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Abstract

We investigate the use of LLM-generated data
for continual pretraining of transformer en-
coder models in specialized domains with lim-
ited training data, using the scientific domain
of invasion biology as a case study. To this
end, we leverage domain-specific ontologies by
enriching them with LLM-generated data and
pretraining the encoder model as an ontology-
informed embedding model for concept defi-
nitions. To evaluate the effectiveness of this
method, we compile a benchmark specifically
designed for assessing model performance in
invasion biology. After demonstrating substan-
tial improvements over standard MLM pre-
training, we investigate the feasibility of ap-
plying the proposed approach to domains with-
out comprehensive ontologies by substituting
ontological concepts with concepts automati-
cally extracted from a small corpus of scien-
tific abstracts and establishing relationships be-
tween concepts through distributional statistics.
Our results demonstrate that this automated ap-
proach achieves comparable performance using
only a small set of scientific abstracts, result-
ing in a fully automated pipeline for enhanc-
ing domain-specific understanding of small en-
coder models that is especially suited for ap-
plication in low-resource settings and achieves
performance comparable to masked language
modeling pretraining on much larger datasets.

1 Introduction

Transformer encoder models such as BERT (De-
vlin et al., 2019) and its successors (e.g., Liu et al.,
2019, He et al., 2021a, Warner et al., 2024) have

consistently achieved state-of-the-art results across
a wide range of NLP tasks. These successes are
largely driven by large-scale pretraining on general-
domain corpora such as Wikipedia and BookCor-
pus (Zhu et al., 2015), using objectives like masked
language modeling (MLM) or replaced token de-
tection (Clark et al., 2020).

While transformer encoders offer an optimal bal-
ance between performance and efficiency, their full
effectiveness in specialized domains - such as scien-
tific text processing - is often enabled by additional
pretraining on domain-specific corpora (Beltagy
et al., 2019; Jeong and Kim, 2022), proven highly
effective in fields where extensive domain-specific
data is available (e.g., biomedical text processing
Gu et al., 2021). However, in specialized disci-
plines with limited resources, the potential of this
approach diminishes, highlighting the need for al-
ternative methods of injecting domain knowledge
during pretraining.

To address this challenge, we propose a novel
method for continual pretraining of transformer
encoder models that leverages a set of domain-
relevant concepts and their corresponding defini-
tions as the core training resource. These concepts
can be drawn from domain-specific ontologies (i.e.,
data structures containing precise, domain-specific
and structured knowledge curated by domain ex-
perts Walls et al. (2014); Girón et al. (2023); Alger-
gawy et al. (2025)) or extracted from texts using
LLMs. Using this resource, we pretrain the model
as an embedding model for concept definitions,
encouraging definitions of identical or related con-



cepts to occupy nearby positions in the embedding
space and thus enabling the model to develop a
structured understanding of domain-specific enti-
ties and their interconnections.

In this process, we perform an extensive analy-
sis of the effectiveness of incorporating different
types of information, moving from using domain-
relevant concepts extracted from the ontologies
towards a fully unsupervised pipeline with LLM-
extracted concepts.

Contributions:
1) We validate the effectiveness of our

embedding-based pretraining approach using
ontology-derived concepts and LLM-generated def-
initions, establishing it as a viable alternative to
traditional MLM pretraining.

2) We identify the benefits of incorporating con-
cept relatedness by integrating ontological relation-
ship links into the pretraining objective.

3) We explore the possibility of combining our
pretraining strategy with traditional MLM pretrain-
ing, demonstrating strong synergistic effects that
vastly improve downstream performance.

4) We create and evaluate a fully unsupervised
pipeline by replacing ontology-derived concepts
with LLM-extracted concepts from scientific ab-
stracts. By also using distributional statistics as a
concept relatedness indicator, we remove the de-
pendency on manually curated ontologies.

5) We analyze performance of our unsupervised
approach across varying dataset sizes, showing that
it consistently outperforms MLM pretraining, even
when trained on significantly less data.

6) We focus on the use of synthetic data in
the form of LLM-generated concept definitions
and analyze model collapse (Shumailov et al.,
2024), demonstrating that our proposed pretrain-
ing scheme is much less susceptible to this issue
compared to classical mask language modeling.

Due to the extensiveness of our multi-step ex-
periments and analysis, we focus on a single, rep-
resentative domain: invasion biology. This field
exemplifies a complex, specialized area of scien-
tific research with limited unsupervised pretraining
data or annotated resources. To support evaluation,
we compile a new benchmark from three existing
studies (Brinner et al., 2022, 2024; Brinner and
Zarrieß, 2025), covering a diverse set of tasks that
collectively provide a comprehensive assessment
of model performance in this domain.

2 Related Work

Continual Pretraining is an effective and efficient
approach to make LMs robust against new, ever-
changing data that differs from its original pretrain-
ing (Wu et al., 2024; Zhou et al., 2024; Parmar
et al., 2024; Shi et al., 2024), enhances an LLM’s
domain specific effectiveness (Gururangan et al.,
2020; Gong et al., 2022; Xie et al., 2023; Çağatay
Yıldız et al., 2025) and improves knowledge trans-
fer to downstream tasks (Wang et al., 2024).
Ontologies and Knowledge Graphs (KGs) have
been explored as resource for continual pretraining
since they provide a structured representation of
domain knowledge in the form of unique entities
and precise relations between them, contrasting
the distributed and often less precise knowledge
representation within neural networks. To bridge
this gap, various methods have been proposed to
integrate structured knowledge into transformer
models. While some approaches incorporate KG
information during inference (Zhang et al., 2019;
Peters et al., 2019; He et al., 2020), the majority
of approaches focus on creating KG-informed pre-
training methods, for example by performing MLM
pretraining that incorporates knowledge about en-
tities (Shen et al., 2020; Zhang et al., 2021), per-
forming MLM pretraining on sentences derived
from KG triples (Lauscher et al., 2020; Moiseev
et al., 2022; Liu et al., 2022; Sahil and Kumar,
2023; Omeliyanenko et al., 2024), designing auxil-
iary classification tasks based on ontological knowl-
edge (Wang et al., 2021a; Glauer et al., 2023) or
by creating contrastive ontology-informed sentence
embedding methods (Wang et al., 2021b; Ronzano
and Nanavati, 2024). Our approach aligns most
closely with the latter but extends it into a broader
framework that incorporates not only relationships
between concepts but also LLM-derived knowl-
edge about individual concepts by incorporating
synthetic concept definitions, thus creating a more
informative and flexible pretraining process that is
not reliant on the presence of ontologies.
Using Synthetic Data for model pretraining and/or
fine-tuning is an appealing prospect (Long et al.,
2024), especially in specialized domains with lit-
tle available training data. Many studies explore
the potential of LLM-generated or LLM-annotated
data to enhance task-specific performance, both
for encoder (Kruschwitz and Schmidhuber, 2024;
Kuo et al., 2024; Wagner et al., 2024) and decoder
architectures (Ren et al., 2024; Lee et al., 2024).



