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Abstract
Large Language Models (LLMs), constrained
by limited context windows, often face sig-
nificant performance degradation when rea-
soning over long contexts. To address this,
Retrieval-Augmented Generation (RAG) re-
trieves and reasons over chunks but frequently
sacrifices logical coherence due to its reliance
on similarity-based rankings. Similarly, divide-
and-conquer frameworks (DCF) split docu-
ments into small chunks for independent rea-
soning and aggregation. While effective for
local reasoning, DCF struggles to capture long-
range dependencies and risks inducing con-
flicts by processing chunks in isolation. To
overcome these limitations, we propose ToM,
a novel Tree-oriented MapReduce framework
for long-context reasoning. ToM leverages the
inherent hierarchical structure of long docu-
ments (e.g., main headings and subheadings)
by constructing a DocTree through hierarchical
semantic parsing and performing bottom-up ag-
gregation. Using a Tree MapReduce approach,
ToM enables recursive reasoning: in the Map
step, rationales are generated at child nodes;
in the Reduce step, these rationales are aggre-
gated across sibling nodes to resolve conflicts
or reach consensus at parent nodes. Experi-
mental results on 70B+ LLMs show that ToM
significantly outperforms existing divide-and-
conquer frameworks and retrieval-augmented
generation methods, achieving better logical
coherence and long-context reasoning. Our
code is available at https://github.com/gjn12-
31/ToM.

1 Introduction

Large Language Models (LLMs) with limited con-
text windows (e.g., 8k, 32k) struggle with reason-
ing over long contexts. As context length increases,
the performance declines due to difficulties in pro-
cessing information far from the text’s beginning

*Equal contribution.
†Corresponding Author.

or end (Liu et al., 2024a; He et al., 2024). To
address these limitations, two mainstream training-
free approaches have been introduced: Retrieval-
Augmented Generation (RAG) (Li et al., 2024c;
Guo et al., 2024) and Divide-and-Conquer Frame-
works (DCF) (Zhao et al., 2024; Zhou et al., 2024;
Zhang et al., 2024c).

RAG addresses the challenge of long-context
reasoning by using a retriever to identify the most
relevant chunks from a long document, focusing
only on the most pertinent information for reason-
ing. However, RAG relies on similarity rankings
and often neglects the logical coherence between
retrieved chunks. In contrast, DCF processes long
contexts by splitting them into smaller chunks, rea-
soning over each independently, and synthesizing
local insights into a global understanding. While
effective to some extent, DCF treats chunks in
isolation and overlooks the relationships between
non-adjacent or long-range segments, leading to
conflicts and incomplete understanding due to its
limited local perspective. Inspired by the idea that
human thinking is inherently complex and multi-
dimensional, extending beyond what can be cap-
tured by flat reasoning or independent reasoning
processes (Barsalou, 1999). Reflecting this com-
plexity, long contexts naturally exhibit a hierarchy,
such as main headings and subheadings, well suited
for reasoning with a tree-based representation.

We introduce ToM, a novel framework for tree-
based long-context reasoning. Leveraging a tree-
structured MapReduce approach, ToM performs
recursive reasoning over documents to enhance
long-context understanding. It consists of two key
components: 1). DocTree Construction: ToM first
applies Hierarchical Semantic Parsing to convert
each chunk into a structured subtree, then combines
these subtrees into a hierarchical DocTree through
Bottom-up Aggregation. 2). Recursive Reasoning
via MapReduce: ToM performs recursive reason-
ing on the DocTree in a MapReduce fashion, en-
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Figure 1: Comparison between ToM and existing approaches: LLMs enhanced with RAG (a) rely on sequential
reasoning over retrieved chunks, while current Divide-and-Conquer frameworks (b) process chunks in isolation. In
contrast, ToM (c) leverages the hierarchical structure of DocTree for tree-based reasoning, mitigating conflicts and
preserving contextual coherence through recursive MapReduce reasoning.

abling systematic aggregation of rationales across
the hierarchy. In the Map step, ToM generates ra-
tionales from child nodes; in the Reduce step, these
rationales are aggregated across sibling nodes to
resolve conflicts or reach consensus at the parent
node. As shown in Figure 1, ToM enables focal
reasoning across the hierarchy, enhancing informa-
tion utilization beyond the flat reasoning employed
by RAG. Compared to DCF, ToM considers sibling
and parent-child relationships between chunks and
allows long-range chunks to connect to the same
parent node through bottom-up reasoning, thereby
improving fact aggregation and reducing conflicts.

Experimental results on 70B+ LLMs show that
ToM achieves significant performance gains over
current divide-and-conquer methods and LLMs en-
hanced with retrieval-augmented generation. Fur-
ther analysis shows that ToM balances efficiency
and effectiveness by combining DocTree compres-
sion with embedding techniques.

Our contributions are shown as follows:

1. DocTree Representation. We propose Doc-
Tree, a hierarchical representation for organiz-
ing long documents. This structure leverages
Hierarchical Semantic Parsing and Bottom-up
Aggregation to transform chunked text into
well-structured trees for bottom-up reasoning.

2. ToM Framework. We introduce ToM, a
tree-oriented MapReduce framework for long-

context reasoning. By leveraging parent-child
and sibling relationships, ToM enables struc-
tured reasoning, resolves conflicts more effec-
tively, and improves information utilization.

3. Experimental Validation. Experiments on
70B+ LLMs demonstrate that ToM outper-
forms existing divide-and-conquer methods
and RAG-enhanced LLMs, achieving signif-
icant performance gains in long-context rea-
soning. Comprehensive ablation studies, com-
plexity analysis, and case studies collectively
highlight ToM’s effectiveness.

2 Related Work

Long-context Reasoning (Li et al., 2024a,b; Hu
et al., 2025) has become essential, as LLMs with
limited context windows often suffer performance
degradation in long-input scenarios(Liu et al.,
2024a). Training-based methods, such as Lon-
gLoRA (Chen et al., 2024b), extend context win-
dows via fine-tuning using position encoding re-
finement, sparse attention, or learnable embeddings.
While effective, they demand large datasets support
and high computational cost. Training-free meth-
ods, like InfLLM (Xiao et al., 2024), retrieve token-
relevant content from memory to optimize atten-
tion. Divide-and-conquer strategies such as LongA-
gent (Zhao et al., 2024), LLM×MapReduce (Zhou
et al., 2024), and Chain-of-Agents (Zhang et al.,
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2024c) split long contexts into chunks, process
them locally, and aggregate the results.
MapReduce (Dean and Ghemawat, 2008; Chase,
2023) simplifies large-scale data processing by di-
viding tasks into two phases: the Map step pro-
cesses data into key-value pairs, and Reduce ag-
gregates the results. LongChain first introduces
MapReduce for multi-document scenarios, apply-
ing the Map step to each document and combin-
ing outputs into a single result via Reduce. Meth-
ods like LLM×MapReduce(Zhou et al., 2024) and
XL3M (Wang et al., 2024a) extend this to long doc-
uments by splitting them into sub-contexts, select-
ing relevant segments, and combining them chrono-
logically. The major challenge for MapReduce is
that chunks are processed independently, which
may break essential long-range dependencies and
interconnections between them.
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020; Jeong et al., 2024; Wang et al., 2024c,b;
Sun et al., 2023; Edge et al., 2024; Guo et al., 2024;
Zeng et al., 2025; Asai et al., 2024; Xia et al., 2024;
Liu et al., 2024b, 2025; Zhang et al., 2025, 2024a)
enhances response quality by combining retrieval
and in-context learning. Inspired by the idea of
recursive summarization in Raptor (Sarthi et al.,
2024), we go further by capturing hierarchical rela-
tionships within each chunk and applying bottom-
up aggregation, aiming to represent the long docu-
ment as a structured DocTree. While Raptor uses
summary nodes for retrieval-augmented generation,
we employ detailed, recursive bottom-up reason-
ing with a MapReduce approach, fully utilizing the
constructed tree.

