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Abstract

Compressing Large Language Models (LLMs)
into task-specific Small Language Models
(SLMs) encounters two significant challenges:
safeguarding domain-specific knowledge
privacy and managing limited resources. To
tackle these challenges, we propose PPC-GPT,
a novel unified framework that systematically
addresses both privacy preservation and model
compression in federated settings. PPC-GPT
works on a server-client federated architecture,
where the client sends differentially private
(DP) perturbed task-specific data to the server’s
LLM. The LLM then generates synthetic data
along with their corresponding rationales. This
synthetic data is subsequently used for both
LLM pruning and retraining processes. Our
framework’s key innovation lies in its holistic
integration of privacy-preserving mechanisms,
synthetic data generation, and task-specific
compression techniques, creating unique
benefits through component interaction. Our
experiments across diverse text generation
tasks demonstrate that PPC-GPT success-
fully achieves dual objectives: maintaining
competitive performance comparable to
full-sized LLMs while ensuring robust privacy
protection through its federated architecture.
Our code has been contributed to the FATE
open-source project and is now publicly acces-
sible at https://github.com/FederatedAI/
FATE-LLM/tree/main/python/fate_llm/
algo/ppc-gpt.

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAI, 2023a) and LLaMA3-70B (Dubey
et al., 2024), boasting billions of parameters
and remarkable text generation capabilities, have
emerged as a transformative force in the realm of
artificial intelligence. However, their training de-
mands substantial computational resources (Ope-
nAI, 2023b), and their colossal size poses signif-
icant hurdles for practical deployment, especially

in resource-limited environments. Conversely,
Small Language Models (SLMs), such as OPT-
1.3B (Zhang et al., 2022) and Qwen2.5-1.5B (Team,
2024), frequently demonstrate superior computa-
tional efficiency and accelerated response rates,
making them ideally suited for real-time applica-
tions with constrained resources. Enterprises with
constrained resources typically prefer deploying
SLMs, as they can do so without the concern of
potential data leaks, a risk that is heightened when
utilizing remote LLMs (Fan et al., 2025a,b, 2023;
Kang et al., 2023). Yet, training an SLM from
scratch, even the smallest billion-parameter mod-
els, entails considerable computational expenses
that are financially prohibitive for most enterprises.
Furthermore, SLMs exhibit inherent limitations
that stem from their performance constraints.

In this work, we aim to tackle the following ques-
tion: Is it feasible to develop a task-specific and
competitive SLM by harnessing an existing pre-
trained LLM for enterprises with limited resources,
while ensuring compliance with privacy require-
ments? To achieve this objective, we delve into
structured pruning (Xia et al., 2024; Men et al.,
2024; Kim et al., 2024), as a viable approach. Prun-
ing is generally regarded as a strategy for com-
pressing task-specific models by eliminating redun-
dant parameters and expediting inference, all while
maintaining task performance.

We identify two crucial technical challenges as-
sociated with this problem: Firstly, how can we
ensure the privacy of task-specific data when enter-
prises with limited resources are unable to prune
an LLM into an SLM independently? In such
cases, the need to transmit task-specific data to
a remote server equipped with powerful comput-
ing resources arises, a practice that is frequently
unacceptable to most enterprises due to privacy con-
cerns. Secondly, how can we ensure that the per-
formance of the SLM remains comparable to that
of the LLM? Structured pruning inevitably leads to
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some degree of performance degradation. To over-
come these challenges, we introduce PPC-GPT, a
privacy-preserving federated framework designed
for compressing LLMs into task-specific SLMs via
pruning and Chain-of-Thought (CoT) distillation.

As depicted in Figure 1, the envisioned architec-
ture of PPC-GPT comprises a high-performance
server adept at deploying LLMs and facilitating
their pruning into SLMs, coupled with a client en-
dowed with more constrained computational capa-
bilities for running SLMs. Within the confines
of our framework, the workflow unfolds as de-
tailed below. Initially, the client sends task-specific
data, perturbed to ensure privacy, to the server.
These data are protected by the Exponential Mech-
anism of Differential Privacy (Dwork, 2006; McSh-
erry and Talwar, 2007; Tong et al., 2025), thereby
guaranteeing privacy protection. Subsequently,
the server-side auxiliary LLMsyn generates syn-
thetic data along with their corresponding ratio-
nales, based on these perturbed inputs. The server-
side LLMo, which represents the original model,
undergoes pruning by PPC-GPT to yield the tar-
get SLM. This pruning process is informed by both
the synthetic data and their associated rationales.
Following the pruning of the LLMo, the server
retrains the target SLM through CoT (Wei et al.,
2022; Hsieh et al., 2023; Li et al., 2023) knowledge
distillation, leveraging the same synthetic data and
rationales. Lastly, the server dispatches the refined
target SLM to the client, who then proceeds to re-
train the target SLM utilizing its locally private
data.

