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Abstract

Many researchers have reached the conclusion
that ai models should be trained to be aware of
the possibility of variation and disagreement in
human judgments, and evaluated as per their
ability to recognize such variation. The LeWiDi
series of shared tasks on Learning With Dis-
agreements was established to promote this ap-
proach to training and evaluating ai models, by
making suitable datasets more accessible and
by developing evaluation methods. The third
edition of the task builds on this goal by ex-
tending the LeWiDi benchmark to four datasets
spanning paraphrase identification, irony detec-
tion, sarcasm detection, and natural language in-
ference, with labeling schemes that include not
only categorical judgments as in previous edi-
tions, but ordinal judgments as well. Another
novelty is that we adopt two complementary
paradigms to evaluate disagreement-aware sys-
tems: the soft-label approach, in which models
predict population-level distributions of judg-
ments, and the perspectivist approach, in which
models predict the interpretations of individual
annotators. Crucially, we moved beyond stan-
dard metrics such as cross-entropy, and tested
new evaluation metrics for the two paradigms.
The task attracted diverse participation, and
the results provide insights into the strengths
and limitations of methods to modeling varia-
tion. Together, these contributions strengthen
LeWiDi as a framework and provide new re-
sources, benchmarks, and findings to support
the development of disagreement-aware tech-
nologies.

1 Introduction

The assumption that natural language (nl) expres-
sions have a unique and clearly identifiable interpre-
tation has been recognized in ai as just a convenient
idealization for over twenty years (Poesio and Art-
stein, 2005; Versley, 2008; Recasens et al., 2011;
Passonneau et al., 2012; Plank et al., 2014b; Aroyo

and Welty, 2015; Martínez Alonso et al., 2016;
Dumitrache et al., 2019; Pavlick and Kwiatkowski,
2019; Jiang and de Marneffe, 2022). More recently,
the increasing focus in nlp on tasks depending on
subjective judgments (Kenyon-Dean et al., 2018;
Simpson et al., 2019; Cercas Curry et al., 2021;
Leonardelli et al., 2021; Akhtar et al., 2021; Al-
manea and Poesio, 2022; Casola et al., 2024) led to
the realization that in many nlp tasks the traditional
approach to dealing with disagreement of ‘recon-
ciling’ different subjective interpretations is not
tenable. Many ai researchers concluded therefore
that rather than eliminating disagreements from
annotated corpora, we should preserve them (e.g.
Poesio and Artstein, 2005; Aroyo and Welty, 2015;
Kenyon-Dean et al., 2018; Pavlick and Kwiatkowski,
2019; Uma et al., 2021b; Davani et al., 2022; Aber-
crombie et al., 2022; Plank, 2022). As a result, a
number of corpora with these characteristics now
exist, and more are created every year (Plank et al.,
2014a; White et al., 2018; Dumitrache et al., 2019;
Poesio et al., 2019; Nie et al., 2020; Cercas Curry
et al., 2021; Leonardelli et al., 2021; Akhtar et al.,
2021; Almanea and Poesio, 2022; Sachdeva et al.,
2022; Casola et al., 2024; Jang and Frassinelli,
2024; Weber-Genzel et al., 2024). Much recent
research has therefore investigated whether corpora
of this type are also useful resources for training nlp
models, and if so, what is the best way for exploiting
disagreements (Sheng et al., 2008; Beigman Kle-
banov and Beigman, 2009; Rodrigues and Pereira,
2018; Uma et al., 2020; Fornaciari et al., 2021;
Uma et al., 2021b; Davani et al., 2022; Casola et al.,
2023). This research in turn led to questions about
how such models can be evaluated (Basile et al.,
2021; Uma et al., 2021b; Gordon et al., 2021; For-
naciari et al., 2022; Giulianelli et al., 2023; Lo et al.,
2025). A succinct overview of the literature on how
the problem affects data, modeling and evaluation
in nlp is given in Plank (2022), and an extensive



survey can be found in Uma et al. (2021b).
Such research also led to the establishment of

the Learning With Disagreements (LeWiDi) shared
tasks. The first edition, organized at SemEval 2021
Task 12 (Uma et al., 2021a), introduced the idea of
providing a unified testing framework for modeling
disagreement and evaluating systems on such data.
The benchmark combined six widely used corpora
spanning semantic and inference tasks as well as
image classification tasks. While the resource
attracted considerable attention (the benchmark was
downloaded by more than 100 teams worldwide)
participation in the evaluation was limited, possibly
due to the difficulty of the provided baselines or the
need for expertise in both NLP and computer vision.
In addition, the benchmark only covered a single
subjective task, i.e., humour detection, (Simpson
et al., 2019), and a single language (English).

A second edition followed at SemEval 2023
(Leonardelli et al., 2023), designed to address these
limitations and to better reflect the growing interest
in subjective NLP tasks. In contrast to the first edi-
tion, all datasets were textual and the focus shifted
entirely to inherently subjective phenomena such
as misogyny, hate-speech and offensiveness detec-
tion, where training with aggregated labels makes
much less sense. Moreover, Arabic was added as
a second language. Finally, evaluation combined
the soft-label approach also used in the first edition,
based on cross-entropy, with the more traditional
F1 metric. The reformulated task attracted broad
interest in the community: more than 130 groups
registered, with 30 submitting predictions and 13
contributing system papers.

