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Abstract

Detecting fake news early is challenging due
to the absence of labeled articles for emerg-
ing events in training data. To address this,
we propose a Disentangled Event-Agnostic
Representation (DEAR) learning approach.
Our method begins with a BERT-based adap-
tive multi-grained semantic encoder that cap-
tures hierarchical and comprehensive textual
representations of the input news content. To
effectively separate latent authenticity-related
and event-specific knowledge within the
news content, we employ a disentanglement
architecture. To further enhance the decou-
pling effect, we introduce a cross-perturbation
mechanism that perturbs authenticity-related
representation with the event-specific one,
and vice versa, deriving a robust and
discerning authenticity-related signal. Addi-
tionally, we implement a refinement learning
scheme to minimize potential interactions
between two decoupled representations, en-
suring that the authenticity signal remains
strong and unaffected by event-specific de-
tails. Experimental results demonstrate that
our approach effectively mitigates the impact
of event-specific influence, outperforming
state-of-the-art methods. In particular, it
achieves a 6.0% improvement in accuracy on
the PHEME dataset over MDDA, a similar
approach that decouples latent content and
style knowledge, in scenarios involving ar-
ticles from unseen events different from the
topics of the training set.

1 Introduction

Social media platforms provide a convenient way
for the public to create, distribute, and absorb a
wide range of information. However, the authen-
ticity of information shared on these platforms has
become a growing concern. When users cannot
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verify the authenticity of the content they share,
there is a significant risk of spreading fake infor-
mation, leading to the widespread dissemination
across platforms and posing serious consequences.

Advances in natural language processing (NLP)
have facilitated the development of fake news de-
tection methods (as described in Section 4.1),
which have shown significant performance in
controlled scenarios, as illustrated in Figure 1
(b). However, on social media, sudden explosive
events often lead to a flood of related news. In
the early stage of news dissemination, resources
related to newly emerging events are usually lim-
ited, and authenticity annotations for those news
articles are often unavailable. This makes it chal-
lenging to quickly train new fake news detection
models. Meanwhile, detection models trained on
existing annotated data typically perform poorly
on emerging ‘‘unseen’’ events during inference,
as shown in Figure 1(c). Therefore, it highlights
the challenge of quickly detecting and blocking
fake news articles about these newly emerging
events before they spread widely.

Recent methods of fake news detection address
this challenge by treating distinct events as var-
ious domains and leveraging domain adaptation
techniques (as described in Section 4.2). These
methods aim to bridge the semantic gaps between
events by enhancing their correlations. However,
they require a portion of data from the target do-
main during training, making them inapplicable
for the early fake news detection scenario with
‘‘unseen’’ events. Moreover, since newly emerg-
ing events on social media appear frequently, it is
impractical to adapt the model each time a new
event occurs. Therefore, a model is needed to
identify fake news immediately from most newly
emerging ‘‘unseen’’ events.

Based on this analysis, we assume that a news
article contains two key latent attributes:
authenticity-related knowledge, which determines
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Figure 1: Illustration of different fake news detection
scenarios: (a) The training set, composed of news
articles from two existing events. (b) This repre-
sents a type of testing set including articles related
to the same events as the training set, referred to as
‘‘seen’’ events. In contrast, (c) illustrates another type
of testing set containing articles about new events not
present in training, showcasing a detection scenario for
‘‘unseen’’ events.

if it is fake or real, and event-specific knowledge,
which varies significantly among different events.
We explore the performance of fake news detec-
tion for newly ‘‘unseen’’ events by utilizing the
latent authenticity-related knowledge and mitigat-
ing the impact of the event-specific knowledge.
Building on these insights from our exploration,
we propose a Disentangled Event-Agnostic
Representation (DEAR) learning approach to
address the challenges of early fake news detec-
tion for newly ‘‘unseen’’ events (explained in
Section 2). It begins with an adaptive multi-
grained semantic encoder for contextual rep-
resentation extraction. Next, a disentanglement
architecture is utilized to decouple the latent
authenticity-related and event-specific represen-
tations of news content. To enhance the disentan-
glement effect, we introduce a cross-perturbation
mechanism that perturbs the generated authenticity-
related representation with the event-specific
one, and vice versa. This directs the discrim-
inators to focus on each corresponding knowl-
edge, thereby improving their robustness. Finally,
a refinement learning scheme is employed to
further reduce potential interactions between
the two decoupled representations, ensuring
the authenticity-related signal remains strong
and unaffected by event-specific details. We
demonstrate the effectiveness of our approach
through comprehensive experiments conducted
on datasets, showcasing its superiority over
established methods (outlined in Section 3).