Our contributions can be summarized as follows:

• Unified Framework for Federated LLM
Compression. We propose PPC-GPT, the
first holistic framework designed to system-
atically unify privacy-preserving techniques
with LLM compression in a federated learn-
ing context. Its core innovation lies in the
synergistic integration of four key modules:
exponential mechanism-based data perturba-
tion, CoT-guided synthetic data generation,
rationale-aware structured pruning, and CoT-
based knowledge distillation. This modular
architecture is not only novel but also extensi-
ble, allowing for future advancements in any
of its constituent parts.

• Novel Rationale-Aware Structured Prun-
ing for Reasoning Preservation. We propose

a new structured pruning metric that evalu-
ates network layers based on their contribu-
tion to generating explanatory rationales. This
approach selectively preserves the model’s
essential reasoning capabilities, a critical as-
pect often overlooked in standard compression
techniques.

• Component Interaction Benefits. The in-
tegration creates unique advantages through
component interaction. For example, com-
bining DP-perturbed data with CoT-guided
synthetic data generation enables both privacy
protection and effective knowledge transfer,
while the rationale-aware structured pruning
leverages this enhanced data quality for better
compression decisions.

• Empirical Assessment of LLM Compress-
ing to Task-Specific SLM. Through exten-
sive experiments across various text genera-
tion tasks using LLaMA and OPT models, we
demonstrate how PPC-GPT’s component in-
teractions lead to effective task-specific com-
pression while maintaining privacy, achieving
results competitive with full-sized LLMs.

2 Related Work

2.1 Differential Privacy
In this section, We briefly revisit two important
definitions of differential privacy: ϵ-Differential
Privacy and Exponential Mechanism (EM).
ϵ-Differential Privacy (DP). The Definition

of ϵ-Differential Privacy (DP) (Dwork, 2006).
A randomized algorithm M : D → S is ϵ-
Differential Privacy if for any two neighboring
datasets D1, D2 ∈ D that differ exactly in a single
data sample, and for any output O ⊆ S:

Pr[M(D1) ∈ O] ≤ eϵPr[M(D2) ∈ O] (1)

where ϵ is a privacy parameter. Smaller values of ϵ
imply stronger privacy guarantees.

Exponential Mechanism. The Definition of
Exponential Mechanism (McSherry and Talwar,
2007; Tong et al., 2025). For a given scoring func-
tion u : X × Y → R, a randomized mechanism
M(X,u, Y ) is ϵ-DP compliant if it satisfies:

Pr[y|x] ∝ exp(
ϵ · u(x, y)
2△ u

) (2)
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Figure 1: The overview of our proposed PPC-GPT. The PPC-GPT comprises four key components: (1) The
Exponential Mechanism-based Data Perturbation, which perturbs the client’s data to ensure privacy; (2) The
CoT-Guided Synthetic Data Generation, responsible for creating new synthetic data and rationales based on the
perturbed data; (3) The Rationale-Aware Structured Pruning, a process that prunes original LLMo to obtain the
target smaller SLM ; (4) The Retraining SLM, where the target SLM is retrained using both synthetic and original
private data to restore accuracy.

where the sensitivity △u is defined as:

△u = max
x,x′∈X,y∈Y

|u(x, y)− u(x
′
, y)| (3)

2.2 Differential Privacy Synthetic Data
A practical approach to generating private synthetic
data involves training a language model, such as
LLaMA2-7B (Touvron et al., 2023), on private data
using DP through DP-SGD (Song et al., 2013; Bass-
ily et al., 2014; Abadi et al., 2016). Subsequently,
the DP model is sampled repeatedly to produce
synthetic data (Mattern et al., 2022; Yue et al.,
2023; Kurakin et al., 2023). Research conducted
by (Mattern et al., 2022; Yue et al., 2023; Kurakin
et al., 2023) demonstrates that training downstream
models on DP synthetic data achieves performance
comparable to training directly on real data with
DP, thereby underscoring the high quality of the
synthetic data.