The third edition of the LeWiDi shared task,
described in this manuscript and co-located with the
NLPerspectives Workshop at EMNLP 2025, builds
on these experiences while further broadening the
scope of the task. Like the earlier editions, its
central goal is to provide a common evaluation
framework for systems trained on disagreement-rich
data. However, LeWiDi-2025 introduces several
innovations. New tasks include natural language
inference (NLI), irony detection, conversational
sarcasm detection, and paraphrase detection. On
the evaluation side, we move entirely to soft metrics,
which are organized into two complementary tasks:
(i) soft-label evaluation, refining methods from
LeWiDi 2 with several distance-based metrics (e.g.,
Manhattan distance, Rizzi et al. 2024); and (ii)
perspectivist evaluation, where systems must model

the labeling behavior of individual annotators, again
with newly developed metrics tailored to this setting.
In addition, two of the datasets adopt Likert-scale
annotation, posing further challenges for evaluation.
LeWiDi 3 engaged a smaller but dedicated group
of participants relative to the previous edition. A
total of 53 individuals registered on the competition
platform, with 15 teams providing submissions,
which resulted in 9 system papers.

2 The LeWiDi 3 Benchmark

The four selected datasets are summarized in Ta-
ble 1, illustrated with examples in Table 2, and
described in detail in the following sections.

All datasets were released in a harmonized json
format, identical to that of the previous LeWiDi edi-
tion, to ensure consistent access across datasets and
shared tasks editions. Each item contains the same
fields,1 while the field other info is dataset-specific
and includes additional subfields particular to each
dataset. Annotator age and gender is available
for all four datasets, with some datasets providing
further attributes. This metadata was distributed
separately in an additional json file. All datasets
are publicly available.2

2.1 The Conversational Sarcasm Corpus
(CSC)

The CSC dataset (Jang and Frassinelli, 2024) is
a dataset of sarcasm in English, which contains
around 7,000 context–response pairs. Each pair is
rated on a 1 (not at all) – 6 (completely) scale both
by the speakers who generated the responses and by
multiple external observers (4 - 6 per speaker). The
contexts consist of situation descriptions involving
an imagined interlocutor, and the responses stem
from the responses given by online participants.
The generators of the responses as well as evaluators
rated the level of sarcasm of the responses.

2.2 The MultiPICo dataset (MP)
The MP dataset (Casola et al., 2024) is a mul-
tilingual perspectivist corpus consisting of short
exchanges from Twitter and Reddit. Each entry
in the corpus represents a post-reply pair. Crowd-
sourced workers had to determine whether the reply
was ironic given the post (binary label). The corpus
includes 11 languages: Arabic, Dutch, English,

1item_id, text, task, number of annotations, number of an-
notators, disaggregated annotations, annotator IDs, language,
hard label, soft labels, split, and other info.

2https://le-wi-di.github.io/

https://le-wi-di.github.io/


Dataset Task Labels Lang(s)
N. Items
(N. Annota
tions)

N. Ann.
per
item

Pool
Anno-
tators

Textual
type

Annotators’
Metadata

Other
info

CSC Sarcasm
detection

Likert scale
[1 to 6] En 7,036

(31,984)
Variable:

4 to 6 872 context+
response gender, age context +

speaker

MP Irony
detection [0,1]

Ar,De,En,
Es,Fr,Hi,
It,Nl,Pt

18,778
(94,342)

Variable:
2 to 21 506 post+

reply

gender, age,
ethnicity,
[...+6]

source, level,
language
variety

Par Paraphrase
detection

Likert scale
[-5 to 5] En 500

(2,000) 4 4 question1 +
question2

gender, age,
nationality,
education

explana-
tions

VEN
Natural
Language
Inference

[contradiction (C),
En 500

(1,933)
Variable:

1 to 6 4 context +
statement

gender, age,
nationality,
education

explana-
tionsentailment (E),

neutral (N)]

Table 1: Key statistics about the datasets used in the 3rd LeWiDi shared task.

French, German, Hindi, Italian, Portuguese, and
Spanish. It also contains sociodemographic infor-
mation about the annotators, including gender, age,
nationality, race, and student or employment status.
While the statistics may vary slightly across lan-
guages, each post-reply pair is typically annotated
by an average of 5 workers.

2.3 The VariErr NLI dataset (VEN)
VariErr NLI (Weber-Genzel et al., 2024) was de-
signed for automatic error detection, distinguishing
between annotation errors and legitimate human la-
bel variations in NLI tasks. The dataset was created
using a two-round annotation process: initially, four
annotators provided labels and explanations for each
NLI item; subsequently, they assessed the validity
of each label-explanation pair. It comprises 1,933
explanations for 500 re-annotated items from the
Multi-Genre Natural Language Inference (MNLI)
corpus for Round 1 and 7,732 validity judgments for
Round 2. The LeWiDi 2025 Shared Task focuses
on Round 1 (and therefore we refer to it just as
VEN), where annotators could assign one or more
labels from Entailment, Neutral, Contradiction to
each Premise ("context") - Hypothesis ("statement")
pair and provide corresponding explanations.