2 The DEAR Methodology

2.1 Preliminary Analysis
Existing fake news detection methods struggle
with identifying fake news related to events
not encountered during training. To analyze this
challenge, we conduct a preliminary detection ex-
periment using a multi-event configuration. In this
setup, we train the model on news articles related
to two distinct events, namely, the U.S. Election
and COVID-19, and test it on articles about the
‘‘Ferguson Unrest’’ event. For the U.S. Election,
we extract approximately 600 articles containing
keywords such as ‘‘election’’ and ‘‘president’’
from the PolitiFact dataset (Shu et al., 2018). For
COVID-19, we randomly select around 600 ar-
ticles with balanced authenticity labels from the
COVID dataset (Du et al., 2021), which contains
articles related to COVID-19. For the Ferguson
Unrest event, we randomly select around 600
articles related to this event from the PHEME
dataset (Kochkina et al., 2018), which contains
articles from multiple events with both event and
authenticity labels.

In this experiment, we fine-tune BERT (Devlin
et al., 2019) using articles from the U.S. Elec-
tion and COVID-19 events for training. We then
visualize the semantic representations learned
by BERT for news articles from both train-
ing and testing events with t-SNE, as shown in
Figure 2(a). The representations of various events
exhibit notable disparities, indicating significant
semantic differences between distinct events. Con-
sequently, the authenticity detection performance
on the unseen Ferguson Unrest event is notably
compromised.

To uncover the latent factors influencing such
distribution disparities, we introduce two separate
branches over BERT’s embeddings, aiming to
extract the authenticity-related and event-specific
knowledge separately. Each branch comprises a
single-layer MLP network as a generator, de-
noted as G, and a two-layer MLP network as
a discriminator, denoted as D. To decouple
event-specific and authenticity-related informa-
tion from the BERT semantic embeddings, the
generator Ge in the event branch is guided by
the corresponding discriminator De using event
labels (‘‘COVID-19’’ or ‘‘U.S. Election’’), while
the generator Gc along with the discriminator Dc

in the authenticity branch is trained according to
the fake/real labels. The representations obtained
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Figure 2: t-SNE visualization on distributions generated by various models: (a) and (b) show the embeddings of
news articles learned from different encoders, while (ii)-(iv) illustrate the representations of news articles learned
from event and authenticity generators across three distinct models. For the training set, we select news articles
from two distinct events: U.S. Election event (yellow) and COVID-19 event (blue). The testing set comprises
news from Ferguson Unrest event (purple). In the visualization, darker shades indicate real news articles while
lighter shades represent fake ones.

from the event and authenticity generators are
visualized via t-SNE in Figure 2(a1) and (a2).

Compared with the original embeddings from
BERT in Figure 2(a), the representations learned
from the event generator in Figure 2(a1) clus-
ter the events to some extent and slightly reduce
the fake/real distance between events. Conversely,
the representations learned from the authenticity
generator shown in Figure 2(a2) marginally re-
duce event gaps and slightly increase the fake/real
distances.

Based on these observations, we hypothesize
that latent authenticity-related knowledge, in-
dependent of specific events, can reduce the
semantic distance among events and enhance
the performance of detecting fake news in
unseen events. To improve the detection perfor-
mance on unseen events, we prioritize learning
authenticity-related knowledge while mitigating
the impact of event-specific knowledge.

2.2 Proposed Method
The proposed method is outlined in Figure 3. It
begin with an adaptive multi-grained semantic
encoder to extract comprehensive representations
of each news article. Then, a cross-perturbation
decoupling mechanism is employed to extract
authenticity-related and event-specific knowl-
edge. The authenticity-related knowledge serves
as an indicator of news authenticity, facilitating
more effective detection of fake news across var-
ious events and scenarios, including those from
unseen events. Additionally, a refinement step
is included to further enhance the decoupled

authenticity-related knowledge by filtering out
any residual event-specific information.

2.2.1 Adaptive Multi-Grained
Semantic Encoder

In the field of NLP, one of the fundamental
and crucial challenges is to learn a comprehen-
sive representation of a given text, and fake
news detection is no exception. Conventional
representation learning mechanisms often in-
volve either fine-grained word-level learning or
abstracted document-level learning. Local-based
word-level representations, which express the
embedding of each word in the document as
semantic matrices, may capture detailed infor-
mation but lack a broad view, potentially leading
the model to focus on specific keywords. In con-
trast, global-based document-level representations
summarize the semantic knowledge of the entire
document as a single vector, providing a sum-
marized understanding but potentially overlook
important details.