3 ToM Framework

3.1 Overview.

For effective tree-based reasoning, ToM employs
the following two steps: 1) Representing long con-
texts as DocTree (Section 3.2). ToM begins with
Hierarchical Semantic Parsing to structure each
chunk into a subtree, where lower levels correspond
to subheadings and higher levels summarize main
headings. It then applies Bottom-up Aggregation
to merge subtrees into a higher-level hierarchy. 2)
Recursive MapReduce Reasoning (Section 3.3).
ToM performs recursive reasoning on the DocTree
using a MapReduce-style process. This involves it-
eratively applying the Map and Reduce steps across
the hierarchy: the Map step transforms information
from child nodes into rationales that capture key

supporting facts, while the Reduce step aggregates
sibling rationales to resolve conflicts and reach con-
sensus. By applying recursive MapReduce to the
DocTree, ToM enables focused fact aggregation
and conflict resolution, thereby facilitating effec-
tive long-context reasoning.

3.2 Representing Long Contexts as DocTree
Representing long contexts as a hierarchical Doc-
Tree forms the foundation of the ToM framework.
This transformation converts a flat, sequential doc-
ument into a structured, tree-based representation,
better reflecting the complexity of human cognition
and enabling more organized, hierarchical reason-
ing. The construction of the DocTree involves two
key components: a Hierarchical Semantic Parser
that parses each chunk into an initial subtree, and
a Bottom-up Tree Aggregation process that merges
these subtrees into a coherent hierarchy.
Hierarchical Semantic Parser. Let D denote a
long document, which is segmented into fixed-
length token chunks {c1, c2, c3, . . . , cn}, where
n is the total number of chunks, and each ci
(1 ≤ i ≤ n) contains a fixed number of tokens
(e.g., 4k). Existing DCF approaches process {ci}
independently, treating each ci as a discrete unit
without considering its internal semantic structure.

In contrast, ToM introduces a semantic hierar-
chy within each chunk ci by leveraging a Hierar-
chical Semantic Parser (HSP), a 3B-scale LLM
distilled from GPT-4o. The HSP processes each
chunk ci and organizes it into a set of structured
semantic subtrees {ti,1, ti,2, . . . , ti,m}, where m is
the number of subtrees within ci. Each subtree ti,j
(1 ≤ j ≤ m) encodes hierarchical relationships,
such as parent-child links between main headings
and subheadings. For simpler chunks, m = 1,
resulting in a single hierarchical tree, while for
more complex chunks, m > 1, forming a semantic
forest. As shown in Figure 2, each chunk is pro-
cessed by the HSP to extract its internal hierarchy
and transform the hierarchical relationships into
a subtree containing structured information such
as Title, Keywords, Summary , and Context from
the original document. This hierarchical organiza-
tion allows D to be represented as a collection of
semantic subtrees {ti,j}, facilitating deeper struc-
tural understanding. Detailed implementation and
quality assessment of HSP are discussed in Ap-
pendix B.4, with prompts and illustrative cases
provided in Appendix C.2.
Bottom-up Tree Aggregation. After individual
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Figure 2: Illustration for DocTree Construction: The process begins with preparation for compression, where a
retriever selects Top-k chunks as the foundation for the tree. Each chunk is then processed (A) using the Hierarchical
Semantic Parser to capture its internal hierarchy. Next, (B) the hierarchical structure of each chunk is parsed into a
subtree, with nodes capturing structured information. These subtrees are merged (C) by placing root nodes at the
same level. Following this, (D) a Bottom-up Aggregation integrates information across levels. Finally, the complete
DocTree is constructed (E) by combining low-level subtrees with higher-level summaries, ready for reasoning.

subtrees {ti,j} are generated from each chunk ci,
the next step is bottom-up aggregation to con-
struct the hierarchical DocTree. This step involves
embedding, clustering, and summarizing the root
nodes of each subtree, recursively building higher-
level summaries to form the complete DocTree.

The initial layer for DocTree, denoted as L0, is
composed of the root nodes of all parsed subtrees:

L0 =
n⋃

i=1

mi⋃

j=1

{SubtreeRoot(ti,j)},

where n is the number of chunks, mi is the number
of subtrees within chunk ci, and SubtreeRoot(ti,j)
represents the root node of the j-th subtree ti,j . At
this stage, L0 contains only the root nodes of all
subtrees, while their child nodes remain encapsu-
lated within their respective subtrees.

To construct the higher layers Lk, we perform
the following steps iteratively:

1. Embedding: Each root node r ∈ Lk−1 is
embedded as a vector er using a pre-trained
embedding model.

2. Clustering: A clustering algorithm groups
the embeddings into clusters Ik−1 =
{I1k−1, I

2
k−1, . . . , I

t
k−1}, where t is the num-

ber of clusters at layer k − 1.

3. Summarization: For each cluster Ijk−1 ∈
Ik−1, the evaluated LLM generates a sum-
marized node sjk, where:

Lk = {s1k, s2k, . . . , stk}.

Edges are created between the root nodes in Ijk−1

at layer Lk−1 and their corresponding summary
node sjk at layer Lk.

This bottom-up aggregation is recursive and con-
tinues until the number of clusters stabilizes, result-
ing in the top layer LK , which contains a single
root node or a small number of high-level summary
nodes representing the entire context. The final
hierarchical DocTree can be represented as:

T = {L0,L1, . . . ,LK}.

The key steps for constructing DocTree are out-
lined in Algorithm 1. The complete DocTree is
constructed by organizing lower-level subtrees be-
neath higher-level summaries. By hierarchically or-
ganizing information during aggregation, the lower
levels of the DocTree retain detailed information,
while the higher levels provide condensed sum-
maries. The DocTree effectively captures both lo-
cal and global relationships across subtrees, facili-
tating reasoning from local to global.
DocTree Compression. Short-cutting techniques
reduce computational overhead in tree-based rea-
soning, particularly for large-scale DocTrees with
millions of tokens. Drawing inspiration from
Retrieval-Augmented Generation methods, our ap-
proach integrates DocTree with retrieval techniques
like BM25 (Robertson et al., 2009) and embed-
ding models, enabling the construction of a sparser,
more concise DocTree. This process filters out ir-
relevant information, focusing on content closely
aligned with the query, thereby improving both effi-
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Algorithm 1: DocTree Construction Process

Input: Long context C, Query q

Output: Constructed DocTree T
Step 1: Subtree Generation
Split C into fixed-length token chunks {c1, c2, . . . , cn} ;

foreach chunk ci do
Use the Hierarchical Semantic Parser to identify

semantic structures
Generate subtrees {ti,1, ti,2, . . . , ti,mi} for each

chunk ci ;

Step 2: Bottom-Up Tree Aggregation
Initialize the bottom layer:

L0 =
n⋃

i=1

mi⋃

j=1

{SubtreeRoot(ti,j)}

for k = 1, 2, . . . until the number of clusters stabilizes do
foreach node r ∈ Lk−1 do

Compute embeddings er ;
Cluster embeddings into groups
Ik−1 = {I1k−1, I

2
k−1, . . . , I

t
k−1} ; Summarize

each cluster Ijk−1 into a parent node sjk ; Update
Lk = {s1k, s2k, . . . , stk} ;

Step 3: Final DocTree Construction
Merge all aggregated nodes LK into the unified DocTree T ,

maintaining hierarchical relationships ;

return DocTree T

ciency and relevance. Algorithm 2 in Appendix B.5
outlines the query-aware DocTree compression pro-
cess, where the most relevant chunks are selected to
build the DocTree. Constructing a DocTree from
these aligned chunks incurs a small embedding
cost while enhancing reasoning performance. Addi-
tionally, compressed DocTrees reduce token usage
compared to those constructed from full documents,
improving computational efficiency.