2.4 The Paraphrase Detection dataset (Par)
The Par dataset focuses on paraphrase detection. It
is structurally similar to VEN, but unlike VEN, the
labels here are scalar and each annotator provides
only a single score per item. It consists of 500 ques-
tion pairs sampled from the Quora Question Pairs
(QQP) dataset, each annotated independently by the
same four annotators. Annotations are given on a
Likert scale from -5 to 5, indicating the perceived de-
gree of paraphrastic relation between the questions,

and are accompanied by short textual explanations.
As this dataset had not been released previously, it
was new to the participants of LeWiDi-2025.

3 Task definition

The main goal of the shared task is to provide a
unified testing framework for learning from dis-
agreements and evaluating models on such datasets.
Given the heterogeneous nature of the datasets,
participants were free to design dataset-specific ap-
proaches; however, they were encouraged to adopt a
unified crowd learning methodology or framework
across all datasets, rather than optimizing a separate
best-performing model for each dataset.

3.1 Task A and Task B

LeWiDi-2025 defines two complementary tasks.

Task A: Soft-label prediction. Participants are
required to predict a probability distribution over
the possible labels for each item. Evaluation is
based on the predicted distribution and the gold
soft label distribution. This task continues the line
of soft-label modeling from previous editions, but
is now applied across expanded datasets, including
those with Likert-scale judgments.

Task B: Perspectivist prediction. Participants
must predict the individual label choices of anno-
tators, i.e., model how a specific annotator would
label a given instance. Evaluation measures the
agreement between predicted and actual annotator-
level responses. This task emphasizes capturing
annotator bias and perspective.

Participants may choose to submit to one or both
tasks, and across any subset of the provided datasets.



Dataset
(detection of) Example

Annotations
(Task B)

AnnotatorId:Label

Soft labels
(Task A)

Label:Probability

CSC
(Sarcasm)

context: "You walk into the room and
Steve is there and Steve says “hi!”"
response: "hi"

A812:1, A813:3,
A814:1, A815:2

[1:0.5, 2:0.25, 3:0.25,
4:0, 5:0, 6:0]

MP
(Irony)

post: "@USER Oh dear"
reply: "@USER It’s ok, wine has fixed
everything"

A26:1, A64:1,
A70:1 [0:0, 1:1]

Par
(Paraphrase)

Q1: "Have you seen an alien craft?"
Q2: "Have you ever seen an alien?"

A1:-1, A2:-3,
A3:5, A4:4

[-5:0, -4:0, -3:0.25, -2:0,
-1:0.25, 0:0, 1:0, 2:0, 3:0,

4:0.25, 5:0.25]

VEN
(NLI)

context: "yeah i can believe that"
statement: "I agree with what you said."

A1:E, A2:N,
A3:N, A4:E

[C:[0:1, 1:0]
E:[0:0.5, 1:0.5]
N:[0:0.5, 1:0.5]]

Table 2: Examples from the four datasets included in LeWiDi-2025. For each item, the annotators’ IDs and their
corresponding annotations are shown, along with the derived soft-label distributions. Task B required predicting an
individual annotator’s label given their ID, while Task A required predicting the full soft-label distribution for the
item.

Codabench served as the official competition plat-
form, where participants registered to access the
data and to submit their results.3

3.2 Phases
The competition consisted of three phases:

Practice phase: Participants received training
and development data (with full metadata) to design
and test their models. They could submit their
results (on the development data) to Codabench
and compare results on a public leaderboard.

Evaluation phase: Participants submitted predic-
tions on unseen test data (without labels). Rankings
were computed for each dataset and across datasets,
with missing submissions replaced by the orga-
nizer’s baseline score.

Post-campaign phase: To support long-term re-
search, the test data and gold labels were later
released publicly and remain available through our
website3.

3.3 Baselines
We provided two simple baselines: (i) a random
baseline, where each distribution (Task A) or pre-
diction (Task B) was assigned a random prediction,
and (ii) a most frequent baseline, where all items
were assigned the most frequent distribution within
the training set (Task A) or label. These baselines
were intentionally kept minimal so as not to dis-
courage participation, unlike in the first edition of
the shared task.

3https://www.codabench.org/competitions/7192/

4 Evaluation metrics

Two complementary paradigms for disagreement
evaluation were employed in LeWiDi-2025: soft-
label and perspectivist evaluation.

4.1 Soft-label Evaluation

In soft-label evaluation, annotator judgments are
represented as probability distributions (soft la-
bels), and system predictions are evaluated against
these human-derived soft labels by measuring the
distance between the two distributions. Previous
editions of LeWiDi employed cross-entropy as the
distance metric. However, Rizzi et al. (2024)
demonstrated that cross-entropy exhibits several
counterintuitive properties, whereas the Manhattan
and Euclidean distances provide a more suitable
alternative in the context of binary classification.
At the same time, they highlighted the limitations of
the analyzed metrics in providing fair comparisons
for multiclass classification tasks.

Based on previous findings, here we address the
broader settings introduced in this edition of the
shared task, i.e., multiclass and multilabel classi-
fication, as well as labels on a Likert scale. In
LeWiDi-2025, both the Manhattan distance and the
Wasserstein (Earth Mover’s) distance are adopted
as the primary soft evaluation metrics. Specifically,
the Average Manhattan Distance is applied to the
MP and VEN4 datasets, while the Average Wasser-
stein Distance is used for the ordinal-scale datasets

4Considering the nature of the dataset itself, a multilabel
adaptation of the Average Manhattan distance has been pro-
posed. Additional details are reported in Appendix A.

https://www.codabench.org/competitions/7192/


(i.e. Par and CSC).
In particular, for what concerns the Average

Wasserstein Distance (AWD), the cost of transport-
ing probability mass from one bin to another is
defined as the absolute difference between their po-
sitions, forming a symmetric, non-negative ground
distance matrix with zeros on the diagonal.

