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Abstract

In real practice, questions are typically complex
and knowledge-intensive, requiring Large Lan-
guage Models (LLMs) to recognize the multi-
faceted nature of the question and reason across
multiple information sources. Iterative and
adaptive retrieval, where LLMs decide when
and what to retrieve based on their reasoning,
has been shown to be a promising approach
to resolve complex, knowledge-intensive ques-
tions. However, the performance of such re-
trieval frameworks is limited by the accumu-
lation of reasoning errors and misaligned re-
trieval results. To overcome these limitations,
we propose TreeRare (Syntax Tree-Guided
Retrieval and Reasoning), a framework that uti-
lizes syntax trees to guide information retrieval
and reasoning for question answering. Follow-
ing the principle of compositionality, TreeRare
traverses the syntax tree in a bottom-up fashion,
and in each node, it generates subcomponent-
based queries and retrieves relevant passages
to resolve localized uncertainty. A subcom-
ponent question answering module then syn-
thesizes these passages into concise, context-
aware evidence. Finally, TreeRare aggregates
the evidence across the tree to form a final an-
swer. Experiments across five question answer-
ing datasets involving ambiguous or multi-hop
reasoning demonstrate that TreeRare achieves
substantial improvements over existing state-
of-the-art methods.1

1 Introduction

Large Language Models (LLMs) (Chowdhery et al.,
2023; Achiam et al., 2023) have demonstrated re-
markable capabilities across a wide range of natu-
ral language processing (NLP) tasks, including text
generation and question answering, often achieving
strong performance in few-shot or even zero-shot
settings without task-specific fine-tuning (Brown

1Our code is publicly available at
https://github.com/billycrapediem/TreeRare.
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Figure 1: Comparison of TreeRare and ReAct(Yao et al.,
2022) on a multihop question. TreeRare decomposes
the question into structured sub-questions and retrieves
focused evidence. In contrast, ReAct fails to generate
useful query and misidentifies the region.

et al., 2020). Despite their impressive performance,
LLMs generate plausible but factually incorrect
statements due to over-reliance on their paramet-
ric knowledge when tackling knowledge-intensive
tasks that demand factual accuracy and external
grounding (Roberts et al., 2020; Maynez et al.,
2020; Chen et al., 2022). To address this issue,
existing work has shown that retrieval-augmented
generation (RAG) can largely reduce factual hal-
lucination by incorporating LLMs with external
knowledge sources (Lewis et al., 2020; Guu et al.,
2020).

RAG enhances LLMs by integrating external
knowledge retrieval into the generation process.
Traditional RAG systems follow a “retrieve-then-
read” paradigm, where a retriever selects top-k
documents based on similarity metrics, and the
LLM generates responses conditioned on retrieved
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documents (Lewis et al., 2020). While effective
for well-posed queries, this paradigm often strug-
gles to answer ambiguous or multihop questions,
as similarity-based retrieval may miss relevant ev-
idence. To address this limitation, many works
enhance retrieval quality via retrieval judgment,
adaptive search mechanisms, or question decompo-
sition to improve retrieval quality and performance
of complex knowledge-intensive tasks. (Li et al.,
2025; Asai et al., 2024; Tan et al., 2024; Yao et al.,
2022) However, as illustrated in Figure 1, these
methods often rely on internal reasoning in LLMs,
which can cause errors to accumulate across steps.
Mistakes made during reasoning or retrieval can
result in information that is misaligned with the
original intent of the question, leading to noisy
inputs and incorrect final answers (Li et al., 2024).

Inspired by the principle of compositionality
—the meanings of complex expressions are con-
structed from the meanings of the less complex
expressions that are their constituents (Fodor and
Lepore, 2002)— we then ask: Can the syntactic
structure of complex, knowledge-intensive ques-
tions guide effective retrieval and inference toward
correct answers? We leverage syntax trees as a
basis for question decomposition, since parsing
tree has been shown to be effective in capturing
the syntactic relations between each phrase in a
sentence (Li et al., 2015). Then, we propose a
bottom-up traversal of the syntax tree, where each
child node is processed first, and its output is used
to guide the processing of its parent node. Addi-
tionally, observing that LLMs frequently fail to
detect ambiguity or knowledge gaps present within
sub-phrases (Piryani et al., 2024; Kim et al., 2024),
we provide LLMs at each node with information
from the child nodes to formulate queries that re-
solve the associated sub-phrase uncertainty. Fur-
thermore, recognizing that LLM performance de-
grades when conditioned on long or noisy inputs
(Liu et al., 2024b; Xu et al., 2024), we introduce a
subcomponent question answering that synthesize
the retrieved context into concise, phrase-relevant
evidence.

Combining these modules, we propose syntax
tree-guided retrieval and reasoning (TreeRare).
TreeRare incrementally retrieves and resolves sub-
components of a question in accordance with its
syntax structure. As illustrated in Figure 2, TreeR-
are traverses the syntax tree in a bottom-up man-
ner, resolving the uncertainty at each node through
a two-stage process, starting with subcomponent-

based retrieval, followed by subcomponent ques-
tion answering. Upon completing the traversal,
TreeRare constructs targeted, comprehensive evi-
dence for each sub-phrase in the parsing tree and
aggregates these evidence across nodes to generate
a final answer.

Our contributions are as follows: (1) We propose
TreeRare to handle complex, knowledge-intensive
questions, which enhances LLMs’ performance
by interleaving retrieval with reasoning over the
syntax tree. (2) We introduce retrieval-only coun-
terpart, Tree-Retrieval, effectively improving the
retrieval quality without involving any LLM reason-
ing. (3) We perform experiments across multiple
multihop and ambiguous question answering (QA)
benchmarks for three LLM backbones. On multi-
hop QA benchmarks, TreeRare achieves an average
relative improvement up to 17.8%. For ambiguous
QA, TreeRare yields an average improvement of
23.7% across various evaluation metrics.

2 Related Work

2.1 LLMs for Reasoning

Significant efforts have been dedicated to enhance
the reasoning capabilities of LLMs during the infer-
ence phase. Chain-of-prompting (CoT) (Wei et al.,
2022) prompting introduces intermediate reason-
ing steps between the initial query and the final
answer, thereby improving performance on com-
plex tasks. Building upon this, self-consistency
(SC) (Wang et al., 2022) generates multiple reason-
ing paths and employ majority voting to select the
final answer; self-verification (Shinn et al., 2023)
prompts LLMs to reflect on their outputs and itera-
tively refine them through feedback. Additionally,
Tree-of-Thought (ToT) and Reasoning via Plan-
ning (RAP) prompting (Yao et al., 2023; Hao et al.,
2023) extend the CoT approach. These methods
further enhance LLMs’ reasoning abilities by ex-
ploring multiple reasoning paths with different tree
search algorithm. Above approaches rely solely
on the internal reasoning traces of LLMs and lack
structural guidance, such as syntax tree included in
TreeRare.