However, a significant challenge arises because
cutting-edge LLMs, like GPT-4, do not offer
model weights, making DP fine-tuning impractical.
Even for open-source LLMs, such as LLaMA3-
70B (Dubey et al., 2024), the process is resource-
intensive. Meanwhile, these DP fine-tuning meth-
ods inherently rely on a trusted server to gather
data from data owners for model training (Chen
et al., 2023), significantly limiting their applicabil-
ity in scenarios where such trusted servers are not

available, as is the case in our research context. In
the context of this work, we operate within a client-
server architecture where fine-tuning the LLM on
the server is not an option.

2.3 Model Pruning

Model pruning, initially proposed by (LeCun et al.,
1989) and subsequently enhanced by (Han et al.,
2015), stands as a resilient and efficient strategy for
mitigating model redundancy and attaining com-
pression. This methodology branches into two pri-
mary techniques: unstructured pruning and struc-
tured pruning.

Unstructured pruning (Dong et al., 2017; Lee
et al., 2019; Wang et al., 2020; Sun et al., 2024;
Frantar and Alistarh, 2023) can obtain highly com-
pressed models by directly pruning neurons, dis-
regarding the model’s internal architecture, which
also causes unstructured sparsity and hard deploy-
ment. A more pragmatic and structured option
is structured pruning. Structured pruning targets
organized patterns for removal, encompassing en-
tire layers (Jha et al., 2023), attention heads within
Multi-Head Attention (MHA) mechanisms (Michel
et al., 2019), hidden sizes in Feedforward Neural
Networks (FFN) (Nova et al., 2023), as well as hy-
brid configurations (Kurtić et al., 2024). In recent
times, there has been a surge in structured pruning
research tailored specifically for LLMs. For ex-
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ample, ShortGPT (Men et al., 2024), LaCo (Yang
et al., 2024), and Shortened LLaMA (Kim et al.,
2024) concentrate solely on pruning depth (i.e.,
layer-wise). LLM-Pruner (Ma et al., 2023) elim-
inates coupled structures in relation to network
width while preserving the layer count. Sheared-
LLaMA (Xia et al., 2024) introduces a mask learn-
ing phase that is designed to pinpoint prunable
components in both network width and depth. Our
work falls in the category of structured pruning of
LLMs.

3 Problem Formulation

Given an LLM fθ with parameters θ, which repre-
sents the original LLM that requires pruning, and
a task-specific dataset D containing private data,
our objective is to develop a target smaller, task-
specific compressed SLM fϕ parameterized by ϕ.
To acheive this, we seek to find the optimal prun-
ing strategy P and retraining approach R. The
objective can be formulated as follows:

min
P,R

L(ϕ; θ,D)

s.t. |ϕ| ≪ |θ| and Lp(D) < δ
(4)

where L(ϕ; θ,D) is the loss function measuring the
performance of the compressed SLM on the task-
specific dataset. |ϕ| and |θ| denote the number of
parameters in the compressed and original models,
respectively. Lp(D) is the privacy loss incurred due
to the perturbation of the data to ensure differential
privacy.

Our goal is to find the optimal pruning strategy
P and retraining approach R that minimizes the
overall loss, taking into account both the perfor-
mance of the compressed SLM and the privacy
protection of the task-specific data in the client.
We assume the server to be semi-honest, meaning
it may attempt to extract the client’s private data
from the information it receives.

4 The Proposed PPC-GPT Framework

In this section, we introduce PPC-GPT, a unified
privacy-preserving federated framework for com-
pressing LLMs into task-specific SLMs. We illus-
trate the PPC-GPT architecture in Figure 1. As
detailed in Algorithm 1, our framework comprises
four key modules that work in concert:

• Exponential Mechanism-based Data Pertur-
bation: Ensures privacy protection through
exponential mechanism.

Algorithm 1 PPC-GPT

Require: Private dataset D = {(xi, yi)}Ni=1,
LLMsyn for synthetic data generation, Orig-
inal LLMo fθ that requires pruning, Privacy
budget ϵ

Ensure: Task-specific SLM fϕ with privacy guar-
antees

1: Phase 1: Exponential Mechanism-based
Data Perturbation

2: Apply Exponential Mechanism M to D with
budget ϵ

3: Generate Dp = {(xpi )}Ni=1 according to Eq.(5)
4: Phase 2: CoT-guided Synthetic Data Gener-

ation
5: Server’s LLMsyn processes Dp to generate

synthetic data
6: Generate Ds = {(xsi , (ysi , rsi ))}Ns

i=1

7: Phase 3: Rationale-Aware Structured Prun-
ing

8: Calculate Block Influence scores using Ds ac-
cording to Eq.(7)

9: Identify redundant layers based on BI values
10: Obtain pruned model structure fϕ where |ϕ| ≪

|θ|
11: Phase 4: Retraining SLM via Two-Stage

Knowledge Distillation
12: Server performs CoT distillation using Ds ac-

cording to Eq.(8), (9), (10)
13: Client fine-tunes with private data D according

to Eq.(11)
14: return Compressed task-specific SLM fϕ

• CoT-guided Synthetic Data Generation: Cre-
ates high-quality synthetic data and rationales.

