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Abstract

Free-text explanations are expressive and
easy to understand, but many datasets lack
annotated explanation data, making it chal-
lenging to train models for explainable pre-
dictions. To address this, we investigate how
to use existing explanation datasets for self-
rationalization and evaluate models’ out-of-
distribution (OOD) performance. We fine-tune
T5-Large and OLMo-7B models and assess
the impact of fine-tuning data quality, the
number of fine-tuning samples, and few-shot
selection methods. The models are evaluated
on 19 diverse OOD datasets across three tasks:
natural language inference (NLI), fact-checking,
and hallucination detection in abstractive sum-
marization. For the generated explanation
evaluation, we conduct a human study on 13
selected models and study its correlation with
the Acceptability score (T5-11B) and three
other LLM-based reference-free metrics. Hu-
man evaluation shows that the Acceptability
score correlates most strongly with human
judgments, demonstrating its effectiveness in
evaluating free-text explanations. Our findings
reveal: 1) few annotated examples effectively
adapt models for OOD explanation generation;
2) compared to sample selection strategies,
fine-tuning data source has a larger impact
on OOD performance; and 3) models with
higher label prediction accuracy tend to pro-
duce better explanations, as reflected by higher
Acceptability scores.1

1 Introduction

Generating textual explanations has been a major
focus in machine learning and NLP (Wei et al.,
2022; Kunz and Kuhlmann, 2024; Calderon and
Reichart, 2024), as the explanations are expressive

†Most of work was done during a research stay at UKP.
1Code available at: https://github.com/UKPLab

/tacl2025-ood-eval-self-rationalization.

and do not require readers to have model-level
knowledge to understand. One popular line of
work is self-rationalization (Wiegreffe et al., 2021;
Marasovic et al., 2022), in which a model jointly
generates the task label and a free-text explanation
for the predicted label. Compared with highlight-
ing words and phrases (DeYoung et al., 2020),
free-text explanations can express unstated knowl-
edge and common-sense in easily understandable
forms. However, datasets containing annotated
free-text explanations are rare due to expensive
annotations.

A few datasets for free-text explanation gen-
eration exist (Camburu et al., 2018; Wang et al.,
2019b; Sap et al., 2020; Aggarwal et al., 2021;
Chen et al., 2022), with e-SNLI (Camburu et al.,
2018) being one of the seminal datasets in the
NLI area. Based on SNLI (Bowman et al., 2015),
e-SNLI focuses on reasoning over fine-grained
nuances of common-sense knowledge. However,
datasets containing longer or more domain-specific
text, such as fact-checking on real-world claims,
lack annotated explanations (Hanselowski et al.,
2019; Saakyan et al., 2021). This poses severe
challenges for (i) training and (ii) evaluating
self-rationalizing models on these tasks. No large-
scale analysis-exists to understand how well self-
rationalization models can transfer from existing
data to unknown datasets.

We fill the gap by learning self-rationalization
from established sources with annotated expla-
nations and evaluating its generalization perfor-
mance on 19 out-of-distribution (OOD) datasets
over three related tasks (see evaluation setup in
Figure 1): NLI, fact-checking (FC), and hallu-
cination detection of abstractive summarization
(HDAS). NLI focuses on textual entailment within
a controlled context, FC extends to real-world
claims with retrieved evidence, and HDAS cen-
ters around machine-generated text. Our OOD
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Figure 1: OOD evaluation pipeline of self-rationalization. The pipeline comprises two main parts. The first part
(a) relates to learning to self-rationalize with a source dataset (Section 3); it involves sample selection and
fine-tuning a generative model. The second part (b) relates to OOD generation and evaluation (Section 4);
we evaluate the model on three categories of OOD tasks: NLI, fact-checking, and hallucination detection of
abstractive summarization.

OOD dataset Size #L. Domain
#words #words

IAA
(Hyp.) (Pre.)

SICK (Marelli et al., 2014) 4,906 3 news, image captions 10 10 0.84O

AddOneRTE (Pavlick and Callison-Burch, 2016) 387 2 news, image captions, forums, literature 13 12 0.77O

JOCI (Zhang et al., 2017) 39,092 3 image captions, commonsense stories 6 14 0.54C

MPE (Lai et al., 2017) 1,000 3 image captions 4 48 0.70O

DNC (Poliak et al., 2018a) 60,036 2 events, named entities, puns, sentiments 5 19 –
HANS (McCoy et al., 2019) 30,000 2 template-based (synthetic) 6 9 –
WNLI (Wang et al., 2019a) 71 2 fiction books 7 21 –
Glue Diagnostics (Wang et al., 2019a) 1,104 3 news, Reddit, Wikipedia, academic papers 16 16 0.73F

N
L

I

ConjNLI (Saha et al., 2020) 623 3 Wikipedia 13 13 0.83C

Snopes Stance (Hanselowski et al., 2019) 1,651 3 Snopes (fact-checking platform) 16 126 0.70C

SciFact (Wadden et al., 2020) 300 3 biomedicine, scientific articles 13 247 0.75C

Climate-FEVER (Diggelmann et al., 2020) 1,381 3 climate change, Google searches 20 136 0.33K

VitaminC (Schuster et al., 2021) 55,197 3 Wikipedia, COVID-19 13 28 0.71F

COVID-FACT (Saakyan et al., 2021) 4,086 2 Reddit, COVID-19 12 73 0.50C

FC

FM2 (Eisenschlos et al., 2021) 1,380 2 Wikipedia 14 32 –

FactCC (Kryscinski et al., 2020) 503 2 news (CNN/DailyMail), rule-based 14 644 0.75C

QAGs CNNDM (Wang et al., 2020) 714 2 news (CNN/DailyMail), BART-based 16 318 0.51K

QAGs XSUM (Wang et al., 2020) 239 2 news (XSUM), BART-based 18 351 0.34KH
D

A
S

XSUM Hallucination (Maynez et al., 2020) 1,869 2 news (XSUM), 7 different models 19 361 0.92O

Table 1: OOD datasets categories and details. NLI: yellow, FC: pink, and HDAS: blue. Hyp.: hypothesis,
Pre.: premise, #words: number of words in average, IAA: inter-annotator agreement (numbers are from
the original papers). L.: labels, C: Cohen’s kappa, F : Fleiss’s kappa, K: Krippendorff’s alpha, O: other
metrics, -: unspecified. The sizes are reported on test/dev split; if the split is not provided, we report and
evaluate on the entire dataset.

datasets vary in domains (e.g., news, Wikipedia,
social media, science), and textual structures (e.g.,
synthetic template-based, multiple premises, sen-
tence compositions, long documents), presenting
a diverse and challenging OOD setting (see details
of each dataset in Table 1).

Despite the popularity of LLMs, using them
in a large experimental design is prohibitive, as
They are computationally expensive to perform
inference and evaluation, especially when the in-
put is long. Furthermore, data contamination is
a concern when performing evaluations on OOD

datasets (Sainz et al., 2023), as the training data of
most LLMs are not transparent, such as Llama 2
(Touvron et al., 2023) and GPT-4 (Achiam et al.,
2023). To address this, we selected two open-
source models with fully transparent pretrain-
ing datasets–T5-Large (Raffel et al., 2020) and
OLMo-7B (Groeneveld et al., 2024)–to study
self-rationalization. They also require fewer com-
putational resources than many LLMs, allowing
us to perform a large scale study.

We study the impact of fine-tuning data size
and quality on OOD performance, focusing on
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three factors: the fine-tuning dataset, the number
of selected samples, and sample selection strat-
egies. To enhance the quality of generated ex-
planations in OOD datasets, we introduce a new
approach with an acceptability filtering model
(Wiegreffe et al., 2022) to select better training
samples. Our study focuses on fine-tuning instead
of in-context learning due to its better OOD gen-
eralizability (Mosbach et al., 2023). In addition,
compared to supervised fine-tuning, in-context
learning is subject to additional constraints re-
garding resources and context window size.