An example of DocTree construction is illus-
trated in Appendix C.3. A detailed analysis of the
computational complexity involved in constructing
the DocTree is also provided in Appendix B.1.

3.3 Recursive MapReduce Reasoning
ToM employs reasoning in a MapReduce style with
two key steps: Map and Reduce. These steps
are applied recursively from the bottom up in the
DocTree, propagating information and ensuring
semantic coherence across the hierarchy.

In the Map step, rationales are generated in par-
allel from child nodes, while in the Reduce step,
these rationales are aggregated across sibling nodes
to resolve conflicts or reach consensus at the parent
node. Each reasoning step produces a structured
output, including key information, rationale, inter-
mediate answer, and confidence estimates for con-
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Figure 3: Illustration of the order of recursive reasoning.
Nodes at the same hierarchy level, like D and E, can be
processed in parallel for accelration.

flict resolution, thereby enabling a more clear and
interpretable reasoning process. Map and Reduce
are defined as follows:

1. Map:
Input: For a leaf node, the input is info(node).
For a non-leaf node, the input is info(node) ∪
Reduce(children(node)).
Operate: Perform reasoning based on the
current node’s information.
Output:
{key_info, rationale, answer, confidence}

2. Reduce:
Input: Results of the Map step from sibling
nodes at the same hierarchy level.
Operate: Resolve conflicts and reach consen-
sus among sibling nodes.
Output: Aggregated {key_info, rationale, an-
swer, confidence}
Special Case: Skip Reduce if |siblings| = 0.

As illustrated in Figure 3, recursive reasoning
begins at the leaf nodes and propagates upward
through Map and Reduce operations. Nodes at
the same hierarchical level, such as D and E, are
processed in parallel, enhancing computational ef-
ficiency. This combined application of Map and
Reduce transforms the hierarchical DocTree into a
structured reasoning framework, integrating local
details into a cohesive global perspective.

For further details about Map and Reduce, see
Appendix C.2 for the prompt, Appendix C.3 for
example cases, and Appendix B.2 for a comparison
of ToM’s average reasoning time.

4 Experiment

4.1 Experiment setup
Models. Open-source LLMs with 70B+ pa-
rameters, including Qwen2.5-72B-Instruct (Qwen
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HQA (9.1k) 2Wiki (4.9k) MuSi (11.2k) Inf.QA (192k) Inf.MC (184k)

F1 RL F1 RL F1 RL F1 RL Acc

LLMs with Full Document
Llama3-70B-Instruct 21.66 21.29 21.48 21.41 11.33 11.14 8.32 8.09 32.00
Qwen2.5-72B-Instruct 23.99 23.87 21.75 21.67 10.52 10.34 12.47 12.12 36.00
Deepseek-V3 41.41 41.02 37.20 37.05 32.88 32.77 16.89 16.09 47.00
GPT-4o 55.21 54.95 44.28 44.29 40.26 39.95 13.45 12.99 45.00
Deepseek-R1 55.70 55.99 59.59 59.24 40.12 39.46 12.58 13.09 57.00

LLMs Equipped with RAG
Llama3-70B-Instruct 32.69 32.38 25.39 25.47 12.00 12.77 13.32 14.99 40.00
Qwen2.5-72B-Instruct 35.14 36.07 22.58 23.78 23.78 23.60 19.65 19.94 41.00
Deepseek-V3 42.33 41.17 40.95 40.86 28.26 29.18 17.48 18.69 53.00
GPT-4o 53.73 54.19 54.99 53.79 35.64 35.43 26.03 25.47 65.00
Deepseek-R1 51.84 51.03 56.12 56.97 36.28 37.15 23.14 24.49 62.00

Divide-and-Conquer Frameworks
+ LongAgent 45.31 45.68 43.72 42.06 26.81 25.60 23.33 23.69 62.00
+ LongAgent 47.19 48.38 48.94 47.98 28.16 27.60 25.68 26.12 65.00
+ LongAgent 57.04 52.71 56.87 55.23 42.99 41.20 29.63 27.12 69.00
+ LongAgent 55.25 52.30 54.53 51.16 45.44 44.03 38.00 33.34 72.00
R1 + LongAgent 59.72 58.66 61.90 62.00 45.41 44.86 29.16 30.20 76.00
+ ToM 50.40 52.71 49.36 50.15 30.89 31.20 27.80 27.12 68.00
+ ToM 52.19 52.08 50.22 51.36 28.29 29.50 30.17 31.58 71.00
+ ToM 60.87 60.43 58.20 58.20 50.15 50.04 38.60 38.14 77.00
+ ToM 61.07 60.73 59.31 59.55 47.27 47.27 41.17 46.04 85.00
R1 + ToM 61.91 61.55 63.33 63.25 44.74 44.86 34.54 34.61 80.00

Table 1: Long document reasoning performance (%) on Longbench and InfiniteBench, with average token lengths
from 4.9k to 192k. 100 samples are randomly selected for Inf.QA and Inf.MC, while the full sets are used for the
other tasks. Bold denotes the best performance, and underlined results indicate runner-ups.

et al., 2025), Llama3-70B-Instruct, DeepSeek-
V3 (DeepSeek-AI et al., 2024), and GPT-4o-2024-
05-01. Additionally, reasoning model Deepseek-R1
is also evaluated for comparison.
Benchmarks. We evaluate the performance on
HOTPOTQA, 2WIKIMQA, and MUSIQUE from
LongBench (Bai et al., 2024). For more chal-
lenging tasks, we test on the Question-Answering
(Inf.QA) and Multi-Choice (Inf.MC) tasks from
InfiniteBench (Zhang et al., 2024b), where the av-
erage input length is 190k tokens. This poses a
significant challenge for LLMs to process, under-
stand, and reason over ultra-long contexts. Addi-
tional comparisons on Long In-Context Learning
and Long Dialogue History Understanding tasks
are provided in Appendix A.1.
Baselines. We compare ToM with the follow-
ing baselines: (i) Reasoning on Full Document:
Query and full documents are concatenated for rea-
soning. Contexts exceeding the window size are
truncated. (ii) LLM enhanced with RAG: For the
RAG baseline, we perform chunking using a fixed
number of tokens: 1k for Longbench and 4k for In-
finiteBench. We adopt BGE-M3 with an 8k token
window as the retriever and select the Top 5 chunks
for augmented generation. We report the results
of 70B+ LLMs, including Qwen2.5-72B-Instruct,

Llama3-70B-Instruct, Deepseek-V3, GPT-4o, and
Deepseek-R1. Additionally, the Appendix C.1 pro-
vides an in-depth comparative analysis between
RAG and ToM. (iii) Divide-and-Conquer Frame-
works: Recent divide-and-conquer framework
LongAgent (Zhao et al., 2024) is evaluated. Lon-
gAgent utilizes multiple member agents, each re-
sponsible for processing assigned context chunks.
Following the chunking process, a leader judge
agent synthesizes the final answer through a multi-
round discussion. For INF.QA and INF.MC, the
chunk length is set to 4k tokens, while for other
datasets in Longbench, it is configured to 1k tokens.
Details about ToM, including the embedding tech-
nique, chunking size, and clustering algorithm, are
provided in Appendix B.
Metrics. We use F1-score and RougeL score to
evaluate question-answering performance and Ac-
curacy for multiple-choice tasks.