2.2 Retrieval Augmented Generation

Common RAG systems proceed in a retriever-then-
read paradigm, where it first retrieves relevant docu-
ments based on the user’s query using either sparse
or dense retrieval and then takes the retrieved infor-
mation in addition to the question as input to gener-
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Figure 2: Overview of the TreeRare framework. Given a knowledge-intensive question, TreeRare first decomposes
it into a syntax tree. It then traverses the tree in a bottom-up manner. At each node, the framework generates
subcomponent-based queries conditioned on evidence from its child nodes and the current phrase. These queries
guide document retrieval, and a subcomponent question answering module extracts evidence related to the generated
queries. Finally, all node-level evidence is aggregated to produce the final answer.

ate final answer (Khandelwal et al., 2020; Shi et al.,
2024; Borgeaud et al., 2022). This paradigm outper-
forms regular LLMs, especially for the knowledge-
intensive single-hop questions. In order to answer
these single-hop questions, the needed information
is evident from the question itself, such that a one-
time retrieval can find the documents that contain
the answer (Trivedi et al., 2022).

However, this paradigm is inadequate for com-
plex, knowledge-intensive questions, such as mul-
tihop or ambiguous questions. Standard RAG sys-
tems retrieve documents based solely on the orig-
inal query, without accounting for the evolving
information needs of further reasoning steps (Tal-
mor and Berant, 2018; Amouyal et al., 2023). In
the case of ambiguous questions, such approaches
run the risk of making an early commitment to a
single interpretation and potentially overlooking
alternative meanings necessary for accurate com-
prehension. (Lee et al., 2024; Gao et al., 2021). No-
tably, LLMs have demonstrated their strong ability
in decomposing complex tasks into different sub
queries to facilitate its performance on complex,
knowledge-intensive tasks (Drozdov et al., 2022;
Khot et al., 2023; Dua et al., 2022). Several ap-
proaches incorporate LLMs’ generating contents,

including intermediate reasoning steps or heuristic
answers, to guide retrieval (He et al., 2022; Trivedi
et al., 2023; Tan et al., 2024). Similar to how hu-
mans iteratively resolve complex questions by iden-
tifying salient information gaps, querying on search
engine, and progressively narrowing uncertainty
until reaching a final answer, further work has ap-
plied LLM agents for information retrieval by lever-
aging LLMs’ reasoning capabilities to dynamically
determine both when and what to retrieve (Jiang
et al., 2023; Li et al., 2025; Yao et al., 2022). While
these adaptive RAGs depend on reasoning traces
or heuristic decision-making, TreeRare utilizes the
syntactic structure of the question to guide the re-
trieval and reasoning.

3 TreeRare: Syntax Tree-Guided
Retrieval and Reasoning

In this section, we give a detailed explanation of
TreeRare. Our approach is built on three key intu-
itions: (1) answering complex reasoning questions
requires addressing uncertainty within each phrase
of a question; (2) the uncertainty associated with
a phrase depends on clarifying its constituent sub-
phrases, as understanding the parts is necessary to
resolve the whole; and (3) effective retrieval should
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target diverse and fine-grained evidence that aligns
with the phrase.

3.1 Syntax Tree-Based Decomposition

Given an input question Q, TreeRare converts it
into its corresponding syntax tree. The resulting
tree comprises a set of nodes N , where each node
n ∈ N corresponds to a sub-phrase sn and is asso-
ciated with a set of child nodes Cn. Specifically, sn
spans all tokens dominated by node n in the parse
tree. These syntax structures make explicit the
constituency-based or dependency-based relation-
ships between phrases, displaying how meaning is
composed from sub-units of the question. TreeR-
are interprets each sub-phrase as a constraint of
the question and reasons over them incrementally.
Following principles of compositional semantics
(Fodor and Lepore, 2002), the reasoning process
proceeds in a bottom-up tree traversal, ensuring
that node n is processed only after resolving all its
children Cn. Such ordering provides a basis for
constructing a stepwise reasoning path grounded
in syntax decomposition.

3.2 Subcomponent-Based Information
Retrieval

At each node n in the syntax tree, TreeRare gen-
erates a set of subcomponent-based queries to ad-
dress the latent knowledge gaps associated with
its sub-phrase sn. Complicated uncertainty often
emerges not at the level of individual sub-phrases,
but from their interaction. For instance, through
the composition of sub-phrases, novel entities may
emerge, and modifiers can introduce ambiguity or
context-sensitive reinterpretations. Therefore, even
if each child node contributes reliable evidence,
Ec, this evidence alone may be insufficient to re-
solve the uncertainty within sn. To bridge these
gaps, TreeRare prompts the LLM to generate mul-
tiple subcomponent-based queries that are condi-
tioned on global question, local sub-phrase and
evidence from its children. Formally, the query set
is constructed as: Qn = QG(Q, sn, {Ec|c ∈ Cn}),
where QG is a function that prompts LLMs to gen-
erate a set of simple queries. This formulation
ensures two key properties of generated queries:

• Compositional Grounding: Queries are
crafted to resolve the information gap that
emerges from interactions between sub-
phrases or from novel information introduced
through their composition.

• Explicit Reasoning: Queries function as an
intermediate reasoning step to resolve sn,
which eventually leads to coherent inference
toward the full question.

Following the generation of subcomponent queries,
TreeRare initiates a targeted retrieval procedure
aimed at acquiring external textual documents that
directly resolve the subcomponent-based queries,
Qn. Each query q ∈ Qn guides the retriever over
a large corpus to obtain a set of top-ranked doc-
uments dn,q. The complete retrieved context for
node n is then defined as Dn =

⋃
q∈Qn

dn,q.

3.3 Subcomponent Question Answering

Naively combining all retrieved documents leads to
excessive input length and noise, especially harm-
ful under the "Lost-in-the-Middle" effect in LLMs
(Liu et al., 2024b). To mitigate this effect, TreeR-
are introduces subcomponent question answering
module. It processes the retrieved content to retain
information that is salient to sub-phrase sn. At
the same time, it tries to address remaining reason-
ing gaps that arise when integrating evidence from
the subcomponents. These may include contra-
dictions, underspecified relationships, or missing
inferences needed to represent the full meaning of
sn from its children. Formally, given generated
queries Qn and retrieved documents Dn, the LLM
is instructed to produce a concise set of answers.
En = SAG(Qn, Dn), where SAG is a subcompo-
nent answer generation function that resolves Qn

based on retrieved documents Dn.