We address the lack of gold reference ex-
planations by studying the effectiveness of the
Acceptability score with a human evaluation and
comparing it against three LLM-based reference-
free metrics. Our results show that Acceptability
score correlates highest with humans in all three
tasks. Our study reveals three findings: 1) fine-
tuning on few samples yields comparable OOD
performances as fine-tuning on the full dataset;
2) fine-tuning data source has a high impact on
OOD performance, while sample selection has
a lower impact; 3) higher Acceptability scores
are associated with better label prediction perfor-
mances, providing a new perspective on the task
performance vs explainability trade-off.

2 Related Work

Free-text Explanation Generation and Eval-
uation Self-rationalization has been a popular
approach for generating free-text explanations
(Wiegreffe et al., 2021; Marasovic et al., 2022;
Ross et al., 2022; Veerubhotla et al., 2023;
Ramnath et al., 2024). Wiegreffe et al. (2021)
show that joint learning of label prediction and
explanation generation results in explanations-
more aligned with predicted labels. Marasovic
et al. (2022) addressed the scarcity of anno-
tated explanation data by using prompt-based fine-
tuning on a few examples, though their evaluation
was limited to in-distribution datasets. Few works
have studied how such models can generalize to
OOD. Zhou and Tan (2021) studied how learning
with few-shot instances with template-based ex-
planations influences OOD generalization. Their
OOD dataset (e-HANS) is limited with con-
structed templates based on the HANS dataset
(McCoy et al., 2019). Ross et al. (2022) studied
the effect of self-rationalization on reducing mod-

els’ reliance on spurious cues in out-of-domain
datasets, and they showed that self-rationalization
improves models robustness when fine-tuning
data size is small. Yordanov et al. (2022) studied
the setup where the target dataset has few anno-
tated free-text explanations but abundant labels.
Their approach is limited to target datasets in
which free-text explanations exist. In contrast to
the above OOD evaluations, we focus on the
OOD evaluation of self-rationalization for 19 di-
verse datasets, and our evaluation does not rely
on reference explanations.

Reliable evaluation is crucial for explanation
generation. Traditional metrics that measure text
overlap with references have shown low correla-
tion with human judgments (Sulem et al., 2018),
and reference explanations are not always avail-
able. Recent works, like TigerScore (Jiang et al.,
2023), Auto-J (Li et al., 2024a), and Themis (Hu
et al., 2024), use LLMs as evaluators. These
metrics rely on detailed instructions specifying
evaluation aspects (e.g., relevance, accuracy, co-
herence) and formatted inputs for the task. The
trained metric then generates a rating along with
a textual analysis. To test their suitability for the
explanation generated with self-rationalization, in
this work, we study their correlations with human
judgments.

Few-shot Sample Selection Recent studies
show that fine-tuning with smaller, high-quality
datasets can outperform larger datasets (Li et al.,
2024b; Xia et al., 2024). Li et al. (2024b) pro-
posed to use a relatively small language model to
evaluate and select a few instances for instruction-
tuning on larger models. To select data to perform
well in transfer learning, Xia et al. (2024) pro-
posed data selection for instruction-tuning on a
target-specific domain. They show that training
with 5% of the data outperforms training with
the full dataset. The main constraint is that the
validation set needs to be from the target domains.
Chen and Mueller (2024) proposed to improve
data quality by estimating their model’s confi-
dence, and for the low-quality data, they either
filter or correct them. Most methods for sam-
ple selection are designed to perform well on in-
distribution or known target domains, and the goal
is for better classification performance. In con-
trast, our work focuses on selecting data that
should help OOD performance on both label pre-
diction and explanation generation.
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3 Learning to Self-rationalize

Figure 1 shows our OOD evaluation pipeline. We
first (a) fine-tune a language model on a source
dataset to learn self-rationalization. Specifically,
we require a fully annotated source dataset S, in
which each instance contains input xs = (hi, pi)
and output ys = (li, ei), where hi, pi represent a
hypothesis and premise pair, li and ei represent
the annotated label and explanation. We select
m representative instances per class from S for
fine-tuning by following a sample selection pro-
cess. Our sample selection method deliberately
restrains from using data from the OOD datasets,
preserving them untouched. Finally, we fine-tune
a language model to generate a label and expla-
nation. In (b), we evaluate the fine-tuned model
performance on OOD datasets (Section 4). Given
an OOD dataset O, with instances xo = (hj , pj),
where hj , pj represents a new hypothesis and
premise pair, the fine-tuned model generates the
label (l̂j) and explanation (êj).

3.1 Source Dataset

To learn self-rationalization for NLI-related tasks,
we select two large source datasets that contain
explanations: (a) e-SNLI (Camburu et al., 2018),
derived from the NLI dataset SNLI (Bowman
et al., 2015) by adding human annotated explana-
tions. (b) e-FEVER (Stammbach and Ash, 2020),
originated from the fact-checking dataset FEVER
(Thorne et al., 2018) with GPT-3 generated syn-
thetic explanations. To improve data quality, we
heuristically filter out incorrect explanations from
the dataset (see details in Appendix A.1). We
selected these two datasets as they are represen-
tative for our OOD datasets and have abundant
explanations.

3.2 Acceptability-based Sample Selection

Inspired by Schiller et al. (2022), we examine how
varying the size and quality of fine-tuning data
(source dataset) affects OOD performance. Since
self-rationalization includes joint label predic-
tion and explanation generation, we propose our
method considering both the label and explana-
tion quality.

Data Filtering with Acceptability Score To
improve explanation quality, we filter the fine-
tuning data using the acceptability model from

Wiegreffe et al. (2022). This model, trained on
SNLI data, predicts whether a generated expla-
nation is acceptable based on human judgment.
We remove samples with acceptability scores (the
predicted probability for the label ‘‘acceptable’’)
below a 0.3 threshold.

Data Selection For data quality estimation
in label prediction, we adapt two methods
from the literature: (1) ambiguous: Following
Swayamdipta et al. (2020), we select samples with
high ambiguity, which has been shown to improve
OOD generalization. Ambiguity is measured as
the distance between an instance’s predicted label
probability and the mean of all predicted label
probabilities using the pre-fine-tuning model (de-
tails in Appendix A.2). (2) FastVote-k (Su et al.,
2022): A graph-based method to select diverse and
representative samples. We use the recommended
k = 150.

With the combined two steps (data filtering
+ selection), we denote the sample methods as
accept-ambiguous and accept-FastVote-k.

3.3 Fine-tuning on Source Datasets

For fine-tuning T5-Large, we use the standard NLI
template (Marasovic et al., 2022), which has been
shown to give the best results for e-SNLI dataset
with T5. The encoder and decoder prompts are:

Input: explain nli hypothesis: [hypothesis]
premise: [premise]
Output: [label] ‘‘explanation: ’’ [explanation]

For fine-tuning OLMo-7B, as the model is rela-
tively large, we choose parameter-efficient tuning
with LoRA (Hu et al., 2022) using the following
instruction (Zarharan et al., 2024). The response is
in a JSON format to facilitate extraction of labels
and explanations:

### Premise: [premise] Hypothesis: [hypothesis]
### Response: {‘‘relationship’’: [label], ‘‘explana-
tion’’: [explanation]}

For the number of shots, we compare 1, 2, 4, 8,
16, 32, 64, and 128 shots. To ensure robustness,
we create five subsets from each source dataset,
with 5,000 randomly selected samples per subset
(with no overlap between subsets). We apply the
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sample selection methods from Section 3.2 to
each subset and report the average results (see
Appendix A.2 for additional fine-tuning details).
In total, we fine-tuned 402 T5 models and 302
OLMo models.2

Baselines We compare the few-shot fine-tuned
models with two full-set fine-tuned models on
e-SNLI and e-FEVER, respectively. In addition,
we include the random sample selection baseline
to compare few-shot sample selection methods.

4 OOD Generation and Evaluation

This section introduces part (b) of the pipeline in
Figure 1. For all fine-tuned models, we perform
inference on all OOD datasets.