4.2 Main Results

The overall results in Table 1 highlight ToM’s per-
formance compared to existing methods. We ana-
lyze the results and present the following findings:

Challenge Exists in Long Document Reason-
ing. LLMs still face significant challenges in long-
context reasoning, ranging from 10k tokens to ultra-
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long scenarios. Qwen2.5-72B-Instruct performs
poorly on 10k-token documents like HOTPOTQA
and MUSIQUE, with F1-scores between 10.52%
and 23.99%. DeepSeek-V3 outperforms Qwen by
17.4% on HOTPOTQA and 15.5% on 2WIKIMQA
with full-document context.

This challenge becomes more apparent when
handling ultra-long contexts exceeding 100k to-
kens. Tasks like INF.QA and INF.MC, averaging
190k tokens, present significant challenges for all
LLMs. Llama3-70B-Instruct and Qwen2.5-72B-
Instruct score 8.32% and 12.47%, respectively,
while GPT-4o achieves 13.45%, and DeepSeek-V3
leads with 16.89% on INF.QA. Even DeepSeek-
R1, with state-of-the-art performance still struggles
with ultra-long contexts, achieving only 12.58% on
INF.QA. These results highlight the limitations of
current LLMs and the need for improved methods
to handle such extensive contexts.

RAG Benefits in Long Document Reasoning.
On short document reasoning tasks, with the ex-
ception of GPT-4o, most LLMs show significant
gains from RAG techniques. For example, on
HOTPOTQA, Llama3-70B-Instruct’s F1 score in-
creases from 21.66% to 32.69%, and Qwen2.5-
72B-Instruct’s from 23.99% to 35.14%. Inter-
estingly, DeepSeek-R1 sees a slight drop, from
55.70% to 51.84%, suggesting that its strong in-
context performance may be disrupted by the frag-
mentation introduced by chunking.

For ultra-long documents, RAG provides a
straightforward solution by helping LLMs focus on
the most relevant chunks. With RAG, Llama3-70B-
Instruct and Qwen2.5-72B-Instruct achieve notable
improvements on INF.QA, reaching F1 scores of
13.32% and 19.65%, respectively, while GPT-4o
sees a boost to 26.03%. Similarly, on INF.MC, all
LLMs benefit from RAG, with performance gains
ranging from 5.0% to 20.0%.

However, while RAG improves performance in
long-context reasoning, it still faces two key limi-
tations: 1) Although RAG improves the recall of
relevant chunks, it does not ensure that the retrieved
chunks are truly useful for reasoning, often intro-
ducing irrelevant information that adds noise to
the process. 2) RAG-enhanced LLMs reason over
flat-organized chunks but often sacrifice logical co-
herence due to their reliance on similarity-based
rankings, leaving interconnections between chunks
underutilized. These limitations constrain the up-
per bound of RAG-based methods, highlighting the
need for a more fine-grained reasoning approach

that fully leverages the chunks and improves infor-
mation aggregation.

DCF Outperform One-Step Reasoning in
Long Contexts Scenarios. Divide-and-conquer
methods consistently outperform one-step reason-
ing approaches. LongAgent significantly improves
performance across all evaluated LLMs. On
HOTPOTQA, LongAgent boosts DeepSeek-R1 to
59.72% F1, surpassing its RAG baseline by 7.88%.
Llama3-70B-Instruct and Qwen2.5-72B-Instruct
see even larger gains of 12.62% and 12.05%, re-
spectively. In ultra-long document reasoning, Lon-
gAgent also proves effective. With DeepSeek-R1,
it achieves 29.16% F1 on INF.QA and 76.00%
accuracy on INF.MC. GPT-4o performs best on
INF.QA at 38.00%, while maintaining 72.00% on
INF.MC. These results underscore the advantage
of divide-and-conquer strategies in complex, long-
context reasoning.

LongAgent enhances long-context reasoning per-
formance by breaking long documents into smaller
components for parallel reasoning and employing
a Leader LLM to resolve conflicts and refine re-
sults across multiple turns. Though effective for
local reasoning, LongAgent processes chunks in
isolation, limiting its ability to capture long-range
dependencies and increasing the risk of conflicts,
thus capping its potential.

ToM Achieves Significant Performance Gains.
With GPT-4o, ToM achieves state-of-the-art perfor-
mance, reaching 41.17% F1 on INF.QA and 85.0%
accuracy on INF.MC. When paired with Qwen2.5-
72B-Instruct and DeepSeek-V3, ToM also demon-
strates strong performance, achieving 30.17% and
38.60% F1 on INF.QA, and 71.00% and 77.00%
accuracy on INF.MC, respectively, consistently out-
performing their LongAgent counterparts. Com-
pared to RAG-based methods, ToM with GPT-4o
improves performance by 15.14% on INF.QA and
20.0% on INF.MC. Relative to LongAgent with
GPT-4o, it achieves gains of 11.97% in F1 and
13.0% in accuracy, highlighting ToM’s advantage
in ultra-long document reasoning.

ToM’s effectiveness stems from its recursive tree-
based MapReduce framework. In the Map phase,
relevant information is extracted from chunks; in
the Reduce phase, results are merged, conflicts
resolved, and refined using confidence scores. This
structured approach reduces noise and enhances
integration, making it well-suited for long context
reasoning tasks.

Compared to RAG, ToM performs fine-grained
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reasoning on informative content identified by HSP
within each chunk, fully leveraging relevant con-
tent while filtering out noise based on confidence
estimates. Compared to LongAgent, its tree-based
MapReduce framework enables more effective
conflict resolution and enhances fact aggregation
from local to global through the DocTree structure,
thereby achieving promising performance gains.

Equip ToM with Reasoning Models. We eval-
uate both LongAgent and ToM using DeepSeek-
R1. On shorter tasks like HOTPOTQA and
2WIKIMQA, DeepSeek-R1 combined with either
framework outperforms other models, with ToM
achieving 61.91% and 63.33% F1, respectively. As
document length increases, ToM with GPT-4o sur-
passes DeepSeek-R1 on ultra-long tasks such as
INF.QA and INF.MC. While the long chains of
thought produced by R1 benefit understanding in
shorter contexts, they also introduce overthinking
and hallucinations during reasoning, allowing in-
correct ideas to propagate upward and ultimately
impairing overall reasoning.

5 Ablation Study

In this section, we discuss the contributions of key
components, analyze efficiency, and examine the
impact of compression, with additional ablations
on chunk size provided in Appendix B.3.
Contribution of Key Components. We conduct
ablations on bottom-up aggregation and the con-
fidence measure, with results shown in Table 2.
Removing the in-context confidence measure leads
to substantial performance degradation across all
datasets (–6.9% on INF.QA, –7.0% on INF.MC).
In the tree-based MapReduce reasoning pattern, the
reduce phase is essential for merging viewpoints
and resolving conflicts, which is key to strong per-
formance. Divide-and-conquer reasoning often en-
counters local conflicts, and confidence scores help
guide resolution for more consistent results.