3.4 Final Answer Generation

Once each node n in the syntax tree has resolved its
local uncertainty with a set of evidence En, TreeR-
are advances to the final synthesis stage. To pro-
duce the final answer A, we prompt the LLM with
the full set of node-level evidence {En|n ∈ N}
and original question Q. The model is guided to
synthesize these into a unified response that ad-
dresses uncertainties across all sub-phrases: A =
FAG {Q, {En|n ∈ N}}, where FAG is a final
answer generation prompting function. This phase
is responsible for aggregating the distributed, fine-
grained inferences across the entire tree into a co-
herent answer to the original question Q. It enables
the detection and reconciliation of inconsistencies
or conflicting signals that may arise between differ-
ent pieces of evidence. These inconsistencies can
lead to multiple, potentially conflicting answers.
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Additionally, it ensures logical coherence across
the whole tree, validating that intermediate infer-
ences collectively support a consistent global rea-
soning path.

4 Experiments

4.1 Experiment Setup

Datasets. We assess our method on five
knowledge-intensive question answering bench-
marks that challenge LLMs with multi-step
reasoning and ambiguities. For each dataset,
we run experiment on 500 randomly sampled
questions. We analyze three multihop question
answering datasets: (1) HotpotQA (Yang et al.,
2018), which contains questions requiring rea-
soning over multiple supporting paragraphs; (2)
2WikiMultiHopQA (2WikiMQA) (Ho et al.,
2020), which consists of entity-centric questions
that necessitate combining information from two or
more distinct Wikipedia articles; and (3) MuSiQue
(Trivedi et al., 2022), which features complex
questions composed from simple single-hop
questions. We also evaluate performance on
ambiguous question answering using two datasets:
(1) AmbigDocQA (Lee et al., 2024), which
contains questions involving ambiguous mentions
that may refer to multiple distinct entities, each
associated with a different valid answer; and (2)
ASQA (Stelmakh et al., 2022), which contains
questions characterized by various types of
multifacetedness.

Evaluation Metrics. We employ COVER-
EM (Rosset et al., 2021), which assesses whether
the generated answer includes the ground truth
answer to evaluate multihop questions and
ASQA datasets. Following (Stelmakh et al.,
2022), we also use Disambig-F1 (Dis-F1) to
evaluate performance on the ASQA dataset. For
AmbigDocQA, we follow the standard evaluation
framework introduced by Lee et al. (2024), using
Answer Recall (AR) and Entity Recall (ER) as
performance metrics.

Baselines. We evaluate TreeRare against a
comprehensive suite of baselines that represent key
prompting and planning paradigms under a unified
retriever backbone (BM25 (Robertson et al.,
2009)). (1) Zero-shot and few-shot prompting
is introduced by Brown et al. (2020). These
serve as foundational setups without any inter-

mediate reasoning steps. (2) Chain-of-Thought
prompting (CoT) (Wei et al., 2022) encourages
step-by-step reasoning by appending an instruction
such as “Let’s think step by step” to the input. (3)
Self-Consistency (SC) (Wang et al., 2022) samples
multiple reasoning paths and selects the final
answer via majority voting. (4) Tree-of-Thoughts
(ToT) (Yao et al., 2023) explores multiple struc-
tured reasoning trajectories using tree-based
search and pruning strategies. (5) ReAct (Yao
et al., 2022) interleaves reasoning and retrieval by
prompting the model to decide dynamically when
and what to retrieve. We adapt ReAct to use BM25
instead of web-based tools, denoted as ReAct*. (6)
Topology-of-Question-Decomposition (ToQD)
(Li et al., 2025) constructs a topology graph of
sub-questions and uses self-verify inference to
selectively activate retrieval only when necessary.
Details of baselines implementations are included
in Appendix B.

Implementation details. We conduct ex-
periments on three backbone LLMs: GPT-4o-mini
(OpenAI, 2024), LLaMA3.3-70B (AI, 2024), and
DeepSeek-V3 (Liu et al., 2024a). We implement
two variants of TreeRare by adopting two different
syntactic formalisms: TreeRare (DT), which
leverages dependency trees (Culotta and Sorensen,
2004) to capture head-dependent relations, and
TreeRare (CT), which utilizes constituency trees
(LANGACKER, 1997) to reflect hierarchical
phrase structures. We use the Stanza (Qi et al.,
2020) toolkit’s dependency and constituency
parsers to obtain the required syntactic representa-
tions for our framework. For each term-specific
query, we employ BM25 (Robertson et al., 2009)
to retrieve the top fifteen relevant paragraphs.
More specific details of TreeRare are included in
Appendix A.

4.2 Results
Table 1 presents the evaluation results of TreeR-
are against competitive baselines across three LLM
backbones. In general, TreeRare leads or closely
matches top-performing baselines in both multi-
hop and ambiguous QA tasks, demonstrating the
effectiveness of TreeRare in handling complex,
knowledge-intensive QA.

In multihop QA, TreeRare achieves the best or
near-best scores in most cases. TreeRare (CT)
under DeepSeek-V3 achieves the strongest per-
formance, with an average COVER-EM of 0.515
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Model Method HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER Dis-F1 COV-EM

GPT4o-mini

zero-shot 0.459 0.146 0.493 0.366 0.472 0.601 0.319 0.370
few-shot 0.473 0.151 0.520 0.381 0.409 0.539 0.328 0.423
COT (zero-shot) 0.466 0.124 0.432 0.340 0.349 0.447 0.327 0.386
COT (few-shot) 0.482 0.144 0.454 0.360 0.373 0.497 0.328 0.425
SC (zero-shot) 0.502 0.141 0.546 0.396 0.375 0.486 0.282 0.349
SC (few-shot) 0.484 0.144 0.437 0.355 0.407 0.542 0.314 0.391
ReAct 0.454 0.208 0.574 0.412 0.359 0.496 0.286 0.331
ReAct* 0.461 0.196 0.550 0.402 0.359 0.496 0.293 0.335
TOT 0.491 0.205 0.612 0.436 0.187 0.535 0.255 0.265
ToQD 0.518 0.188 0.546 0.417 0.165 0.182 0.264 0.398
TreeRare (DT) 0.544 0.240 0.583 0.457 0.592 0.722 0.381 0.547
TreeRare (CT) 0.542 0.264 0.600 0.468 0.545 0.642 0.369 0.565
Rel. Impr. 0.083 0.269 -0.019 0.073 0.254 0.201 0.165 0.329