4.1 Out-of-Distribution Datasets

For a comprehensive evaluation, we collect da-
tasets that resemble the NLI task and divide
them into three categories: NLI, Fact-checking
(FC), and Hallucination Detection of Abstractive
Summarization (HDAS). Table 1 lists the OOD
datasets used (see Appendix A.1 for dataset details
and pre-processing). To ensure no data contam-
ination in our OOD evaluation, we specifically
excluded datasets used for supervised fine-tuning
of T5 (Raffel et al., 2020). OLMo model was
pre-trained on the Dolma (Soldaini et al., 2024)
corpus, which contains data from diverse sources
but is not fine-tuned with curated NLI datasets.

NLI NLI datasets access models’ ability to infer
relationships between sentences, with challenges
ranging from compositional meaning (Marelli
et al., 2014), adjective-noun composition (Pavlick
and Callison-Burch, 2016), common-sense infer-
ence (Zhang et al., 2017), to multiple premise
entailment (Lai et al., 2017). DNC (Poliak et al.,
2018a) expands the challenge by incorporating
diverse semantic phenomena into the NLI format.
HANS (McCoy et al., 2019) and WNLI (Wang
et al., 2019a) are two adversarial datasets designed
to reveal models’ underlying heuristic biases. Glue
Diagnostics (Wang et al., 2019a) and ConjNLI
(Saha et al., 2020) further diversify the NLI task,
testing models against a wide array of linguistic
challenges and over conjunctive sentences.

2For T5: 2 source datasets ×5 subsets ×8#shots ×5 sam-
pling methods +2 full-shot models. For OLMo, we discard 1
and 2 shots as our primary results show that models fail to
learn with too few examples.

FC FC datasets aim to evaluate the verac-
ity of claims against evidence from various
sources and topics, including fact-checking plat-
forms (Hanselowski et al., 2019), scientific articles
(Wadden et al., 2020), Wikipedia (Schuster et al.,
2021; Eisenschlos et al., 2021), and informa-
tion related to climate change and COVID-19
(Diggelmann et al., 2020; Saakyan et al., 2021).
These datasets require models to evaluate the
truthfulness of claims in real-world scenarios
from very different domains. To avoid error
propagation, we use gold evidence for all FC
datasets.

HDAS HDAS datasets encompass a variety of
model-generated summaries, reflecting the evolv-
ing landscape of automatic text generation and
its implications for information integrity. FactCC
(Kryscinski et al., 2020) challenges models to
identify inaccuracies in summaries generated
through five rule-based transformations. QAGS
CNN and QAGS XSUM (Wang et al., 2020), de-
rived from CNN/DailyMail and XSUM datasets,
consist of summaries generated by the BART
model (Lewis et al., 2020). XSUM Hallucination
(Maynez et al., 2020) contains factuality annotated
summaries generated by seven models.

In comparison, the three tasks vary in objec-
tive, domain, and text length. NLI targets logical
relationships between sentences, requiring mod-
els to handle linguistic subtleties and logic-based
reasoning in a controlled textual context. FC
focuses on real-world applicability, requiring
external information and complex reasoning be-
tween sentences and documents. HDAS addresses
the problems of automatic document summariza-
tion. Regarding text length, FC datasets typically
have longer premises than NLI, with HDAS hav-
ing the longest. Together, these datasets present a
challenging NLI-related OOD scenario.

4.2 Inference on OOD Datasets

During OOD inference, fine-tuned models may
not generate a label and explanation following the
output template. To address this, for T5 models,
we take the first token to represent the predicted
label. For datasets that only include two classes
(‘‘entailment’’ and ‘‘non-entailment’’), we merge
the ‘‘contradiction’’ and ‘‘neutral’’ labels into
the ‘‘non-entailment’’ label (see more details on
label extraction in Appendix A.3). We detect
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Figure 2: Average Macro F1 score across different number of shots and sample selection methods. Each point is
the average of all 19 OOD datasets, and 5 models from the 5 subsets.

explanations by searching for the pattern ‘‘ex-
planation: ’’ and, if absent, treat all text after the
first word as the explanation. For OLMo mod-
els, as we instruction-tuned the model to generate
a JSON-formatted output, we extract the labels
and explanations by finding their keys and if not
found, we set both to be none.

5 Results and Analysis

This section begins with OOD label prediction
results. We then evaluate explanations through
human judgments and analyze their correlation
with reference-free metrics. Next, we report ex-
planation evaluation results across all datasets
using the most correlated metric. Finally, we pres-
ent the overall performance of each OOD data-
set on the best-performing models.

5.1 OOD Performance on Label Prediction

We compare the OOD label prediction perfor-
mance of fine-tuned T5-Large and OLMo-7B
models on two source datasets, considering var-
ious sample selection methods and number of
shots, as shown in Figure 2. Label prediction per-
formance is measured using the Macro F1 score.

T5 vs. OLMo: As shown in Figure 2, T5 and
OLMo models exhibit distinct trends in label
prediction performance as the number of shots in-
creases. OLMo starts with low performance, im-
proving almost monotonically with more shots.
T5, however, shows less variation, starting with
slightly higher performance and then reaching
levels similar to full-shot models. This difference
may be because of T5’s pre-training on NLI da-
tasets (MNLI, QNLI, RTE, CB), allowing it to
handle NLI tasks effectively without much benefit
from additional fine-tuning (see detailed discus-
sion in Section 6.1). This is further indicted by the
results: T5 full-shot fine-tuning with both source
datasets have similar F1 scores, and neither yields
better results than their best few-shot counterparts.

e-SNLI vs. e-FEVER: Overall, e-FEVER mod-
els achieve better average OOD F1 scores than
e-SNLI, and the OLMo model fine-tuned on
e-FEVER full-shot has the highest OOD F1 score.
For e-SNLI, T5 and OLMo models reach similar
performances at 128 shots, but the trends are the
opposite. For e-FEVER, the performance of T5
models tends to stabilize after only 2-shots, while
the performance of OLMo models continues to
increase and eventually surpass T5 models.
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Acronym Source Model #Shots Selection

TFev
64,AFk e-FEVER T5 64 accept-FastVote-k

TFev
128,R e-FEVER T5 128 random

TFev
128,Fk e-FEVER T5 128 FastVote-k

TFev
128,AFk e-FEVER T5 128 accept-FastVote-k

TFev
Full e-FEVER T5 Full –

TSn
64,Fk e-SNLI T5 64 FastVote-k

TSn
64,AFk e-SNLI T5 64 accept-FastVote-k

TSn
Full e-SNLI T5 Full –

OFev
16,AFk e-FEVER OLMo 16 accept-FastVote-k

OFev
128,AFk e-FEVER OLMo 128 accept-FastVote-k

OFev
Full e-FEVER OLMo Full –

OSn
128,AFk e-SNLI OLMo 128 accept-FastVote-k

OSn
Full e-SNLI OLMo Full –

Table 2: Selected models for human evaluation for
the models T5 and OLMo. The left most column
shows the acronym of the models, which will be
used throughout the rest of the paper.

Sample Selection As depicted in Figure 2, no
sample selection method consistently outperforms
others in label prediction. For T5 models, se-
lection methods perform similarly, especially in
e-SNLI; although ‘‘accept-ambiguous’’ method is
slightly better in e-FEVER. For OLMo models,
‘‘FastVote-k’’ excels in e-SNLI, while ‘‘ran-
dom selection’’ achieves slightly higher scores
than others in e-FEVER (after 32 shots), nearly
matching full-shot performance. Surprisingly,
‘‘FastVote-k’’ and ‘‘ambiguous’’ do not surpass
the random baseline, possibly due to outliers and
training instability when using small numbers of
samples (Karamcheti et al., 2021; Su et al., 2022).

5.2 OOD Explanation Quality Evaluation

We evaluate the generated explanations using both
human evaluation and reference-free automatic
metrics, and analyze the correlation between them.

