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Abstract

Text-Centric Visual Question Answering (TEC-
VQA) serves as a key benchmark for evalu-
ating AI’s ability to reason over text-rich vi-
sual scenes. However, most existing TEC-VQA
datasets focus on high-resource languages and
are susceptible to benchmark contamination
due to overlap with pretraining corpora of
large models. These limitations severely hin-
der progress in low-resource language scenar-
ios and compromise the reliability of current
evaluations. To address both the underrepre-
sentation of low-resource languages and the
contamination issue, we propose TVQACML,
the first large-scale TEC-VQA benchmark
for multilingual Chinese minority languages,
constructed through a scalable, reproducible
pipeline. It comprises 8,000 real-world im-
ages and 32,000 high-quality QA pairs across
eight languages and 30 application scenarios.
We conduct comprehensive benchmarking of
open-source, closed-source, and text-centric
MLLMs, revealing substantial performance
gaps from human accuracy, especially in scene-
text and document understanding tasks. Fur-
thermore, instruction tuning with TVQACML
yields consistent performance gains, in some
cases surpassing leading closed models demon-
strating the dataset’s utility for model align-
ment. We also introduce a lightweight, exten-
sible evaluation metric for robust multilingual,
multi-format answer assessment. The code
and dataset for TVQACML are available at
https://github.com/Shajiu/TVQACML.

1 Introduction

Text-Centric Visual Question Answering (TEC-
VQA) (Feng et al., 2023a,b; Hu et al., 2024; Liu
et al., 2024b; Tang et al., 2024a) has become a
crucial benchmark for evaluating AI’s ability to
understand text-rich visual scenes. Unlike general
VQA tasks (Biten et al., 2019; Singh et al., 2019a;
Mathew et al., 2021), TEC-VQA emphasizes accu-
rate responses based on textual content embedded

within images, enabling non-specialist users to en-
gage with complex visual information in a more
accessible way. However, existing research in TEC-
VQA has predominantly focused on high-resource
languages such as English (Singh et al., 2019a;
Mathew et al., 2021, 2022) and Chinese (Gao et al.,
2015; Gan et al., 2020; Moens et al., 2021; Muresan
et al., 2022), or developed regions such as Europe.
This imbalance severely limits AI accessibility for
low-resource language communities and hinders
the equitable distribution of language technologies.

Although a few studies have attempted to expand
question-answer pairs from high-resource to low-
resource languages via machine translation (Chang-
pinyo et al., 2023; Pfeiffer et al., 2022; Changpinyo
et al., 2023), these approaches often suffer from
severe visual-textual misalignment. Specifically,
they tend to prioritize question-answer text while
ignoring the actual textual content present in the
image. Additionally, such methods fail to address
critical issues such as nuanced semantics, contex-
tual distortion, language bias, and question-type
diversity. Compounding the issue, the open-source
nature of benchmarks and the broad coverage of
pretraining corpora for MLLMs have introduced
benchmark contamination risks, leading to unreli-
able evaluation results.

Chinese minority regions, while characterized
by immense linguistic diversity and spoken by mil-
lions, continue to lack sufficient support in lan-
guage technologies. The absence of large-scale
multilingual corpora further restricts both data
availability and model development for these lan-
guages. To bridge this gap, we propose Text-
Centric Visual Question Answering in Multilin-
gual Chinese Minority Languages (TVQACML), a
new benchmark specifically tailored for TEC-VQA
tasks in low-resource Chinese minority languages.

We are the first to propose a full pipeline for
TEC-VQA dataset construction in low-resource
multilingual settings. This pipeline includes lan-
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Figure 1: Overall performance of MLLMs on the
TVQACML benchmark.

guage selection, scenario definition, image collec-
tion, QA pair design, and quality control. It is scal-
able and generalizable to other low-resource lan-
guages and multimodal applications. TVQACML
consists of 8,000 real-world images and 32,000
high-quality human-annotated QA pairs across
eight languages: Standard Chinese (zh), Korean
(ko), Sichuan Yi (ii), Tibetan (bo), Mongolian (mn),
Uyghur (ug), Kazakh (kk), and Zhuang (za). It cov-
ers four major TEC-VQA scenarios—scene text,
document understanding, key information extrac-
tion, and text recognition—spanning 30 application
types. All data is publicly released, with standard-
ized splits for training and evaluation.