Beyond task-specific fine-tuning, synthetic data
has also been investigated for task-agnostic pre-
training. While this approach has shown promise
for general-domain models (Alcoba Inciarte et al.,
2024; Yang et al., 2024; McKinzie et al., 2025), its
application in domain-specific pretraining remains
relatively underexplored (e.g., Yuan et al., 2024).

Despite its advantages, synthetic data introduces
risks, including potential performance degrada-
tion compared to human-generated data - a phe-
nomenon known as model collapse (Shumailov
et al., 2024), prompting studies aimed at mitigat-
ing this effect, especially for autoregressive LLMs
(Bertrand et al., 2024; Gerstgrasser et al., 2024;
Zhang et al., 2024; Zhu et al., 2024). In Section 6,
this phenomenon will be further discussed in the
context of our own experiments.

3 Method

We propose a method for injecting domain knowl-
edge into transformer models through contin-
ual pretraining. This section provides a general
overview of our approach, while Section 4 and Sec-
tion 5 detail and evaluate its application to datasets
derived from ontologies and scientific abstracts.

3.1 Similarity-Based Pretraining

We propose a pretraining strategy for transformer
encoder models, training them as embedding mod-
els for concept definitions by teaching it to place
definitions of the same concept or definitions of re-
lated concepts to similar positions in the embedding
space, thus enabling the model to capture both the
meaning and distinctions between domain-specific
concepts effectively. A comparable strategy has
previously proven effective for training specialized
embedding models on scientific abstracts, where it
substantially improved semantic encoding capabili-
ties (Brinner and Zarriess, 2025), thus suggesting
that a related approach may provide an effective
means of enforcing semantic understanding of rele-
vant domain knowledge.

Our method operates on a dataset of domain-
relevant concepts C = {C1, C2, ...}, each in combi-
nation with multiple natural language concept def-
initions D = {(d1,1, d1,2, ...), (d2,1, d2,2, ...), ...}.
Also, we optionally incorporate a set of tuples indi-
cating pairs of related concepts R = {(Ci, Cj), ...}
to increase the model’s domain understanding be-
yond knowledge of individual entities.

The core training scheme is as follows: Given

two concepts Ci and Cj from the dataset, we train
the model to embed two definitions of concept Ci

to nearby locations in the embedding space while
positioning a definition of Cj further away, thereby
teaching the model an understanding of the differ-
ent concepts. This is achieved by sampling two def-
initions di,1 and di,2 that define concept Ci, and one
definition dj,1 that defines concept Cj . These defi-
nitions are then mapped into the high-dimensional
embedding space using the model M , resulting in
embeddings ei,1, ei,2 and ej,1.

In practice, the embedding corresponds to the
model’s output vector at the CLS token. To en-
courage the model to map definitions of the same
concept in the embedding space to similar loca-
tions, we employ a triplet margin loss:

L = relu(||ei,1 − ei,2|| − ||ei,1 − ej,1||+ 1)

In this triplet loss formulation, di,1 serves as an
anchor, with di,2 being the positive and dj,1 being
the negative with respect to that anchor. The loss
function thus penalizes cases in which the distance
between the anchor and the positive (i.e., two def-
initions defining the same concept) is not at least
one unit (a margin hyperparameter) smaller than
the distance between the anchor and the negative.

Rather than explicitly sampling individual
triplets (anchor, positive, and negative), we opti-
mize the loss computation by leveraging in-batch
negatives, thus only sampling an anchor and a posi-
tive for each concept and using all definitions from
other concepts within the batch as negatives. This
strategy - in combination with switching the roles
of anchor and positive - significantly increases the
number of triplets contributing to the loss, lead-
ing to 4 · (n − 1) triples per anchor-positive pair
with a batch-size of n. This substantial increase in
triplets enhances model performance, as the loss
function quickly reaches zero for many triplets after
just a few epochs due to the model’s rapidly im-
proving embedding capabilities. Consequently, the
larger number of triplets increases the likelihood
of encountering more informative gradient signals,
ultimately leading to more effective embeddings.

3.2 Concept Relatedness

The current loss formulation encourages the model
to map similar definitions (i.e., those defining the
same concept) to nearby positions in the embed-
ding space. While this enhances the model’s ability
to differentiate between concepts, a deeper under-



standing of the domain also requires learning rela-
tionships between different concepts, which might
otherwise be learned only implicitly through the
similarity between their definitions. Therefore, we
extend our loss formulation by incorporating addi-
tional triplets that capture concept relatedness.

Specifically, if two concepts Ci and Cj are in
the same batch and (Ci, Cj) ∈ R, we treat their
definitions as additional positive pairs within the
loss function, while using the definitions of all un-
related concepts as negatives. This setup implic-
itly introduces a ranking effect: definitions of the
same concept are drawn closest together, as the
corresponding loss triples include all other defini-
tions - related or not - as negatives. In contrast,
triples based on related concepts use only defini-
tions of completely unrelated concepts as negatives,
thereby encouraging related concepts to be embed-
ded closer to one another than unrelated ones.