To capture latent authenticity-related knowl-
edge from given real and fake articles, we propose
an adaptive multi-grained semantic encoder Et,
as shown in Figure 4. This encoder aggregates
both fine-grained and coarse information, encom-
passing both global (document-level) and local
(word-level) representations, as well as their inter-
actions within a given news article. In Et, we first
extract the semantic embedding of the [CLS] to-
ken from BERT as the global-based representation
T g ∈ R

1×D. We also obtain the overall semantic
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Figure 3: The overview of DEAR methodology, composed of three principal modules: the adaptive multi-grained
semantic encoder Et, the authenticity/event generators Gc/e (each of them constructed with a single-layer MLP
network), and the authenticity/event discriminator Dc/e (each of them designed with a two-layer MPL network).
Dual-phase training is utilized to learn the authenticity-related representation that serves as a reliable and robust
signal for fake news detection.

Figure 4: The architecture of the proposed adaptive
multi-grained semantic encoder.

embedding from BERT as the local-based repre-
sentation T l ∈ R

L×D. These embeddings serve as
the initial representations of the input text.

To capture the interactions among different
levels of granularity in the encoded semantic in-
formation, we introduce a coherence measurement
between global-to-local representations:

T g→l =

L∑
i=1

(
‖Hh=1σ

( [T g][T l]
�

√
dr

))
×T

(i)
l , (1)

and local-to-local representations:

T l→l =

L∑
i=1

(
‖Hh=1σ

( [T l][T l]
�

√
dr

))
×T

(i)
l , (2)

where L is the maximal length of the given news
article, H is the number of heads of the multi-head
attention, and σ denotes the Softmax operation.

To construct the final text representation o
from various perspectives, we employ an atten-
tive aggregation mechanism. We first compute
the average pooling of three distinct vectors T g,
T g→l and T l→l. Then, we apply Softmax to de-
termine the weights {ag, ag→l, al→l}. Finally, we
obtain the final representation by combining the
obtained multi-view representations for enhanced
text representation:

o = agT g + ag→lT g→l + al→lT l→l. (3)

Based on the preliminary detection config-
uration described in Section 2.1, we replace
the BERT encoder shown in Figure 2(a) with
our encoder and visualize the distribution of
our encoder’s output representations illustrated
in Figure 2(b). It can be seen that the pro-
posed encoder Et enlarges the overall distance
between fake and real news articles by cap-
turing the hierarchical differences between fake
and real samples. Additionally, we embed Et

into the primary disentanglement framework and
extract the decoupled event-specific (b1) and
authenticity-related knowledge (b2) for compar-
ison. The comparison shows that the generated
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event-specific representations based on our en-
coder tighten the news distribution for each event,
resulting in more apparent clustering (b1 vs. a1
in Figure 2). For authenticity-related knowledge
comparison (b2 vs. a2 in Figure 2), our encoder’s
generated features show more overlapping across
various events.

2.2.2 Cross-Perturbation Decoupling
In Section 2.1, we mention two branches to gen-
erate and discriminate authenticity-related and
event-specific representations over the semantic
embeddings from BERT. Our analysis of the ex-
perimental results illustrated in Figure 2(a)–(a2)
led us to conclude that latent authenticity-related
knowledge, yet independent of specific events,
shows promise for detecting fake news in un-
seen events. Based on this conclusion, we
propose a novel cross-perturbation (CP) mech-
anism that randomly mixes authenticity-related
and event-specific knowledge from two distinct
news articles. The CP mechanism can enhance the
learning process of authenticity-related features
by introducing event-specific perturbations, and
vice versa.

Given an input news article x, we extract o
by the proposed encoder Et. This representa-
tion is then fed into the authenticity generator
Gc and event generator Ge, each constructed
with a single-layer MLP network. From these
generators, we obtain c and e, representing the
authenticity-related and event-specific aspects for
o, respectively. To introduce perturbations, we
also extract authenticity-related and event-specific
representations (c′ and e′) from a randomly
sampled news article x′.

For the authenticity branch, we merge the
authenticity-related representation c with the
event-specific knowledge by:

c̃ = α× c+ (1− α)× AdaIN(e′, c), (4)

where AdaIN(, ) is the Adaptive Instance Nor-
malization (Huang and Belongie, 2017), a feature
fusion technique from image style transfer, α is
an interpolation weight sampled uniformly from
[0, 1], and c̃ denotes the authenticity-related rep-
resentation with injected event-specific noise.
c̃ is then fed into the authenticity discrimi-
nator Dc, constructed with a two-layer MLP
network. Additionally, ẽ, which encapsulates
authenticity-related information from the selected

sample x′, is also fed into the authenticity discrim-
inator to assist the fake news detection based on
the authenticity label of x′. This process is trained
with the loss Lc for binary fake news detection:

Lc = −
[
E(c̃,y)

K∑
i=1

yi logDc

(
c̃i

)
+

E(ẽ,y′)

K∑
i=1

y′i logDc

(
ẽi

)]
, (5)

where K denotes the number of class labels, y′ is
the authenticity label of the selected sample x′.