5.2.1 Human Evaluation Setup
Conducting a human study is challenging
due to the extensive number of models and
OOD datasets. Thus, we select three OOD
datasets (SICK, VitaminC, XSUM Hallucination)
representing NLI, FC, and HDAS, respectively.
To study the impact of fine-tuning factors on
OOD explanations, we select models that dem-
onstrated high and comparable F1 scores aver-
aged across the three OOD datasets (see Figure 6
in Appendix B with the selected models high-
lighted). Table 2 lists the 13 selected mode de-

tails, with first column provides models’ acronyms
for across reference later (examples of generated
explanations by the selected models can be found
in Tables 7, 8 and 9 in Appendix A.6). We use
the Prolific platform for recruiting workers, and
the open-source POTATO annotation tool (Pei
et al., 2022) for the evaluation interface.

For instance selection, following Marasovic
et al. (2022), we shuffle each dataset and select
the first 15 correctly predicted instances per class
and model. This results in 1,560 instances, includ-
ing those with identical hypothesis-premise pairs
but different model-generated explanations. Each
instance is evaluated by three different workers,
and each worker evaluates 10 instances, requir-
ing in total 468 crowd-workers. Evaluators are
shown the hypothesis-premise pair, the gold label,
and the generated explanation. Their task is to
answer two questions (see the evaluation page in
Figure 5 of Appendix A.4).

• Given the Hypothesis and Premise, does the
Explanation justify the given Relationship
(Single-selection)? Options: Yes, Weakly Yes,
Weakly No, and No.

• What are the shortcomings of the Explanation
(Multi-selection)? Options: Does not make
sense, Insufficient justification, Irrelevant to
the task, Too trivial (only repeating one of
the sentences), Contains hallucinated content
(not present the premise), and None (only if
the previous answer is Yes).

We calculate the average score for each in-
stance from 3 evaluators by assigning the weight
to the selected answers as follows (Marasovic
et al., 2022; Yordanov et al., 2022): Yes: 1, Weakly
Yes: 2/3, Weakly No: 1/3 and No: 0.

5.2.2 Evaluation with Reference-free Metrics

Originally designed for filtering GPT-3 generated
NLI explanations, we propose to use the Ac-
ceptability score3 (Wiegreffe et al., 2022) as a
reference-free metric for explanation evaluation.
We choose the largest size of the model variance:
T5-11B, which assigns a score between 0 and 1.

3In this paper, when mentioning the acceptability filter
(T5-Large), we start with lowercase ‘‘a’’, and the Accept-
ability metric (T5-11B) capital ‘‘A’’.
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Dataset Auto-J TigerScore Themis Accept.

SICK −0.011 −0.220 0.400 0.466
VitaminC 0.163 −0.263 0.394 0.469
XSUM H. 0.223 −0.216 0.326 0.475

All 0.123 −0.219 0.387 0.484

Table 3: Spearman’s correlation between human
scores and automatic scores in different OOD da-
tasets. All correlation coefficients are significant
with ρ < 0.001, except for Auto-J on SICK.

We compare the metric against state-of-the-art
NLG reference-free evaluation metrics:

• Auto-J (Li et al., 2024a): trained with
LLaMA-2-13B-chat model to evaluate LLM-
generated responses. The metric generates
an explanation for its judgment and a final
integer rating from 1 to 10.

• TigerScore (Jiang et al., 2023): trained
with LLaMA-2 on MetricInstruct dataset.
We choose the larger size of the metric:
TIGERScore-13B. It generates a breakdown
error analysis and a final error score from 0
to -infinity (the smaller, the better).

• Themis (Hu et al., 2024): trained with Llama-
3-8B based on their constructed dataset
NLG-Eval. It offers flexible aspect-based
evaluations across different tasks. We tested
three aspects–relevance, coherence, and con-
sistency–and selected relevance due to its
highest correlation with human judgments.
The metric outputs an evaluation analysis
and provides a scale rating from 1 to 5.

For all reference-free metrics, we calculate
the scores for all samples in the datasets, given
ground truth inputs (hypothesis, premise, and gold
label). Appendix A.5 presents the instructions of
the evaluation models.

5.2.3 Correlation between Human
Evaluation and Automatic
Evaluation Metrics

Table 3 shows the Spearman’s correlation4 be-
tween human and reference-free metrics for the
three OOD datasets. The Acceptability score (T5-
11B) has the highest correlation with human eval-

4Unlike Spearman, Pearson correlation assumes variables
to be continuous and from a normal distribution.

Model Human Themis Accept. (3) Accept. (19)
TFev
64,AFk 0.631 2.058 0.317 0.250

TFev
128,R 0.623 1.983 0.276 0.206

TFev
128,Fk 0.589 1.867 0.216 0.201

TFev
128,AFk 0.611 2.092 0.328 0.256

TFev
Full 0.653 1.958 0.309 0.191

TSn
64,Fk 0.621 2.133 0.369 0.259

TSn
64,AFk 0.679 2.367 0.418 0.281

TSn
Full 0.678 2.050 0.519 0.343

OFev
16,AFk 0.631 2.417 0.423 0.305

OFev
128,AFk 0.639 2.250 0.384 0.307

OFev
Full 0.656 1.917 0.311 0.219

OSn
128,AFk 0.643 2.300 0.491 0.303

OSn
Full 0.408 1.208 0.194 0.111

Table 4: Evaluation results on OOD datasets of
the 13 selected models. 3 means on the three
selected datasets, 19 means all datasets. Models
are grouped by base models and source datasets.

uation for all datasets, followed by Themis, and
Auto-J has the lowest. The highest correlations in
all three datasets demonstrate the usability of the
Acceptability score as a reference-free metric for
the explanation evaluation of NLI-related tasks.

5.2.4 Evaluation Results on Selected
Models and Instances

The average scores of human evaluations in the
three OOD datasets are shown in Table 10 in
Appendix B. The scores show that SICK has the
highest explanation scores, with VitaminC slightly
lower than SICK, and XSUM Hallucination the
lowest, agreed by humans and two automatic
metrics. This may be due to the extremely long
premise/document in the XSUM dataset, making
it difficult for the model to generate good expla-
nations. For shortcomings of explanations, see the
detailed results in Figure 7 in Appendix B).

Table 4 shows the evaluation results on the 13
selected models. We include Acceptability and
Themis scores as they have moderate correlations
with humans. In addition, we show the average
Acceptability score on all 19 datasets for overall
results. In comparison with Table 3, the Accept-
ability scores in general agree with Humans when
the differences between models are large, although
the highest scores are not always agreed by all met-
rics. We discuss the evaluation results regarding
each factor in the following.

T5 vs OLMo Table 4 shows that the difference
between the two base models is most pronounced
with e-SNLI full-shot. T5 fine-tuned on full shot
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e-SNLI (TSn
Full) provides the best explanations

(besides TSn
64,AFk), whereas OLMo on full-shot

e-SNLI (OSn
Full) generates the worst explanations.

This may be due to catastrophic forgetting (Luo
et al., 2023) in the OLMo model when fine-tuned
on too many e-SNLI samples, causing the model’s
reduced OOD generalization ability.

e-SNLI vs e-FEVER Most e-SNLI models
achieved higher scores than e-FEVER in expla-
nation quality (under the same model type and
number of shots), except for OLMO full-shot.
This could be attributed to the higher quality of
explanations in the e-SNLI source dataset, while
e-FEVER explanations are generated by GPT-3
(see more detailed comparison in Section 6.2).

Few vs Full Overall, few-shot models achieved
similar human scores to their full-shot counter-
parts, except for the OLMo full-shot e-SNLI
model. Although full-shot models showed slightly
higher human scores, reference-free metrics fa-
vored the explanations generated by few-shot
models, particularly for e-FEVER models.

