77.60 87.19 77.64
T S A P 89.43 83.48 88.28 80.94 85.65 76.70 90.04 83.74 87.26 77.55 87.09 77.68
T E ∅ P 89.11 82.60 88.92 80.48 86.48 78.17 89.93 83.42 86.82 77.09 86.54 77.07
T E A P 89.39 83.76 88.37 81.17 87.45 79.51 89.77 83.42 87.00 77.68 86.76 77.61
G − ∅ W 85.97 80.43 83.43 76.60 84.36 77.34 86.33 79.64 84.25 74.59 84.77 74.41
G − A W 87.82 82.69 86.29 79.79 83.80 76.14 87.99 81.01 81.44 71.50 85.62 75.53
G − ∅ P 89.29 84.82 88.42 82.19 87.91 81.68 88.75 82.25 85.73 76.12 86.40 76.56
G − A P 89.80 84.91 88.65 82.60 88.74 82.05 89.48 82.98 86.03 76.40 85.84 76.14

UDPipe* W 88.92 83.06 − − − − 86.06 77.01 − − − −
UDPipe* P 89.89 83.53 − − − − 86.67 77.78 − − − −
Stanza* W 91.37 86.16 89.85 83.34 89.29 83.06 90.12 83.30 86.31 76.60 87.01 77.39
Stanza* P 92.02 87.22 90.54 84.54 90.72 84.73 90.90 84.54 86.93 77.51 87.39 78.09
Trankit* W 89.62 84.08 − − − − 86.22 76.19 − − − −
Trankit* P 91.28 86.11 − − − − 86.71 77.01 − − − −

Table 4: Evaluation results of each model on each treebank’s test split. T = Transition-based,
G = Graph-based, S = Arc-standard, E = Arc-eager, A = Augmented with sentence and super token
embeddings, W = WangchanBERTa, P = PhayaThaiBERT. ∗Open-source models are all graph-based.

UAS LAS

Factor Coefficient p-value Coefficient p-value

(Intercept) 84.7953 <0.001*** 76.0953 <0.001***
Model Category: Open-source Models 2.0221 <0.001*** 1.7424 0.035*
Architecture: Transition-Standard 1.0420 0.011* 0.0563 0.937
Architecture: Transition-Eager 1.0622 0.010* 0.4103 0.566
Encoder: PhayaThaiBERT 1.2665 <0.001*** 1.6927 0.001**
Augmented: Yes 0.4487 0.174 0.7599 0.195
UPOS Quality: Gold 2.2607 <0.001*** 4.5311 <0.001***
UPOS Quality: Auto 0.4217 0.259 0.8011 0.227

Table 5: Linear regression results for UAS (R2 = 0.54) and LAS (R2 = 0.507). The reference
categories are baseline models, graph-based architecture, WangchanBERTa as encoder, non-augmented,
and agnostic UPOS.

than WangchanBERTa? 3) Do sentence embed-
dings and super-token embeddings help? and 4)
Do gold-standard POS tags play an important
role? From the experimental results shown in
Table 4, we fit a linear regression model where
the experimental conditions are predictors and the
target variable is UAS. Then we ran statistical tests
on the regression coefficients to obtain p-values.
We repeated this analysis with LAS as a target
variable (Table 5).

Which Parsing Architecture Is Better for Thai?
Our results suggest that transition-based mod-
els perform significantly better than graph-based
models in UAS (p < 0.05) but perform similarly

in LAS (p = 0.937). The overall best model is
Stanza, although it is a graph-based model. This
is because Stanza also employs additional tech-
niques not present in other models, namely, 1)
augmenting each token’s representation with fast-
Text’s static pretrained word embeddings (Grave
et al., 2018), and 2) including terms that explic-
itly model the probability of each link between
a head and a dependent based on their distance
and linear order (Qi et al., 2018). Nevertheless,
note that many of our transition-based models
achieve very competitive results with Stanza. In
future work, it would be interesting to see if
transition-based models could outperform it once
additional techniques are implemented.

384

Table 6: The 10 most common confusions made by the taggers for UPOS and the parsers for DEPREL
along with some of their most frequently associated tokens.

Is PhayaThaiBERT a Better Thai Encoder
than WangchanBERTa? Our results show that
PhayaThaiBERT significantly leads to better per-
formance than WangchanBERTa in dependency
parsing (p < 0.05), supporting the claim in its pa-
per (Sriwirote et al., 2023) that PhayaThaiBERT
is an improved version of WangchanBERTa. Our
models outperformed Thai dependency parsers in
previous works, which do not use these pretrained
language models (Singkul and Woraratpanya,
2019; Yasuoka, 2023; Straka, 2018; Kondratyuk
and Straka, 2019), highlighting the importance
of large, contextualized, language-specific, pre-
trained encoders.