For the event branch, we perturb the event-
specific representations e with authenticity-related
knowledge according to:

ẽ = β × e+ (1− β)× AdaIN(c′, e), (6)

where β is an interpolation weight uniformly
sampled from [0, 1], and ẽ represents the
event-specific representation perturbed by the
authenticity-related noise. The obtained ẽ and c̃
are then fed into the event discriminator De, to
predict the event labels for the samples x and x′,
respectively.

The objective of the network is to pre-
dict the specific event label by minimizing the
event-centric loss Le defined as:

Le = −
[
E(ẽ,d)

D∑
i=1

di logDe(ẽi)+

E(c̃,d′)
D∑
i=1

d′i logDe

(
c̃i

)]
, (7)

where D denotes the total number of events
referenced by the articles in the training set.

By perturbing authenticity-related represen-
tations with event-specific information during
training, the authenticity discriminator is com-
pelled to prioritize authenticity-related knowledge
over the event-specific details for more accurate
fake news detection. Furthermore, this CP mech-
anism enhances the diversity of input samples,
enriching the training dataset. The overall loss
objective of the first training phase is defined as:

L(1) = Lc + λ1 · Le, (8)

where λ1 is a trade-off hyper-parameter.
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To understand the effectiveness of our CP
mechanism within the disentanglement frame-
work, we visualize the t-SNE distribution of
generated event-specific and authenticity-related
representations learned from the corresponding
generators during the inference process in Figure 2
(b3) and (b4).

Our model, which includes the CP mechanism,
exhibits two clearly decoupled representations,
as shown in (b3) and (b4) of Figure 2,
compared to the primary disentanglement frame-
work shown in Figure 2(b1) and (b2). The
authenticity-related representation captures the la-
tent invariant knowledge across various events that
determine authenticity. The authenticity-related
distribution in Figure 2(b4) effectively bridges
the gap between articles from distinct events in
both fake and real clusters while maintaining
the distance between the fake and real clusters.
On the other hand, the event-specific repre-
sentation clearly categorizes the three distinct
events, as shown in Figure 2(b3). In contrast,
the primary disentanglement framework shows
significant overlap between the two decoupled
representations, with the event-specific represen-
tation (b1) inadequately separating true and false
samples. This indicates a failure to properly de-
couple the authenticity-related and event-specific
knowledge.

These comparisons highlight how the proposed
CP mechanism effectively minimizes the over-
lap between the two decoupled representations,
enhancing the distinction of each representation.

2.2.3 Refinement Learning

To further enhance the disentanglement capabil-
ity, we introduce a refinement learning strategy
in the second phase of training, inspired by
adversarial learning (Goodfellow et al., 2014).
This strategy aims to ensure that the decoupled
authenticity-related representation does not in-
clude any event-specific knowledge identifiable
by a proficiently trained event discriminator, and
vice versa. In this phase, we freeze both the au-
thenticity and event discriminators while refining
the two generators.

We consider two refinement scenarios simulta-
neously: In the first scenario, the event-specific
and authenticity-related representations are fed
into their corresponding discriminators, aiming
for the detection and classification results to be

as accurate as possible. The loss function for this
scenario is defined as:

L(2)
y,d = L(2)

c + L(2)
e

= −
[
E(c,y)

K∑
i=1

yi logDc

(
ci

)
+

E(e,d)

D∑
i=1

di logDe

(
ei

)]
. (9)

In the second scenario, two types of representa-
tions are fed into the opposing discriminators,
where the detection and classification results
are expected to be randomized. This process is
optimized according to:

L(2)
yr,dr = Lr

c + Lr
e

= −
[
E(e,yr)

K∑
i=1

yri logDc

(
ei

)
+

E(c,dr)

D∑
i=1

dri logDe

(
ci

)]
, (10)

where yr and dr represent random authenticity and
event labels sampled from a uniform distribution.
The overall loss objective for the second training
stage is therefore defined as:

L(2) = (1− λ2) · L(2)
yr,dr + λ2 · L(2)

y,d, (11)

where λ2 is the hyper-parameter governing the
trade-off between the loss items. The second
training phase aims to refine the disentangled
representations by filtering out the potential over-
lapping knowledge between authenticity-related
and event-specific representations.