• Rationale-Aware Structured Pruning: Lever-
ages synthetic data and rationales for model
compression.

• Retraining SLM: Optimizes the compressed
model through two-stage knowledge distilla-
tion.

We elaborate on these modules in Section 4.1,
4.2, 4.3 and 4.4, respectively. Through this inte-
grated approach, PPC-GPT effectively addresses
the challenges of privacy-preserving LLM compres-
sion while maintaining task-specific performance.
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4.1 Exponential Mechanism-based Data
Perturbation

We utilize an exponential mechanism (McSherry
and Talwar, 2007; Yue et al., 2021; Chen et al.,
2023) to perturb the local private data D =
{(xi, yi)}Ni=1, which satisfies the criteria for the
ϵ-DP. For detailed information about the exponen-
tial mechanism, please refer to Section 2.1. We
denote the perturbed dataset as Dp = {(xpi )}

N
i=1,

where xpi signifies an perturbed input based on the
original local private dataset D .

The Exponential Mechanism M is defined as a
randomized algorithm that, given the original local
private dataset D, outputs the perturbed dataset Dp

with probability proportional to the exponential
of the utility score (in this work, we use cosine
similarity as the utility function):

M(D) = Dp with prob ∝ exp(
ϵ · u(D,Dp)

2△ u
)

(5)

4.2 CoT-guided Synthetic Data Generation

When the server-side LLMsyn receives the per-
turbed data Dp, the server initiates a procedure
where LLMsyn generates fresh synthetic data
along with their corresponding rationales based
on these perturbed data. We denote the synthetic
dataset as Ds = {(xsi , (ysi , rsi ))}Ns

i=1, where xsi sig-
nifies an input, ysi signifies the corresponding ex-
pected output label, rsi signifies the desired ratio-
nale, and Ns represents the sample size of synthetic
data.

As illustrated in Figure 2, we introduce a simple
and efficient method for generating synthetic data,
utilizing prompt engineering techniques and CoT
technology:

1. Question Generation. We prompt LLMsyn

to create a new question, starting from a
perturbed question. To enhance the valid-
ity of these new created questions, we en-
force three guidelines within the prompt: (1)
the new question needs to conform to com-
mon knowledge, (2) it must be solvable on
its own, independent of the original question,
and (3) it should not contain any answer re-
sponses. Furthermore, we establish specific
formatting standards for both questions and
answers, customized to suit the needs of vari-
ous datasets (Li et al., 2024).

2. Answer Generation. We instruct LLMsyn to
generate a CoT response for every newly cre-
ated question. For consistency, we request
LLMsyn to generate answers to the same
question three times and check for agreement.
If the answers differ, we reject the synthetic
data.

3. Rationale Generation. We request LLMsyn

to generate rationales for each synthetic data
using the CoT prompting technique.

The generated synthetic data and their rationales
are then employed for model pruning and retraining
on the server-side.

Figure 2: CoT-Guided Synthetic Data Generation.

4.3 Rationale-Aware Structured Pruning

LLMs exhibit layer-wise redundancy, with deeper
layers often showing higher levels of functional
overlap. To identify and remove redundant layers
effectively, we need a quantitative metric that can
assess each layer’s contribution to the model’s per-
formance. This intrinsic metric should evaluate
both the layer’s individual importance and its inter-
action with other layers in maintaining the model’s
overall functionality.

To quantify the impact of each layer, we use a
novel metric termed "Block Influence" (BI), which
is proposed in the ShortGPT (Men et al., 2024).
This metric is grounded in the hypothesis that a
transformer block’s significance is directly propor-
tional to the extent it modifies the hidden states.
Mathematically, the BI score for the ith block is
computed as:

BIi = 1− EX,t

[
XT

i,tXi+1,t

||Xi,t||2||Xi+1,t||2

]
, (6)

where Xi denotes the input to the ith layer, and
Xi,t represents the tth row of Xi.