Do Sentence Embeddings and Super-token
Embeddings Help? Contrary to Altıntaş and
Tantŭg (2023), we found that augmenting to-
ken embeddings with sentence embeddings and
super-token embeddings does not result in sig-
nificant improvement (UAS p = 0.174; LAS
p = 0.195). Nevertheless, many instances of
improvement over non-augmented models are ob-
served even in transition-based models, which are
not experimented with in the original work. This
suggests that the method itself has some poten-
tial, although it does not improve all the models
consistently enough to be statistically significant.
More experimentation is therefore needed to find
the conditions in which the method works best.

Do Gold-standard UPOS Tags Play an Impor-
tant Role? Gold-standard UPOS tags clearly
lead to significantly superior performance (p <
0.05). The same cannot be said for automat-
ically tagged UPOS, however, as using them
does not result in significant improvement over
not using them at all (UAS p = 0.259; LAS
p = 0.227), and in some instances, it even leads
to slight degradation (Table 4). This suggests that

while our UPOS taggers were reasonably accurate
(Table 3), the tags they correctly predicted were
not actually crucial to dependency parsing. There-
fore, we need to improve the POS tagger to
improve the Thai parsing results.

7 Error Analysis

In this section, we will identify some chal-
lenges unique to Thai dependency parsing, which
should give us valuable insights that could help
close the gap in performance between Thai and
high-resource languages. The full test split predic-
tion of every model is available on TUD’s GitHub
repository for later, more extensive investigation.

The Vast Majority of UPOS Confusions Were
Caused by Polyfunctional Words. Polyfunc-
tional words are words that can function in more
than one role. The most common mistakes in this
category were caused by the fact that Thai has
a large number of deverbal grammaticalizations.
Among the most versatile, and thus the most con-
fused (Table 6), are the verbs , , , ,

, , , which can also function as auxiliary
verbs (, ,), adverbs (, , , ,),
subordinating conjunctions (), and adpositions
(,) depending on context, especially word
order.11 What makes it particularly hard in Thai is
the fact that no morphological clues are available
since Thai words are never inflected. Another
noteworthy UPOS confusion was the confusion
between adjectives and verbs, which reflects a
well known feature of Thai syntax, in which
the two classes have almost identical syntactic
distribution (Prasithrathsint, 2000).

11Due to space constraints, please refer to Smyth (2002)
for a more complete discussion of the many functions of ,

and .

385

Distinction Between Common Nouns and
Proper Nouns in Thai is Unclear. In many
languages, proper nouns are capitalized and can-
not be accompanied by articles. These features
do not exist in Thai so proper nouns have to
be identified either from context or from world
knowledge, causing confusion between the NOUN
and PROPN tags. This tends to happen with for-
eign proper names, such as ‘Dispatch’
and ‘Matrix’ (Table 6), likely because the
encoders are pretrained on mainly Thai text.

The Roles of Thai Relative Pronouns are Diffi-
cult to Determine Without World Knowledge.
In Thai, like in many languages, the relative pro-
nouns , , (‘that/which’) are fronted in
relative clauses. This fronting eliminates word
order as a clue for identifying their syntactic
roles. Combining with the pro-drop nature of Thai
and the absence of subject-verb agreement, even
less information is available. Tree (11) illustrates
this ambiguity. Only by using the world knowl-
edge that rice/meal is inanimate and thus cannot
eat anything can we determine that the correct
annotation for ? is obj and not nsubj.

Parsers Cannot Easily Distinguish Between
Compounds and Syntactic Phrases. Deter-
mining whether a sequence of words constitutes a
compound and not a phrase in Thai relies on mul-
tiple factors and the two classes can be described
to exist on a spectrum (Hongthong et al., 2019).
This distinction is notoriously difficult because
the difference is quite subtle (Kriengket et al.,
2007). Tree (12) shows some compounds that
were mistaken as syntactic phrases by the parsers.

means a villager (compound noun) and
not a person who stays in a house (noun phrase).

means a servant (compound noun) and not
a user (noun phrase). The correct dependencies
depend on the meaning of these phrases in a larger
context of a sentence.