4.2 Perspectivist Evaluation
The perspectivist evaluation focuses on assessing
a system’s ability to model the individual label
choices of annotators. For datasets with nominal
categories (MP, VEN), performance is measured
using error rate; for datasets with ordinal categories
(Par, CSC), a normalized absolute distance is used.

In particular, the average error rate (AER) (Equa-
tion 1), which measures the degree of error between
corresponding pairs of target and predicted value
vectors is computed as follows:5

AER = 1

N

N∑
i=1

ER(i ) (1)

= 1

N

N∑
i=1

(
1− a −∑a

k=1 |ti ,k −pi ,k |
a

)
(2)

Where the Error Rate (ER) for a single sample i with
target label vector t⃗i = [t1, t2, ...ta], and predicted
label vector p⃗i = [p1, p2, ...pa] is defined as:

ER(i ) = 1− a −∑a
k=1 |ti ,k −pi ,k |

a
(3)

Here, a denotes the length of the vectors (i.e., the
number of annotators), and N is the total number
of samples.

The Average Normalized Absolute Distance
(ANAD) across all samples is defined as:

AN AD = 1

N

N∑
i=1

N AD(i ) (4)

= 1

N

N∑
i=1

1

a

a∑
k=1

∣∣ti ,k −pi ,k
∣∣

s
×100 (5)

Where the Normalized Absolute Distance (NAD)
for a single sample i with target label vector
ti = [t1, t2, ..., ta], and predicted label vector pi =
[p1, p2, ..., pa] is:

N AD(i ) = 1

a

a∑
k=1

|ti ,k −pi ,k |
s

×100 (6)

5A multilabel adaptation of the average error rate has been
adopted for VEN; see Appendix A for further details.

with a denoting the number of annotators, and s
the scaling factor given by the range of the Likert
scale.

5 Participating systems

The third edition of the LeWiDi shared task at-
tracted a smaller but more focused community com-
pared to the previous edition. In total, 53 people
subscribed to the competition Codabench, and 15
teams submitted predictions. Among them, 6 teams
participated across all datasets and both tasks; 2
teams submitted for three datasets and both tasks
(excluding VEN); and 5 teams focused on a single
dataset with submissions only for Task A. In terms
of system papers, 9 were submitted: 6 from teams
who participated in multiple tasks and datasets, and
2 from teams who worked on a single dataset and
Task A. Task A was overall more popular, as the
majority of teams who submitted exclusively for
one dataset contributed only to Task A, while 11
teams engaged also with Task B.

5.1 Systems overview
This section provides an overview of the participat-
ing systems, focusing on the 9 participating teams
that submitted system papers, describing their archi-
tectures, methodologies, and key features relevant
to the evaluation tasks.
Opt-ICL (Sorensen and Choi, 2025) combines

in-context learning (ICL) with fine-tuning in a two-
stage approach. They first apply post-training, by
exposing an LLM to over 40 datasets rich in human
disagreement (Sorensen et al., 2025), and then, for
each dataset, conduct supervised fine-tuning, using
in-context demonstrations from all the individual
annotators along with annotator demographics. At
inference, the model performs per-rater prediction
by constructing a prompt with as many training
examples from that annotator as possible, followed
by the input to be labeled. They derive soft label
distributions from perspectivist predictions.
DeMeVa (Ignatev et al., 2025) employs LLMs

with ICL, modeling perspectivism through anno-
tators’ past behavior. They focus on criteria for
selecting demonstrative examples for LLMs (10 per
annotator), comparing semantic and label-based
strategies, with the latter performing better for
multi-label datasets. They derive soft label distri-
butions from perspectivist predictions.
twinhter (Nguyen and Van Thin, 2025) built

a BERT-based model that integrates annotator per-



spectives by creating a new (text, annotator) pair.
They create a separate training instance for each
annotator’s view and combine it with their back-
ground information when available, enabling the
model to capture individual interpretations of the
same input.
McMaster (Sanghani et al., 2025) implemented

a demographic-aware RoBERTa model that incor-
porates information such as age, gender, nationality,
and evaluated it across all four datasets. The au-
thors find that nationality and ethnicity in particular
show the largest gains in performance, while also
noting the limitations of relying on such features.
BoN Appetite Team (Ruiz et al., 2025) inves-

tigated three test-time scaling methods, a way to
improve LLMs performances: two benchmark al-
gorithms (Model Averaging and Majority Voting),
and a Best-of-N (BoN) sampling method. Their re-
sults show that the benchmark methods (Averaging
and Voting) reliably boost performance, while BoN
sampling does not transfer well from mathematical
domains.
PromotionGo (Huang et al., 2025) submitted

only to the MP-Task A with an XLM-R–based
system, ranking first. They deployed three main
strategies to develop a competitive system: data aug-
mentation, including lexical swaps, prompt-based
reformulation, and large-scale back-translation into
nine languages; optimization for alignment to the
evaluation metric (Manhattan Distance) by using
L1 loss as a loss function; ensemble learning, by
training multiple models on shuffled data splits and
averaging predictions to improve robustness.
Uncertain Mis(Takes) (Staliūnaitė and Vla-