Removing bottom-up aggregation results in con-
sistent performance drops (–2.0% on INF.QA,
–6.0% on INF.MC). It contributes by providing
global context through hierarchical summaries,

Aggre. Conf. HQA 2Wiki MuS Inf.QA Inf.MC

✔ ✔ 61.1 59.3 47.3 38.6 85.0
✗ ✔ 55.8 53.0 42.5 36.6 79.0
✔ ✗ 56.5 51.4 39.3 31.7 78.0

Table 2: Effect of the in-context confidence measure
and bottom-up aggregation with DeepSeek-V3.

which are difficult to infer solely from detailed
subtree information. By integrating low-level de-
tails with high-level summaries, ToM enables more
effective reasoning over the DocTree.
Efficiency Analysis. ToM introduces the Hierarchi-
cal Semantic Parser (HSP) to capture the internal
hierarchy within each chunk. While adding some
computational cost, the impact is minimal. First,
we use a lightweight 3B-scale LLM for parsing,
which is more affordable than relying heavily on
expensive GPT API calls. Second, we leverage
technologies like vLLM to enable parallel process-
ing, further optimizing efficiency. The average Doc-
Tree construction time across different stages and
input lengths is provided in Appendix B.1. ToM
requires fewer LLM calls than LongAgent, making
4.2k calls on 100 INF.QA samples compared to
LongAgent’s 6.3k.
Compression Impact. We compress Doctree by
selecting relevant chunks for construction, with
the reasoning performance versus the number of se-
lected chunks on INF.MC shown in Figure 4. There
is a trade-off between reasoning performance and
computational costs: while increasing the number
of chunks raises overhead, it also improves perfor-
mance. Notably, as the number of chunks increases
from Top-3 to Top-7, reasoning performance grows
steadily for GPT-4o, highlighting the benefits of
adding more context despite the additional costs.

74.75
75.2

7776.77

80.81

84.55

74

76

78

80

82

84

86

Top3 Top5 Top7

Deepseek-V3
GPT-4o

A
C

C
 (%

)

Figure 4: Effect of the number of selected chunks.

6 Conclusion

In this paper, we introduced ToM, a tree-oriented
MapReduce framework for effective long docu-
ment reasoning with large language models. By
leveraging tree-based representations and recursive
MapReduce reasoning, ToM enhances fact utiliza-
tion and conflict resolution across extended doc-
uments. Extensive experiments show that ToM
achieves significant performance gains over exist-
ing divide-and-conquer and RAG-enhanced frame-
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works, highlighting the potential of tree-based
frameworks to overcome the limitations of current
LLMs in long-context reasoning and paving the
way for more effective, scalable solutions.

Limitations

ToM significantly enhances long-context reasoning
through its novel tree-based MapReduce frame-
work. However, the construction of the DocTree,
which involves hierarchical semantic parsing and
bottom-up aggregation, introduces computational
overhead, particularly when processing ultra-long
documents. Although the query-aware DocTree
compression improves efficiency, it may inadver-
tently omit intermediate information that is essen-
tial for complex multi-hop reasoning. Additionally,
the granularity of text chunking and the potential
for error propagation from earlier analytical stages
can affect the overall performance of the frame-
work. Future research includes extending ToM’s
capabilities to handle multimodal documents for
more comprehensive long-context understanding.
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Appendix

This appendix provides supplementary material
to further elaborate on the ToM framework. Sec-
tion A presents additional performance evaluations
of ToM on long-context QA tasks. Section B offers
implementation details and an in-depth analysis
of ToM’s key components, including its computa-
tional complexity and chunking strategy, the Hi-
erarchical Semantic Parser’s implementation and
quality, and the DocTree construction process cov-
ering aggregation and compression techniques. Fi-
nally, Section C provides a deeper dive into ToM’s
methodology through a detailed comparison with
RAG, an exposition of its core operational prompts,
and illustrative case studies.

A Additional Performance Evaluations

This section extends the performance evaluations
presented in the main paper, showcasing ToM’s
effectiveness on further challenging long-context
question answering tasks.

A.1 Performance on User Guide QA and
Dialogue History QA

In addition to HQA, 2Wiki, MuSi, Inf.QA, and
Inf.MC, we also evaluated ToM on additional QA
tasks: the Long In-context Learning task—User
Guide QA and the Long-dialogue History Under-
standing task—Dialogue History QA. The experi-
mental results in Table 3 demonstrate that on User
Guide QA, our ToM approach achieved an accu-
racy of 65.0%, outperforming the baseline GPT-
4o model by 12.5 percentage points (from 52.5%)
and GPT-4o+LongAgent by 5.0 percentage points
(from 60.0%). Similarly, on Dialogue History
QA, ToM reached 68.4% accuracy, surpassing the
baseline GPT-4o by 15.8 percentage points (from
52.6%) and GPT-4o+LongAgent by 5.2 percentage
points (from 63.2%).

These statistically significant and consistent
performance improvements across diverse long-
context tasks provide empirical evidence for ToM’s
robust generalizability. The observed enhance-
ments can be attributed to the fundamental archi-

User Guide QA Dialogue History QA

GPT-4o 52.5 52.6
+ LongAgent 60.0 63.2
+ ToM 65.0 68.4

Table 3: Accuracy on User Guide and Dialogue History.

tectural advantages of our framework: specifically,
the tree-oriented MapReduce methodology enables
hierarchical document structuring through seman-
tic parsing and bottom-up aggregation, preserving
critical semantic relationships that would otherwise
be lost in traditional approaches. Unlike conven-
tional RAG methods that rely on sequential rea-
soning or divide-and-conquer frameworks that pro-
cess chunks in isolation, ToM’s recursive reasoning
mechanism explicitly maintains parent-child rela-
tionships between document segments and facili-
tates long-range information flow across the entire
DocTree. This structural coherence is particularly
beneficial for dialogue-based tasks, as evidenced by
the substantial 15.8 percentage point improvement
on Dialogue History QA, where maintaining con-
textual continuity across multiple conversational
turns is essential for accurate comprehension and
reasoning. The experimental findings thus sub-
stantiate our hypothesis that tree-based reasoning
offers a more effective paradigm for complex long-
context understanding tasks that require sophisti-
cated multi-hop inference capabilities.

B Implementation Details and
Component Analysis of ToM

This section delves into specific implementation
details and characteristics of the ToM framework’s
key components. We analyze its computational
complexity alongside the chunking strategy, detail
the training, implementation, and quality of the
Hierarchical Semantic Parser, and discuss the Doc-
Tree construction process, focusing on aggregation
and compression techniques along with their impli-
cations.

B.1 Computational Complexity

When comparing our approach, ToM, to traditional
methods like RAG or divide-and-conquer frame-
works, one noticeable difference is the additional
tree construction step that ToM incorporates. The
construction of the DocTree in ToM consists of
three steps: 1) embedding chunks before con-
structing; 2) Inferencing during hierarchical se-
mantic parsing; and 3) bottom-up summarizing.

Table 4 details the average time for DocTree
construction over varying document lengths.

From the experimental results shown in Table 4,
it is clear that the construction time increases with
document length. The total time required for con-
structing the DocTree increases steadily, with pro-
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Figure 5: Effect of the chunk size.

cessing times of 18.5 seconds for 10k tokens and
75.4 seconds for 250k tokens.

Chunking Size The chunk size for input docu-
ments was adapted based on the benchmark: input
documents were segmented into chunks of 1,000
tokens for Longbench tasks and 8,000 tokens for
InfiniteBench tasks.

B.2 Reasoning Time on Ultra Long Document

Table 5 presents the average reasoning time com-
pared to other methods.