Verbal and Verbal-like Dependents Were Of-
ten Confused with One Another. Without
explicit linking words, structures involving ver-
bal dependents (xcomp, compound, ccomp, advcl)
and verbal-like dependents (advmod, aux), which
frequently share word forms with verbs, can all
appear like sequences of two verb phrases, which
leads to ambiguity. This confusion was also ex-
hibited by our annotators during pilot annotation
since distinguishing between them often requires
performing non-trivial linguistic tests. Tree (13)
shows some examples.

Despite looking superficially similar, the sen-
tence on the left describes simultaneous actions
(lying down and sleeping as opposed to lying down
and doing something else) while the sentence on
the right usually does not because the word
cannot be interpreted as a verb despite having
the same form as the word meaning ‘to come.’
It is rather an adverb indicating that the action
has already taken place and has some implica-
tion affecting the present. Although in uncommon
context, it could still be interpreted as a verb, e.g.,
when arriving at a place while lying down.

Many Mistakes Were Correlated with ‘‘Chain
Dependencies.’’ Some relations, most notably
nmod and compound (and acl in Thai-PUD), allow
two or more tokens of the same UPOS to be
chained together into one structure. This creates
ambiguity when subsequent dependents need to
be attached to one of the tokens in the chain. To
illustrate, Tree (14) shows part of a real tree from
TUD.

386

Thai-PUD TUD

DEPREL Count DEPREL Count

N/A 1586 N/A 4533
compound 1280 compound 4386
acl 963 nmod 3925
obj 820 obj 2878
obl 600 acl 2490
xcomp 562 ccomp 2035
advmod 404 advcl 1995
conj 403 advmod 1944
nmod:poss 261 conj 1731
nmod 259 acl, obj 1260

Table 7: The 10 most common DEPRELs with
which the true heads and the incorrectly predicted
heads are linked in gold annotation. N/A means
that the predicted and true heads are not on the
same dependency chain. The numbers shown are
aggregated from all sets of prediction.

The text that follows the above structure is a
relative clause ‘which takes people’s
lives,’ which can potentially be attached to any
of the four nouns in the chain. Lacking world
knowledge that flood kills people, many parsers
attached the relative clause to ‘news’ or

‘event’ instead of ‘great flood.’
We perform further analysis by investigating

the relative position of the true heads and the
heads incorrectly predicted by the parsers and
discover that the two tokens often form structures
involving the aforementioned relations (Table 7).
Note that the vast majority of the mistakes involve
only one DEPREL between the true heads and
the predicted heads, indicating that the parsers
frequently missed the correct heads by one arc
when these relations are around the true heads,
analogous to the ambiguity in Tree (14).

8 Conclusion

In this work, we introduce the Thai Univer-
sal Dependency Treebank (TUD), a new Thai
treebank consisting of 3,627 trees annotated ac-
cording to the UD framework. We found that
strong open-source graph-based parsing system
with the state-of-the-art PLM achieves the best
results on our dataset. We also found that an accu-
rate POS tagger is crucial to good parsing results,
but the current automatic POS tagger is not accu-
rate enough to improve parsing performance. Our
error analysis shows that polyfunctional words

and ambiguities created by the lack of inflec-
tional morphology present the main challenges
for dependency parsing in Thai.

Acknowledgments

The authors thank the reviewers and the action
editor for their helpful comments, which con-
tribute to a significant improvement of this work.
This work is supported by the National Research
Foundation, Singapore under its AI Singapore Pro-
gramme. This research has also received funding
support from the NSRF via the Program Manage-
ment Unit for Human Resources & Institutional
Development, Research, and Innovation [grant
number B0SF640234].

References

Mücahit Altıntaş and A. Cüneyd Tantuğ. 2023.
Improving the performance of graph based
dependency parsing by guiding bi-affine
layer with augmented global and local fea-
tures. Intelligent Systems with Applications,
18:200190. https://doi.org/10.1016
/j.iswa.2023.200190

Wirote Aroonmanakun, Kachen Tansiri, and Pairit
Nittayanuparp. 2009. Thai National Corpus: A
progress report. In Proceedings of the 7th Work-
shop on Asian Language Resources, ALR7,
pages 153–158, USA. Association for Compu-
tational Linguistics.https://doi.org/10
.3115/1690299.1690321

Ratchakrit Arreerard, Stephen Mander, and Scott
Piao. 2022. Survey on Thai NLP language
resources and tools. In Proceedings of the
Thirteenth Language Resources and Evalua-
tion Conference, pages 6495–6505, Marseille,
France. European Language Resources Associ-
ation.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46. https://doi
.org/10.1177/001316446002000104