We present the t-SNE distributions of the
authenticity-related and event-specific represen-
tations learned from the CP decoupling model
with refinement learning, as illustrated in Figure 2
(b6) and (b5). Compared with the distributions
in (iii), which lack the second phase strategy, the
event-specific features from the refinement learning
process (b5) are tightly clustered around inde-
pendent event clusters. Meanwhile, the authenticity-
related representations, as shown in Figure 2(b6),
exhibit more overlaps compared to the model with-
out refinement learning, shown in Figure 2(b4).
This comparison demonstrates that the refinement
learning strategy enhances the independence of
each decoupled representation and reduces the
potential inter-correlation between the two.
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Scenario Datasets Events Description Topic All Fake Real

In-Topic
Detection
(ITD)

PHEME
(Kochkina et al., 2018)

Ch
Charlie Hebdo: Terrorist attack on the French

Social
Unrest

2,079 458 1,621
satirical magazine in Paris, resulting in 12 deaths.

Sy

Sydney Siege: It was a 16-hour hostage crisis
1,221 522 699at the Lindt Café in Sydney, resulting in three

deaths, including the gunman.

Fe

Ferguson Unrest: It involved protests and riots

1,143 284 859
in Ferguson, Missouri, after the fatal shooting of
Michael Brown, an unarmed Black teenager, by
a police officer on 2014.

Ot

Ottawa Shooting: The shooting involved a gunman

890 470 420
killing a soldier at the National War Memorial
before being shot dead after storming the
Canadian Parliament.

Cross-Topic
Detection
(CTD)

PolitiFact
(Shu et al., 2018) Po

Comprised of multiple events related to politics,
Politics 948 420 528

such as U.S. Election and policy debates.

GossipCop
(Shu et al., 2018) Go

Comprised of multiple events related to the
Gossip 9,947 4,947 5,000gossip topic, such as Celebrity Death Hoaxes and

entertainment stories

COVID Co Comprised of tweets related to COVID-19. Health 6,067 1,317 4,750
(Du et al., 2021)

Table 1: Statistics of selected public datasets.

Upon completing the dual-phase training, only
the pair of authenticity generator and discrimina-
tor is employed during the testing stage of fake news
detection. This setup outputs the binary detection
label based on the disentangled authenticity-
related representation, effectively mitigating event-
specific information. The CP mechanism and
Refinement learning strategy are involved solely
during the training process and are excluded
during inference.

3 Experiments

3.1 Experimental Settings

Datasets We use four datasets as listed in
Table 1, to simulate two types of unseen-event
detection scenarios:

• In-Topic Detection (ITD): In this scenario,
we utilize the PHEME dataset, which in-
cludes thousands of claims related to four
different events centered around a similar
topic of social unrest. We use three of the
events as the resource for training and the
remaining event as the target for testing,
resulting in four different combinations.

• Cross-Topic Detection (CTD): To further
challenge our proposed approach, we incor-
porate news articles from three other datasets,
i.e., PolitiFact, GossipCop, and COVID,
which cover distinctly different events. In

this scenario, we use two of these datasets
as the resources for training and evaluate
the trained model on the remaining dataset,
resulting in three different combinations.

Selection of Comparison Methods We com-
pare our method with two types of baselines,
namely, content-centric and domain-adaptive ap-
proaches. The content-centric baselines include
TextCNN (Kim, 2014) and RoBERTa (Liu et al.,
2019), both of which leverage content knowledge
for text classification. TextCNN is a convolutional
network robust in various text classification tasks,
while RoBERTa, a variant of the pre-trained trans-
former, generates embeddings of the [CLS] token
for detection. The domain-adaptive baselines in-
clude EANN (Wang et al., 2018), MDDA (Zhang
et al., 2021), Fish (Shi et al., 2022), and metaAdapt
(Yue et al., 2023). EANN learns event-agnostic
features using a TextCNN for text representation
and an event discriminator for adversarial learn-
ing. MDDA disentangles the representation into
content- and style-based branches, utilizing only
style knowledge for detection. As a multi-modal
framework, we consider its textual branch for
comparison. Fish introduces a gradient-based
framework for domain generalization, featuring
an adaptive mechanism for handling different
domains. MetaAdapt employs meta-training to
explore optimal parameters, enabling rapid adap-
tation to unseen tasks without examples. To ensure
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From
Cross-Topic Detection (CTD)
Go Po Co

BERT 0.0192 0.0164 0.0126
Et 0.7256 1.0128 0.9069

From
In-Topic Detection (ITD)

Ch Ot Sy

BERT 0.0271 0.0198 0.0173
Et 0.6184 0.7183 0.7294

Table 2: Wasserstein distance between the em-
beddings of real vs. fake news is examined in both
CTD and ITD scenarios, comparing between the
original BERT and our proposed encoder Et. The
Et increases the separation between distributions
by a large margin on all datasets.

a fair comparison, we train these frameworks using
the same datasets as ours.