Turning to the reasoning performance presented
in Table 5, ToM achieves reasoning times of 145.0
seconds for 100k tokens. While RAG is faster
(5.4s), LongAgent is slower (236.8s). Although the
construction and reasoning time for ToM can be
higher, our experimental evaluations (presented in
the main paper and Section A) show that the added
time is justified by the significant improvements
in performance, offering a better balance between
efficiency and effectiveness.

B.3 Impact of Chunk Size.

We evaluate different chunk sizes (0.5k-4k tokens)
on the 2WikiMQA dataset (average length 4.9k

Time (Component) 10k 80k 120k 250k

Embedding 0.6 1.9 2.7 5.3
Inference (HSP) 9.9 29.4 34.3 37.2
Summarization 8.0 27.0 28.1 32.9

Total Construction 18.5 58.3 65.1 75.4

Table 4: Average DocTree constructing time (s) within
different stages on varying lengths.

RAG LongAgent Our ToM

Time (s) 5.4 236.8 145.0

Table 5: Time costs on Inf.QA over 100k tokens.

tokens) using ToM with GPT-4o. Results in Fig-
ure 5 show that 1k tokens achieves optimal per-
formance (59.3% F1), while both smaller (0.5k,
57.4% F1) and larger chunks (4k, 55.8% F1) lead
to degraded performance. Smaller chunks likely
fragment semantic coherence, making it difficult to
capture complete logical units. Conversely, larger
chunks may reduce the effectiveness of the hierar-
chical structure by creating fewer but more com-
plex nodes in the DocTree, potentially obscuring
the parent-child relationships that facilitate effec-
tive reasoning. The optimal 1k chunk size creates
a more balanced hierarchical structure with clearer
semantic boundaries between nodes, allowing for
more effective information organization for this
particular dataset.

B.4 Hierarchical Semantic Parser (HSP):
Implementation and Quality Assessment

HSP Training and Implementation The Hier-
archical Semantic Parser (HSP) was trained us-
ing the Wiki727 dataset (Koshorek et al., 2018)
for initial data generation, with semantic chunk-
ing performed by GPT-4o (OpenAI, 2024). To
enhance operational efficiency, we distilled a 3B-
scale model, Qwen2.5-3B-Instruct. This distil-
lation involved fine-tuning the model on 18,000
query-response pairs generated by GPT-4o, em-
ploying a full-parameter supervised approach with
an 8k context window. For parallel processing
tasks related to the HSP and other components,
vLLM (Kwon et al., 2023) was incorporated. Fol-
lowing the HSP parsing, subtrees were constructed
from the parsed chunks using regular expressions
to identify parent-child relationships; this method
proved robust, yielding no matching failures across
thousands of parsing instances.

HSP Quality Current LLMs can perform stable
parsing without tuning and can achieve better per-
formance after distillation. Figure 6 shows the loss
curves for our HSP, indicating effective learning
and stabilization of parsing quality.

Figure 6: Loss curves of the HSP using the Qwen2.5-
3B-Instruct.
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Figure 7: Score distribution of 500 HSP samples eval-
uated by Claude-Sonnet-3.7, showing a mean score of
8.02.

To further evaluate parsing reliability, we con-
ducted a quality assessment adopting the LLM-as-
judge approach using Claude-Sonnet-3.7 as an inde-
pendent evaluator which is shown in Figure 7. Our
analysis of 500 parsed samples, scored on a scale of
0-10, reveals strong performance with no samples
below 6.0, and the majority (406 samples, 81.2%)
scoring between 7.0-9.0. The highest concentration
appears in the 8.0-9.0 range (209 samples), with
an overall mean score of 8.02. This distribution
confirms that our HSP consistently produces high-
quality hierarchical structures, effectively capturing
semantic relationships essential for the subsequent
MapReduce reasoning process.

B.5 DocTree Construction Details:
Aggregation and Compression

Recursive Summarization for Aggregation In
the recursive summarization process, which forms
part of the bottom-up tree aggregation in DocTree
construction, node clustering was performed using
the Leiden (Traag et al., 2018) algorithm. The main
evaluated LLM (as specified in the main paper’s
experimental setup) then performed the subsequent
summarization steps for the clustered nodes.

DocTree Compression Algorithm The DocTree
compression strategy is crucial for managing com-
putational resources. Algorithm 2 outlines our
query-aware compression technique. For this mech-
anism, the parameter k (number of selected chunks)
was set to 7. Similarity scores, crucial for query-
aware chunk selection during compression, were
computed between query and node embeddings
using the BGE-M3 model (Chen et al., 2024a).

Analysis of Information Loss during Compres-
sion Our DocTree compression strategy, which
employs query-aware top-k selection using embed-
dings, does introduce a deliberate tradeoff between
computational efficiency and information complete-

ness. By selectively focusing on the most relevant
chunks for DocTree construction, we reduce pro-
cessing time while maintaining high performance
on most reasoning tasks. However, this process
may potentially exclude intermediate information
that could be valuable for capturing certain long-
range dependencies, particularly in cases requiring
complex multi-hop reasoning across seemingly un-
related document sections.

To address this concern, we emphasize the flexi-
ble nature of our framework, which allows practi-
tioners to adjust the compression parameters based
on their specific requirements. For applications
prioritizing maximum reasoning accuracy where
computational resources are less constrained, com-
pression can be made optional, permitting the con-
struction of complete DocTrees that preserve all
document information.

Our experiments with varying compression lev-
els indicate that increasing the number of selected
chunks generally improves performance, with di-
minishing returns beyond a certain threshold. This
suggests that while some information loss occurs
during compression, our embedding-based selec-
tion effectively identifies most critical chunks, and
the hierarchical structure of DocTree helps mitigate
the impact of missing intermediate information by
establishing connections between distant but se-
mantically related chunks during the bottom-up
aggregation process.

Algorithm 2: Query-Aware DocTree Compression

Input: Long context C, Query q, Retriever R, Selection
scale k

Output: Compressed set of chunks {c′1, c′2, . . . , c′k} to
form DocTree T

Step 1: Embedding Generation
Generate query embedding eq for q using R
Split C into fixed-length token chunks {c1, c2, . . . , cn}
foreach chunk ci do

Generate embedding eci for ci using R
Compute cosine similarity Sim(eci , eq) for eci and eq

Step 2: Chunk Selection
Select the top-k chunks based on similarity scores:

{c′1, c′2, . . . , c′k} = TopKSim(q, {c1, c2, . . . , cn})

Step 3: Build Compressed DocTree T using
{c′1, c′2, . . . , c′k}

Return: Compressed DocTree T (built from selected
chunks)
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C ToM Methodology: In-depth and
Comparative View

This section offers a more detailed exposition of
ToM’s methodology. We provide an in-depth com-
parison with traditional Retrieval-Augmented Gen-
eration (RAG) to highlight ToM’s unique advan-
tages, present the core prompts that guide its rea-
soning steps, and illustrate its operation through
case studies.

C.1 Comparison with Retrieval-Augmented
Generation (RAG)

ToM demonstrates superior performance across all
benchmarks as evidenced by our experimental re-
sults. An intriguing aspect of this comparison is
that ToM initially employs retrieval mechanisms
similar to those in RAG for chunk selection, yet
achieves significantly better outcomes in down-
stream reasoning tasks.