3.3 Pretraining Loss Combination

Our proposed loss is applied to the CLS token repre-
sentation, allowing seamless integration with other
pretraining losses that target the remaining token
embeddings. This is especially interesting in light
of recent models being trained exclusively with
MLM loss (Warner et al., 2024), since the tradi-
tional next sentence prediction loss empirically did
not lead to significant performance gains (Liu et al.,
2019). Consequently, our method presents a more
sophisticated approach of infusing domain-relevant
knowledge into the CLS token representation.

4 Ontology-Informed Pretraining

This section details the application and evaluation
of our proposed method, using domain-specific
ontologies for dataset creation. Our experiments
focus on the scientific domain of invasion biology,
a specialized subfield of biodiversity research that
investigates non-native species, their introduction
pathways, ecological impacts, and management
strategies to mitigate their effects on ecosystems
(Jeschke and Heger, 2018).

4.1 Dataset Creation

Our approach involves constructing a domain-
specific dataset consisting of concepts, definitions
and concept relations in the target domain. To this
end, we use two ontologies that address the tar-
get domain: the INBIO ontology (Algergawy et al.,
2025), which captures concepts relevant to invasion

biology, and the ENVO ontology (Buttigieg et al.,
2013, 2016), which provides a structured represen-
tation of environmental and ecological concepts.

From these ontologies, we extract concept-
definition pairs for all concepts that have a cor-
responding definition, as well as relational links
between concepts. Additionally, we use a LLM,
LLaMA-3-8B-Instruct (Grattafiori et al., 2024), to
generate five additional definitions per concept, us-
ing the original ontology definition as context dur-
ing generation to ensure that the new definitions
accurately reflect the domain-specific meaning.

We compare our proposed pretraining approach
to traditional MLM pretraining on sentences ex-
tracted from scientific abstracts. We leverage an
existing index of paper titles in the field of inva-
sion biology (Mietchen et al., 2024) and employ a
web scraper to retrieve their abstracts, resulting in a
final collection of 37,786 paper titles and abstracts.

Since we explicitly aim to assess the applicabil-
ity of our approach in low-resource settings, most
experiments are conducted on a subset of 5,000 ab-
stracts. This results in a dataset containing 47,031
sentences extracted from 5,000 scientific abstracts,
alongside 5,197 ontology-derived concepts, each
supplemented with at least one extracted definition
and five generated definitions.

4.2 Model Pretraining

In our experiments, we perform continual pretrain-
ing on a DeBERTa-base model (He et al., 2021b)
by leveraging three different pretraining strategies:

1. Masked language modeling (MLM) pre-
training with a masking probability of 0.25,
applied to either abstract sentences, generated
definitions, or a combined dataset of both.

2. Similarity (SIM) pretraining as described in
Section 3, using our proposed similarity-based
approach on the ontology-derived data.

3. Combined pretraining using MLM and SIM
losses, done to investigate potential synergies
between these approaches. We apply both
strategies concurrently by performing two for-
ward and backward passes - one for each loss
function - for each parameter update.

Further details about the pretraining can be
found in Appendix A.2.



4.3 Evaluation Datasets

Building on existing studies, we compile a bench-
mark comprising four distinct tasks in invasion
biology, each with unique evaluation requirements.

The Hypothesis Classification task (Brinner
et al., 2022) is a 10-class classification task on iden-
tifying which of 10 major hypotheses in invasion
biology is addressed in a given scientific abstract.
Due to class imbalance, we report both micro F1
and macro F1 scores.

The Hypothesis Span Prediction task (Brinner
et al., 2024) is a token-level prediction task based
on the same abstracts as the INAS classification
task. Annotators provide span-level evidence an-
notations for each hypothesis and we evaluate the
model’s ability to predict the tokens that were anno-
tated (Token F1) as well as the ability to recognize
complete spans (Span F1).

The EICAT Impact Classification task (Brinner
and Zarrieß, 2025) is a classification task on assess-
ing the impact of an invasive species as reported
in a given scientific full text, assigning it to one
of six predefined impact categories. We evaluate
performance using macro F1 and micro F1 scores.

The EICAT Impact Evidence task (Brinner and
Zarrieß, 2025) leverages evidence annotations pro-
vided by the EICAT classification dataset, created
by domain experts who identified sentences in the
full-texts indicating the species’ impact category.
We evaluate the model’s ability to rank relevant
sentences within a full text using the normalized
discounted cumulative gain (NDCG) metric.

These tasks address different aspects of the field
of invasion biology but have in common that they
require extensive domain knowledge for a deep in-
terpretation of scientific texts within the broader
context of the field. Taking the hypothesis classi-
fication tasks as an example, this could manifest
itself in needing to identify a hypothesis solely by
means of a description of an experimental design
or measurements taken within an ecosystem.

To mitigate variance inherent to model training,
we train 7 models for the hypothesis and impact
classification tasks and 3 models for the remain-
ing tasks and report the average performance. For
details on task setup, dataset sizes and training
methodologies, please refer to Appendix A.

To obtain a single benchmark score, we compute
task-specific scores by averaging the individual
performance metrics for each task and averaging
the results across all four tasks.

4.4 Results

The results of our evaluation of different pretraining
methods are presented in Table 1.

First, we observe that traditional MLM pretrain-
ing on sentences extracted from just 5,000 scientific
abstracts yields significant improvements across all
tasks compared to the DeBERTa baseline, raising
the benchmark score from 0.483 to 0.507.

As a baseline, we also assess the impact of MLM
pretraining on synthetic definitions. While this also
resulted in increased performance, the gains are
smaller than those achieved through pretraining
on abstract sentences. Additionally, despite the
datasets being of similar size, optimal performance
with synthetic definitions is reached after approx-
imately 40K batches, in contrast to 200K batches
for MLM on abstract sentences, which is analyzed
further in Section 6.2.

As a last MLM baseline, we investigate MLM
pretraining on a mixture of synthetic definitions and
abstract sentences. Since initial experiments using
a 1:1 ratio led to worse results compared to training
on abstract sentences alone, we adjusted the ratio
to 1:3 (ontology definitions to abstract sentences),
resulting in improved performance compared to
using abstract sentences alone and suggesting that
concept definitions provide useful additional infor-
mation to the model.