Implementation Details In our experiment, we
use the Adam optimizer with a learning rate of
2e-5 and a weight decay of 0.01. The training
batch size is set to 32. The entire training process
takes around 40 epochs to converge on both ITD
and CTD scenarios All experiments are conducted
on a single NVIDIA GeForce RTX 3090 GPU.1

Evaluation Metrics We select Acc and F1

as the major evaluation metrics to measure the
performance of various approaches, which are
commonly utilized in the context of fake news
detection. Furthermore, Wasserstein distance is
also used as a metric to measure the distance
between two distributions, such as real vs. fake
news. We also perform t-SNE visualization as a
visual evaluation mechanism in our experiments.

3.2 Discussion of the Proposed Components

Before presenting the final detection performance,
we first validate the effectiveness of each proposed
component.

Effectiveness of Et We evaluate the encoder’s
ability to differentiate between fake and real news
in both CTD and ITD scenarios. Specifically,
for both BERT and our encoder Et, we calcu-
late the Wasserstein distances between the centers
of fake and real representations for both detec-
tion scenarios, as shown in Table 2. It is clear

1Our source code will be publicly available at https://
github.com/PuXiao06/DEAR.

Figure 5: T-SNE visualization of the representation
distributions via different event combinations evaluated
on PHEME corpus, trained on a subset of three events
and tasked with detecting fake news on the remaining
one, as an unseen event. Different colors represent
different events, while dark and light shades distinguish
between real and fake samples.

that the proposed Et effectively enlarges the
distance between fake and real news, indicat-
ing its effectiveness in understanding fine-grained
and comprehensive distinctions and correlations
among news instances. This comparison substan-
tiates the network’s capability to discern and
leverage the contextual information, contributing
to improved detection capability.

Effectiveness of CP Decoupling Mechanism
To gain insights about the effectiveness of the pro-
posed CP decoupling mechanism, we inspect the
development of representation distributions before
and after feature disentanglement. We compare the
t-SNE distributions of the original representation
o, the decoupled authenticity-related c, and the
decoupled event-specific e in ITD scenario using
the PHEME dataset, as illustrated in Figure 5.

As shown in the first column of Figure 5, the
original representations o corresponding to real
and fake samples in training set are well separated.
However, this separation is not so clear for the test-
ing data, which features an unseen event (yellow
color). With the introduction of CP decoupling,
represented in the second column (b) of Figure 5,
the gap between real and fake articles in the de-
coupled authenticity-related representations c is
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Figure 6: Comparison of detection accuracy results on
multiple datasets with different λ1 and λ2.

further enlarged, while the gap between different
events is significantly reduced. Simultaneously,
the decoupled event-specific representations e
show clear isolation between distinct events,
precisely capturing the unique knowledge charac-
teristics associated with each event. This analysis
confirms that the proposed CP decoupling mech-
anism effectively mitigates the event-specific
knowledge from the original semantic repre-
sentation, enhancing the model’s capability to
discern real from fake samples by utilizing the
authenticity-related information exclusively.

Hyper-Parameter Selection To confirm the
optimal hyper-parameter values, we conduct ex-
periments using one dataset combination from
each of the ITD and CTD scenarios. Among the
parameters, the scaling factors λ1 and λ2 play
crucial roles in determining the relative weight
of the event branch and refinement learning com-
ponent, respectively. Specifically, λ1 influences
the trade-off between authenticity detection and
event classification for the objectiveL(1), while λ2

impacts the trade-off between the two loss items
in the loss function L(2). We test different com-
binations of hyper-parameters, with values from
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} in each iteration. The
detection accuracy of ChSvOt → Fe from ITD
scenario and PoCo → Go from CTD senario are
shown in Figure 6. For both cases, the combi-
nation of λ1 = 0.4 and λ2 = 0.6 results in the
optimal detection performance. Hence, these two
values are used throughout our experiment.

3.3 Quantitative Detection Evaluation
Evaluation of the ITD Scenario To evalu-
ate the proposed approach against comparative
methods, we first present in Table 3 the overall
accuracy for the ITD scenario, where the target
events are different from the source events but
share a similar topic. It is clear that the proposed

approach outperforms all competitive approaches
with significant improvements. Specifically, we
achieve relative gains of 6.0% and 5.5% in accu-
racy and F1, respectively, for the combination of
ChFeOt → Sy over the recent MDDA, a typical
method utilizing a similar disentanglement mech-
anism for managing style and content knowledge
discrepancies.