Llama3.3-70B

zero-shot 0.516 0.134 0.521 0.390 0.476 0.558 0.344 0.478
few-shot 0.502 0.142 0.575 0.406 0.522 0.603 0.331 0.407
COT (zero-shot) 0.468 0.152 0.352 0.324 0.404 0.512 0.303 0.364
COT (few-shot) 0.508 0.164 0.478 0.383 0.419 0.635 0.336 0.410
SC (zero-shot) 0.530 0.172 0.548 0.417 0.417 0.538 0.345 0.459
SC (few-shot) 0.532 0.168 0.563 0.421 0.411 0.586 0.331 0.384
ReAct 0.460 0.200 0.570 0.410 0.231 0.305 0.269 0.329
ReAct* 0.440 0.190 0.540 0.390 0.258 0.405 0.296 0.385
TOT 0.404 0.195 0.603 0.401 0.185 0.530 0.283 0.423
ToQD 0.415 0.202 0.459 0.358 0.189 0.229 0.296 0.355
TreeRare (DT) 0.568 0.286 0.634 0.496 0.587 0.686 0.341 0.518
TreeRare (CT) 0.540 0.244 0.584 0.456 0.568 0.704 0.357 0.517

Rel. Impr. 0.068 0.430 0.051 0.178 0.125 0.165 0.038 0.084

Deepseek-V3

zero-shot 0.512 0.146 0.547 0.401 0.521 0.632 0.348 0.451
few-shot 0.526 0.154 0.550 0.410 0.545 0.661 0.358 0.411
COT (zero-shot) 0.498 0.142 0.426 0.355 0.405 0.527 0.347 0.416
COT (few-shot) 0.533 0.163 0.526 0.395 0.426 0.599 0.358 0.419
SC (zero-shot) 0.513 0.146 0.574 0.411 0.446 0.631 0.362 0.465
SC (few-shot) 0.524 0.152 0.574 0.417 0.421 0.578 0.352 0.448
ReAct 0.503 0.252 0.673 0.476 0.266 0.352 0.283 0.308
ReAct* 0.479 0.264 0.630 0.458 0.284 0.371 0.308 0.477
TOT 0.505 0.273 0.551 0.443 0.174 0.513 0.214 0.308
ToQD 0.448 0.216 0.451 0.371 0.215 0.275 0.327 0.408
TreeRare (DT) 0.572 0.280 0.650 0.501 0.567 0.667 0.406 0.558
TreeRare (CT) 0.594 0.278 0.674 0.515 0.589 0.721 0.391 0.566
Rel. Impr. 0.114 0.026 0.001 0.082 0.131 0.091 0.122 0.187

Table 1: Performance of TreeRare (CT) TreeRare(DT), Chain-of-Thought (CoT), Self-Consistency (CoT-SC),
ReAct, ReAct*, Tree-of-Thoughts (ToT) and Topology-of-Question-Decomposition (ToQD) across five different
QA datasets. AVG indicates the average COV-EM on the three multihop datasets. ReAct* denotes a BM25-based
variant of ReAct. Bold marks the best performance, and underline denotes the second-best under teh same setting.
Rel. Impr. stands for relative improvement over the best baseline in the same setting.

on multihop QA and a relative improvement of
0.082 over the best-performing baseline. Simi-
lar trends are observed under LLaMA3.3-70B and
GPT4o-mini. The only exception is 2WikiMQA un-
der GPT4o-mini, where TOT slightly outperforms
TreeRare, likely because the extended evidence
derived from the tree structure exceeds GPT4o-
mini’s limited reasoning capacity. ReAct performs
well with stronger backbones but degrades under
smaller models, reflecting its reliance on effective
prompt-based reasoning. In contrast, TreeRare
demonstrates robust performance across different
model scales.

TreeRare shows remarkable gains on Ambig-
Doc and ASQA across all backbones. In particu-
lar, under DeepSeek-V3, TreeRare (DT) achieves

the highest Dis-F1 score of 0.406 and the largest
relative improvement in COVER-EM in ASQA.
These results demonstrate that grounding retrieval
in each sub-phrase and subsequently aggregating
the collected information helps uncover signals of
different plausible interpretations. Notably, on Am-
bigDoc, TreeRare (CT) also achieves the highest
AR score of 0.592, outperforming the best baseline
by a substantial margin. This highlights TreeRare’s
strength in disambiguating entities that share the
same name.

5 Analysis

5.1 Tree-Retrieval

To demonstrate the contribution of syntactic de-
composition to retrieval quality, we devise Tree-
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Retriever HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER Dis-F1 COV-EM

BM25 0.473 0.151 0.520 0.381 0.409 0.539 0.328 0.423
DPR 0.392 0.132 0.318 0.281 0.343 0.449 0.343 0.438
BM25+DPR 0.456 0.146 0.380 0.327 0.322 0.404 0.351 0.480
IRCoT 0.486 0.148 0.504 0.379 0.314 0.394 0.335 0.488
Tree-Retrieval (DT) 0.528 0.138 0.562 0.409 0.427 0.581 0.361 0.514
Tree-Retrieval (CT) 0.510 0.156 0.538 0.401 0.558 0.681 0.335 0.533

Table 2: Performance comparison of Tree-Retrieval and standard retrievers on multihop (HotpotQA, MuSiQue,
2WikiMQA) and ambiguous QA datasets (AmbigDoc, ASQA). The AVG column represents the mean COV-EM
across multihop datasets.

Retrieval that mirrors TreeRare while eliminat-
ing all the module that require LLM’s reasoning.
Specifically, we discard the subcomponent-based
query generation module and instead directly uti-
lize the corresponding sub-phrases to retrieve rele-
vant documents from the corpus. Then we employ
a reranking model to select the top 15 passages
across the sub tree rooted at each node. These
top passages serve as a substitute for the evidence
generated by subcomponent question answering in
TreeRare. Reranking model evaluates the initially
retrieved documents using more sophisticated mod-
els to better assess their relevance to the subcom-
ponent (Kratzwald et al., 2019). Implementation
details and experiments on other backbone models
are provided at Appendix D.

As shown in Table 2, Tree-Retrieval consistently
surpasses classical retrieval approaches such as
BM25, DPR(Karpukhin et al., 2020), and LLM
based question decomposition approaches like IR-
CoT (Trivedi et al., 2023) across all QA datasets.
The performance gain shows that incorporating syn-
tactic structure into the retrieval process enhances
the relevance of retrieved documents. Addition-
ally, these results suggest that the effectiveness of
TreeRare cannot be solely attributed to enhanced
downstream reasoning by the LLMs. Rather, a sig-
nificant portion of its advantage stems from its re-
trieval stage, which is structurally guided to extract
more fine-grained, contextually aligned documents.

5.2 Ablation studies

We conduct a series of systematic ablation exper-
iments to evaluate the importance of each single
module in TreeRare. Specifically, we evaluate the
impact of (1) subcomponent-based query genera-
tion (QG), (2) information retrieval (IR), and (3)
subcomponent question answering (SAG). In each
setting, we selectively disable one module, and

we additionally assess configurations where only a
single module is retained. Implementation details
of these ablation experiments are provided in the
Appendix C.