Marie-Catherine de Marneffe, Christopher D.
Manning, Joakim Nivre, and Daniel Zeman.
2021. Universal Dependencies. Computational
Linguistics, 47(2):255–308. https://doi
.org/10.1162/coli_a_00402

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training

387

https://doi.org/10.1016/j.iswa.2023.200190
https://doi.org/10.1016/j.iswa.2023.200190
https://doi.org/10.3115/1690299.1690321
https://doi.org/10.3115/1690299.1690321
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402

of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/N19-1423

Timothy Dozat and Christopher D. Manning.
2017. Deep biaffine attention for neural de-
pendency parsing. https://doi.org/10
.48550/arXiv.1611.01734

Chloe Eggleston and Brendan O’Connor. 2022.
Cross-dialect social media dependency parsing
for social scientific entity attribute analysis.
In Proceedings of the Eighth Workshop on
Noisy User-generated Text (W-NUT 2022),
pages 38–50, Gyeongju, Republic of Korea.
Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2019. Left-to-right dependency
parsing with pointer networks. In Proceed-
ings of the 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 710–716, Minneapolis, Minnesota.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/N19
-1076

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. 2018.
Learning word vectors for 157 languages.
https://doi.org/10.48550/arXiv
.1802.06893

Kamolchanok Hongthong, Kingkarn Thepkanjana,
and Wirote Aroonmanakun. 2019. Is there a
dichotomy between synthetic compounds and
phrases in Thai? Taiwan Journal of Linguis-
tics, 17(1):49–77. https://doi.org/10
.6519/TJL.201901_17(1).0002

Tao Ji, Yuanbin Wu, and Man Lan. 2019.
Graph-based dependency parsing with graph
neural networks. In Proceedings of the
57th Annual Meeting of the Association for
Computational Linguistics, pages 2475–2485,
Florence, Italy. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P19-1237

Dan Kondratyuk and Milan Straka. 2019. 75
languages, 1 model: Parsing Universal Depen-
dencies universally. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2779–2795,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1279

Kanyanut Kriengket, Krit Kosawat, and Sunant
Anchaleenukul. 2007. A computational lin-
guistics study of compound nouns in Thai.
In Proceedings of the Seventh International
Symposium on Natural Language Processing
(SNLP 2007), pages 31–36.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized bert pre-
training approach. https://doi.org/10
.48550/arXiv.1907.11692

Lalita Lowphansirikul, Charin Polpanumas, Nawat
Jantrakulchai, and Sarana Nutanong. 2021.
WangchanBERTa: Pretraining transformer-
based Thai language models. https://doi
.org/10.48550/arXiv.2101.09635

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun
Peng, Graham Neubig, and Eduard Hovy. 2018.
Stack-pointer networks for dependency parsing.
In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1403–1414,
Melbourne, Australia. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/P18-1130

Louis Martin, Benjamin Muller, Pedro Javier
Ortiz Suárez, Yoann Dupont, Laurent Romary,
Éric de la Clergerie, Djamé Seddah, and
Benoı̂t Sagot. 2020. CamemBERT: A tasty
French language model. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 7203–7219,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.645

David McClosky, Mihai Surdeanu, and
Christopher Manning. 2011. Event extraction
as dependency parsing. In Proceedings of the
49th Annual Meeting of the Association for

388

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.1611.01734
https://doi.org/10.48550/arXiv.1611.01734
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.48550/arXiv.1802.06893
https://doi.org/10.48550/arXiv.1802.06893
https://doi.org/10.6519/TJL.201901_17(1).0002
https://doi.org/10.6519/TJL.201901_17(1).0002
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.2101.09635
https://doi.org/10.48550/arXiv.2101.09635
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/2020.acl-main.645
https://doi.org/10.18653/v1/2020.acl-main.645

Computational Linguistics: Human Language
Technologies, pages 1626–1635, Portland, Ore-
gon, USA. Association for Computational
Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Char-
acterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007
Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL),
pages 122–131, Prague, Czech Republic.
Association for Computational Linguistics.