chos, 2025) addressed only the VEN-Task A, rank-
ing first. They aim to quantify ambiguity in NLI
instances, relying on the hypothesis that if a given
instance is ambiguous, then the explanations for
different labels will not entail one another. For each
item, they generate 128 LLM explanations. With a
fine-tuned entailment model they cluster them and
quantify their Semantic Entropy (SE). The expla-
nation clusters’ SE scores are combined with text
embeddings for soft label distribution prediction.
NLP-ResTEAM (Sarumi et al., 2025) proposed a

multi-task architecture. Special ‘tokens’ are added
to the input, including several tokens aiming at
modeling the annotators based on their ID, their
demographic features, their annotation behavior, or
combinations of those. The system produces two
outputs from a textual input and an annotator’s in-

formation: one is a soft-label, the other a prediction
of that specific annotator’s (hard) label.
LPI-RIT (Sawkar et al., 2025) builds upon the

DisCo (Distribution from Context) architecture
(Weerasooriya et al., 2023), a neural model that
jointly predicts item-level, annotator-level, and per-
annotator label distributions. They tackled both
soft-label and perspectivist tasks simultaneously.
They also introduced several extensions to DisCo,
such as integrating annotator metadata through
pretrained sentence encoders, and modified loss
functions to better align with evaluation metrics.

6 Results and discussion

This section presents the official results of the shared
task and discusses key trends across systems and
datasets. We also examine the role of evaluation
metrics and summarize insights from ablation stud-
ies conducted by participating teams.

6.1 Results and statistics
Table 3 and 4 report the overall leaderboard for
Task A and Task B respectively. If a team did not
submit predictions for a particular dataset or task,
we used the random baseline results to compute the
overall ranks and average positions. Ranks were
calculated with statistical ties taken into account.
Specifically, we used the Wilcoxon signed-rank
test at the instance level to identify clusters of tied
systems. Predictions that were not significantly
different (p = 0.05) from the top-performing system
in a given cluster were considered ties. A new
cluster was formed when a system’s performance
was found to be statistically different from that of
the best-performing system in the previous cluster.
Leadboards for each specific dataset are reported
in Appendix B.

6.2 General discussion
As in the previous edition of the shared task, we
observed a great variety in design choices, but some
trends emerge.

System choices Some teams (OCP-ICL, DeMeVa,
BoN Appetit Team) used large language models
relying on in-context learning (ICL) or test-time
scaling methods. Others built on transformer mod-
els (RoBERTa, BERT, or XLM-R) and trained on
the shared task data with annotator-aware exten-
sions (McMaster, twinhter, NLP-ResTeam), or
with data augmentation and ensembles but without



SOFT EVALUATION
Rank (av.pos) Team CSC MP Par VEN

WS (rank) MD (rank) WS (rank) MMD (rank)

1 (1.5) Opt-ICL 0.746 (1) 0.422 (1) 1.200 (1) 0.449 (3)
2 (2.75) DeMeVa 0.792 (1) 0.469 (6) 1.120 (1) 0.382 (3)
3 (3) twinhter 0.835 (5) 0.447 (5) 0.983 (1) 0.233 (1)
4 (4.25) McMaster 0.803 (3) 0.439 (3) 1.605 (4) 0.638 (7)
5 (4.75) BoN Appetite Team 0.928 (6) 0.466 (6) 1.797 (4) 0.356 (3)
6 (5.5) aadisanghani* 0.803 (3) 0.439 (3) 3.051 (7) BSL (9)
7 (7) PromotionGo BSL (11) 0.428 (1) BSL (7) BSL (9)
8 (7.25) Most frequent baseline 1.170 (7) 0.518 (8) 3.231 (7) 0.595 (7)
9 (7.5) Uncertain Mis(Takes) BSL (11) BSL (11) BSL (7) 0.308 (1)
10 (8.5) NLP-ResTeam 1.393 (9) 0.551 (9) 3.136 (7) 1.000 (9)
10 (8.5) LPI-RIT 1.451 (9) 0.540 (9) 3.715 (7) BSL (9)
12 (8.75) cklwanfifa* BSL (11) BSL (11) BSL (7) 0.469 (6)
12 (8.75) harikrishnan_gs* 1.295 (8) BSL (11) BSL (7) BSL (9)
12 (8.75) tdang* BSL (11) BSL (11) 1.665 (4) BSL (9)
15 (9.5) Random baseline (BSL) 1.543 (11) 0.687 (11) 3.350 (7) 0.676 (9)

Table 3: Overall Task A (soft evaluation) results as an average of a system’s rank across datasets. * indicates that no
system description was available for the team.