Turning to our proposed embedding similarity
(SIM) pretraining approach, we find that apply-
ing it to ontology definitions achieves performance
on par with MLM pretraining on real data (both
scoring 0.507), establishing our method as viable
alternative in the absence of such data. However,
since SIM pretraining only affects the CLS token
representation, we observe (on average) increased
performance on classification tasks while perfor-
mance decreased on the token-level prediction task,
indicating that our approach primarily enhances the
representation of the entire input sequence.

The most notable improvements arise when com-
bining SIM pretraining on synthetic ontology def-
initions with MLM pretraining on abstract sen-
tences. This approach leads to substantial perfor-
mance gains across most tasks compared to MLM
pretraining alone. Specifically, the overall bench-
mark score increases from 0.507 (MLM on abstract
sentences) to 0.538. Notably, the substantial im-
provement over using either pretraining method
individually (or over using the combined data for
MLM) suggests a synergistic effect, indicating that



Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Model Macro F1 Micro F1 Token F1 Span F1 Macro F1 Micro F1 NDCG

DeBERTa base 0.674 0.745 0.406 0.218 0.392 0.416 0.505 0.483
MLM Pretraining

Abstract Sentences 0.744 0.792 0.413 0.219 0.433 0.455 0.499 0.507
Ontology Definitions 0.685 0.759 0.409 0.222 0.448 0.446 0.501 0.496
Keyword Definitions 0.719 0.776 0.397 0.194 0.428 0.441 0.478 0.492
Abstract Sent.+Ontology Def. 0.740 0.804 0.415 0.230 0.459 0.479 0.512 0.519
Abstract Sent.+Keyword Def. 0.729 0.799 0.417 0.221 0.439 0.455 0.497 0.507

Similarity Pretraining
Ontology Definitions 0.727 0.779 0.400 0.218 0.446 0.460 0.514 0.507
Keyword Definitions 0.726 0.783 0.405 0.228 0.465 0.475 0.497 0.510

MLM+Similarity Pretraining
Abstract Sent.+Ontology Def. 0.750 0.812 0.414 0.242 0.504 0.518 0.530 0.538
Abstract Sent.+Keyword Def. 0.740 0.805 0.415 0.220 0.469 0.489 0.511 0.520

Other Domain-Specific Models
PubMedBERT 0.728 0.783 0.410 0.208 0.509 0.508 0.552 0.531
SciDeBERTa 0.736 0.805 0.417 0.213 0.468 0.484 0.494 0.514

Table 1: Benchmark results for different pretraining methods leveraging either the ontology or a dataset of 5000
scientific abstracts, as well as a comparison to two pretrained models from the biomedical domain.

SIM pretraining enhances the understanding of in-
dividual concepts, while MLM pretraining strength-
ens the model’s grasp of relationships between con-
cepts and general language understanding. As a
result, this combined approach outperforms models
trained on millions of abstracts from the broader
biomedical domain, such as PubMedBERT (Gu
et al., 2021) and SciDeBERTa (Jeong and Kim,
2022), which generally are strong baselines in this
field (Brinner et al., 2022).

Finally, we perform an ablation experiment by
performing SIM pretraining without leveraging
concept relatedness information. This leads to a
significant drop in performance (0.498 compared
to 0.507 with concept relatedness), suggesting that
the relatedness encoded in ontologies is a useful
training signal (Appendix A.5, Table 3).

5 Using LLM-Extracted Keywords

In the previous section, we explored the perfor-
mance improvements achieved by combining our
proposed similarity loss on ontology-derived data
with traditional MLM pretraining. While this ap-
proach is highly valuable in domains with available
ontologies, many fields may lack such structured
resources. To address this limitation, we explore
the feasibility of using an LLM for constructing
a dataset of domain-relevant concepts, definitions,
and relations using only a small set of scientific
abstracts. We compare results achieved on our

original dataset of 5,000 abstracts with those using
ontology-derived data and also evaluate how well
our approach scales with increasing dataset size.

5.1 Dataset Creation

To construct the dataset, we assume access to a
small collection of scientific abstracts, as discussed
in Section 4.1.The dataset (C,D,R) is obtained
through the following three steps:

1. Keyword Extraction: We extract domain-
relevant concepts in the form of keywords
from scientific abstracts using LLaMA-3-8B
(Grattafiori et al., 2024). This is achieved by
appending the string "Keywords:" to each ab-
stract and allowing the language model to gen-
erate a continuation, effectively identifying
key concepts within the text.

2. Definition Generation: For each extracted
keyword, we generate five additional defini-
tions using LLaMA-3-8B-Instruct. To ensure
that the generated definitions accurately re-
flect domain-specific usage, the original ab-
stract from which the keyword was extracted
serves as context during generation.

3. Relation Identification: We determine con-
cept relationships by analyzing co-occurrence
patterns within the abstracts. Keyword names
are first normalized using stemming, followed



Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Model Macro F1 Micro F1 Token F1 Span F1 Macro F1 Micro F1 NDCG

MLM Pretraining
5000 Abstracts 0.744 0.792 0.413 0.219 0.433 0.455 0.499 0.507
15000 Abstracts 0.731 0.801 0.415 0.234 0.480 0.499 0.493 0.518
25000 Abstracts 0.748 0.807 0.418 0.233 0.460 0.484 0.512 0.522
35000 Abstracts 0.735 0.811 0.419 0.244 0.483 0.484 0.494 0.521

Avg: 0.517
MLM+Similarity Pretraining

5000 Abstracts 0.740 0.805 0.415 0.220 0.469 0.489 0.511 0.520
15000 Abstracts 0.754 0.812 0.418 0.245 0.474 0.489 0.519 0.529
25000 Abstracts 0.759 0.806 0.419 0.236 0.479 0.499 0.511 0.528
35000 Abstracts 0.756 0.824 0.418 0.241 0.477 0.489 0.551 0.538

Avg: 0.529

Table 2: Comparing MLM and combined MLM+SIM pretraining with keyword definitions for varying dataset sizes.

by exact string matching to identify equivalent
keywords across different abstracts. Two key-
words are considered related if they co-occur
more than k times (a tunable hyperparameter),
with all other samples serving as negatives.