Alireza Mohammadshahi and James Henderson.
2021. Recursive non-autoregressive graph-
to-graph transformer for dependency pars-
ing with iterative refinement. Transactions of
the Association for Computational Linguistics,
9:120–138. https://doi.org/10.1162
/tacl_a_00358

Khalil Mrini, Franck Dernoncourt, Quan Hung
Tran, Trung Bui, Walter Chang, and Ndapa
Nakashole. 2020. Rethinking self-attention:
Towards interpretability in neural parsing. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 731–742,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.findings-emnlp.65

Minh Van Nguyen, Viet Dac Lai, Amir Pouran
Ben Veyseh, and Thien Huu Nguyen. 2021.
Trankit: A light-weight transformer-based
toolkit for multilingual natural language pro-
cessing. In Proceedings of the 16th Con-
ference of the European Chapter of the
Association for Computational Linguistics:
System Demonstrations, pages 80–90, On-
line. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.eacl-demos.10

Joakim Nivre. 2008. Algorithms for deterministic
incremental dependency parsing. Computa-
tional Linguistics, 34(4):513–553. https://
doi.org/10.1162/coli.07-056-R1
-07-027

Wannaphong Phatthiyaphaibun, Korakot
Chaovavanich, Charin Polpanumas, Arthit
Suriyawongkul, Lalita Lowphansirikul, and
Pattarawat Chormai. 2016. PyThaiNLP: Thai
natural languageprocessingin Python.https://
doi.org/10.5281/zenodo.3519354

Amara Prasithrathsint. 2000. Adjectives as verbs
in Thai. Linguistic Typology, 4(2):251–272.
https://doi.org/10.1515/lity.2000
.4.2.251

Peng Qi, Timothy Dozat, Yuhao Zhang, and
Christopher D. Manning. 2018. Universal De-
pendency parsing from scratch. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Depen-
dencies, pages 160–170, Brussels, Belgium.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/K18
-2016

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason
Bolton, and Christopher D. Manning. 2020.
Stanza: A python natural language processing
toolkit for many human languages. https://
doi.org/10.48550/arXiv.2003.07082

Sattaya Singkul and Kuntpong Woraratpanya.
2019. Thai dependency parsing with character
embedding. In 2019 11th International Confer-
ence on Information Technology and Electrical
Engineering (ICITEE), pages 1–5. https://
doi.org/10.1109/ICITEED.2019.8930002

David Smyth. 2002. Thai: An Essential Grammar,
1st edition. Routledge.

Panyut Sriwirote, Jalinee Thapiang, Vasan
Timtong, and Attapol T. Rutherford. 2023.
PhayaThaiBERT: Enhancing a pretrained Thai
language model with unassimilated loan-
words. https://doi.org/10.48550/arXiv
.2311.12475

Milan Straka. 2018. UDPipe 2.0 prototype at
CoNLL 2018 UD shared task. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Depen-
dencies, pages 197–207, Brussels, Belgium.
Association for Computational Linguistics.

Milan Straka, Jana Straková, and Jan Hajič. 2019.
Evaluating contextualized embeddings on 54
languages in pos tagging, lemmatization and de-
pendency parsing. https://doi.org/10
.48550/arXiv.1908.07448

Kiyoko Takahashi. 2009. Basic serial verb con-
structions in Thai. Journal of the Southeast
Asian Linguistics Society, 1:215–229.

389

https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.1162/tacl_a_00358
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.18653/v1/2021.eacl-demos.10
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.5281/zenodo.3519354
https://doi.org/10.1515/lity.2000.4.2.251
https://doi.org/10.1515/lity.2000.4.2.251
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.48550/arXiv.2003.07082
https://doi.org/10.48550/arXiv.2003.07082
https://doi.org/10.1109/ICITEED.2019.8930002
https://doi.org/10.1109/ICITEED.2019.8930002
https://doi.org/10.48550/arXiv.2311.12475
https://doi.org/10.48550/arXiv.2311.12475
https://doi.org/10.48550/arXiv.1908.07448
https://doi.org/10.48550/arXiv.1908.07448

Yuanhe Tian, Guimin Chen, Yan Song, and
Xiang Wan. 2021. Dependency-driven re-
lation extraction with attentive graph con-
volutional networks. In Proceedings of the
59th Annual Meeting of the Association
for Computational Linguistics and the 11th
International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 4458–4471. https://doi.org/10
.18653/v1/2021.acl-long.344

Koichi Yasuoka. 2023. Sequence-labeling
RoBERTa model for dependency-parsing
in Classical Chinese and its application to
Vietnamese and Thai. In 2023 8th Interna-
tional Conference on Business and Industrial
Research (ICBIR), pages 169–173. https://
doi.org/10.1109/ICBIR57571.2023
.10147628