PERSPECTIVIST EVALUATION
Rank (av.pos) Team CSC MP Par VEN

MAD (rank) ER (rank) MAD (rank) MER (rank)

1 (1.5) Opt-ICL 0.156 (1) 0.289 (1) 0.119 (2) 0.270 (2)
2 (2) DeMeVa 0.172 (2) 0.300 (2) 0.134 (2) 0.228 (2)
3 (3.25) twinhter 0.228 (5) 0.319 (6) 0.080 (1) 0.124 (1)
4 (3.75) McMaster 0.213 (3) 0.311 (2) 0.199 (4) 0.343 (6)
5 (4.75) Most frequent baseline 0.239 (5) 0.316 (2) 0.362 (6) 0.345 (6)
6 (5) aadisanghani* 0.213 (3) 0.311 (2) 0.491 (6) BSL (9)
6 (5) BoN Appetite Team 0.231 (5) 0.414 (9) 0.228 (4) 0.272 (2)
8 (6.5) NLP-ResTeam 0.291 (8) 0.326 (6) 0.418 (6) 0.345 (6)
9 (7) cklwanfifa * BSL (10) BSL (10) BSL (6) 0.271 (2)
10 (7.5) LPI-RIT 0.331 (9) 0.324 (6) 0.437 (6) BSL (9)
11 (8.75) Random baseline (BSL) 0.352 (10) 0.499 (10) 0.367 (6) 0.497 (9)

Table 4: Overall Task B (perspectivist evaluation) results as an average of a system’s rank across datasets. * indicates
that no system description was available for the team.

explicit annotator features (PromotionGo). Finally,
hybrid systems included LPI-RIT, which combined
sentence-transformer embeddings with the DisCo
architecture, and Uncertain (Mis)Takes, which
modeled disagreement via semantic entropy over
LLMs’ generated explanations.

Towards Unified Approaches A clear difference
from the previous edition (where teams tailored
systems to each dataset) is that all participants who
submitted for more than one dataset pursued general-
purpose pipelines, aiming to capture patterns of
disagreement across datasets with a unified ap-
proach. The majority instantiates a separate model
for each dataset but follows the same pipeline, while
others use a single model uniformly for all datasets.

Overall Rankings and Local Exceptions As
a consequence of the shift away from dataset-

specific solutions toward general-purpose pipelines,
a clearer view of which approaches generalize bet-
ter was enabled. In fact, differently from the pre-
vious edition, some systems ranked consistently
among the best across all datasets and tasks. LLM-
based systems with ICL secured the top posi-
tions in the overall leaderboard, with OCP-ICL
and DeMeVa ranking first and second. However,
fine-tuned transformer models, such as twinhter
and McMaster were competitive and twinhter
outperformed LLMs on smaller datasets Par and
VEN. Moreover, the specific leaderboards revealed
notable exceptions: teams that focused on tailored
solutions for a single dataset, PromotionGo on Par
and Uncertain (Mis)Takes on VEN, achieved
first place locally.

Annotator information The majority of teams
(six) used annotator information extensively, de-



voting effort to find the optimal way for encoding
annotator information. Two types of information
were available: annotators’ previous behavior and
demographics. Some systems used annotator ex-
amples in in-context prompts to learn annotator
views with LLMs (Opt-ICL, DeMeVa) or implic-
itly by training on each pair annotation-item or by
passing annotator ID (twinhter, NLP-ResTeam,
LPI-RIT). Demographics information usage was
tested by Opt-ICL, McMaster, twinther and
NLP-ResTeam. Notably, all of the best-performing
systems incorporated some form of annotator infor-
mation. Further details on the impact of annotator
information are in Section 6.5.

Data Augmentation Strategies Opt-ICL post-
trained LLMs using over 40 additional datasets.
NLP-ResTEAM synthesized examples via paraphras-
ing and back-translation. PromotionGo applied
extensive lexical (swap and reformulation) and
translation-based augmentation. Further details
on the impact of data augmentation are given in
Section 6.5.

Task A vs Task B Leaderboard rankings for the
two complementary tasks were largely similar. Not
all systems attempted Task B, but of those that
did, several derived the soft labels for Task A from
the perspectivist labels for Task B. All three top-
performing systems adopted this strategy, indicating
that understanding annotator behavior contributes
to overall prediction quality. Other systems adopted
a multi-task strategy, using one output head for the
soft label, the other for the perspectivist information.

6.3 Individual datasets results
CSC Two major observations stand out regard-
ing CSC. The first relates to the role of demo-
graphic information. Most participating teams have
used annotator information in their systems, regard-
less of their ranking. However, the winning team
(Opt-ICL) reports through an ablation study that
using demographic information did not significantly
improve their results. This might be because the
demographic information provided in CSC consists
only of gender and age, with missing data, reported
by the twinther team. Another observation is
related to the importance of fine-tuning. While
the most successful teams have used a combina-
tion of in-context learning while leveraging annota-
tors information, two of these teams (DeMeVa and
McMaster) report that fine-tuning RoBERTa has
yielded comparable results to in-context learning

with larger models. The winning team (Opt-ICL)
also reports that dataset-specific fine-tuning was a
crucial contributor to the results.

MP With respect to the other dataset included
in the shared task, MP presented and additional
challenge due to its multilinguality. This challenge
was approached by leveraging pre-trained multilin-
gual backbones (the majority of the teams) and/or
by fine-tuning on the multilingual data. While
the dataset is very metadata-rich, the top-2 best
performing models for both tasks either did not
incorporate annotators’ sociodemographic data or
only noticed a slight improvement when doing so.
Fine-tuning was used for most systems. Submis-
sions to Task A showed in general better results
(with only two teams performing worse than the
most frequent BSL), while only the winning team
performed significantly better in Task B; we hy-
pothesize this could be due to the large number of
annotators in the dataset.