Table 3 shows that removing any core module
from TreeRare leads to a significant performance
drop, confirming their complementary importance.
First, the largest decreases are observed in removal
of information retrieval, indicating that information
retrieval is the most essential component for gen-
erating the correct answer. Second, the absence
of question generation causes moderate perfor-
mance drop (average COVER-EM down to 0.419).
Therefore, subcomponent-based queries enhance
retrieval relevance and correctness of each reason-
ing step. Third, removing subcomponent question
answering results in substantial degradation, with
average COVER-EM decreasing to 0.318. This
finding aligns with the “Lost-in-the-Middle” (Liu
et al., 2024b) phenomenon. Interestingly, its re-
moval subtly improves performance on AmbigDoc,
suggesting that entity-specific cues might be lost
during LLM-based filtering.

Among the single-module configurations, the
IR-only setting achieves the highest overall per-
formance, confirming the dominant role of infor-
mation retrieval in knowledge-intensive QA. In
contrast, QG-only and COT-only variants perform
poorly. As QG-only generates target queries, it
outperforms COT-only on ambiguous QA.

5.3 Error Analysis

To better understand the performance differences
between ReAct and TreeRare, we conduct a human
evaluation comparing their outputs on randomly
sampled multihop questions. Each output is manu-
ally categorized into one of five distinct outcome
types: Success, Retrieval Error, Reasoning Error,
Partial Answer, and Label Ambiguity. The detailed
definitions and illustrative examples of each error
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Ablation HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

TreeRare (DT) w/o QG 0.514 0.214 0.537 0.422 0.624 0.797 0.337 0.454
TreeRare (DT) w/o SAG 0.514 0.155 0.472 0.380 0.589 0.766 0.360 0.485
TreeRare (DT) w/o IR 0.431 0.156 0.366 0.318 0.244 0.262 0.285 0.403

IR Only 0.450 0.146 0.490 0.362 0.472 0.601 0.319 0.371
QG Only 0.352 0.124 0.448 0.308 0.183 0.197 0.248 0.350
COT Only 0.373 0.146 0.334 0.284 0.172 0.186 0.284 0.333

Table 3: Ablation study on TreeRare based on Dependency Tree where the backbone model is GPT4o-mini.
"QG","SAG","IR" refer to the subcomponent queries generation, subcomponent answer generation and information
retrieval.

Figure 3: Distribution of outcome types for ReAct and
TreeRare on randomly sampled multihop QA.

type are presented in Appendix G.
As shown in Table 3, TreeRare achievees a

higher success rate compared to ReAct(Yao et al.,
2022), indicating TreeRare’s effectiveness in en-
hancing the LLM’s ability to produce correct an-
swers. ReAct exhibits a high rate of retrieval er-
rors, suggesting a lack of effective guidance in
query generation. This is primarily due to its heavy
reliance on few-shot prompting and the model’s
reasoning abilities. In contrast, TreeRare offers
explicit structural guidance through syntax tree,
which results in more effective queries to guide
retrieval and a large decrease in the retrieval error
rate. Additionally, TreeRare reduces the rate of
partial answer by 2% and reasoning errors by 8%,
suggesting that its structured guidance mechanism
better supports the reasoning alignment. Mean-
while, TreeRare has a higher proportion of label
ambiguity. While reflecting a higher incidence of
mismatch with labeled answers, TreeRare may in
fact produce correct responses that differ from an-
notated references.

5.4 Cost Analysis
To assess the computational efficiency of TreeRare,
we measure the total number of input and output to-
kens generated during inference on 500 randomly

Figure 4: Total GPT-4o-mini API cost for TreeRare
(CT), TreeRare (DT), TOT, ReAct, SC, and COT across
HotpotQA, MuSiQue, 2WikiMQA, AmbigDoc, and
ASQA

sampled examples per dataset. The token usage
is translated into cost according to the GPT-4o-
mini pricing scheme published by OpenAI. Fig-
ure 4 illustrates the cost breakdown across different
methods. We observe that TreeRare (CT) incurs
higher inference cost compared to TreeRare (DT).
This difference can be attributed to the structural
characteristics of constituency trees, which repre-
sent nested phrase structures and thus tend to in-
clude more nodes and sub-phrases than dependency
trees. Since TreeRare performs query generation
and retrieval at each node, deeper trees with more
branches lead to increased token usage. Further-
more, since methods such as ToT and SC involve
extensive sampling of reasoning trajectories, they
inflate both input and output token counts and ex-
hibit significantly high computational costs. TreeR-
are (DT) offers a favorable trade-off, achieving
better performance with moderate computational
demands.
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6 Conclusion

In conclusion, we propose TreeRare for knowledge-
intensive question answering, utilizing syntax trees
to guide information retrieval and structural rea-
soning. When traversing the syntax tree, our
method performs subcomponent-based information
retrieval and question answering. This structured
approach enhances retrieval quality and models’
ability to resolve information gaps at each node.
Experimental results across knowledge-intensive
benchmarks demonstrate that our method achieve
significant performance improvements over state-
of-the-art baselines.

Limitation

While TreeRare demonstrates strong performance
across multihop and ambiguous question answering
datasets, several limitations remain.

First, TreeRare relies on the quality and granu-
larity of syntax parsers. Errors in dependency or
constituency parsing may propagate through the
bottom-up reasoning pipeline, leading to subopti-
mal subcomponent decomposition and misaligned
query formulation.

Second, TreeRare incurs additional computa-
tional overhead due to its multi-stage decomposi-
tion, retrieval, and filtering pipeline. This overhead
is particularly pronounced for the constituency tree
variant, which typically produces deeper and more
richly branched trees, resulting in increased token
usage. Such cost implications may hinder TreeR-
are’s scalability in latency- or budget-constrained
deployment settings.

Third, TreeRare has been evaluated exclusively
on factoid-style questions, where each query maps
to discrete factual answers. Its performance on
open-domain dialogue or generative settings—such
as those requiring opinion modeling, pragmatic
reasoning, or user intent tracking—remains unex-
plored.
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A TreeRare Implementation Details

Parsing Module. To construct the syntax trees
required by TreeRare, we utilize the dependency
parser and constituency parser from Stanza(Qi
et al., 2020). For each input question, we parse it
into both dependency and constituency structures.
We implement a unified interface to map parsed
trees into a bottom-up traversal format, ensuring
that each node contains: (i) its corresponding sub-
phrase span, (ii) its child nodes. (iii) syntactic type
(e.g., NP, VP for constituency, or head-dependent
relation for dependency).