On the server, we utilize the synthetic dataset
Ds, as described in Section 4.2, to compute the BI
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score for each layer of the LLMo model, denoted
as fθo . This model represents the original LLM
that requires pruning.

The original BI method (Men et al., 2024) re-
lies solely on input and task label information, pro-
cessed through a single forward pass: fθ(xsi ) → ysi .
We further extend the BI computation to encom-
pass two distinct facets of influence: fθ(xsi ) → ysi
and fθ(x

s
i ) → rsi . This enhancement not only facil-

itates the prediction of task labels but also enables
the generation of corresponding rationales based
on the inputs. Our novel BI score is determined as
follows:

BIi = BILabel,i + BIRationale,i (7)

where BILabel,i and BIRationale,i signify the influ-
ences pertaining to label predictions and rationale
generation, respectively.

A higher BI score indicates greater layer impor-
tance in the model architecture. As illustrated in
Figure 3, we leverage these BI scores to guide our
pruning strategy: layers are arranged in ascend-
ing order based on their BI scores, and those with
lower scores are systematically removed to obtain
the pruned model structure SLM fϕ.

Figure 3: Layer Importance Example: The significance
of each layer, as indicated by the BI (Block Influence)
value of LLaMA2-7B on the OBQA dataset, based on
the PPC-GPT framework.

4.4 Retraining
We employ the term "retraining" to designate the
process of performance recovery subsequent to
pruning. In this section, retraining is divided into
two stages: (1) Server-side Retraining, and (2)
Client-side Retraining.

Server-side Retraining. On the server side, we
utilize the synthetic dataset Ds, as described in
Section 4.2, to retrain the pruned model SLM fϕ.
We propose CoT knowledge distillation, guided by

rationales generated by LLMsyn, to enhance the
performance of SLM fϕ. Formally, we conceptual-
ize the learning process with rationales as a multi-
task learning problem (Zhang and Yang, 2021; Wei
et al., 2022; Hsieh et al., 2023). Specifically, we
train the model fϕ(xsi ) → (ysi , r

s
i ) to achieve not

only the prediction of task labels but also the gen-
eration of corresponding rationales based on tex-
tual inputs. This multi-task training ensures that
our model produces not only accurate predictions
but also insightful justifications for its decisions,
thereby enhancing the model’s transparency and
explainability. The multi-task learning objective
can be formulated as follows:

L = LLabel + LRationale (8)

where LLabel represents the label prediction loss:

LLabel(ϕ;Ds) = E(xs,ys)∼Ds
ℓCE(fϕ(x

s), ys) (9)

and LRationale represents the rationale generation
loss:

LRationale(ϕ;Ds) = E(xs,rs)∼Ds
ℓCE(fϕ(x

s), rs)
(10)

where ℓCE denotes the cross-entropy loss.
Client-side Retraining. On the client side, we

utilize local private data D to further retrain the
pruned model, SLM fϕ, once it has been received
from the server. Our work encompasses conven-
tional training, leveraging ground truth labels to
further enhance the performance of SLM fϕ. For-
mally, the label prediction loss for this dataset D is
formulated as follows:

LLabel(ϕ;D) = E(x,y)∼DℓCE(fϕ(x), y) (11)

5 Experiments

5.1 Setup
We have devised a scenario to assess the perfor-
mance of the PPC-GPT framework across various
text generation tasks. This setup employs a client-
server architecture, where the server hosts an auxil-
iary LLM for synthetic data generation, denoted as
LLMsyn. Specifically, we have selected LLaMA3-
70B (Dubey et al., 2024) for this purpose. For
model pruning, we utilize LLaMA2-7B (Touvron
et al., 2023) and OPT-6.7B (Zhang et al., 2022)
as the source models, denoted as LLMo. In the
default setting, the privacy budget ϵ = 3, and the
synthetic data ratio is 8.
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Datasets and Evaluation Metrics. We con-
duct a comparative evaluation of PPC-GPT on
QA datasets. Specifically, we include Common-
senseQA (CQA) (Talmor et al., 2019), Open-
BookQA (OBQA) (Mihaylov et al., 2018), ARC-
C (Clark et al., 2018), ARC-E (Clark et al., 2018),
FiQA-SA (Maia et al., 2018). For these datasets,
we primarily use Accuracy as the evaluation metric.
It’s worth noting that in our experiments, all meth-
ods undergo zero-shot evaluation and we use the
lm-evaluation-harness package (Gao et al., 2023).

Baselines. To evaluate the performance of our
PPC-GPT framework, we conducted a comparative
analysis against the following baselines:

• DenseSFT, where the client independently
fine-tunes LLMo using its private dataset.