VEN & Par VEN and Par are two datasets with
similar designs: (1) the same four annotators anno-
tated all instances in the corpora, (2) all annotators
are required to provide explanations to supplement
their annotated labels. Due to these design similar-
ities, we observe that the Perspectivist rankings of
Par and VEN are extremely similar, with twinhter
ranking first and Opt-ICL and DeMeVa in the tied
second place. All three systems incorporated ex-
planations into the context and demonstrated that
models (both BERT-based ones and LLMs) can
leverage this richer textual input to better understand
labeling rationales and thus enhance performance.
DeMeVa observed that including explanations in
prompts helps better understand individual annota-
tors’ preferences, e.g., Ann3 for positive labels in
Par. Additionally, Uncertain (Mis)Takes par-
ticipated only and won first place in the VEN Task
A using LLM-generated explanations and semantic
entropy scores. Overall, explanations proved to be
a valuable resource, either as explicit input features
or as generated reasoning traces, and consistently
contributed to stronger performance on datasets in
both soft-label and perspectivist evaluations.

6.4 The new evaluation metrics: an
assessment

The introduction of new evaluation metrics aimed
to overcome the limitations of cross-entropy and
to provide more reliable measures of model per-
formance across diverse settings, including binary,



multilabel, and ordinal-scale datasets based on the
Likert scale. In practice, the Manhattan and Wasser-
stein distances offered intuitive and robust evalua-
tions of soft label predictions, while the Error Rate
and Average Normalized Absolute Distance en-
abled perspectivist assessments that better reflected
annotator behavior and label structure.

For the multilabel scenario, evaluation relies on
the Mean Absolute Manhattan Distance (MAMD)
and the Mean Error Rate (MER).6 These metrics
have been designed to consider each label dimen-
sion independently, while simultaneously capturing
the overall structure of label co-occurrence within
an instance. By design, partially correct predictions
incur a lower penalty than completely incorrect pre-
dictions. This allows the evaluation to reflect both
the distribution of individual labels across anno-
tators and their joint occurrence within the same
instance, providing a nuanced measure of system
performance in multilabel settings.

For datasets with ordinal labels (i.e., Likert-type
scales), the Average Normalized Absolute Distance
(ANAD) and the Average Wasserstein Distance
(AWD) explicitly incorporate the ordinal nature of
the labels. Unlike simple accuracy-based measures,
these metrics penalize predictions proportionally
to their deviation from the true label. In this way,
systems are penalized less when producing outputs
that are closer to the correct ordinal value, even if not
exact, thereby providing a more faithful evaluation
of performance on ordinal data.

Across all metrics, the lower bound remains
consistent, with a score of 0 indicating a perfect
match. A limitation, however, is that the upper
bound is in some cases dataset-dependent (e.g., for
the Wasserstein distance), which prevents direct
comparisons across datasets.

6.5 Post-Submission Experiments and
Ablation studies

Beyond their official submissions, all teams con-
ducted supplementary analyses to gain a deeper
understanding of their systems. These ablation
studies and evaluations of alternative strategies en-
riched the competition with valuable insights and
underscored the participants’ commitment. The
results demonstrated that the effectiveness of dif-
ferent approaches varied across datasets, reflecting
both the specific characteristics of the data and the
influence of the evaluation metrics employed.

6Further details are reported in Appendix A.

One major focus investigated was the role of
annotator information. For LLM-based systems
such as OCP-ICL and DeMeVa, provide in-context
rater examples at inference time proved decisive:
OCP-ICL showed that such examples drove large
gains across datasets while demographics had neg-
ligible impact, and DeMeVa demonstrated that strat-
ified selection of annotator examples improved con-
sistency over random or similarity-based sampling.
In contrast, for fine-tuned transformer-based mod-
els, annotator metadata and embeddings were more
influential. McMaster found that demographic
embeddings, particularly nationality and ethnicity,
improved their RoBERTa system; twinhter ob-
served stronger benefits from annotator metadata
on small-annotator datasets; LPI-RIT reported that
simple annotator ID tokens stabilized predictions;
and NLP-ResTeam showed that label-style compos-
ite embeddings often outperformed demographics,
though the best choice varied depending on the
evaluation metric.

Ablation studies across papers revealed mixed
effects of augmentation across teams. OCP-ICL
found that post-training on over 40 dataset im-
proved results only for MP, while for the other
datasets was indifferent. NLP-ResTeam concluded
that augmentation helped for small datasets (Par
and VEN), while PromotionGo found that combin-
ing augmentation strategies worked best.

7 Conclusions

We are delighted that the third edition of the LeWiDi
shared task continued to attract the attention of the
community researching disagreement and variation
in nlp. Again, we found that the participating teams
engaged actively with the tasks, tackling interesting
issues such as how best to use annotator information
and the relation between soft-label modelling and
perspectivist modelling.

Our hope is that the shared task and the datasets
we released will stimulate further research in this
area, by the participant groups and others. We
believe that further thinking is still needed on issues
such as the most appropriate form of evaluation
for tasks in which human subjects express ordinal
judgments, or the usefulness of modelling individ-
ual annotators or groups of annotators. To promote
this, the Codabench page will remain open to sub-
missions after the deadline so that researchers can
continue test their models on the datasets.



Limitations

While this edition broadened the range of datasets,
the scope remained restricted to text, leaving open
the question of how disagreement-aware methods
would perform in other modalities such as vision,
speech, or multimodal tasks. Another open issue is
that all annotators present in the test sets were also
seen during training and development. As a result,
the shared task did not directly evaluate systems’
ability to generalize to unseen annotators, an ability
that is likely to be critical in real-world applications.
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Appendix

A Evaluation Metrics for the Multilabel
setting

In this section we outline how the adopted metrics
were adapted to handle multilabel classification.