We comprehensively benchmark representa-
tive open-source, closed-source, and text-centric
MLLMs on TVQACML. Despite the relatively
strong performance of closed-source models (Fig-
ure 1), all evaluated models exhibit substantial gaps
compared to human performance—particularly in

scene-text interpretation (e.g., signs and adver-
tisements) and structured document understanding
(e.g., tables and invoices). These findings reveal
the current limitations of MLLMs in generalization
and cross-lingual reasoning under text-intensive,
low-resource conditions.

To further validate the quality and utility of
TVQACML, we perform instruction tuning on
both Chinese- and English-centric MLLMs. Ex-
perimental results show that even lightweight fine-
tuning with TVQACML leads to significant perfor-
mance gains, in some cases surpassing state-of-the-
art closed-source models. This demonstrates the
dataset’s effectiveness and its strong potential for
model alignment in low-resource TEC-VQA tasks.

Finally, we introduce a simple yet extensi-
ble evaluation strategy that supports multilingual
and multi-format answers. This metric combines
character-level precision with semantic matching,
enabling more robust and fair assessment across
diverse model outputs.

Our main contributions are as follows:

• A Scalable Data Construction Framework
and New Benchmark: We propose the first
comprehensive data construction pipeline for
TEC-VQA in low-resource multilingual set-
tings, and introduce TVQACML, a large-
scale, publicly available benchmark featur-
ing 8,000 real-world images and 32,000 high-
quality QA pairs across eight Chinese minor-
ity languages and 30 application scenarios.

• Comprehensive Model Benchmarking
and Evaluation: We benchmark leading
open-source, closed-source, and text-centric
MLLMs on TVQACML, revealing significant
performance gaps compared to human
annotations, particularly in scene-text and
document-rich tasks, thus highlighting the cur-
rent limitations of MLLMs in generalization
and cross-lingual reasoning.

• Empirical Validation of Data Utility via In-
struction Tuning: We demonstrate the ef-
fectiveness of TVQACML through instruc-
tion tuning on both Chinese- and English-
centric MLLMs, achieving substantial perfor-
mance improvements—sometimes surpassing
top closed-source models—and propose a sim-
ple yet extensible evaluation metric to support
multilingual, multi-format answer assessment.
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(a) Chinese (zh) example
Q: 此地图现收藏于哪里？
A: 该地图现藏于台北故宫博物院。
(Q: Where is this map currently housed?
A: This map is currently housed in the National
Palace Museum in Taipei.)

(b) Korean (ko) example
Q: 아래 네 문장을 올바른 순서대로 배열해야
합니다.
A: ③
(Q: You need to arrange the following four
sentences in the correct order.
A: ③)

(c) Sichuan Yi (ii) example
Q: ꄯꒉꋌꋐꄯꒉꅏꅉꆹ？
A: 《ꆈꌠꁱꂷꌧꐝꉅꌠꂘꇐꄯꒉ》ꆹꌧꍧꊿꋅꄯꒉꅏꅉꅐꇁꌠ。
(Q: What is the publisher of this book?
A: The "Yi Script Recognition Textbook" was 
published by Sichuan Nationalities Publishing 
House.)

(d) Tibetan (bo) example
Q: ད་ཐེངས་�ི་གདན་�འི་ལས་གནས་གང་ཡིན་ནམ་།
A: ཞབས་�ིའི་ལས་ཀ་བ་།
(Q: What is the job position?
A: A female nurse.)

(e) Mongolian (mn) example
Q: ᠡᠨ᠋ᠡ ᠳᠠᠭ᠋ᠤᠤ ᠶ᠋ᠢ �ᠠᠮᠢᠭ᠍ � ᠠ᠋ᠴᠠ ᠪᠠᠭ᠋ᠤᠯᠭ᠋ᠠᠭᠰᠠᠨ ᠪᠣᠢ?
A: ᠠᠯᠲᠠᠨᠳ᠋ᠠᠯᠠᠢ  ᠠᠯᠲᠠᠨᠪᠠ�ᠠᠷ  ᠤᠨ《 ᠲᠡᠭ᠍ᠷᠶ ᠶ᠋ᠢᠨ ᠭᠡᠭᠦᠦ  ᠶ᠋ᠢᠨ ᠤᠨ᠋ᠠᠭ᠍ �》 

(Q: May I ask where this song is excerpted from?
A: "Sky's Colt" by Alaten Dalai and Alaten Bayar.)