• Plain-C, where the client independently
prunes LLMo using its private dataset (sup-
pose the client can deploy LLMo) and subse-
quently fine-tunes the pruned model.

• DP-Instruct-C (Yu et al., 2024), where the
client finetunes generator (e.g., LLaMA2-
1.3B) with DP-SGD and using synthetic
datasets generated from generator to prune
LLMo and subsequently fine-tunes the
pruned model with the private dataset.

5.2 Main Results
In our experiments, we extensively evaluated the
performance of the proposed PPC-GPT framework
across various text generation tasks. Notably, given
that current structured pruning methods typically
reduce parameters by no more than 30%, we con-
ducted experiments with approximately 30% of the
parameters pruned. Additional experiments explor-
ing different parameter reduction proportions will
be discussed in Section 5.3.5.

As shown in Table 1, the results highlight the
effectiveness of PPC-GPT in compressing LLMs
into task-specific SLMs while prioritizing data pri-
vacy protection, when compared to other base-
line approaches. PPC-GPT outperforms the DP-
Instruct-C method, which utilizes DP-SGD for pri-
vacy protection during model compression. Fur-
thermore, PPC-GPT even surpasses the Plain-C
method, which directly compresses the model us-
ing private data. Additionally, when compared
to DenseSFT, the compressed model in PPC-GPT
even outperforms the raw model on some datasets.
Specifically, taking LLaMA2-7B for an example,

in the LLaMA2-7B model, PPC-GPT outperforms
the DP-Instruct-C method by 0.4%, 5.2%, 5%,
15.1%, and 1.8% on the CQA, OBQA, ARC-E,
ARC-C, and FiQA-SA datasets, respectively. Sim-
ilarly, PPC-GPT exceeds the Plain-C method by
0.7%, 2%, 4.5%, 8.2%, and 1.6% on the respective
datasets.

5.3 Ablation Study

5.3.1 Impact of Different Privacy Budgets
In this section, we explore the impact of privacy
budgets on the performance of PPC-GPT. Table 2
presents PPC-GPT’s performance across a range
of privacy budgets (ϵ = 1, 3, 5, 10). Notably, when
juxtaposed with Table 1, it becomes apparent that
even with a privacy budget of ϵ = 1, PPC-GPT
outperforms the Plain-C method by 1.7% and 3.4%
on the OBQA and ARC-E datasets, respectively,
within the LLaMA2-7B model. Similarly, PPC-
GPT exceeds it by 14% and 14.4% in the OPT-
6.7B model. As the privacy budget ϵ increases,
PPC-GPT’s performance demonstrates a signifi-
cant improvement, highlighting its proficiency and
adaptability in achieving a balance between privacy
and utility.

5.3.2 Impact of Different Synthetic Data
In this section, we explore the impact of synthetic
data on PPC-GPT’s performance, considering two
dimensions: the synthetic data ratio and the inclu-
sion of rationales in synthetic data.

Synthetic Data Ratio. Table 3 presents the per-
formance of PPC-GPT across various synthetic
data ratios (ratio = 1, 2, 4, 8). As the ratio of
synthetic data increases, PPC-GPT’s performance
exhibits a substantial improvement, highlighting
the crucial role of the synthetic data ratio and indi-
cating that a higher amount of synthetic data results
in further improvements. Specifically, PPC-GPT
with the synthetic data ratio of 8 outperforms the
ratio of 1 by 1.7% and 4.1% on the OBQA and
ARC-E datasets, respectively, within the LLaMA2-
7B model. Similarly, with the OPT-6.7B model, it
exceeds the ratio of 1 by 4.2% and 7.6%.

Synthetic Data Rationales. We undertake an
analysis to investigate the effects of rationales on
PPC-GPT’s performance. Table 4 compares PPC-
GPT’s performance between synthetic data with
and without rationales (PPC-GPT w/ rationales and
PPC-GPT w/o rationales). The findings demon-
strate that PPC-GPT exhibits superior performance
when the rationales of synthetic data is utilized,