We again begin by evaluating results on a dataset
of 5,000 abstracts, which constrains both the num-
ber of abstract sentences available for pretraining as
well as the number of extracted keywords with cor-
responding definitions created within our pipeline,
resulting in 23,597 unique keywords. This setup al-
lows us to assess the effectiveness of our approach
in a low-resource setting. We then examine the im-
pact of dataset size by progressively increasing the
number of abstracts to 15,000, 25,000, and 35,000.

5.2 Results
Results for the first set of experiments operating on
5000 scientific abstracts are displayed in Table 1.

We again evaluate MLM pretraining on the new
dataset of LLM-generated keyword definitions as
a baseline, which leads to slight improvements
over the standard DeBERTa base model by achiev-
ing scores of 0.492 when trained solely on key-
word definitions and 0.507 when combined with
abstract sentences. However, these gains are less
pronounced than those using LLM-generated def-
initions for ontological concepts, indicating that
ontological concepts offer more valuable informa-
tion to the encoder model (compare Section 6).

In contrast, SIM pretraining on keyword defini-
tions yields slightly better performance than using
ontology definitions, which may be attributed to
dataset size as the LLM extracted 23,597 unique
keywords from the abstracts, compared to 5,179

concepts from the ontologies. Notably, this lets
SIM pretraining on data extracted from 5,000 ab-
stracts outperform MLM pretraining on that same
dataset, thus validating our proposed pretraining
approach and suggesting that the LLM has enriched
our base dataset with valuable information.

Combining SIM and MLM pretraining again
leads to improved results compared to either strat-
egy alone, thus undermining the synergistic effects.
However, the performance gains are weaker than
those achieved using the ontology-derived data
(0.520 vs. 0.538), which we analyze further in
Section 6. Still, the resulting model using just
5,000 abstracts outperforms SciDeBERTa, which
was trained on millions of scientific abstracts.

Lastly, we assess the effect of varying dataset
sizes on our pretraining pipeline. While an increase
in data availability leads to more detected keywords
for SIM pretraining, it also leads to more abstract
sentences for MLM pretraining, which may dimin-
ish the relative value added by the LLM. However,
as shown in Table 2, even with larger datasets, our
fully automated knowledge injection strategy con-
sistently outperforms traditional MLM pretraining,
even though both are based on the same dataset.

Despite efforts to mitigate variance by training
multiple models per task, individual results still
remain subject to fluctuation (see Appendix A.6 for
an analysis on statistical significance). Therefore,
we consider the average scores across all dataset
sizes - 0.517 for MLM pretraining and 0.529 for
combined pretraining - as the most reliable indica-
tors of the substantial performance improvements
achievable with our pipeline.



6 Discussion

6.1 Are Ontologies Replaceable?

Our experiments demonstrate that injecting
domain-specific knowledge from ontologies into
encoder models can substantially enhance down-
stream performance. Notably, we also found that
this knowledge can - to some extent - be replaced
by a combination of LLM-extracted keywords, defi-
nitions, and co-occurrence statistics. Still, we argue
that ontologies are a more valuable resource, which
is supported by several observations.

First, despite our automated pipeline extracting
a significantly larger number of keywords from
5,000 abstracts than were present in the ontologies
(23,597 vs. 5,179), MLM pretraining performance
was better using ontology-based data. This sug-
gests that ontology-derived data is of higher qual-
ity, likely due to the careful selection of domain-
relevant concepts, making even small ontologies
highly valuable. In contrast, many automatically
extracted keywords, such as species names, may
be less informative for analyzing species invasions
than more targeted ontology concepts.

Second, we find that a combination of synthetic
data and abstract sentences leads to superior results
when ontology-based definitions are used instead of
keyword definitions (both for MLM and SIM). This
disparity may stem from the fact that information
extracted from the abstracts is inherently tied to the
same dataset, thus offering less additional insight
compared to the disconnected and therefore more
informative ontology.

Finally, ontological relations encode different
knowledge compared to statistical co-occurrence
patterns. Most relations within the investigated
ontologies were subclass relations, that contribute
to a refined hierarchical understanding of domain-
specific concepts. In contrast, co-occurrence statis-
tics primarily capture broader associations between
concepts within the domain and the contexts they
appear in. Our results indicate that both types of
information benefit model pretraining, but we do
not believe that they should be equated.

6.2 Investigating Model Collapse

Previous studies have identified a risk of model col-
lapse when training on LLM-generated data (see
Section 2). Similarly, we observed that both MLM
and SIM training on synthetic data reached peak
performance after approximately 40K batches, af-
ter which performance began to decline. In con-

trast, training on the dataset consisting of abstract
sentences peaked at around 200K batches, with per-
formance remaining stable even when training for
twice as long. This suggests that while the gener-
ated data provides valuable information, excessive
use can still lead to model collapse.

It is important to note that we cannot conclu-
sively attribute this behavior solely to the synthetic
nature of the data. Since the generated dataset
consists exclusively of concept definitions, its in-
herently lower variance compared to abstract sen-
tences may contribute to catastrophic forgetting of
broader language understanding, rather than model
collapse in the strict sense.

Nevertheless, we found that performance degra-
dation with synthetic data was much less pro-
nounced for SIM training compared to MLM. This
is likely due to weaker gradient signals after the
peak has been reached, as most training triples
eventually reach zero loss. This has the positive
effect that, when SIM pretraining on synthetic data
is combined with MLM training on abstract sen-
tences, the risk of model collapse is effectively
mitigated because the weak (but still informative)
gradients from SIM training are not strong enough
to induce this effect.

This is in contrast to MLM training on a com-
bination of abstract sentences and synthetic def-
initions. Here, performance declined compared
to training on abstract sentences alone when both
sources of data were used in equal proportion. This
suggests that in this setting, the signal leading to
model collapse is too strong, leading us to adopt a
1:3 ration in our experiments.

Ultimately, these findings highlight the advan-
tage of our proposed pretraining scheme over tra-
ditional MLM, as it enables effective utilization of
synthetic data while avoiding detrimental effects
on model stability.