Evaluation of the CTD Scenario To further
challenge our approach, we evaluate its perfor-
mance in the CTD scenario, where the topics of
targeted unseen events are distinct from those
of the source events, with results shown in
Table 4. It can be seen that the proposed ap-
proach consistently outperforms the competitive
approaches with a clear margin. Especially for
the combination of PCo → G, we achieve a sig-
nificant accuracy gain over 7.71% compared to
the MetaAdapt (Yue et al., 2023), which uses
a meta-training strategy for rapid adaptation to
target data.

3.4 Ablation Study

To validate the contribution of each component
of the proposed approach, we conduct a set of
ablation experiments on both detection scenarios,
employing different configuration combinations
within our model. As shown in Figure 7, the
proposed encoder Et consistently demonstrates
its advantages over BERT in extracting more
hierarchical knowledge, enabling enhanced com-
prehension of the authenticity-related information.
The detection performance is further improved
when the CP decoupling mechanism is included
(labeled as ‘‘+CP decouple’’), which effectively
mitigates the influence of the event-specific
noise by preserving the pure authenticity-related
knowledge for real/fake detection. Utilizing the
refinement learning based on the CP decoupling
mechanism (labeled as ‘‘+refine’’) significantly
increases the detection accuracy by enhanc-
ing the robustness of both discriminators. This
component plays a crucial role in enhancing
the disentanglement task by further filtering
out possible interactive knowledge between the
authenticity-related and event-specific represen-
tations. This analysis confirms the contribution of
each proposed key component in our approach,
with the cross-perturbation decoupling mecha-
nism yielding the highest improvement in the
detection performance.
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Method
ChSyOt → Fe ChFeOt → Sy SyFeOt → Ch SyChFe → Ot

Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

TextCNN (Kim, 2014) 74.98 85.67 74.61 79.58 80.95 88.54 69.78 68.43
EANN (Wang et al., 2018) 75.15 85.81 75.43 80.21 78.64 87.80 70.11 69.83
RoBERTa (Liu et al., 2019) 76.29 86.07 76.49 80.38 83.16 88.87 77.53 77.97
MDDA (Zhang et al., 2021) 76.10 85.92 76.81 80.54 82.42 88.21 79.51 78.68
Fish (Shi et al., 2022) 76.30 85.97 77.87 81.19 82.88 88.23 78.08 78.03
MetaAdapt (Yue et al., 2023) 76.81 86.19 78.78 81.59 83.74 88.99 78.65 78.32
DEAR (ours) 79.27 87.75 81.46 84.97 84.82 89.57 80.62 80.03

Table 3: Performance comparison between DEAR and other recent approaches in the ITD scenario
using the PHEME corpus, which contains articles from four events with similar topics. The evaluation
is conducted by combining data from three events and predicting the remaining one, which is unseen,
for the fake news detection task. Our method achieves the highest accuracy and F1 score, demonstrating
its superior effectiveness in detecting fake news across different but related events.

Method
PoGo → Co PoCo → Go CoGo → Po

Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

TextCNN (Kim, 2014) 62.53 64.26 51.08 21.07 59.23 53.97
RoBERTa (Liu et al., 2019) 64.90 63.26 52.69 25.03 60.82 56.30
EANN (Wang et al., 2018) 63.45 64.02 50.64 23.99 62.15 61.43
MDDA (Zhang et al., 2021) 63.82 64.89 52.32 34.18 65.82 66.43
Fish (Shi et al., 2022) 63.98 65.01 54.58 37.74 66.59 68.49
MetaAdapt (Yue et al., 2023) 64.21 67.84 58.89 41.19 67.06 66.12
DEAR (ours) 66.34 68.93 63.43 48.97 70.04 69.80

Table 4: Performance comparison between DEAR and other recent approaches in the CTD scenario
using three datasets corresponding to three distinct topics. The evaluation is conducted by combining
data from two datasets and predicting the remaining one, which is unseen, for the fake news detection
task. Our method achieves the highest accuracy and F1 score, demonstrating its superior effectiveness
in detecting fake news across events with different topics.

Figure 7: Results of ablation study, evaluated with
accuracy performance on datasets from both ITD and
CTD scenarios. Significance testing is indicated by ‡
for p < 0.005.