(f) Uyghur (ug) example
Q: ئایلىنىشماتورنىڭتاختىسىسائھتقایسىتۆۋەندىكى

بىلدۈرىدۇ؟سائىتىنىسۈرئىتى a、 1رەسىم b、 2رەسىم
c、 3رەسىم d、 4رەسىم A: a
(Q: Which of the following options represents the
engine tachometer? a. picture one; b. picture two;
c. picture three; d. picture four A: a)

(g) Kazakh (kk) example
Q: لۇب ىگھتتھرۋس ىسیاق .تلۇ
A: لۇب ىگھتتھرۇس قازاق .ىتلۇ
(Q: Which ethnic group is depicted in this image?
A:  This image is of the Kazakh ethnic group.)

(h) Zhuang (za) example
Q: Raemx raeuj goengq daih?
A: C
(Q: What is the correct answer?
A: C)

Figure 2: TVQACML examples sampled from each languages. The English version in parentheses.

2 Related Work

2.1 MLLMs for Text-centric VQA

Advancements in MLLMs (penAI, 2024; Achiam
et al., 2023; Yang et al., 2023; Team et al., 2023)
have been transformative for VQA tasks, as evi-
denced by their impressive zero-shot capabilities.
The ability of MLLMs to generalize, particularly
after being trained on datasets focused on visual
text comprehension and further refined through
instruction-based fine-tuning, has greatly improved
their utility in text-focused VQA contexts (Feng
et al., 2023a,b; Hu et al., 2024; Liu et al., 2024b;
Tang et al., 2024a). Commercially, several ad-
vanced vision-language models (VLMs), including
GPT-4v (Wang et al., 2023), Gemini-Pro-V (Team
et al., 2023), Qwen2-VL (Wang et al., 2024), and
InternVL2 (Chen et al., 2024), have utilized pub-
licly accessible VQA datasets related to documents
to further refine text-focused VQA performance.
Despite these advancements, MLLMs primarily ex-
cel in well-resourced languages like English and
Chinese, leading to a performance gap for low-
resource languages. This disparity is largely due to
the scarcity of data and benchmarks for these lan-
guages, presenting a significant hurdle in achieving
comparable results.

2.2 Multilingual Text-centric VQA
Benchmarks

Progress in multilingual text-centric VQA has been
driven by datasets such as GQA (Hudson and
Manning, 2019), OK-VQA (Marino et al., 2019),
VQAv2 (Goyal et al., 2017), and Vizwiz (Gurari

et al., 2018), which benchmark visual understand-
ing through image–question–answer annotations.
To introduce greater complexity, TextVQA (Singh
et al., 2019b) emphasizes OCR-based reasoning
over textual content in images, while ScienceQA
(Lu et al., 2022) focuses on scientific and common-
sense reasoning. Recent multilingual VQA efforts
include MTVQA (Tang et al., 2024c) and CVQA
(Romero et al., 2024). While MTVQA centers on
high-resource languages, CVQA expands coverage
to global low-resource languages but pays limited
attention to those within China. In contrast, our
work focuses on Chinese low-resource languages
such as Tibetan, Uyghur, Zhuang, and Yi, address-
ing their linguistic and cultural underrepresentation
and offering a more equitable and context-aware
VQA benchmark.

3 TVQACML Benchmark Construction

3.1 Data Collection

To ensure diversity and relevance, we collect text-
rich images from both natural scenes and document
contexts, as illustrated in Figure 3. Real-world
images are captured through regional crowdsourc-
ing, supplemented by web-sourced images across
categories such To filter images with meaningful
textual content, we apply a text retrieval model
(Gómez et al., 2018) to identify those containing
at least two high-confidence text instances. The re-
tained images undergo standardized preprocessing,
including multilingual OCR and language classifi-
cation, and are organized by language to support
subsequent annotation.
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1
• Identify common annotation issues using 

automated rules
• Removing blurry, dark, or cluttered images, as well as those lacking 

text.