Sample Selection As shown in Table 4, us-
ing the acceptability filter (‘‘accept-FastVote-k’’)
improves explanation quality compared with
the same sample selection without the filter
(‘‘FastVote-k’’); however, TFev

128,AFk is not better
than random selection (TFev

128,R) according to hu-
mans. Nevertheless, based on the scores from the
two reference-free metrics, using the acceptability
filter improves generated explanation quality (see
more detailed discussion in Section 6.2).

5.3 Self-Rationalization in the Wild: Overall
OOD Performance

A good self-rationalization model should perform
well both on label prediction and explanation gen-
eration. Thus, we first evaluate the generated ex-
planations from a large number of models using
the Acceptability score (for all instances, we use
the gold labels for calculating the Acceptability
score). Due to computational constraints, we limit
the number of shots to 4, 16, 64, 128, and full, with
data selected from the first subset (the Acceptabil-
ity scores across different number of shots and
sample selections can be found in Figure 8 of
Appendix B). We then show models’ overall per-
formance considering both the F1 and Acceptabil-
ity score. Finally, we select the best-performing

models to demonstrate overall performance on
the 19 OOD datasets.

5.3.1 Relationship between Label Prediction
Performance and Explanation Quality

Figure 3 shows the distribution of models un-
der different fine-tuning factors, with the x-axis
showing the Acceptability score and the y-axis
the macro F1 score (scores are averaged over all
datasets). We select the best models based on the
Pareto fronts.5

As depicted in Figure 3, higher Acceptability
scores are usually associated with better F1 scores.
Regarding each factor, we see that 1) OLMo mod-
els’ OOD performances are less stable than T5
models’ but achieve better results with higher
numbers of shots; 2) Sample selection methods
with the acceptability filter have higher Accept-
ability scores; 3) Comparing the source datasets,
fine-tuning on e-SNLI in general achieve higher
Acceptability scores while on e-FEVER yield bet-
ter F1 scores (see more discussions on the impact
of each factor in Section 6).

Regarding the best-performing models that con-
sider both labels and explanations, two models
are selected based on the Pareto front: OFev

128,AFk

(OLMo, 128 shots, accept-Fastvote-k, e-FEVER)
and TSn

Full (T5, full-shot, e-SNLI). The first
achieves the highest F1 score, while the second
has the best Acceptability score, with both models
performing competitively on the other metric.

5.3.2 Performance on the 19 OOD Datasets

Table 5 shows the F1 score and Acceptability
score on the best models across each OOD dataset
(state-of-the-art results on each dataset can be
found in Table 11 of Appendix B). As a compar-
ison, we also include two other models with the
same configurations as the best models but trained
on a different source dataset: TFev

Full and OSn
128,AFk.

Table 5 shows that the OFev
128,AFk model achieves

the highest F1 score on most OOD datasets, though
its Acceptability score is slightly lower than that
of the TSn

Full model. When comparing e-SNLI and
e-FEVER fine-tuned models, e-FEVER models
generally perform better in F1 scores on FC and
HDAS datasets, with OFev

128,AFk scoring about 10
percentile higher on average for FC (slightly less)

5For each point if no other point is strictly higher in both
scores, the point is part of the Pareto front (Ben-Tal, 1980).
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Figure 3: Distribution of models under different fine-tuning factors, with the x-axis showing the Acceptability
score, and the y-axis the macro F1 score (scores are averaged over all datasets). The dashed lines are the estimated
linear trends of the Acceptability score and macro F1 score.

and HDAS (slightly more). In terms of explanation
generation, OLMo-based models exhibit better
performance. Even on e-FEVER, OLMo achieves
competitive scores across most OOD datasets,
whereas the T5 model fine-tuned on e-FEVER
(TFev

Full) produces the worst explanations, except
for the HDAS task (this might also be due to the
number of shots difference, as fine-tuned on more
number of shots with e-FEVER do not always
lead to better explanations). Finally, the Accept-
ability scores show a decreasing trend from NLI
to HDAS tasks, consistent with previous human
evaluation results (see Table 10 in Appendix B),
where datasets with longer premises generally
resulted in lower Acceptability scores.

6 Discussion

This section discusses possible reasons for our ear-
lier findings, focusing on how fine-tuning data and
model influence label prediction and explanation
generation. We also examine the link between

label prediction performance and Acceptability
scores across the three OOD tasks.

6.1 Impact of Fine-Tuning Dataset and Base
Model on OOD Label Prediction

Source Dataset To understand why models
fine-tuned on the e-FEVER outperform e-SNLI
on average OOD label prediction, we show the
F1 score per class for both ID (in-distribution)
and OOD test datasets (including cross-source
and nine OOD three-label datasets) in Table 12
in Appendix B, based on OSn

128,AFk and OFev
128,AFk

models. OSn
128,AFk (e-SNLI) model has a better

ID performance (0.86) but generalizes poorly to
OOD (0.54), whereas OFev

128,AFk (e-FEVER) model
has a worse ID (0.69) but better OOD perfor-
mance (0.59). For both source datasets, models
perform better on e-SNLI test set, indicating
that e-FEVER is harder to learn. In addition,
fine-tuning on e-FEVER improved performance
on classes ‘‘Neural (NEI)’’ and ‘‘Entailment
(Supports)’’.
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Macro F1 score Acceptability score
Dataset TSn

Full TFev
Full OSn

128,AFk OFev
128,AFk TSn

Full TFev
Full OSn

128,AFk OFev
128,AFk

SICK 58.5 78.8 55.4 65.1 53.0 18.5 47.5 40.2
AddOneRTE 72.3 75.6 65.0 72.0 44.5 9.3 44.9 39.4
JOCI 52.5 41.8 49.2 53.7 51.9 12.4 43.6 41.6
MPE 68.7 37.7 62.4 60.7 49.8 6.4 45.8 39.2
DNC 60.1 66.9 53.4 58.5 35.1 10.0 25.8 32.8
HANS 58.2 43.3 51.7 65.9 38.6 27.6 24.0 27.8
WNLI 35.0 32.4 42.1 55.1 29.9 22.7 31.7 28.0
Glue Diagnostics 57.9 59.3 57.7 61.3 47.9 29.0 42.7 41.9
Conj 62.6 65.4 58.1 56.9 48.7 30.4 41.4 38.7
Snopes Stance 36.8 44.1 45.7 58.4 20.1 9.9 18.1 20.1
SciFACT 60.7 62.5 56.2 70.0 25.7 17.6 22.5 25.8
Climate FEVER 46.9 47.5 42.4 51.3 20.9 12.8 18.4 20.8
VitaminC 55.8 58.8 55.3 56.5 40.3 29.8 39.2 37.2
COVID-Fact 63.3 65.9 55.3 69.8 28.1 12.2 19.8 23.5
FM2 70.2 71.7 76.0 79.3 38.4 24.1 39.0 38.1
FactCC 56.4 59.6 56.0 65.2 16.8 27.6 19.1 24.6
QAGS CNN 51.8 59.3 60.0 72.5 20.2 26.4 19.0 25.8
QAGS XSUM 55.0 59.3 61.4 72.6 24.0 15.9 19.0 23.0
XSUM H. 47.9 50.4 55.8 56.9 17.3 11.6 17.6 15.1
Avg NLI 58.4 55.7 55.0 61.0 44.4 18.5 38.6 36.6
Avg FC 55.6 58.4 55.2 64.2 28.9 17.7 26.2 27.6
Avg HDAS 52.8 57.1 58.3 66.8 19.6 22.4 17.9 22.1
Avg All 56.3 56.9 55.7 63.2 34.3 19.1 30.3 30.7

Table 5: Macro F1 and Acceptability Scores on each OOD Dataset on the best models (OFev
128,AFk and

TSn
Full) and the different source dataset counterpart (TFev

Full and OSn
128,AFk). The best score is bold, and

second-best is underlined.