Retrieval-Augmented Generation (RAG) ap-
proaches have made significant contributions to
question answering tasks by effectively enhanc-
ing recall—successfully retrieving chunks contain-
ing potentially relevant information. However, QA
tasks inherently demand high precision in utilizing
retrieved information to generate accurate answers.
While RAG excels at gathering diverse relevant
content, its flat concatenation of retrieved chunks
and single-pass reasoning process presents chal-
lenges for complex queries requiring nuanced in-
formation integration. It lacks the ability to capture
the logical structure between different information
segments, struggles to establish connections be-
tween distantly related facts, and cannot effectively
resolve contradictions that may appear across dif-
ferent chunks. Consequently, RAG’s performance
degrades significantly when handling queries that
require integrating information from multiple docu-
ment segments or performing multi-hop reasoning.

Our Tree-oriented MapReduce (ToM) frame-
work builds upon RAG’s strong retrieval foun-
dation while addressing this precision challenge
through hierarchical processing. By organizing
the same retrieved chunks into a structured Doc-
Tree, ToM enables a two-phase reasoning process
that systematically improves precision. In the Map
phase, ToM conducts fine-grained reasoning on
individual sibling nodes in parallel, generating de-
tailed rationales that capture essential supporting
facts from each document segment. The subse-
quent Reduce phase then systematically aggregates

these rationales across sibling nodes, resolving con-
flicts and reaching consensus at parent nodes. To
more intuitively illustrate the MapReduce reason-
ing process, a case is provided in Figure 9.

This recursive process enables ToM to progres-
sively refine understanding from leaf nodes to root
nodes, preserving context coherence throughout
the document hierarchy. By facilitating informa-
tion flow between parent-child relationships and
across sibling nodes, ToM transforms high-recall
retrieved content into high-precision answers, par-
ticularly excelling at complex queries requiring in-
tegration of distributed information and resolution
of apparent contradictions.

C.2 Core Operational Prompts
The Map, Reduce, and Hierarchical Semantic Pars-
ing (HSP) steps in ToM are guided by specific
prompts provided to the LLM. These prompts are
crucial for structuring the LLM’s processing and
output at each stage. Figure 10 shows the prompt
used for the Map step, Figure 11 for the Reduce
step, and Figure 12 for the Hierarchical Semantic
Parsing of chunks.

C.3 Illustrative Case Studies
To provide a concrete understanding of ToM’s in-
ternal workings, we present two case studies. Fig-
ure 8 illustrates an example of DocTree construc-
tion. Figure 9 demonstrates the MapReduce rea-
soning process on a constructed DocTree. These
examples visually walk through the key stages of
our framework.
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The Smithfield Museum robbery occurred on Friday 

night. The stolen item was a rare diamond necklace 

valued at $2 million. Security footage shows a tall 

figure in black entering through the east entrance 

at 11:42 PM. The guard, David Wilson, was found 

unconscious, claiming someone offered him coffee 

before he lost consciousness. Lab tests confirmed 

the coffee contained a sedative. Museum director 

Jane Roberts noted that the thief must have known 

about the new security system installed last month, 

as they avoided all motion sensors.

Chunk 1 (C1)

Police investigation revealed three main suspects. 

Alex Turner, a former security consultant fired by 

the museum last year, had threatened Ms. Roberts. 

Turner has extensive knowledge of security systems 

but claims he was at a bar during the robbery. 

Sarah Collins, a jewelry expert who examined the 

necklace last week, had unusual access to security 

details. The third suspect, Marcus Green, is a known 

art thief recently released from prison who was 

spotted near the museum Thursday afternoon.

Chunk 2 (C2)

Further investigation found Alex Turner's 

fingerprints on an empty coffee cup in the security 

office. Turner's alibi collapsed when bar patrons 

confirmed he left at 10:30 PM, giving him time to 

reach the museum. Detective Reynolds discovered 

Turner had purchased sedatives three days before 

the robbery. Turner's apartment search revealed 

detailed museum blueprints with the new sensor 

locations marked. The stolen necklace remains 

missing, but Turner's bank account shows a 

$50,000 deposit on Saturday morning.

Chunk 3 (C3)

Title: Smithfield Museum Diamond Heist Case

Keywords: museum robbery; Alex Turner; 

evidence; security breach; premeditation

Summary: Complete investigation of the 

Smithfield Museum diamond necklace theft, 

from initial crime scene to conclusive evidence 

identifying the perpetrator.

Original_text: ""

Node 1.1 (Parent of 2.1 and 2.2):

Title: Smithfield Museum Robbery Details

Keywords: diamond necklace; security breach; 

sedative; motion sensors

Summary: A rare diamond necklace was stolen 

from Smithfield Museum by someone who 

avoided security sensors and sedated the guard.

Original_text: [Chunk 1 content]

Node 3.1:

Title: Robbery Investigation Suspects

Keywords: Alex Turner; Sarah Collins; Marcus 

Green; security knowledge

Summary: Police identified three suspects: 

fired security consultant Alex Turner, jewelry 

expert Sarah Collins, and known thief Marcus 

Green.

Original_text: [Chunk 2 content]

Node 3.2:

Title: Evidence Against Alex Turner

Keywords: fingerprints; false alibi; sedatives; 

blueprints; deposit

Summary: Evidence including fingerprints, a 

broken alibi, sedative purchase, museum 

blueprints, and a suspicious bank deposit 

connects Alex Turner to the robbery.

Original_text: [Chunk 3 content]

Node 3.3:

Title: Museum Robbery and Initial 

Suspects

Keywords: mdiamond theft; security breach; 

suspects; specialized knowledge

Summary: Details of the Smithfield Museum 

diamond necklace theft and the three primary 

suspects identified by police.

Original_text: ""

Node 2.1 (Parent of 3.1 and 3.2):

Title: Conclusive Evidence Analysis

Keywords: Alex Turner; physical evidence; alibi 

failure; premeditation

Summary: Accumulated evidence strongly 

implicating Alex Turner in planning and 

executing the museum robbery.

Original_text: ""

Node 2.2 (Parent of 3.3):

DocTree 
Construction

Figure 8: Case for DocTree Construction.
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key_info: 1. Rare diamond necklace ($2 million) 
stolen; 2. Thief entered through east entrance at 
11:42 PM; 3. Security guard David Wilson was 
unconscious; 4. Wilson's coffee contained sedative; 
5. Thief knew about new security system; 6. Thief 
avoided all motion sensors; ...
reasoning_process: The information suggests a 
sophisticated theft requiring insider knowledge of 
the museum's security system. The use of a 
sedative in the guard's coffee indicates 
premeditation. The thief's ability to avoid motion 
sensors suggests specialized knowledge... No 
specific suspect is identified in this information 
alone.
answer: Unknown from evidence
confidence_score: 6

Map(Node 3.1):

key_info: 1. Alex Turner - former security consultant; 
2. Turner was fired last year; 3. Turner threatened the 
director; 4. Turner has extensive security knowledge; 5. 
Turner claims bar alibi; 6. Sarah Collins - jewelry 
expert with access; 7. Marcus Green - known art 
thief; ...
reasoning_process: Three suspects emerge with 
different motives and capabilities. Alex Turner stands 
out due to his security expertise and possible revenge 
motive after being fired. His knowledge would enable 
him to bypass the sensors. Sarah Collins had access 
but less clear motive. Marcus Green has criminal 
history but unknown technical skills. Without physical 
evidence, it's difficult to determine the culprit 
definitively.
answer: Insufficient evidence
confidence_score: 7