2
• Ensure consistency and remove redundancies
• Refine image categorization and question-answer pairs

3
• Thoroughly verify all area information for 

accuracy
• Such as mismatched QA pairs that fail to align with the scene text's 

meaning.

4
• Conduct an ethical review
• Removing any content related to politics, personal privacy, or other 

unethical topics to maintain the integrity of the dataset.

Round Initial Classification and Question-
Answer Generation
• Each annotator is assigned an image and tasked with 

generating five unique and relevant questions, which can 
be answered using the text within the image.

Round Quality Control and Final Validation
• The second group of annotators re-answers questions from 

the first round, compares these to the original answers, and 
addresses any discrepancies through verification. 

Round Review and Answer Revision
• In the final phase, third-party reviewers address 

ambiguous questions, ensuring a reliable "raise-then-
correct" evaluation for text-image comprehension.

Stage 6: Data Statistics and Data Splits

STCVQA(12):
Signage, Graffiti,  
Billboards, Bills, 

Logos,…

DOVQA(11):
Landmark,  Comics,  

Paintings,  
Certificate, Web,…

KIEVQA(5):
Certificate, Menu, 

Table, Product 
Labels,…

TRVQA(2):
Handwriting, 

Artwork

Figure 3: The construction pipeline of the TVQACML Benchmark.

3.2 Human Expert Annotation
For QA generation, we recruit native-speaking an-
notators with linguistic and cultural expertise in
each target language. All annotators receive struc-
tured training and review sample annotations prior
to the formal annotation process to ensure consis-
tency. The annotation follows a three-stage "raise-
and-verify" pipeline to ensure high-quality, diverse,
and contextually grounded QA pairs.

(1) QA Generation: Annotators in the first
group are assigned images and instructed to create
five non-binary, unambiguous, and text-grounded
questions, each with a corresponding answer. This
ensures strong alignment with multilingual TEC-
VQA objectives.

(2) Answer Verification: A second group in-
dependently re-answers the same questions. Dis-
crepancies between answers are flagged for further
adjudication. If two plausible answers exist, both
are retained to preserve linguistic diversity.

(3) Final Review and Expert Cross-Validation:
A third group of senior annotators conducts cross-
validation by reviewing all ambiguous or poten-
tially inconsistent QA pairs. These experts revise
or discard low-quality items to ensure factual accu-
racy, linguistic clarity, and task consistency.

3.3 Quality Assurance
We implement a multi-stage quality control
pipeline to ensure data integrity. First, common
annotation issues (e.g., mismatched QA pairs, in-
complete answers) are detected with automated

rules and corrected manually by Annotators. Low-
quality images—such as blurry, dark, or text-
obstructed ones—are removed. Then, all anno-
tations undergo a secondary cross-validation by
senior experts to assess inter-annotator consistency
and language-specific correctness. Additionally,
we conduct an ethical review to remove content
involving politics, privacy, or other sensitive topics.
This pipeline ensures the linguistic, technical, and
ethical quality of the final dataset.

3.4 Data Statistics and Data Splits
The final TVQACML dataset contains 8000 real-
world images and 32000 high-quality QA pairs
across eight Chinese minority languages. To ensure
task coverage, each TEC-VQA scenario contains
at least 100 examples, resulting in balanced cover-
age across 30 pre-defined abilities (Figure 4). The
dataset is split into training and test sets with a 7:3
ratio to support reproducible benchmarking.

4 Experiments

Baselines. To comprehensively evaluate MLLMs’
multilingual perception and comprehension capa-
bilities, we consider three categories of models: (1)
Open-Source MLLMs: including Qwen-VL-Chat
(Bai et al., 2023), Qwen2-VL-7B-Instruct (Wang
et al., 2024), LLaVA1.5-7B (Liu et al., 2024a),
InternVL2-8B (Chen et al., 2024), GLM-4V-9B
(GLM et al., 2024), and DeepSeek-VL-7B-Chat
(Lu et al., 2024). (2) Closed-Source MLLMs:
including GPT-4o (penAI, 2024), Claude-3.5-
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Language
Qwen2-VL-7B-Instruct GPT-4o Qwen2-VL-7B-CML-SFT