Base Model We observed that T5 models exhibit
more stable OOD label prediction performance
than OLMo. We hypothesize this is due to: (1)
T5 was fine-tuned for the supervised text-to-
text language modeling objective (Raffel et al.,
2020) including NLI datasets, and FC and HDAS
are relatively similar tasks. Formatting claims
(or summaries) and evidence (or documents) as
hypothesis-premise pairs allows T5 to perform
relatively well in few-shot settings. However,
T5 showed minimal improvement with additional
fine-tuning data (e.g., e-SNLI). In contrast, OLMo
models started with low performance but even-
tually surpassed T5 as fine-tuning samples in-
creased. (2) The T5 fine-tuning prompt aligns
with its original NLI training format, requiring
no adaptation. Conversely, OLMo struggled with
learning from a few samples due to output format-
ting issues, expecting JSON with specific keys for
labels and explanations.

Source
Input Source ID OOD ID OOD

Length Accept. Accept. Accept. F1 F1

e-SNLI 38 0.671 0.565 0.262 82.8 54.3
e-FEVER 118 0.394 0.367 0.263 58.9 59.9

Table 6: Performance comparison across the two
source datasets.

6.2 Impact of Fine-tuning Data on OOD
Explanation Quality

Source Dataset Models fine-tuned on e-SNLI
generally have higher OOD Acceptability scores
given similar F1 scores. To understand the effect
of fine-tuning data on OOD explanations, Table 6
compares the two source datasets based on input
length (hypothesis, premise, and explanations),
average Acceptability scores of the original data
(128 shots), and Acceptability and F1 scores for ID
and OOD test sets. The results, based on OSn

128,AFk
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Figure 4: Distribution of label prediction accuracy (balanced) across different Acceptability score ranges. The left
y-axis shows the balanced accuracy of samples from that Acceptability score range, and the right y-axis shows the
percentage of samples in that range.

and OFev
128,AFk, show that the input length has a

large impact on the ID Acceptability score, but
the impact on OOD is minor (probably due to the
various OOD input length). Despite lower OOD
F1 scores, the OSn

128,AFk (e-SNLI) model achieves
similar OOD Acceptability scores to OFev

128,AFk

(e-FEVER) model. This could be because part of
the SNLI dataset was used to train the Accept-
ability model. Nevertheless, Acceptability score
is more impacted by models’ label prediction
performance, as reflected by the F1 scores.

Data Filtering Our acceptability-based (T5-
Large) filtering model had only slight impacts
on label prediction but improved explanation
quality, according to the Acceptability score. One
hypothesis is that since the Acceptability score
metric (T5-11b) is a larger version of the filter
model (only differing in size), the metric may favor
explanations generated from models fine-tuned
on acceptability-filtered samples. To investi-
gate this, we conducted an experiment using the
Themis metric as the filter for selecting samples
(called ‘‘Themis-FastVote-k’’), filtering out sam-
ples with ratings below 3 (on a 1–5 scale). The
experiment is based on the OLMo best model
(OFev

128,AFk), and the results are shown in Table 13
in Appendix B. The Acceptability score with
‘‘Themis-FastVote-k’’(0.303) is similar to
‘‘accept-FastVote-k’’(0.307), despite having a
lower F1 score. This suggests that using the ac-
ceptability filter does not cause the Acceptability

metric to overestimate explanations generated
from the filtered data.

6.3 Relationship between Label Prediction
Performance and Acceptability Score

In Figure 3, we observed a positive correlation
between F1 and Acceptability scores across mod-
els. We analyze on the best e-SNLI and e-FEVER
models to further explore the relationship between
label prediction performance and the Accept-
ability score within a model. We calculated the
average balanced accuracy (used instead of F1 to
account for varying class counts across datasets)
for each task within different Acceptability score
ranges, shown in Figure 4. Among the three tasks,
most HDAS samples have Acceptability scores be-
low 0.3, while FC and NLI samples are distributed
more evenly, indicating lower explanation quality
in HDAS. When comparing source datasets, the
e-SNLI model shows a steeper accuracy curve,
suggesting that lower Acceptability scores often
correspond to incorrect predictions of the model.
In both models, the Acceptability score is pos-
itively linked to label prediction performance,
especially in the lower score ranges (below 0.6).

7 Conclusion

This work investigated self-rationalization mod-
els’ ability to generalize to NLI-related OOD tasks
through the evaluation on 19 diverse datasets.
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We achieve this by fine-tuning T5-large and
OLMo-7B under different configurations (vary-
ing fine-tuning dataset source, size, and instance
selection strategies) to study the impact of data
size and quality on OOD task performance and
explanation quality. We also examined the Ac-
ceptability score as a reference-free metric for
the generated explanation evaluation through a
human evaluation. Through the study, we gained
some important insights: i) fine-tuning a model on
few-shot examples can perform surprisingly well
in OOD datasets compared to fine-tuning on a
large full-size dataset; ii) fine-tuning data source,
compared to sample selection, has a larger impact
on OOD performance; iii) Acceptability score
is positively related to models label prediction
performance.

Limitations and Future Work

We found that different sample selection methods
had a minor impact on OOD label prediction per-
formance, but this conclusion may not generalize
to other selection methods. Our fine-tuned models
were selected based on in-distribution (ID) vali-
dation sets (for T5-Large), which may limit their
OOD performance, as ID and OOD performance
are not always correlated. Since our OOD data-
sets are sourced from English-only data, this study
is limited to English. Finally, with up to 128 shots,
we observed performance similar to or better than
full-shot models, though increasing the number
of shots may yield further improvements.

Future work could explore why certain OOD
datasets perform well with some models while
others fail. This investigation requires a deeper
understanding of distribution shifts and causality,
including similarities in topics, text structure, or
labeling schemes between fine-tuning and OOD
datasets. Future work could also explore ensem-
ble learning with multiple few-shot models that
may surpass full-shot fine-tuning. Another poten-
tial direction is to evaluate models’ capability to
generalize to multilingual OOD datasets.
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A Category 1: Additional Details

A.1 Data Pre-processing

For the following datasets, we applied pre-
processing as defined below:

e-FEVER We filter out incorrect explanations
from e-FEVER based on the following rules
(around 14% of samples are removed from the
training set):

• The explanation is: ‘‘The relevant infor-
mation about the claim is lacking in the
context.’’ but the label is not NEI (NOT
ENOUGH INFO).

• The explanation repeats the claim, and the
label is not SUPPORTS.

AddOneRTE (Pavlick and Callison-Burch,
2016) We convert the mean human scores into
two classes entailed (when the score is no less
than 4) and not entailment (when the score is
no greater than 3, anything between 3 and 4
are removed), following the literature convention
(Karimi Mahabadi et al., 2020).

Ordinal Common-sense Inference (JOCI)
(Zhang et al., 2017) We follow Karimi Mahabadi
et al. (2020) by mapping the labels very likely to
entailment; likely, plausible and technically pos-
sible to neutral; and impossible to contradiction.

Multiple Premise Entailment (MPE) (Lai et al.,
2017) We concatenate the premise sentences
together to form one premise paragraph.

SciFact (Wadden et al., 2020) The dataset does
not have public available labels for test set, thus
we use the dev set. We do not perform evidence
retrieval and use the cited document abstracts as
evidence.
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Climate FEVER (Diggelmann et al., 2020) We
use the paragraph-level evidence labels.

FactCC (Kryscinski et al., 2020) We map
label factual as entailment and non-factual to
not entailment.

QAGS CNN (Wang et al., 2020) We aggregate
with majority voting from the provided human
annotations.

QAGS XSUM (Wang et al., 2020) We ag-
gregate with majority voting from the provided
human annotations.

XSUM Hallucination (Maynez et al., 2020)
We aggregate with majority voting from the pro-
vided human annotations.

A.2 Ambiguous Sample Selection Method

We input the (hi, pi) to the T5-large model, and
take the probability of the first most likely output
token, since the first token represent the classifi-
cation label. We denote the probability as pi. To
select ambiguous samples, we calculate a mean
probability score pmean as follows:

pmean = (pmax + pmin)/2 (1)

where pmax and pmin represents the highest and
lowest probability score among all sample scores
respectively. Then we re-calculate the score based
on its absolute distance with pmean:

p′i = |(pi − pmean)| (2)

with the absolute distance, we re-rank the samples
from low to high to select the most ambigu-
ous ones. The lowest value represents the most
ambiguous sample and the highest the least
ambiguous.