14789



DataSets

Model Method Ratio (%) CQA OBQA ARC-E ARC-C FiQA-SA

LLaMA2-7B

DenseSFT 0 81.6±0.54 80.3±0.50 82.9±0.18 60.0±0.42 68.9±1.66

Plain-C 30 77.6±0.14 77.9±0.16 79.7±0.29 54.0±0.82 71.1±1.37

DP-Instruct-C 30 77.9±0.62 74.7±1.32 79.2±0.33 47.1±4.10 70.9±0.83

PPC-GPT 30 78.3±0.41 79.9±0.57 84.2±0.33 62.2±0.61 72.7±0.54

OPT-6.7B

DenseSFT 0 75.4±0.64 60.0±0.99 65.8±0.70 31.4±0.86 70.0±1.09

Plain-C 30 47.4±1.12 36.5±1.48 40.2±0.89 27.6±0.37 52.4±1.37

DP-Instruct-C 30 58.7±2.04 39.7±1.04 44.5±2.53 28.6±1.72 54.5±1.67

PPC-GPT 30 65.6±0.95 52.1±0.96 57.3±0.16 36.0±0.59 64.9±1.26

Table 1: Performance Comparison of Compression Methods on LLMs.

Privacy Budget(ϵ)

Model Datasets Stage 1 3 5 10

LLaMA2
OBQA S 65.4 67.1 67.9 69.4

C 79.6 79.9 80.1 79.8

ARC-E S 78.8 80.4 79.9 79.5

C 83.1 84.2 84.4 83.4

OPT
OBQA S 35.7 36.3 36.1 38.8

C 50.5 52.1 52.4 53.5

ARC-E S 49.1 50.4 49.3 50.5

C 54.6 57.3 55.5 55.3

Table 2: Comparison of PPC-GPT’s performance across
different privacy budgets ϵ. S denotes the performance
of target SLM on the server-side, while C represents the
performance of target SLM on the client-side.

as compared to when it is absent. Specifically,
PPC-GPT w/ rationales outperforms PPC-GPT w/o
rationales by 0.8% and 0.9% on the OBQA and
ARC-E datasets, respectively, within the LLaMA2-
7B model. Similarly, with the OPT-6.7B model,
PPC-GPT w/ rationales exceeds PPC-GPT w/o ra-
tionales by 7% and 9.1%.

5.3.3 Impact of Server-Side Retraining
In this section, we explore the impact of server-side
retraining on the performance of PPC-GPT. Table 5
presents a comparison of PPC-GPT’s performance
with and without server-side retraining. The find-
ings demonstrate that PPC-GPT exhibits superior
performance when server-side retraining is utilized,
as compared to when it is absent. Specifically,
PPC-GPT w/ server-side retraining outperforms
PPC-GPT w/o server-side retraining by 2% and
4.5% on the OBQA and ARC-E datasets, respec-
tively, within the LLaMA2-7B model. Similarly,

Synthetic Data Ratio

Model Datasets Stage 1 2 4 8

LLaMA2
OBQA S 62.3 64.6 64.6 67.1

C 78.2 78.3 78.5 79.9

ARC-E S 73.5 75.5 77.9 80.4

C 80.1 80.8 82.3 84.2

OPT
OBQA S 32.9 34.7 36.9 36.3

C 47.9 50.2 51.5 52.1

ARC-E S 40.4 43.9 47.5 50.4

C 49.7 52.3 54.9 57.3

Table 3: Comparison of PPC-GPT’s performance across
different synthetic data ratio.

with the OPT-6.7B model, PPC-GPT w/ server-
side retraining exceeds PPC-GPT w/o server-side
retraining by 15.1% and 15.7%.

5.3.4 Impact of Different Importance Metric
In this section, we explore the impact of different
important metrics on PPC-GPT’s performance:

Seq: The importance is directly correlated with
the sequence order, where the shallower layers hold
greater importance.

BI: BI mentioned in previous section 4.3.
Table 6 presents PPC-GPT’s performance across

different important metrics. The findings demon-
strate that PPC-GPT with BI exhibits superior per-
formance than PPC-GPT with Seq.

5.3.5 Impact of Different Model Pruning
Ratio

In this section, we explore the impact of different
model pruning ratio on PPC-GPT’s performance.
Table 7 presents the performance of PPC-GPT
across different model pruning ratios (namely, 0%,
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Rationales

Model Datasets Stage w/ w/o

LLaMA2
OBQA S 67.1 65.9

C 79.9 79.1

ARC-E S 80.4 77.9

C 84.2 83.3

OPT
OBQA S 36.3 31.1

C 52.1 45.1

ARC-E S 50.4 43.2

C 57.3 48.2

Table 4: Comparison of PPC-GPT’s performance: with
vs. without rationales.

Server:Retraining

Model Dataset w/ w/o

LLaMA2 OBQA 79.9 77.9

ARC-E 84.2 79.7

OPT OBQA 52.1 37.0

ARC-E 57.3 41.6

Table 5: Comparison of PPC-GPT’s performance: with
vs. without server-side retraining.