chrF CBA Acc vtS Human chrF CBA Acc vtS Human chrF CBA Acc vtS Human

zh 45.71 52.52 42.43 41.32 42.11 69.57 69.86 51.09 50.18 50.72 47.73 41.48 34.69 34.79 35.09
ko 29.38 39.20 28.71 28.37 28.19 35.91 37.71 30.16 31.72 29.82 31.39 40.86 26.35 26.76 27.02
ii 19.43 24.98 16.45 15.31 17.23 4.22 4.09 3.62 4.79 2.75 21.45 29.54 21.10 21.30 20.36
bo 32.72 37.52 26.56 27.31 26.58 37.75 38.14 28.09 27.98 28.41 34.73 39.38 25.96 27.87 25.41
mn 2.39 7.09 2.28 1.07 2.22 23.73 26.60 10.74 9.99 11.28 4.40 11.56 4.08 5.37 4.38
ug 19.74 22.29 15.09 13.48 14.14 9.12 24.08 13.74 13.12 12.78 21.75 31.15 17.31 15.88 16.89
kk 24.08 24.99 19.33 19.78 19.52 13.74 18.37 11.20 11.48 11.42 26.09 34.59 22.32 24.12 21.98
za 37.67 43.18 32.77 31.98 33.24 45.95 46.74 38.14 38.01 37.62 39.69 50.67 35.97 35.65 35.04

Table 1: Evaluation of Multiple Models across 8 Languages with Various Metrics

Figure 4: The TVQACML dataset covers 4 tasks and
30 subdomains. (1) Text Recognition: A fundamental
OCR task that converts text in images into machine-
readable character sequences, focusing purely on tran-
scription without semantic understanding. (2) Scene
Text-Centric VQA: Targets questions related to nat-
urally occurring text in real-world scenes (e.g., signs,
menus, labels), requiring both text recognition and con-
textual understanding. (3) Document-Oriented VQA:
Focuses on structured or semi-structured document im-
ages (e.g., forms, invoices). Models must extract and
comprehend key information based on document layout
and content. (4) Key Information Extraction VQA:
A structured VQA task aiming to extract specific key-
value pairs (e.g., company, date, amount) from docu-
ments. Unlike open-ended VQA, KIE uses predefined
fields and prompt-based extraction for precise matching.

Sonnet (Anthropic, 2024), GLM-4V (GLM et al.,
2024), and Qwen-VL-plus/Max (Wang et al.,
2024). (3) Open-Source Text-Centric MLLMs:
including MiniCPM-V 2.6 (Yao et al., 2024),
MiniCPMLlama3-V 2.5 (Yao et al., 2024) and
TextSquare (Tang et al., 2024b). Additionally, we
fine-tune Qwen2-VL-7B-Instruct and LLaVA1.5-
7B on the TVQACML training set using the origi-
nal training strategies, resulting in Qwen2-VL-7B-
CML-SFT and LLaVA1.5-7B-CML-SFT. These
models are specifically adapted for Chinese Mi-
nority Language TEC-VQA tasks via instruction
tuning. To establish an upper-bound reference, we

include a human benchmark based on five native-
speaking annotators per language; we report both
the best individual score (Human_best) and the av-
erage (Human_avg).

Implementation Details. All models are eval-
uated under zero-shot, two-shot, and five-shot set-
tings using randomly selected in-context examples
per language. Closed-source MLLMs are accessed
via official APIs, while open-source models are
tested through their instruct versions hosted on
Hugging Face. All experiments are conducted on
eight NVIDIA A800 GPUs.