A.3 Additional Implementation Details

For T5-Large model fine-tuning, we perform a
hyper-parameter search over the learning rate for
each number of shots for each source dataset
separately, with random sample selection from
the first subset. We select the learning rate based
on the highest performance on the in-distribution
validation set within 50 epochs. The performance
is based on the summation of label accuracy and

explanation BERTscore (Zhang et al., 2020). The
same hyper-parameters are used for all sample
selection methods, which share the same m and
source dataset for fine-tuning. To calculate the
labels’ accuracy and explanations’ BERTscore,
we divide the output sequence into the label and
explanation. With the template format, T5 learns
to generate a text label, followed by a separation
pattern, ‘‘explanation:’’, and then the explanation
tokens. Thus, we take the token before the sep-
aration pattern as the text label and after as the
explanation. During hyper-parameter search, we
test these learning rates: 3e-7, 3e-6, 3e-5, and 3e-4.
For the validation set in fine-tuning, we randomly
select 300 samples in the original validation set
as the in-distribution set, as the original one is
too large; thus, validation takes much longer. We
follow the same settings as FEB (Marasovic et al.,
2022) for the validation instances; for the ones
with more than one explanation annotated, we
merge them into one sequence separated by [SEP]
token.

For OLMo-7B fine-tuning with LoRA, we fol-
low recommended hyperparameters studied in
Zarharan et al. (2024): LoRA r and alpha values
are both 16, the learning rate is 2e-4, and the opti-
mizer is ‘‘paged adamw 32bit’’. We fine-tune all
few-shot models with 50 epochs and use the mod-
els from the last epoch. For full-shot fine-tuning,
the number of epochs is ten instead of 50.

The sentence-transformer model used in em-
bedding the input for the Fast-Vote-k method is
paraphrase-mpnet-base-v2.

In inference, for label mapping of T5 models,
we focus on probabilities of tokens corresponding
to our target labels: ‘‘entailment’’, ‘‘contradic-
tion’’, ‘‘neutral’’, disregarding others (except for
‘‘entailment’’, as this word contains three-word
tokens: ‘‘en’’, ‘‘tail’’ and ‘‘ment’’, we take the
token number of ‘‘en’’). The label is then de-
termined based on the highest probability among
these three tokens.

A.4 Human Evaluation Interface

The evaluation interface is shown in Figure 5,
including the task instruction, some examples, and
the evaluation page. To select eligible participants,
our screening requires participants to have at least
an undergraduate degree, and primary language
as English, with an approval rate above 99%. For
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Figure 5: Screenshots of human evaluation interface.
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high-quality evaluation, we inserted 2 attentions
questions to filter out low-quality evaluations (an
evaluation is rejected if the worker failed on both
attention checks, or failed on one and contains
invalid answers through our manual checking).

A.5 Input Template for Explanation
Evaluation with the
Reference-free Metrics

• Acceptability Score

premise: [premise] hypothesis: [hypothesis]
answer: [gold label] explanation: [explanation]

• TigerScore and Auto-J

Given a hypothesis and its premise, please explain
why the hypothesis is entailment, neutral, or con-
tradiction.
Hypothesis: [hypothesis], Premise: [premise].
Please explain why the hypothesis is [gold label].

• Themis (relevance aspect, input in JSON
format)

{‘‘task’’: ‘‘Controllable Generation’’, ‘‘aspect’’:
‘‘Coherence: Given the explanation for the re-
lationship between the hypothesis and premise
pair, how much does the generated explana-
tion make sense?’’, ‘‘source des’’: ‘‘Hypothesis
and Premise Pair’’, ‘‘source’’: ‘‘Hypothesis: [hy-
pothesis], Premise: [premise], please explain why
the Hypothesis is [gold label].’’, ‘‘target des’‘:
‘‘Explanation’’, ‘‘target’’: [explanation]}

A.6 Generated Explanations by Different
Models and Their Evaluation Scores

Hypothesis (contradiction)
A person in a blue jacket is jumping onto a tall cement wall

Premise
The man is performing a large jump

TFev
64,AFk Human: 0.444, Accept.: 0.027

not all men wear a blue jacket.

TFev
128,R Human: 0.556, Accept.: 0.450

A man performing a large jump is not necessarily in a
blue jacket and jumping onto a tall cement wall.

TFev
128,Fk Human: 0.889, Accept.: 0.036

‘‘the relevant information about the claim is lacking in
the context.’’

TFev
128,AFk Human: 1.0, Accept.: 0.494

The man is not necessarily wearing a blue jacket and the
jump is not necessarily onto a tall wall.

TFev
Full Human: 0.222, Accept.: 0.036

‘‘the relevant information about the claim is lacking in
the context.’’

TSn
64,Fk Human: 0.556, Accept.: 0.520

the man is performing a large jump onto a tall cement wall.

TSn
64,AFk Human: 1.0, Accept.: 0.394

the man is performing a large jump onto a tall cement wall
does not indicate that he is in a blue jacket.

TSn
Full Human: 1.0, Accept.: 0.842

a large jump does not imply that the man is jumping onto a
tall cement wall.

OFev
16,AFk Human: 0.778, Accept.: 0.036

‘‘the relevant information about the claim is lacking in
the context.’’

OFev
128,AFk Human: 0.889, Accept.: 0.473

A person in a blue jacket is performing a large jump onto a
tall cement wall

OFev
Full Human: 0.667, Accept.: 0.285

The man is performing a large jump, however it does not
say what kind of jacket he is wearing.

OSn
128,AFk Human: 0.778, Accept.: 0.536

a man in a blue jacket is performing a large jump onto a
tall cement wall.

OSn
Full Human: 0.667, Accept.: 0.805

The man is performing a large jump, but it does not say
whether he is jumping onto a tall cement wall.

Table 7: An example of generated explanations by
the 13 selected models for human evaluation, with
the instance randomly selected from the SICK
dataset (all models have the correct prediction).
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Hypothesis (entailment)
Guns N ’ Roses is an American hard rock band.

Premise
Guns N ’ Roses, often abbreviated as GnR, is an American
hard rock band from Los Angeles formed in 1985.

TFev
64,AFk Human: 0.889, Accept.: 0.588

guns n roses is an american hard rock band.

TFev
128,R Human: 1.0, Accept.: 0.510

guns n’roses is an american hard rock band from
los angeles formed in 1985.

TFev
128,Fk Human: 0.333, Accept.: 0.174

guns n’roses is an american hard rock band, however it
does not say whether it is a rock band.

TFev
128,AFk Human: 0.778, Accept.: 0.527

guns n roses is an american hard rock band from
los angeles formed in 1985.

TFev
Full Human: 1.0, Accept.: 0.556

guns n’roses is an american hard rock band from
los angeles formed in 1985.

TSn
64,Fk Human: 0.778, Accept.: 0.498

the band was formed in 1985.

TSn
64,AFk Human: 0.889, Accept.: 0.573

the band is from Los Angeles and formed in 1985.

TSn
Full Human: 1.0, Accept.: 0.302

guns n’roses is an american hard rock band is a rephrasing
of guns n’roses, often abbreviated as gnr, is an american
hard rock band

OFev
16,AFk Human: 1.0, Accept.: 0.603

Guns N’Roses is an American hard rock band, formed in
Los Angeles in 1985.

OFev
128,AFk Human: 0.889, Accept.: 0.556

Guns N’Roses is an American hard rock band from
Los Angeles formed in 1985.

OFev
Full Human: 1.0, Accept.: 0.556

Guns N’Roses is an American hard rock band from
Los Angeles formed in 1985.

OSn
128,AFk Human: 0.889, Accept.: 0.618

Guns N’Roses is a hard rock band.

OSn
Full Human: 0.111, Accept.: 0.088

Guns is hard to form a hard hard hard hard.