Map(Node 3.2):
key_info: 1. Turner's fingerprints on coffee cup; 2. 
Turner's alibi proved false; 3. Turner purchased 
sedatives before robbery; 4. Blueprints with sensor 
locations found in Turner's apartment; 5. Turner 
received $50,000 deposit after robbery; ...
reasoning_process: This evidence strongly 
implicates Alex Turner. The fingerprints on the coffee 
cup connect him directly to the sedated guard. His 
false alibi places him at the scene during the crime. 
The sedative purchase shows premeditation. The 
blueprints with marked sensors explain how he 
avoided detection. The unexplained cash deposit 
suggests payment for the stolen item. This 
combination of physical evidence, motive, means, 
and opportunity points conclusively to Turner.
answer: Alex Turner
confidence_score: 9

Map(Node 3.3):

key_info: 1. Diamond necklace stolen using sophisticated methods; 2. Thief sedated guard via coffee; 3. Thief had knowledge of security systems; 
4. Alex Turner - fired security consultant with expertise; 5. Turner had threatened museum director; 6. Turner claimed bar alibi; 7. Other suspects: 
Sarah Collins and Marcus Green; ...
reasoning_process: The robbery required specialized security knowledge and inside information about the museum. Among the suspects, Alex 
Turner has the strongest profile with technical expertise in security systems and a potential revenge motive. The method of entry and disabling 
the guard aligns with someone having Turner's background. However, without physical evidence directly linking him to the scene, other suspects 
cannot be ruled out completely.
answer: Likely Alex Turnernsufficient evidence
confidence_score: 6

Reduce(Map(Node 3.1), Map(Node 3.2)) → Node 2.1:

key_info: 1. Diamond necklace stolen from Smithfield Museum; 2. Thief entered at 

11:42 PM through east entrance; 3. Thief sedated guard through coffee; 4. Robbery 

required knowledge of new security system; 5. Alex Turner has necessary security 

expertise; 6. Turner was fired and threatened museum director; 7. Turner claimed to 

be at a bar during robbery; 8. Sarah Collins had access to security details; 9. Marcus 

Green is a known art thief; ...

reasoning_process: Analysis of the museum robbery indicates it was executed by 

someone with specialized security knowledge and inside information. The method 

used to disable the guard and evade security systems required careful planning and 

expertise. Among the three suspects, Alex Turner emerges as the prime candidate 

due to his technical background in security systems, potential revenge motive after 

being fired, and threats against the museum director. His claimed alibi at a bar needs 

verification. While Sarah Collins and Marcus Green remain possibilities, Turner's 

profile most closely matches the skillset needed for this sophisticated theft. Physical 

evidence would be necessary to confirm this assessment.

answer: Likely Alex Turner

confidence_score: 7

Map(Node 2.1):

key_info: 1. Turner's fingerprints on coffee cup; 2. Turner's 
alibi proved false; 3. Turner purchased sedatives before 
robbery; 4. Blueprints with sensor locations found in 
Turner's apartment; 5. Turner received $50,000 deposit after 
robbery; ...
reasoning_process: The evidence against Alex Turner is 
comprehensive and compelling. His fingerprints directly 
connect him to the sedated guard's coffee. His alibi has 
been disproven, placing him near the museum at the time 
of the theft. The sedative purchase shows clear 
premeditation. The detailed blueprints explain his ability to 
avoid sensors. The suspicious financial transaction 
immediately after the robbery suggests payment related to 
the crime. This body of evidence forms a conclusive case 
against Turner.
answer: Alex Turner
confidence_score: 9

Map(Node 2.2):

key_info: 1. Robbery required specialized security knowledge; 2. Alex Turner had expertise and motive; 3. Turner's fingerprints found on sedative 
delivery method; 4. Turner had false alibi; 5. Turner purchased sedatives before the robbery; 6. Museum blueprints with marked sensors found in 
Turner's apartment; 7. Turner received unexplained $50,000 after the robbery; ...
reasoning_process: Integrating all evidence creates an overwhelming case against Alex Turner. The robbery's sophisticated nature required 
insider security knowledge that Turner possessed. Physical evidence including fingerprints on the coffee cup directly connects him to the scene. 
His purchase of sedatives matches exactly what was used on the guard. The false alibi places him at the museum during the robbery. The 
blueprints in his apartment explain how he avoided detection. Finally, the unexplained deposit suggests profit from the crime. While other 
suspects had partial means or motive, only Turner connects to all aspects of the crime with physical evidence and documented preparation.
answer: Alex Turner
confidence_score: 10

Reduce(Map(Node 2.1), Map(Node 2.2)) → Node 1.1:

Reduce

Reduce

Map Map Map

Map Map

Final answer: Alex Turner 

Question: Who stole the diamond necklace from Smithfield Museum?
Ground truth: Alex Turner

Figure 9: Case Study.
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You are given a portion of an article, previous reasoning results, and a question. Use 

the original text as the primary source for reasoning, supplemented by other sections 

(title, keywords, summary). Follow these instructions:

1. Extract Relevant Information (key_info):

Identify at least 10 key details relevant to the question from the original text and reasoning 

results. The more information, the better.

2. Provide a Rationale (reasoning_process):

Analyze the extracted information and explain how it answers the question.

If information is incomplete, include assumptions or inferences.

3. Answer the Question:

Provide the best possible answer in less than 5 words, concise and concrete, without 

explanations.

4. Assign a Confidence Score:

Rate your answer out of 10 based on information reliability and reasoning strength (higher 

score = higher confidence).

5. Example Scoring:

Ø Text: [Jerry is 18 years old this year. He can swim and wants to be an athlete.]

• Jerry can swim: 10 points

• Jerry will be an athlete: 7 points

• Jerry likes chess: 0 points

6. Output format:

Strictly follow the structure below: 

Map Prompt

Figure 10: Prompt for Map step.
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You are given a question and extracted information from multiple chunks. Your task 

is to integrate and reason through this data to provide a final answer. Follow these 

steps:

1. Extract Relevant Information (key_info):

Gather at least 20 key details from the chunks that are relevant to the question.

Combine partial data to improve future reasoning.

2. Provide a Rationale (reasoning_process):

Analyze the gathered information, addressing inconsistencies and weighing confidence 

scores to form a detailed explanation.

3. Answer the Question:

Provide a concise and concrete answer in less than 6 words.

4. Assign a Confidence Score:

Rate your answer out of 10 based on the reliability and completeness of the information 

and reasoning.

5. Example Scoring:

Ø Text: [Jerry is 18 years old this year. He can swim and wants to be an athlete.]

• Jerry can swim: 10 points

• Jerry will be an athlete: 7 points

• Jerry likes chess: 0 points

6. Output format:

Strictly follow the structure below: 

Reduce Prompt

Figure 11: Prompt for Reduce step.
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You are a text structuring expert. Organize the following long text into a clear, 

hierarchical format while preserving all original information (characters, events, 

timelines, etc.). Below are the requirements:

1. Overall Analysis:

• Primary Title: Reflect the main theme (≤15 words).

• Keywords: Extract 3-5 core keywords (sorted by importance, separated by semicolons).

• Summary: Summarize in one sentence (≤100 words).

2. Hierarchy Rules:

Secondary Titles:

• Distinguish thematic modules (≤15 words).

• Include 3-5 keywords and a short summary (≤100 words).

• If no lower levels, retain the full original text.

Tertiary Titles: Same as secondary titles but refine content further.

3. Structural Guidelines:

• All original content must be preserved without omission.

• Use numbered headings (e.g., 1.; 1.1.; 1.1.1.) for hierarchy.

• Limit to 5 main sections, supporting up to 4 hierarchical levels.

• Keep each section's word count between 500-1,000 words.

4. Output Format:

Strictly follow the structure below:

Chunk Prompt

Figure 12: Prompt for Hierarchical Semantic Parsing.
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