7 Conclusion

In this study, we investigated the use of LLM-
generated, synthetic data for continual pretraining
of domain-specific encoder models, demonstrating
how to utilize domain specific ontologies or derive
domain information through LLM-extraction from
scientific abstracts for domains where ontologies
may not be available.

Our results demonstrate that the proposed pre-
training approach produces strong synergistic ef-
fects when combined with masked language model-



ing training. This leads to significant performance
improvements in low-resource settings and results
in a model surpassing other specialized models
from the broader biomedical domain, despite being
trained on orders of magnitude less data.

Given the minimal data requirements, our ap-
proach has the potential to be widely applicable
beyond the domain explored in this study. Further-
more, its robustness against model collapse despite
using synthetic data represents a meaningful ad-
vancement in leveraging LLM-generated data for
training specialized models.

8 Limitations

We note several limitations of our approach: First,
while we demonstrate strong performance in the
domain of invasion biology, its applicability to
other domains remains uncertain and requires fur-
ther evaluation, which was not possible to include
within this study given the extend of the existing
evaluations and analyses.

Second, although we compare the effectiveness
of leveraging information from an ontology versus
extracting it from scientific abstracts, our compari-
son is constrained by the specific ontology elements
considered - namely, the selection of concepts, their
definitions, and the presence of links. We believe
that significant untapped potential remains in ad-
ditional ontology features, such as relation types,
domains and ranges of relations, and higher-order
relationships. A more comprehensive assessment
of the ontology’s value can only be made once its
full informational capacity is utilized.

Third, assessing the correctness and quality of
LLM-generated data and extracted concepts from
scientific abstracts is beyond the scope of this study.
While our results indicate performance improve-
ments on the invasion biology benchmark, there
remains a risk of introducing bias or inaccuracies
into the encoder model due to biased concept selec-
tion or potential misinterpretations by the LLM.

9 Acknowledgments

This work was funded by the European Regional
Development Fund within the project "LLM4KMU
- Optimierter Einsatz von Open Source Large Lan-
guage Modellen in KMU", and was partially pro-
duced within the focus group "Mapping Evidence
to Theory in Ecology: Addressing the Challenges
of Generalization and Causality" at the Center for
Interdisciplinary Research, Bielefeld.

References
Alcides Alcoba Inciarte, Sang Yun Kwon,

El Moatez Billah Nagoudi, and Muhammad
Abdul-Mageed. 2024. On the utility of pretraining
language models on synthetic data. In Proceedings
of The Second Arabic Natural Language Processing
Conference, pages 265–282, Bangkok, Thailand.
Association for Computational Linguistics.

Alsayed Algergawy, Hrishikesh Jadhav, Merle
Gänßinger, Tina Heger, Jonathan Jeschke, and
Birgitta König-Ries. 2025. The invasion biology
ontology (inbio).

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Quentin Bertrand, Avishek Joey Bose, Alexandre Du-
plessis, Marco Jiralerspong, and Gauthier Gidel.
2024. On the stability of iterative retraining of
generative models on their own data. Preprint,
arXiv:2310.00429.

Marc Brinner, Tina Heger, and Sina Zarriess. 2022.
Linking a hypothesis network from the domain of
invasion biology to a corpus of scientific abstracts:
The INAS dataset. In Proceedings of the first Work-
shop on Information Extraction from Scientific Publi-
cations, pages 32–42, Online. Association for Com-
putational Linguistics.

Marc Brinner and Sina Zarriess. 2025. Semcse:
Semantic contrastive sentence embeddings using
llm-generated summaries for scientific abstracts.
Preprint, arXiv:2507.13105.

Marc Brinner, Sina Zarrieß, and Tina Heger. 2024.
Weakly supervised claim localization in scientific
abstracts. In Robust Argumentation Machines, pages
20–38, Cham. Springer Nature Switzerland.

Marc Felix Brinner and Sina Zarrieß. 2025. Efficient
scientific full text classification: The case of eicat
impact assessments. Preprint, arXiv:2502.06551.

Pier Luigi Buttigieg, Norman Morrison, Barry Smith,
Christopher J Mungall, Suzanna E Lewis, and Envo
Consortium. 2013. The environment ontology: con-
textualising biological and biomedical entities. Jour-
nal of biomedical semantics, 4:1–9.

Pier Luigi Buttigieg, Evangelos Pafilis, Suzanna E
Lewis, Mark P Schildhauer, Ramona L Walls, and
Christopher J Mungall. 2016. The environment on-
tology in 2016: bridging domains with increased
scope, semantic density, and interoperation. Journal
of biomedical semantics, 7:1–12.

https://doi.org/10.18653/v1/2024.arabicnlp-1.23
https://doi.org/10.18653/v1/2024.arabicnlp-1.23
https://doi.org/10.5281/zenodo.14864244
https://doi.org/10.5281/zenodo.14864244
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.48550/arXiv.2310.00429
https://doi.org/10.48550/arXiv.2310.00429
https://doi.org/10.18653/v1/2022.wiesp-1.5
https://doi.org/10.18653/v1/2022.wiesp-1.5
https://doi.org/10.18653/v1/2022.wiesp-1.5
https://arxiv.org/abs/2507.13105
https://arxiv.org/abs/2507.13105
https://arxiv.org/abs/2507.13105
https://arxiv.org/abs/2502.06551
https://arxiv.org/abs/2502.06551
https://arxiv.org/abs/2502.06551


Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
Preprint, arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey,
Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, An-
drey Gromov, Daniel A. Roberts, Diyi Yang, David L.
Donoho, and Sanmi Koyejo. 2024. Is model col-
lapse inevitable? breaking the curse of recursion
by accumulating real and synthetic data. Preprint,
arXiv:2404.01413.

Jennifer C Girón, Sergei Tarasov, Luis Antonio
González Montaña, Nicolas Matentzoglu, Aaron D
Smith, Markus Koch, Brendon E Boudinot, Patrice
Bouchard, Roger Burks, Lars Vogt, Matthew Yoder,
David Osumi-Sutherland, Frank Friedrich, Rolf G
Beutel, and István Mikó. 2023. Formalizing inver-
tebrate morphological data: A descriptive model for
cuticle-based skeleto-muscular systems, an ontology
for insect anatomy, and their potential applications
in biodiversity research and informatics. Systematic
Biology, 72(5):1084–1100.