Table 8: An example of generated explanations by
the 13 selected models for human evaluation, with
the instance randomly selected from the VitaminC
dataset (all models have the correct prediction).
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Hypothesis (entailment)
a hospital trust is being investigated by the health watchdog over its finances.

Premise
Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘‘on behalf of patients’’, the NHS
regulator said. Finances became a concern when a planned £7.8m deficit grew, for which Monitor could see no recovery plan. The hospital
blamed the larger-than-anticipated deficit on growth in demand and increased staff recruitment. Hospital chairman Alan Tobias OBE, said:
‘‘The overspend is a result of vital investment in services and more staff to ensure high standards of patient care as well as the rise in
attendances. ‘‘We welcome this review to clearly demonstrate to Monitor - as well as patients and stakeholders - our future financial plans are
both robust and sustainable.’’ The hospital has pledged to cut the deficit while maintaining ‘‘high quality care for local people’’ and said it
was committed to returning to a surplus within three years. Monitor said its investigation will look into the state of the hospital trustś finances,
assess the strength of its financial management and explore ways of improving its sustainability, on behalf of patients across the region. The
investigation will also examine how the trust works with other local health and care organisations to respond to the financial challenges it faces.
Katherine Cawley, regional director at Monitor, said: ‘‘People are relying on Southend to provide them with quality healthcare now and in the
future, and we are concerned that this may be at risk because of the trustś poor financial performance. ‘‘We have launched this investigation to
find out more about the financial situation at the trust and to establish what can be done to improve things.’’

TFev
64,AFk Human: 0.667, Accept.: 0.267

monitor is looking into the financial sustainability of southend university hospital foundation trust ‘‘on behalf of patients’’.

TFev
128,R Human: 0.889, Accept.: 0.276

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘on behalf of patients’.

TFev
128,Fk Human: 1.0, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

TFev
128,AFk Human: 0.889, Accept.: 0.319

a hospital trust is being investigated by monitor over its finances.

TFev
Full Human: 0.889, Accept.: 0.266

monitor is investigating the financial sustainability of southend university hospital foundation trust ‘‘on behalf of patients’’.

TSn
64,Fk Human: 0.778, Accept.: 0.240

the health watchdog is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘‘on behalf of patients’’

TSn
64,AFk Human: 1.0, Accept.: 0.263

monitor is looking into the financial sustainability of southend university hospital foundation trust ‘‘on behalf of patients’’

TSn
Full Human: 0.778, Accept.: 0.219

monitor is the health watchdog.

OFev
16,AFk Human: 1.0, Accept.: 0.262

a hospital trust is being investigated by the health watchdog over its finances.

OFev
128,AFk Human: 1.0, Accept.: 0.302

The hospital trust is being investigated by the health watchdog over its finances.

OFev
Full Human: 0.889, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

OSn
128,AFk Human: 1.0, Accept.: 0.358

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘‘on behalf of patients’’,
‘‘explanation’’:‘‘The hospital trust’s poor financial performance is being investigated by the health watchdog over its finances.

OSn
Full Human: 0.444, Accept.: 0.151

The financial services watch the financial policy of the financial and financial management to the financial services to the financial services.

Table 9: An example of generated explanations by the 13 selected models for human evaluation, with
the instance randomly selected from the XSUM Hallucination dataset (all models have the correct
prediction).
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B Category 2: Complementary Results

Figure 6: F1 scores of the 3 selected OOD datasets (SICK, VitaminC, XSUM Hallucination) on models fine-tuned
with data from the first subset. Models marked with the asterisks are the selected ones for human evaluation
(besides the full-shot models which we all include). We did not consider 1- and 2-shots fine-tuned T5 models on
e-SNLI, as we observed very low quality explanations in those models.
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Figure 7: Distribution of reasons of shortcomings from
by four answers for the question ‘‘Does the expla-
nation justify the answer?’’. The overall explanation
quality is high according to the crowd workers, around
59% instances have ‘‘Yes’’ for the question ‘‘Does
the explanation justify the answer?’’. The most com-
mon shortcoming across all answers is ‘‘Too trivial’’,
followed by ‘‘Insufficient justification’’ and ‘‘Contain
hallucinated content’’.

Dataset Human Themis Accept.

SICK 0.655 2.185 0.437
VitaminC 0.621 2.183 0.363
XSUM H. 0.567 1.633 0.202

All 0.620 2.046 0.350

Table 10: Human scores and automatic scores in
different OOD datasets.

340



Figure 8: Acceptability score across different number of shots and sample selection methods. Selection methods
with ‘‘accept-’’ has highest Acceptability scores for all models on both source datasets.

Dataset TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk MAJ SOTA

SICK 57.1 82.4 53.7 64.2 56.9 90.3 (Chen et al., 2021)
AddOneRTE 88.6 88.4 81.9 85.5 85.3 92.2 (Pavlick and Callison-Burch, 2016)
JOCI 53.6 61.5 47.1 57.9 57.9 62.6 (Poliak et al., 2018b)
MPE 71.0 41.6 65.6 60.2 42.4 70.2 (Karimi Mahabadi et al., 2020)
DNC 60.8 68.3 55.2 62.1 50.3 69.0 (Kim et al., 2019)
HANS 63.7 54.9 59.3 68.6 50.0 79.1 (Wu et al., 2022)
WNLI 45.1 43.7 49.3 56.3 56.3 85.6 (Raffel et al., 2020)
Glue Diagnostics 60.1 61.9 58.2 62.7 41.7 57.0M (Bajaj et al., 2022)
Conj 62.6 66.9 58.3 57.3 45.1 72.7 (Liu et al., 2023)

Snopes Stance 36.6 60.3 45.4 61.1 45.9 59.6F 1 (Hanselowski et al., 2019)
SciFACT 65.3 67.7 54.3 70.0 41.3 91.4F 1 (Wadden et al., 2020)
Climate FEVER 47.9 49.5 43.5 51.3 47.4 75.0 (Wolfe et al., 2024)
VitaminC 59.8 63.0 58.4 61.0 50.1 91.1 (Tay et al., 2022)
COVID-Fact 66.5 74.3 65.1 76.3 68.3 83.5 (Saakyan et al., 2021)
FM2 71.7 73.2 76.6 79.7 50.7 88.5 (Guan et al., 2024)

FactCC 88.3 89.3 68.6 79.1 87.7 91.3BA (Yang et al., 2024)
QAGS CNN 75.6 78.2 62.9 76.8 74.4 81.3 (Honovich et al., 2022)
QAGS XSUM 60.3 62.8 61.5 72.8 51.5 77.4 (Honovich et al., 2022)
XSUM H. 58.9 62.4 82.9 80.0 90.1 66.4BA (Yang et al., 2024)

Table 11: Comparison of accuracy on the 19 OOD datasets with different models. MAJ: majority voting
baseline, SOTA: state-of-the-art, M: Matthews coefficient, F1: F1 score, BA: balanced accuracy.
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Source Test Set E. N. C. A.
e-

SN
L

I ID (Sn) 86.56 79.62 91.76 85.98
OOD (Fev) 78.17 38.65 68.82 61.88
OOD (9) 59.26 49.56 51.97 53.60

e-
FE

V
E

R ID (Fev) 83.22 48.07 76.39 69.23
OOD (Sn) 89.04 78.18 86.63 84.61
OOD (9) 69.17 56.64 52.12 59.31

Table 12: F1 score performance on different test
sets, contrasting the two source datasets. E.: entail-
ment, N.: neutral, C.: contradiction, A.: average
F1 score. Fev: e-FEVER, Sn: e-SNLI.

Selection Accept. Themis F1

Themis-FastVote-k 0.303 3.027 58.24

accept-FastVote-k 0.307 2.774 63.24

Table 13: Evaluation results using Themis as a
filter and as Acceptability a metric (T5-11B), com-
pared to using acceptability as a filter (T5-Large)
and Themis as a metric.
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