30%, 50%, and 70%). As the pruning ratio in-
creases, the performance of PPC-GPT exhibits a
decline.

6 Conclusions

In this paper, we introduced PPC-GPT, a novel
federated framework for compressing LLMs into
task-specific SLMs while preserving privacy. Our
framework integrates four key components: expo-
nential mechanism-based data perturbation, CoT-
guided synthetic data generation, rationale-aware
structured pruning, and CoT-based knowledge dis-
tillation. Experiments demonstrate that PPC-GPT
effectively compresses LLMs while maintaining
comparable performance and ensuring privacy pro-
tection. This work provides a practical solution for
deploying LLMs in resource-constrained, privacy-
sensitive scenarios.

Limitations

While PPC-GPT shows promising results in com-
pressing LLMs into task-specific SLMs while
ensuring data privacy, it has several limitations.
Firstly, PPC-GPT relies on an auxiliary LLM with
robust CoT capabilities to generate high-quality

Important

Model Datasets Stage BI Seq

LLaMA2
OBQA S 67.1 66.5

C 79.9 79.9

ARC-E S 80.4 80.0

C 84.2 83.9

OPT
OBQA S 36.3 34.7

C 52.1 48.3

ARC-E S 50.4 43.7

C 57.3 51.7

Table 6: Comparison of PPC-GPT’s performance across
different importance metrics.

DataSets

Model Ratio (%) OBQA ARC-E

LLaMA2

0 80.3 82.9

30 79.9 84.2

50 74.4 76.8

70 35.3 37.4

OPT

0 60.0 65.8

30 52.1 57.3

50 36.1 38.3

70 30.9 33.2

Table 7: Comparison of PPC-GPT’s performance across
different pruning ratios.

synthetic data and rationales. These synthetic data
are crucial for guiding the structured pruning and
retraining processes of both the source LLM (the
model slated for compression) and the target SLM
(the compressed model). If the auxiliary LLM lacks
sophisticated CoT reasoning abilities, the quality
and diversity of the generated synthetic data may be
compromised, which in turn could adversely affect
the performance of the compressed SLMs. This
limitation underscores the importance of selecting
or pre-training an auxiliary LLM with strong CoT
capabilities when deploying PPC-GPT. However,
it’s important to note that the source LLM (the
model slated for compression) does not necessarily
require CoT capabilities. Furthermore, as observed
in our experiments, the performance of PPC-GPT
tends to degrade with higher pruning ratios. This
indicates that optimizing the pruning strategy to
strike a better balance between model size and per-
formance remains an open challenge.
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A Privacy Analysis of PPC-GPT

Our privacy protection strategy in PPC-GPT is
grounded in rigorous theoretical foundations and
validated through comprehensive empirical studies.
The framework implements a theoretically-sound
differential privacy (DP) mechanism that operates
at the token-level feature space, completely elimi-
nating the need for raw data transmission. Specifi-
cally, we adopt the exponential mechanism, which
provides formal ϵ-DP guarantees and has been ex-
tensively analyzed in privacy-preserving NLP lit-
erature (Yue et al., 2021; Chen et al., 2023; Tong
et al., 2025). The theoretical privacy guarantees of
this mechanism are well-established, allowing us
to focus on its practical implementation and perfor-
mance optimization rather than re-establishing its
privacy properties.

B Implementation Details

B.1 Hyperparameter Settings
During the training process, we specifically config-
ured the parameters. Specifically, we set the batch
size to 32 and utilized the AdamW optimizer. The
maximum number of training steps varied between
300 and 6400. Additionally, we established a learn-
ing rate of 5e-5. For the input and target lengths,

we set the maximum question length to 64 and the
maximum target length to 128. For the LoRA con-
figuration of LLaMA2, we set the LoRA alpha to
32 and the LoRA rank to 8. In contrast, for the
OPT model, we configured the LoRA alpha to 64
and the LoRA rank to 32. The Lora dropout for
both models was set to 0.1.

B.2 Data Splitting
For the datasets, all splits (training, validation, and
test) were downloaded from HuggingFace (Lhoest
et al., 2021).

B.3 Dataset Licenses
All the datasets were downloaded from Hugging-
Face(Lhoest et al., 2021) and under Apache Li-
cense, Version 2.0.

B.4 Machine Configuration
The experiments were conducted on machines
equipped with 4 and 8 Nvidia V100 32G.
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