Traversing Details In the experiment, TreeRare
conducts a pre-order traversal. Each node is
processed only after all its child nodes are resolved.
We maintain a processing queue initialized with
leaf nodes. When processing a node: If it has no
children, we directly use its text span to generate
quries. If it has children, we first aggregate
evidence from its children before proceeding to
subcomponent-specific query generation. If it has
no children, we directly use its text span as the ini-
tial evidence. To improve computational efficiency,
we implement a pruning mechanism that skips
nodes based on two criteria: Nodes with syntactic
types typically considered non-informative (e.g.,
punctuation, determiners, conjunctions). Nodes
whose associated sub-phrases are minimum phrase
length (Lmin). We sets Lmin = 3 for all the
experiments in the paper. In

Subcomponent Query Generation. At each
non-leaf node, we generate queries to resolve
syntactic uncertainty associated with its sub-phrase.
We prompt the LLM using templates detailed
in Figure10, Figure12, Figure13, Figure14. We
generate up to five candidate queries and select
the top three queries according to heuristic rules
prioritizing coverage and specificity.

Retrieval Module. We use BM25 via Py-
serini (Lin et al., 2021) as the retrieval backend.
For each generated query, we retrieve the top-15
paragraphs from Wikipedia dump in (Karpukhin
et al., 2020). If multiple queries exist for a node,
their retrieved documents are merged. In Table 4,
we present the comparison of the performance
between BM25 and DPR(Karpukhin et al., 2020)
on TreeRare. We observe that BM25 outperforms
DPR under five benchmark, and thus we implement

TreeRare with BM25 as the backbone retriever.

B Baseline Implementation Details

To ensure a fair comparison with TreeRare, we im-
plemented all baseline prompting methods within a
direct RAG setup using a shared retrieval backbone.
Specifically, we employ BM25 (Robertson et al.,
2009) as the sparse retriever and retrieve the top-20
most relevant passages from a Wikipedia corpus
for each query. We directly use the implementation
from Pyserini (Lin et al., 2021). The retrieved con-
texts are concatenated with the input prompt and
passed to the large language model, leveraging its
extended context window.

Few-shot Prompting. For few-shot prompting,
we prepend three in-context examples drawn from
the same dataset as the test instance

Chain-of-Thought Prompting. We follow the
original CoT formulation (Wei et al., 2022), ap-
pending reasoning demonstrations to the prompt to
elicit step-by-step inference. In the few-shot CoT
setting, each demonstration consists of a question,
a multi-step rationale, and the final answer. In zero-
shot CoT, the test query is prefixed by the phrase
“Let’s think step by step.”

Self-Consistency. For multihop question, we
generate 10 independent reasoning trajectories us-
ing the few-shot CoT prompt. The model’s fi-
nal answer is selected by majority vote among
the answers extracted from each reasoning trace.
However, SC is not suitable for long-form answer
generation. In AmbigDoc and ASQA, we fol-
low the USC(Chen et al., 2024) protocol for self-
consistency.

React. We closely follow the original ReAct
framework as proposed by (Yao et al., 2022). The
maximum number of steps is set to eight. If the
model fails to reach a conclusive answer within this
limit, we default to using Self-Consistency prompt-
ing to generate the final response. For ambiguous
questions, we adopt the query refinement prompts
introduced by (Amplayo et al., 2023) abd incorpo-
rate few-shot exemplars directly into the prompt.

Tree-of-Thoughts. The original Tree-of-
Thought paper does not provide a pipeline tai-
lored for multihop or ambiguous question answer-
ing. Therefore, we implement ToT following the
setup in (Zhou et al., 2024). Instead of sampling
multiple reasoning paths as in the original version,
our implementation adopts the React framework
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Retriever HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

Tree-Retrieval (DT) w BM25 0.528 0.138 0.562 0.409 0.427 0.581 0.514 0.361
Tree-Retrieval (DT) w DPR 0.482 0.16 0.504 0.382 0.409 0.479 0.399 0.332

Table 4: Comparison of Tree-Retrieval (DT) with BM25 and DPR as retriever backbone.

Figure 5: Total GPT-4o-mini API cost (input + output tokens) for TreeRare(CT), TreeRare(DT), TOT, ReAct, SC,
and COT across HotpotQA, MuSiQue, 2WikiMQA, AmbigDoc, and ASQA based on OpenAI pricing.

to sample diverse plan-and-action paths, enabling
interaction with Wikipedia and equipping ToT with
enhanced capabilities for open-domain QA.

Topology-of-Question-Decomposition. We fol-
low the implementation of the ToQD paper. To
make sure every method uses the same retriever,
we modify the retrieval module of ToQD into the
same as the retrieval module in TreeRare.

C Ablation Study Details

We do not include a setting with only subcompo-
nent question answering in our ablation study. This
is because it is not feasible to generate fine-grained
answers without first performing query generation
and retrieval.

TreeRare(DT) w/o CQ. To assess the im-
pact of subcomponent-based query generation, we
replace the TreeRare query generation module
with a naive retrieval. Specifically, for each node
in the syntactic tree, we bypass the LLM-generated
term-specific queries and instead directly use the

surface form of the corresponding sub-phrase as
the retrieval query. In the downstream subcompo-
nent answering stage, we prompt LLMs to directly
answer the question with the retrieved documents.

TreeRare(DT) w/o QA. In this variant,
we eliminate the intermediate reasoning step that
resolves each node’s syntactic uncertainty. Instead
of prompting the LLM to process the retrieved
evidence at each node, we directly aggregate all
retrieved documents across sub-nodes and forward
the combined evidence to their parent node without
further interpretation.

D Tree Retrieval

For each node in the syntax tree, we directly use
sub-phrase pn without any LLM-based reformula-
tion. This phrase is used as a query to the retrieval
systems. We retrieve the top10 passages from
Wikipedia corpus using BM25. The retrieved pas-
sages across all nodes within a sub-tree are merged.
To suppress noise and prioritize passages most rele-
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Lmin
HotpotQA MuSiQue 2WikiMQA AVG AmbigDoc ASQA
COV-EM COV-EM COV-EM AR ER COV-EM Dis-F1

3 0.544 0.240 0.583 0.457 0.592 0.722 0.381 0.547
6 0.531 0.224 0.547 0.434 0.542 0.703 0.333 0.441
10 0.512 0.198 0.492 0.318 0.504 0.600 0.328 0.448

Table 5: Impact of minimum phrase length (Lmin) on TreeRare (DT) performance across across HotpotQA,
MuSiQue, 2WikiMQA, AmbigDoc, and ASQA based on OpenAI pricing.

vant to the sub-tree’s syntactic content, we apply a
cross-encoder reranker MS-Marco-MiniLM-L-12-
v2. In Table 4, we compared Tree-Retrieval with
different both BM25 and DPR(Karpukhin et al.,
2020).

E Further Cost Analysis

As shown in Figure5, we measure the API cost
of GPT-4o-mini by summing the number of in-
put and output tokens processed for each method
across five datasets: HotpotQA, MuSiQue, 2Wiki-
MultihopQA, AmbigDoc, and ASQA. For each
dataset, 500 examples were randomly sampled and
processed with each method. The input and out-
put tokens were multiplied by OpenAI’s published
pricing for GPT-4o-mini (as of April 2025).