Daniel Zeman, Jan Hajič, Martin Popel, Martin
Potthast, Milan Straka, Filip Ginter, Joakim
Nivre, and Slav Petrov. 2018. CoNLL 2018
shared task: Multilingual parsing from raw text
to Universal Dependencies. In Proceedings
of the CoNLL 2018 Shared Task: Multilin-
gual Parsing from Raw Text to Universal
Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/K18
-2001

Daniel Zeman, Martin Popel, Milan Straka,
Jan Hajič, Joakim Nivre, Filip Ginter, Juhani
Luotolahti, Sampo Pyysalo, Slav Petrov, Martin
Potthast, Francis Tyers, Elena Badmaeva,
Memduh Gokirmak, Anna Nedoluzhko, Silvie
Cinková, Jan Hajič jr., Jaroslava Hlaváčová,
Václava Kettnerová, Zdeňka Urešová, Jenna
Kanerva, Stina Ojala, Anna Missilä,
Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash,
Herman Leung, Marie-Catherine de Marneffe,
Manuela Sanguinetti, Maria Simi, Hiroshi
Kanayama, Valeria de Paiva, Kira Droganova,
Héctor Martı́nez Alonso, Çağrı Çöltekin, Umut
Sulubacak, Hans Uszkoreit, Vivien Macketanz,
Aljoscha Burchardt, Kim Harris, Katrin
Marheinecke, Georg Rehm, Tolga Kayadelen,

Mohammed Attia, Ali Elkahky, Zhuoran Yu,
Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana
Strnadová, Esha Banerjee, Ruli Manurung,
Antonio Stella, Atsuko Shimada, Sookyoung
Kwak, Gustavo Mendonça, Tatiana Lando,
Rattima Nitisaroj, and Josie Li. 2017. CoNLL
2017 shared task: Multilingual parsing from raw
text to Universal Dependencies. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependen-
cies, pages 1–19, Vancouver, Canada. Associa-
tion for Computational Linguistics.https://
doi.org/10.18653/v1/K17-3001

Yu Zhang, Zhenghua Li, and Min Zhang. 2020.
Efficient second-order TreeCRF for neural
dependency parsing. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 3295–3305,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.acl-main.302

Yue Zhang, Bo Zhang, Rui Wang, Junjie
Cao, Chen Li, and Zuyi Bao. 2021. Entity
relation extraction as dependency parsing
in visually rich documents. arXiv preprint
arXiv:2110.09915. https://doi.org/10
.18653/v1/2021.emnlp-main.218

Junru Zhou and Hai Zhao. 2019. Head-driven
phrase structure grammar parsing on Penn
Treebank. In Proceedings of the 57th Annual
Meeting of the Association for Computa-
tional Linguistics, pages 2396–2408, Florence,
Italy. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/P19-1230

Ran Zmigrod, Tim Vieira, and Ryan Cotterell.
2020. Please mind the root: Decoding arbores-
cences for dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 4809–4819, Online. Asso-
ciation for Computational Linguistics.
https://doi.org/10.18653/v1/2020
.emnlp-main.390

390

https://doi.org/10.18653/v1/2021.acl-long.344
https://doi.org/10.18653/v1/2021.acl-long.344
https://doi.org/10.1109/ICBIR57571.2023.10147628
https://doi.org/10.1109/ICBIR57571.2023.10147628
https://doi.org/10.1109/ICBIR57571.2023.10147628
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/K17-3001
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2021.emnlp-main.218
https://doi.org/10.18653/v1/2021.emnlp-main.218
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390

A Appendix

Hyperparameter Value

No. of parser’s hidden layers* 1
Parser’s hidden dim.* 768
UPOS embedding dim. 768
Super-token filter sizes 2, 3, 4, 5
Super-token embedding dim. 192 each
Dropout 0.1
Learning rate scheduler Linear
Warmup ratio 0.1
Peak learning rate 3e-5
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Batch size 8
No. of training epochs 10

Table 8: Hyperparameters used in the training of our models. *For
transition-based parsers, this refers to the layers inside the oracles. For
graph-based parsers, it refers to the layers inside the feedforward neural
networks that create separate head and dependent representations for
each token.

Hyperparameter Value

Dropout 0.1
Learning rate scheduler Linear
Warmup ratio 0.1
Peak learning rate 3e-5
Weight decay 0.01
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Batch size 32
No. of training epochs 20

Table 9: Hyperparameters used in the training of our UPOS taggers.

391