4 Related Work

4.1 Fake News Detection
Content-aware fake news detection approaches
are designed for detection analysis based on input
claims. For example, pre-trained transformer mod-
els are leveraged to extract semantic or syntactic
properties, enhancing their capability to detect

fake news (Ma et al., 2016; Chen et al., 2018;
Das et al., 2021; Yue et al., 2022; Jiang et al.,
2022; Li et al., 2024). Additionally, the integration
of multi-modal input, combining text and image
features, has been explored to further enhance de-
tection performance (Santhosh et al., 2022; Shang
et al., 2022b; Hu et al., 2024b).

Beyond content-based methods, there are ap-
proaches that leverage user interactions to assess
the credibility of online posts (Jin et al., 2016).
Likewise, analyzing patterns in propagation paths
proves effective in detecting fake news on social
media platforms (Shu et al., 2020). The incorpo-
ration of social attributes, such as user dynamics,
enriches fake news detection by introducing con-
textual information (Shu et al., 2019; Nan et al.,
2024). When integrated with a content-based
module, fake news detection systems exhibit en-
hanced accuracy (Mosallanezhad et al., 2022; Lin
et al., 2022).
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There are also approaches that utilize external
knowledge as augmentative features and support
in the verification of facts and identifications
of fake news (Brand et al., 2021). Approaches
involving knowledge graphs or crowd-sourcing
methodologies can be employed to extract sup-
plementary information for fake news detection
(Wu et al., 2024b; Shang et al., 2022a). But they
usually need extra human annotations. More re-
cently, the use of large language models (LLMs)
has shown promising results in enhancing the per-
formance of fake news detection (Hu et al., 2024a;
Wu et al., 2024a).

Many current fake news detection approaches
concentrate on news articles specific to in-event
scenarios, which contain event-specific char-
acteristics. This raises concerns about their
effectiveness in unobserved events marked by
event shifts. Our focus is channeled towards the
systematic exploration of news articles from un-
seen events within the scenario of early fake
news detection. This is particularly relevant in the
early stage when the news has not been widely
propagated and is primarily available as news
content.

4.2 Domain Adaptation on Fake
News Detection

Domain-adaptive fake news detection approaches
aim to predict the news from unseen domains,
addressing the challenges posed by domain shifts.
Several approaches (Li et al., 2021; Yue et al.,
2022; Lin et al., 2022; Silva et al., 2024) focus on
domain adaptation, assuming access to a portion
of target domain data during training. For instance,
Silva et al. (2021) introduce an unsupervised
technique for selecting unlabeled news records
to maximize domain coverage and preserve
both domain-specific and cross-domain knowl-
edge through the disentanglement mechanism.
Mosallanezhad et al. (2022) propose a domain
adaptive detection framework using reinforcement
learning and incorporating auxiliary information.
Yue et al. (2023) propose a meta learning-based
method for few-shot domain-adaptive misinfor-
mation detection, leveraging a few target examples
to exploit source domain knowledge under the
guidance of limited target data.

Incorporating cross-event scenarios into fake
news detection has received less attention. Most
approaches treat different events as distinct do-
mains and use domain adaptation techniques to

tackle the event-generalized challenge. For in-
stance, Wang et al. (2018) propose a multi-modal
fake news detection framework using event ad-
versarial networks, aiming to learn shared features
across events by mitigating event-specific knowl-
edge that is not shared among different events.
Zhang et al. (2021) propose a disentangled domain
adaptation mechanism for fake news detection,
particularly for unseen events. Liu et al. (2024)
argue that large-scale datasets might not general-
ize well to unseen events due to domain shifts and
introduce inter-domain and cross-modality align-
ment modules that reduce domain shift and the
modality gap.

However, these fake news detection methods
operate within the domain adaptation framework,
assuming access to some target domain data or
correlated extra knowledge during training. This
assumption can be problematic given the dynamic
nature of fake news generalization and propaga-
tion, especially when target domain data is not
accessible during the training phase.

5 Conclusion

In this paper, we introduce DEAR, an early
fake news detection approach that leverages
a disentanglement architecture to separate
authenticity-related and event-specific knowl-
edge. Our approach employs interactive cross-
perturbation and refinement learning techniques
to enhance the disentanglement effect, minimizing
interactions between the decoupled represen-
tations. An adaptive multi-grained semantic
encoder, based on BERT, generates hierarchical
and fine-grained textual representations. Exper-
imental results across multiple datasets demon-
strate the effectiveness of DEAR in mitigating
event-specific knowledge for fake news detection,
outperforming state-of-the-art methods. As future
work, we plan to extend the proposed disentangled
methodology to address multi-modal fake news
detection, exploring the possibility of mitigating
event-specific knowledge in the multi-modality
context.
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