F Further Analysis of Minimum Phrase
Length

To analysis the impact of minimum phrase length
of TreeRare, we performs additional experiment
by setting Lmin to 6 and 10. As shown in 5, Table-
TreeRare demonstrates consistently superior per-
formance with Lmin = 3 across most evaluation
metrics. The performance degradation with in-
creased Lmin values suggests that finer-grained
syntactic analysis enables more precise identifi-
cation of knowledge gaps and uncertainty points
within complex questions. Figure 6 reveals the
computational trade-offs associated with different
Lmin. Lmin values result in higher API costs due
to increased node processing. This cost increase
stems from processing more nodes in the syntax
tree, each requiring query generation, retrieval, and
subcomponent question answering.

G Case Study

Here is the definition for different categories:

• Success: Model produces a correct and com-
plete answer aligned with the reference.

• Retrieve Error: Retrieved documents are ir-
relevant or do not aid answer resolution.

• Reasoning Error: Model performs faulty rea-
soning despite relevant evidence being avail-
able.

• Partial Answer: Answer is generally correct
but lacks necessary specificity.

• Label Ambiguity: Prediction is plausible but
does not exactly match the labeled answer.

we randomly sampled 50 multihop questions
from the HotpotQA development set. For each
sample, a human annotator examined the reason-
ing trace produced by both ReAct and TreeRare,
along with the final answer and supporting docu-
ments. We present one representative example for
each failure category. Additionally, we provide a
single case study of concrete output TreeRare on
one single question at Figure15 and Figure16.
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Figure 6: Total GPT-4o-mini API cost (input + output tokens) for TreeRare(CT) on different minimum phrase
lengths (3,6,10) across HotpotQA, MuSiQue, 2WikiMQA, AmbigDoc, and ASQA based on OpenAI pricing.

Label Ambiguity

TreeRare:
Question: Roger O. Egeberg was Assistant Secretary for Health and Scientific Affairs during the
administration of a president that served during what years?
.......
Final answer: Roger O. Egeberg was Assistant Secretary for Health and Scientific Affairs during
the Nixon administration, which lasted from January 20, 1969, to August 9, 1974. (Label: 1969
until 1974)
ReAct:
Question: Which other Mexican Formula One race car driver has held the podium besides the
Force India driver born in 1990?
.......
Final answer: Pedro Rodríguez de la Vega (Label: Pedro Rodríguez)

Figure 7: Examples of Label Ambiguity. The ambiguous span is highlighted in red.
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Partial Answer

TreeRare:
Question: What is the name of the fight song of the university whose main campus is in Lawrence,
Kansas and whose branch campuses are in the Kansas City metropolitan area?
.......
Final answer: The fight song of the University of Kansas is "I’m a Jayhawk."(Label: Kansas
Song)
ReAct:
Question: The director of the romantic comedy "Big Stone Gap" is based in what New York city?
.......
Final answer: New York City

Figure 8: Examples of Partial Answer. The partial answer is highlighted in red.
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Search Error

TreeRare:
Question: What type of forum did a former Soviet statesman initiate? Generate Question: What
is the name of the former Soviet statesman who initiated the forum? ... answer: The name of the
former Soviet statesman who initiated a notable forum is Yegor Gaidar....
Generate Question: What was the name of the former Soviet statesman? ... answer: The name of
the former Soviet statesman is Mikhail Suslov .... question: What was the role of Mikhail Suslov
in the Soviet Union? ....
answer: Mikhail Suslov served as the Second Secretary .....
Generate Question: What topics are typically discussed in the forum organized by the former
Soviet statesman? .... answer: The document does not contain specific information about a
political forum initiated by a former Soviet statesman ...
Fianl answer: former Soviet statesman, Yegor Gaidar, initiated the Gaidar Forum, which focuses
on discussions among Russia’s political and business elite regarding economic reforms and political
strategies. ReAct:
Question: This singer of A Rather Blustery Day also voiced what hedgehog?
Search[A Rather Blustery Day] Thought 1: I need to search for the song "A Rather Blustery Day"...
Action 1: Search[A Rather Blustery Day] Observation 1: Winnie the Pooh and the Blustery Day is
a 1968 American animated musical fantasy short ...
Lookup[singer of A Rather Blustery Day] Thought 2: The search didn’t give me the specific singer
...
Action 2: Lookup[singer of A Rather Blustery Day] Observation 2: No more results.
Search[A Rather Blustery Day singer] Thought 3: The search did not yield any direct information
Action 3: Search[A Rather Blustery Day singer] Observation 3: Could not find A Rather Blustery
Day singer
Search[hedgehog character voiced by a singer from Winnie the Pooh] Thought 4: The search did
not provide specific details
Action 4: Search[hedgehog character voiced by a singer from Winnie the Pooh] Observation 4:
Could not find hedgehog character
Search[hedgehog character in animated films] Thought 5: The search has not provided concrete
information
Action 5: Search[hedgehog character in animated films] Observation 5: Could not find hedgehog
character
Search[singer of Sonic the Hedgehog] Thought 6: It seems that I’m stuck
Action 6: Search[singer of Sonic the Hedgehog] Observation 6: Could not find singer of Sonic the

Figure 9: Examples of Search Error. The search result or incorrect query is highlighted in red.
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Incorrect reasoning

TreeRare:
Question: question: Brown State Fishing Lake is in a country that has a population of how many
inhabitants ?
Generate Question: What country is Brown State Fishing Lake located in?; answer: Brown State
Fishing Lake is located in the United States ....
Generate Question: What is the population of the United States as of 2023? answer:The
population of the United States as of 2023 is approximately 333 million people. ....
Final answer: The population of the United States, where Brown State Fishing Lake is located, is
approximately 333 million as of 2023. (label: 9,984)
ReAct:
Question: Which performance act has a higher instrument to person ratio, Badly Drawn Boy or
Wolf Alice? Search[Badly Drawn Boy] Thought 1: I need to search both Badly Drawn Boy and
Wolf Alice ..... Action 1: Search[Badly Drawn Boy] Observation 1: Damon Michael Gough (born
2 October 1969), ..... and multi-instrumentalist.
Lookup[Badly Drawn Boy performances] Thought 2: .... I need to search for more explicit
information about his performances.
Action 2: Search[Wolf Alice] Observation 2: Wolf Alice are an English rock band fr.... acoustic
duo comprising singer Ellie Rowsell and guitarist Joff Oddie, Wolf Alice have also featured bassist
Theo Ellis and drummer Joel Amey since 2012 .... Lookup[Wolf Alice instruments] Thought 4:
Wolf Alice consists of four members: Ellie Rowsell (vocals), Joff Oddie (guitar), Theo Ellis (bass),
and Joel Amey (drums). .....
Action 3: Lookup[Wolf Alice instruments] Observation 3: No more results.
Finish[Wolf Alice] Thought 4: I know they reportedly consist of four members and typically
feature guitar, bass, drums, and vocals whwereas Badly Drawn Boy only have one member . (label:
Badly Drawn Boy)

Figure 10: Examples of Reasoning Error. The incorrect part is highlighted in red.