Martin Glauer, Fabian Neuhaus, Till Mossakowski, and
Janna Hastings. 2023. Ontology pre-training for poi-
son prediction. In KI 2023: Advances in Artificial
Intelligence, pages 31–45, Cham. Springer Nature
Switzerland.

Zheng Gong, Kun Zhou, Xin Zhao, Jing Sha, Shi-
jin Wang, and Ji-Rong Wen. 2022. Continual pre-
training of language models for math problem un-
derstanding with syntax-aware memory network. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5923–5933, Dublin, Ireland. As-
sociation for Computational Linguistics.

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-
els. Preprint, arXiv:2407.21783.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare, 3(1):1–23.

Suchin Gururangan, Ana Marasović, Swabha
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A Experimental Details

Code for training and evaluation, training
datasets and the best-performing encoder model
checkpoint are available at github.com/inas-
argumentation/Ontology_Pretraining.

A.1 Data Generation

We used LLMs, specifically LLaMA-3-8B and
LLaMA-3-8B-Instruct, to generate synthetic data
for pretraining the encoder model. For generat-
ing alternative definitions of ontology concepts, we
employed the instruction-tuned version of LLaMA,
using the prompt shown in Figure 1.

Concepts were extracted from scientific abstracts
following the procedure detailed in Section 5.1.
Definition generation was then performed using
a similar prompting approach, incorporating the
scientific abstract as context.

Concept relations are identified using co-
occurrence counts as described in Section 5.1. For
the dataset consisting of 5000 abstracts, we treat
concepts as related if they co-occur in at least 5 ab-
stracts, which we selected manually by observing
and assessing exemplary related concepts. Since
many concepts occur rarely, this lead to each con-
cept being on average related to about 0.5 other
concepts. For larger dataset sizes, we adjust the
number of co-occurrences that are required for two
concepts to be related so that the number of related
concepts for each concept stays roughly constant
at 0.5, thus leading to a comparable assessment.

A.2 Model Training

We evaluate various pretraining strategies. Initially,
we selected the optimal model checkpoint based
on validation loss; however, we found that train-
ing for significantly longer improved downstream
performance, even when the validation loss did not
decrease. For this reason, we adopted a strategy of
saving model checkpoints at different epochs and
evaluating them on the INAS classification task.
We then used this evaluation to identify the number
of batches that are optimal for a given pretraining
method. Once this number is established, we re-
trained the final models used in our evaluation from
scratch using the predetermined number of epochs.

For similarity-based pretraining, we adopt a sam-
pling strategy that increases the likelihood of sam-
ples that are related to each other being included
within the same batch.

https://doi.org/10.48550/arXiv.2402.01364
https://doi.org/10.48550/arXiv.2402.01364
https://doi.org/10.48550/arXiv.2311.08545
https://doi.org/10.48550/arXiv.2311.08545
https://doi.org/10.48550/arXiv.2409.07431
https://doi.org/10.48550/arXiv.2409.07431
https://doi.org/10.48550/arXiv.2403.09057
https://doi.org/10.48550/arXiv.2403.09057
https://arxiv.org/abs/2009.02835
https://arxiv.org/abs/2009.02835
https://arxiv.org/abs/2009.02835
https://doi.org/10.48550/arXiv.2407.12835
https://doi.org/10.48550/arXiv.2407.12835
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.48550/arXiv.2401.16386
https://doi.org/10.48550/arXiv.2401.16386
https://arxiv.org/abs/2412.14689
https://arxiv.org/abs/2412.14689
https://arxiv.org/abs/1506.06724
https://arxiv.org/abs/1506.06724
https://arxiv.org/abs/1506.06724
https://doi.org/10.48550/arXiv.2402.17400
https://doi.org/10.48550/arXiv.2402.17400
https://https://github.com/inas-argumentation/Ontology_Pretraining
https://https://github.com/inas-argumentation/Ontology_Pretraining


Task: Create a single sentence that defines the concept listed below. You also receive an existing definition of the concept.

If you feel like the definition does not contain enough information, please create a more extensive one. If you feel like all
necessary information is already contained, you do not need to add additional information. Please do not simply repeat the
definition given to you. Please do not use the term itself in the definition.

Concept: [CONCEPT NAME]
Definition: [CONCEPT DEFINITION]

Format your response as:
Definition: [New Definition]
END.

Figure 1: The Llama-3-8B-Instruct prompt for generating alternative definitions for concepts from the ontology.

In the case of combined SIM and MLM pretrain-
ing, we independently sample a batch for each pre-
training method and perform two backward passes
- one for each loss - before applying a single param-
eter update.

For MLM pretraining, we found that a high
weight decay value of 1e-2 was beneficial, likely
mitigating overfitting to the small dataset. In con-
trast, for SIM pretraining we did not use weight
decay, since applying it led to reduced downstream
performance, potentially due to accelerated catas-
trophic forgetting of the model’s general language
modeling capabilities if no MLM loss is used.

For combined pretraining, we again applied a
weight decay of 1e-2.

A.3 Evaluation Dataset
A.3.1 INAS Classification
The INAS classification task (Brinner et al., 2022)
is a 10-class classification problem, where the goal
is to determine which of 10 prominent hypotheses
are addressed in a given scientific abstract. We
use the updated labels provided by (Brinner et al.,
2024). The task is a multi-label classification task,
meaning that multiple hypotheses can be addressed
within a single abstract.

The dataset consists of 954 samples, with 721
used for training, 92 for validation, and 141 for
testing. Models are trained as standard classifiers
with a sigmoid activation function and a weighted
binary cross-entropy loss. Given the highly imbal-
anced nature of the dataset, we report both micro
and macro F1 scores to assess overall predictive
performance as well as the ability to recognize un-
derrepresented classes. Further details are available
in our code repository.