Evaluation Metric. Evaluating multilingual
VQA under zero-shot settings is challenging, as
model responses often include explanatory or para-
phrased content, making traditional metrics such
as exact match or ANLS (Biten et al., 2019) less
reliable. To address this, we extract language-
specific spans from outputs using Unicode ranges
and apply complementary metrics. We adopt chrF
(Popović, 2015) for its robustness to spelling vari-
ants and morphological diversity in low-resource
languages, and define a Custom Binary Accuracy
(CBA) that counts a prediction as correct if it con-
tains the ground-truth span, excluding references
shorter than four characters to reduce false posi-
tives. Nonetheless, both metrics have limitations:
chrF may penalize valid paraphrases, while CBA
tends to overestimate correctness due to its leniency.
To enhance fidelity, we further incorporate Accu-
racy (Acc) (the proportion of predictions that ex-
actly match any reference) and Visual-Textual Sim-
ilarity (vtS) based on CINO embeddings (Yang
et al., 2022) to capture multimodal alignment. Re-
sults in Table 1 show that CBA inflates scores by
3–15% compared with human judgment, whereas
Acc and vtS correlate more closely with seman-
tic correctness and human rankings. However,
vtS inherits language coverage constraints from
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Models n-shot
Languages Avg.zh ko ii bo mn ug kk za

chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc
Open-Source MLLMs

Qwen-VL-Chat
0-shot 29.61 23.76 24.31 18.25 9.99 8.06 20.36 14.75 9.80 7.97 10.43 9.36 13.71 9.86 26.45 21.99 18.08 15.26
2-shot 33.41 28.24 26.98 22.65 12.21 8.89 23.14 17.82 12.26 10.43 13.02 12.5 17.08 16.02 29.33 25.58 20.93 16.86
5-shot 31.78 30.56 26.52 26.27 13.01 12.84 23.12 19.17 12.47 11.75 13.21 11.29 15.90 15.55 29.17 22.77 20.65 18.68

Qwen2-VL-7B-Instruct
0-shot 45.71 42.43 29.38 28.71 19.43 16.45 32.72 26.56 2.39 2.28 19.74 15.09 24.08 19.33 37.67 32.77 26.39 23.79
2-shot 48.06 43.79 33.17 29.32 21.63 17.80 34.86 27.34 5.61 5.45 23.26 16.41 27.59 23.34 40.85 37.52 29.38 24.30
5-shot 49.19 48.93 32.54 28.87 22.89 18.30 36.35 28.67 5.08 5.06 22.96 20.07 28.15 20.52 40.16 37.03 29.67 25.91

LLaVA1.5-7B
0-shot 37.18 28.88 24.77 22.98 14.67 10.62 24.78 18.15 2.04 1.51 16.93 16.43 17.50 15.88 29.85 27.70 21.46 18.97
2-shot 38.60 34.14 32.71 25.19 17.63 15.66 27.28 22.18 5.31 3.99 17.70 16.73 21.72 21.17 30.03 27.92 23.38 19.67
5-shot 42.56 32.01 30.02 28.06 16.59 13.60 32.16 30.27 3.95 3.77 22.67 19.93 24.55 24.42 36.38 34.72 26.11 23.35

InternVL2-8B
0-shot 42.99 30.43 26.36 21.31 6.98 5.96 27.34 22.39 21.28 16.08 18.22 13.50 17.90 16.66 40.20 35.88 25.16 21.36
2-shot 43.15 37.19 26.56 22.96 7.10 6.16 27.47 25.48 21.45 20.86 18.26 17.62 18.07 17.15 40.27 37.09 25.29 21.84
5-shot 43.09 35.65 26.37 24.61 7.03 6.23 27.53 26.08 21.32 18.57 18.38 15.95 18.04 17.10 40.27 38.54 25.25 22.98

GLM-4V-9B
0-shot 43.19 32.07 32.72 24.90 25.43 21.24 31.03 27.57 13.18 13.11 22.03 17.69 9.00 7.54 42.02 31.62 27.33 23.89
2-shot 44.31 37.03 34.22 32.60 27.08 24.33 33.37 28.69 16.72 16.18 24.38 21.16 12.77 12.48 44.44 42.73 29.66 25.94
5-shot 46.28 39.13 35.48 32.58 28.19 21.76 33.95 27.74 17.15 14.51 25.05 17.72 12.43 11.50 44.76 37.40 30.41 24.33

DeepSeek-VL-7B-Chat
0-shot 81.57 66.54 32.28 25.72 9.93 8.89 34.98 30.16 13.21 10.27 5.98 5.05 9.79 7.90 52.49 40.90 30.03 26.32
2-shot 84.35 79.15 34.62 31.10 12.84 12.39 38.19 32.57 15.87 13.85 8.92 7.27 13.19 12.58 56.01 43.89 33.00 27.22
5-shot 84.98 76.54 35.40 32.28 12.30 8.96 39.74 36.68 15.90 13.38 11.04 9.36 12.29 8.64 55.67 50.12 33.41 29.49