A.1 Multilabel Average Manhattan Distance
(MAMD)

To account for the multilabel setting, the Average
Manhattan Distance (AMD) was adapted into the
Multilabel Average Manhattan Distance (MAMD)
reported in equation 8. For each sample, the av-
erage Manhattan distance across all label-specific
distributions is computed. The final score is then
obtained as the average of such values over all
samples.

AMD(i ) = 1

L

L∑
j=1

n∑
k=1

∣∣pi , j ,k − ti , j ,k
∣∣ (7)

M AMD = 1

N

N∑
i=1

AMD(i ) (8)

With:

• N is the total number of samples,

• L is the number of labels (e.g., Entailment,
Neutral, Contradiction for the VEN dataset),

• n is the length of each distribution,

• ti , j ,k is the k-th value of the j -th target distri-
bution for sample i ,

• pi , j ,k is the corresponding predicted value.

A.2 Multilabel Error Rate (MER)
The metric adopted for the perspectivist evaluation
is the Multilabel Error Rate (MER), which quanti-
fies the average dissimilarity between predicted and
target label vectors across multiple samples. The
Multilabel Error Rate (MER) is computed as the
average of the average Error Rate values across all
samples as shown in Equation 9:

MER = 1

N

N∑
i=1

(
1

L

L∑
j=1

ER(i )

)

= 1

N

N∑
i=1

(
1

L

L∑
j=1

1− a −∑a
k=1 |ti , j ,k −pi , j ,k |

a

)
(9)

Here,

• N is the total number of samples.

• L is the number of possible labels (i.e., the
number of label-specific vectors to evaluate
per sample, such as Entailment, Neutral, Con-
tradiction).

• a is the length of a target or predicted vector
(i.e., the number of annotators contributing to
each label vector).

• ti , j ,k is the k-th element of the j -th target
vector for sample i .

• pi , j ,k is the k-th element of the j -th predicted
vector for sample i .

B Datasets specific leaderboards

CSC
TASK A TASK B

Team WS Team MAD

1 Opt-ICL 0.746 1 Opt-ICL 0.156
1 DeMeVa 0.792 2 DeMeVa 0.172
3 McMaster 0.803 3 McMaster 0.213
3 aadisanghani 0.803 3 aadisanghani 0.213
5 twinhter 0.835 5 twinhter 0.228
6 BoN Appetit Team 0.928 5 BoN Appetit Team 0.231
7 Most frequent BSL 1.170 5 Most frequent BSL 0.239
8 harikrishnan_gs 1.295 8 NLP-ResTeam 0.291
9 NLP-ResTeam 1.393 9 LPI-RIT 0.331
9 LPI-RIT 1.451 10 Random label BSL 0.352
11 Random label BSL 1.543

Table 5: Results for the CSC dataset
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MP
TASK A TASK B

Team MD Team ER

1 Opt-ICL 0.422 1 Opt-ICL 0.289
1 PromotionGo 0.428 2 DeMeVa 0.300
3 McMaster 0.439 2 McMaster 0.311
3 aadisanghani 0.439 2 aadisanghani 0.311
5 twinhter 0.447 2 Most frequent BSL 0.316
6 BoN Appetit Team 0.466 6 twinhter 0.319
6 DeMeVa 0.469 6 LPI-RIT 0.324
8 Most frequent BSL 0.518 6 NLP-ResTeam 0.326
9 LPI-RIT 0.540 9 BoN Appetit Team 0.414
9 NLP-ResTeam 0.551 10 Random label BSL 0.499
11 Random label BSL 0.687

Table 6: Results for the MP dataset

Par
TASK A TASK B

Team WS Team MAD

1 twinhter 0.983 1 twinhter 0.080
1 DeMeVa 1.120 2 Opt-ICL 0.119
1 Opt-ICL 1.200 2 DeMeVa 0.134
4 McMaster 1.605 4 McMaster 0.199
4 tdang 1.665 4 BoN Appetit Team 0.228
4 BoN Appetit Team 1.797 6 Most frequent BSL 0.362
7 aadisanghani 3.051 6 Random label BSL 0.367
7 NLP-ResTeam 3.136 8 NLP-ResTeam 0.418
7 Most frequent BSL 3.231 8 LPI-RIT 0.437
7 Random label BSL 3.350 8 aadisanghani 0.491
7 LPI-RIT 3.715

Table 7: Results for the Par dataset

VEN
TASK A TASK B

Team MMD Team MER

1 twinhter 0.233 1 twinhter 0.124
1 Uncertain Mis(Takes) 0.308 2 DeMeVa 0.228
3 BoN Appetit Team 0.356 2 Opt-ICL 0.270
3 DeMeVa 0.382 2 cklwanfifa 0.271
3 Opt-ICL 0.449 2 BoN Appetit Team 0.272
6 cklwanfifa 0.469 6 McMaster 0.343
7 Most frequent BSL 0.595 6 NLP-ResTeam 0.345
7 McMaster 0.638 6 Most frequent BSL 0.345
9 Random label BSL 0.676 9 Random label BSL 0.497
10 NLP-ResTeam 1.000

Table 8: Results for the VEN dataset