A.3.2 INAS Span Prediction
The INAS Span Prediction task (Brinner et al.,
2024) is closely related to the INAS classification
task and is based on the same dataset. However,

instead of classifying abstracts, it involves identi-
fying spans of text indicative of the 10 hypotheses,
as annotated by human experts.

Only 750 samples contain token-level annota-
tions. Models are trained using a weighted binary
cross-entropy loss applied to 10 logits that were
predicted for each input token, with each logit cor-
responding to one of the hypotheses. Additionally,
we trained models as normal classifier as in the
INAS classification task, where we also included
all samples without token-level annotations.

We evaluate performance using two metrics:

• Token-F1 Score: This score measures the
ability to identify individual tokens as being
indicative of a specific hypothesis (i.e., be-
longing to a ground-truth annotation).

• Span-F1 Score: This score evaluates how
well models detect complete spans by assess-
ing the intersection-over-union (IoU) between
predicted and ground-truth spans at different
thresholds.

For further details on these metrics, see (Brinner
et al., 2024).

A.3.3 EICAT Classification
The EICAT classification task (Brinner and Zarrieß,
2025) is concerned with classifying the ecological
impact of an invasive species as reported in a sci-
entific full-text paper. The categories include five
different impact levels plus a “Data Deficient” cate-
gory, resulting in a six-class classification problem.

The dataset consists of 436 full-text scientific pa-
pers covering 120 species, with training, validation,
and test splits of 82%, 8%, and 10%, respectively.

Since most encoder models cannot process en-
tire full-texts at once, Brinner and Zarrieß (2025)
explored strategies for selecting relevant sentence
subsets for training and evaluation. One effective
and unbiased approach is the selection of random



Hypothesis Clf Hypothesis Span Impact Clf Impact Evid. Avg.
Similarity Pretraining

Ontology Definitions 0.727 0.779 0.400 0.218 0.446 0.460 0.514 0.507
Keyword Definitions 0.726 0.783 0.405 0.228 0.465 0.475 0.497 0.510

Similarity Pretraining Ablation: No Concept Relatedness
Ontology Definitions 0.715 0.777 0.395 0.210 0.436 0.450 0.499 0.498
Keyword Definitions 0.725 0.781 0.402 0.209 0.466 0.484 0.484 0.504

Table 3: Results for an ablation study, evaluating the effect of not using the relatedness between different concepts
in the pretraining loss.

sentences, which we adopt. During testing, each
model receives 20 different random sentence selec-
tions per paper, with the final classification deter-
mined via majority voting.

Models are trained as standard classifiers with
a weighted categorical cross-entropy loss. Given
the dataset’s class imbalance, we report both micro
and macro F1 scores, following the approach used
in the INAS classification task.

A.3.4 EICAT Evidence Selection

The EICAT evidence selection task (Brinner and
Zarrieß, 2025) is a binary sentence classification
problem. While annotating scientific full-texts for
the EICAT classification task, human experts iden-
tified key sentences that served as evidence for
impact assessments. The goal of this task is to pre-
dict whether a given sentence is evidence for an
EICAT impact assessment.

To provide context, the model receives three
sentences before and three sentences after the tar-
get sentence, with the target sentence enclosed
by [SEP] tokens. Training is performed using a
weighted binary cross-entropy loss.

The dataset splits are the same as those used
in the EICAT classification task. Performance is
reported using the normalized discounted cumu-
lative gain (NDCG) score, which evaluates the
model’s ability to rank ground-truth evidence sen-
tences higher than non-evidence sentences. This
metic is used since the task was proposed in the
context of extracting a fixed number of sentences
for further prediction, thus making the ranking be-
tween sentences more important than the specific
predicted scores. Also, the original annotations
are not guaranteed to include every sentence in-
dicative of the correct classification, thus making a
softer metric a better fit compared to a strict binary
evaluation.

A.4 Evaluation Details

Due to the variance inherent to training models on
evaluation tasks, we train 7 models for the INAS
classification and EICAT classification tasks, as
well as 3 models for the other tasks that take signif-
icantly longer for each training run. Final results
are reported as the average performance across all
runs. To compute a final benchmark score, we first
average the performance metrics for each task sep-
arately and then compute an overall average across
all tasks.

For some tasks, we observed occasional training
runs (across all pretraining types) where models
exhibited drastically lower performance caused by
degenerate states that only predict a single class
for all samples. We attribute this to the dataset’s
extreme class imbalance, that, for some random
seeds, leads to degenerate states that the model is
unable to escape. In such cases, training runs were
repeated to avoid reporting results that reflect ran-
dom failures rather than actual model performance.

A.5 Ablation

We perform an ablation study evaluating the effect
of not incorporating the relations between different
concepts (as determined by ontology relations or
keyword co-occurrence statistics) into the pretrain-
ing loss. Results are displayed in Table 3. We see
that not incorporating concept relatedness leads to
reduced scores on our benchmark, thus indicating
the usefulness of leveraging this information within
pretraining.

A.6 Statistical Significance

We perform multiple runs for each task to reduce
variance in our reported results. To fully undermine
our key results, we perform a permutation-based
statistical significance test that takes all 20 (or 80
for the multiple dataset sizes) individual results
that contribute to the final benchmark score into



account. According to this, the following results
are statistically significant (p < 0.05):

• The superiority of all pretraining methods (ex-
cept MLM pretraining using just keyword def-
initions) over DeBERTa base.

• The superiority of combining MLM pretrain-
ing on abstract sentences with similarity pre-
training on ontology definitions compared to
just MLM pretraining on abstract sentences.

• The superiority of combining MLM pretrain-
ing on abstract sentences with similarity pre-
training on keyword definitions if evaluated
over all dataset sizes.

• The superiority of MLM+SIM pretraining us-
ing ontology data over MLM+SIM pretraining
using abstract-derived keyword data.

Thus, the following key insights are supported
by statistical significance:

• SIM pretraining alone is a valid pretraining
strategy that improves performance.

• Combining SIM pretraining with MLM pre-
training leads to improved results compared to
just MLM pretraining alone. This holds both
for the ontology-based and LLM-extracted
keyword-based data.

• Ontology data is a more valuable resource
than data reliant on LLM extracted keywords.
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