Closed-Source MLLMs

GLM-4V
0-shot 57.28 43.11 17.56 13.19 18.98 14.47 26.07 22.64 2.74 2.68 9.99 8.08 1.26 0.9 38.80 30.78 21.59 17.84
2-shot 60.21 46.72 19.19 16.71 21.57 15.27 28.09 24.42 4.35 3.35 12.50 11.96 3.22 2.59 40.31 32.23 23.68 19.88
5-shot 60.11 49.01 20.38 18.86 20.13 15.17 28.58 27.56 4.46 3.15 11.38 9.4 4.10 3.95 40.74 32.63 23.73 18.38

Qwen-VL-plus
0-shot 54.00 40.93 33.53 25.79 20.63 17.87 29.85 22.47 14.94 10.62 21.17 19.84 24.32 19.15 37.10 31.16 29.44 25.52
2-shot 55.17 46.10 34.79 27.86 21.83 19.55 31.80 25.45 16.28 15.98 23.13 19.85 26.04 20.09 39.01 31.52 31.01 25.61
5-shot 56.84 54.63 36.36 29.26 23.71 21.77 32.06 29.03 17.39 16.54 23.84 21.44 26.46 19.97 39.59 34.38 32.03 26.53

GPT-4o
0-shot 69.57 51.09 35.91 30.16 4.22 3.62 37.75 28.09 28.90 23.73 10.74 9.12 13.74 11.2 45.95 38.14 30.85 24.98
2-shot 71.07 62.39 37.18 36.63 5.83 4.68 39.51 39.26 30.67 28.22 12.08 9.67 15.17 15.11 47.52 42.3 32.38 30.27
5-shot 72.11 61.7 38.27 33.3 6.85 6.35 39.97 36.82 31.00 25.55 13.49 10.4 16.27 13.83 48.46 46.75 33.30 28.26

Claude-3.5-Sonnet
0-shot 60.26 45.36 49.46 41.16 32.44 25.78 53.48 52.2 35.95 32.51 23.73 19.49 42.48 33.29 61.77 45.17 44.95 39.42
2-shot 61.42 57.3 50.79 48.51 34.00 32.2 55.34 54.47 37.40 32.68 24.88 23.47 44.33 36.95 63.53 53.37 46.46 41.13
5-shot 62.70 62.68 51.85 46.79 34.56 27.86 56.39 54.87 38.36 37.39 26.24 23.63 45.55 36.86 64.57 47.85 47.53 40.93

Qwen-VL-Max
0-shot 67.84 50.26 52.75 48.75 39.17 28.26 54.67 50.32 26.57 21.44 41.98 32.73 36.84 35.55 66.58 55.27 48.30 40.32
2-shot 68.04 67.81 52.84 41.52 39.19 28.23 54.78 52.09 26.72 20.00 42.03 35.61 36.84 27.57 66.67 62.69 48.39 41.94
5-shot 67.94 47.66 52.92 51.70 39.44 38.36 54.77 44.89 26.70 24.78 42.14 30.41 36.88 36.62 66.85 50.96 48.45 40.67

Open-Source Text-Centric MLLMs

MiniCPM-V 2.6
0-shot 62.16 59.58 13.43 10.74 10.78 10.77 13.58 10.9 3.85 3.29 0.00 0.0 0.00 0.0 40.00 33.91 17.98 16.15
2-shot 62.18 48.92 13.45 12.03 10.80 10.38 13.59 11.71 3.86 3.66 0.01 0.01 0.01 0.01 40.02 33.78 17.99 15.06
5-shot 62.17 51.61 13.45 9.79 10.80 10.13 13.59 13.12 3.87 3.75 0.02 0.02 0.02 0.01 40.01 30.79 17.99 14.90