Answer the following question: {{questions}} ,
with following documents: {{documents}}.
Your response should strictly follow the format:
Explanations :[give your step by step Analysis here ]

FINAL:(BE CONCISE, ONLY a FEW phrases)

let’s think step by step

Figure 11: Final answer generation prompt for multi hop QA
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You’re a disambiguation expert analyzing "{{phrase}}" in: {{self.question}} Instruction:
1. Analyze the question by considering these potential ambiguities:
- Temporal: Check for unclear time references, periods, or temporal scope
- Entity: Identify names, references, or terms that could refer to multiple entities
- Semantic: Look for words with multiple meanings (polysemy/homonymy)
- Scope: Consider possible boundaries and levels of detail
- Intent: Examine possible purposes and expected answer types
- Cultural: Consider cultural-dependent interpretations
- Quantitative: Check for unclear measurements or numerical references
- Linguistic: Analyze syntax and referential clarity
- Categorical: Consider possible classification schemes
- Contextual: Examine required background knowledge and relationships
2. Analyze the question word by word. Return disambiguated question and its interperatation for
each different meaning

Here is what we currently know Documents:{{context}}

pick top 5 questions that are best in disambiguating the question. (covers different mean-
ings of the questions) and strictly FOLLOW the format: response: question1; question2;....

Figure 12: Subcomponent Question generation prompt for Ambiguous QA

The question may be ambiguous and have multiple correct answers, and in that case, you have to
provide a long-form answer including all correct answers.
1. Carefully go through all the given documents.
2.The using your and context, provide answer.
Your response should strictly follow the format:
Explanations (Step 2):[give your step by step Analysis here ]
FINAL(Step 2):
Please ONLY reply according to this format
Question: {{questions}} Document: {{documents}} let’s think step by step

Figure 13: Final answer generation prompt for Ambiguous QA

Answer the {{questions}} based on on the document info. For each question find as many answers
as possible. Response all the answers in a short paragraph (as specific as possible).
Relevant Document: {{context}}

Figure 14: Subcomponent question answering prompt
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example Output of TreeRare

Question: What screenwriter with credits for ‘Evolution’ co-wrote a film starring Nicolas Cage
and Téa Leoni?
Dependency Parser Output:
ROOT []
| co-wrote --root--> [What screenwriter with credits for
"Evolution" co-wrote a film starring
Nicolas Cage and Tea Leoni]
| |-- screenwriter --nsubj--> [screenwriter with credits for "Evolution"]
| | | |-- What --det--> [What]
| | | -- credits --nmod--> [credits for "Evolution"]
| | | | |-- with --case--> [with]
| | | | -- Evolution --nmod--> [Evolution]
| |-- film --obj--> [film starring Nicolas Cage and Tea Leoni]
| | | |-- a --det--> [a]
| | | -- starring --acl--> [starring Nicolas Cage and Tea Leoni]
| | | | -- Nicolas Cage --obj--> [Nicolas Cage and Tea Leoni]
| | | | | -- Tea Leoni --conj--> [Tea Leoni]
| -- ? --punct--> [?]

Figure 15: Output of TreeRare at question decomposition stage
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example Output of TreeRare

Node: credits for ‘Evolution’ ” Generated Questions: Who wrote the screenplay for the film
Evolution”? What movie starring Nicolas Cage and Tea Leoni was co-written by the same screen-
writer as Evolution”? What year was Evolution” released? Subcomponent Question Answering:
The screenplay for the film Evolution” was co-written by David Diamond and David Weissman,
along with a story by Don Jakoby. The same screenwriters, Diamond and Weissman, also co-wrote
the film The Family Man,” which stars Nicolas Cage and Tea Leoni. “Evolution” was released in
the year 2001.
Node: screenwriter with credits for ‘Evolution’ ” Generated Questions: Who are the screen-
writers credited for Evolution”? What is the title of the film starring Nicolas Cage and Tea Leoni
co-written by the same screenwriters? In what year was “Evolution” released? Subcomponent
Question Answering: The screenwriters credited for Evolution” are David Diamond and David
Weissman. They also co-wrote the film The Family Man,” which stars Nicolas Cage and Téa Leoni.
“Evolution” was released in the year 2001.
Node: Nicolas Cage and Téa Leoni” Generated Questions: What movies have Nicolas Cage
and Téa Leoni starred in together? Who co-wrote the screenplay for the film Evolution”? What are
the main themes of the film “Evolution”? Subcomponent Question Answering: Nicolas Cage
and Téa Leoni starred together in the film The Family Man,” a romantic comedy-drama released
in 2000. The screenplay for Evolution” was co-written by David Diamond and David Weissman,
in collaboration with Don Jakoby, who originally came up with the story. The main themes of
“Evolution” include the unintended consequences of technological advancement and the humorous
exploration of evolution itself, particularly focusing on alien organisms and how they adapt to
Earth, leading to unexpected and comedic situations.
Node: starring Nicolas Cage and Téa Leoni” Generated Questions: What film did Nicolas
Cage and Téa Leoni star in together? Who were the co-writers of the screenplay for Evolution”?
What are the main themes explored in the film Evolution”? When was The Family Man” released?
What genre does the film “The Family Man” belong to? Subcomponent Question Answering:
Nicolas Cage and Téa Leoni starred together in the film The Family Man,” which was released
in 2000. The screenplay for Evolution” was co-written by David Diamond and David Weissman.
The film Evolution” explores themes such as the rapid development and adaptation of species,
the impact of science and technology on society, and environmental issues tied to evolution. The
Family Man” was released on December 22, 2000, and it belongs to the romantic comedy-drama
genre.
Node: film starring Nicolas Cage and Téa Leoni” Generated Questions:What film did Nicolas
Cage and Téa Leoni star in together? Who were the co-writers of the screenplay for Evolu-
tion”?When was “The Family Man” released? Subcomponent Question Answering: Nicolas
Cage and Téa Leoni starred together in the film The Family Man,” which was released in 2000. The
screenplay for Evolution” was co-written by David Diamond and David Weissman, who frequently
collaborate on various projects. “The Family Man” premiered on December 22, 2000.
Final Answer: The screenwriters credited for the film Evolution” are David Diamond and David
Weissman.

Figure 16: Output of TreeRare at the Subcomponent Question Answering Stage
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