MiniCPMLlama3-V 2.5
0-shot 50.00 45.98 26.67 22.04 15.33 14.03 17.11 14.73 16.05 13.74 13.33 13.05 9.78 8.54 40.54 32.5 23.60 20.58
2-shot 50.01 35.95 26.68 26.42 15.35 13.95 17.12 13.81 16.07 15.17 13.34 11.66 9.79 9.12 40.55 36.49 23.61 20.32
5-shot 50.01 49.92 26.69 20.89 15.36 15.09 17.12 16.13 16.08 13.20 13.35 12.04 9.79 7.13 40.56 28.64 23.62 20.38

TextSquare
0-shot 40.13 28.55 22.61 16.45 11.16 8.56 12.91 10.32 11.29 9.58 10.45 9.3 8.93 6.63 30.55 25.65 19.55 15.57
2-shot 43.56 30.87 26.21 18.44 11.38 8.82 14.57 11.49 15.39 12.9 12.12 9.31 9.46 7.67 39.24 34.15 21.07 16.39
5-shot 42.63 36.61 26.24 24.41 11.73 9.01 13.18 12.53 13.46 15.1 11.50 11.45 9.30 7.73 34.38 27.18 19.69 17.13

Instruction Tuning Models

LLaVA1.5-7B-CML-SFT
0-shot 39.84 36.13 26.47 20.55 15.09 14.92 29.13 22.19 3.60 3.36 19.70 15.65 19.16 14.41 27.79 25.57 23.09 19.23
2-shot 47.10 44.89 29.18 22.88 20.22 18.70 32.76 29.34 6.88 5.99 20.06 16.71 22.95 20.97 40.56 30.04 27.12 23.56
5-shot 46.46 43.93 27.95 20.63 21.88 20.30 27.97 26.41 6.26 5.92 20.94 17.22 25.67 22.12 33.29 31.81 26.15 23.54

Qwen2-VL-7B-CML-SFT
0-shot 47.73 34.69 31.39 26.35 21.45 21.10 34.73 25.96 4.40 4.08 21.75 17.31 26.09 22.32 39.69 35.97 28.40 24.28
2-shot 51.20 49.45 33.66 27.54 24.24 21.88 37.08 30.44 7.85 5.78 25.35 17.94 29.27 24.30 43.05 42.98 31.46 26.73
5-shot 52.19 43.48 35.49 30.18 26.12 25.49 38.42 29.01 7.61 6.65 26.82 23.74 29.57 24.81 43.03 38.75 32.41 27.76

Human Performance

Human avg 88.14 73.74 67.82 61.37 57.88 42.81 74.48 60.92 62.34 43.82 51.20 48.8 60.22 48.0 78.61 66.15 67.59 55.7
best 92.04 67.6 70.11 59.71 60.73 44.03 78.41 75.11 66.11 60.28 53.37 49.55 62.55 49.41 81.80 78.0 70.64 60.46

Table 2: Overall results of different MLLMs on TVQACML benchmark. Scores are marked with bold for the best,
underline for the second-best, and red for the lowest.

CINO, reducing robustness in low-resource set-
tings. Therefore, we adopt Acc as the primary
metric and chrF as the secondary reference, which
together provide a balanced and reliable evaluation
protocol for multilingual VQA in low-resource and
culturally diverse scenarios.

Contamination Check and Verification. To
confirm the dataset’s integrity, we conducted two
key contamination checks: (1) Vocabulary Analy-
sis: Except for Chinese, the remaining seven mi-
nority languages do not appear in the vocabular-
ies of major base models, minimizing the chance
of prior exposure. (2) Attribution Testing: Main-
stream models (e.g., GPT-4, Qwen) failed to repro-

duce or complete samples from TVQACML, even
under partial prompts. These results support that
TVQACML is contamination-free and suitable for
benchmarking multilingual TEC-VQA models.

4.1 Evaluation Results
Performance Gap: MLLMs vs. Humans. As
shown in Table 2, there remains a substantial
gap between MLLMs and human performance on
TVQACML. In the zero-shot setting, human an-
notators achieve an average chrF score of 67.59%
(best: 70.64%). In contrast, the best closed-source
model (Qwen-VL-Max) reaches 48.30%, while the
best open-source model (DeepSeek-VL-7B-Chat)
achieves only 30.03%. These results underscore
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Models

Languages Avg.zh ko ii bo mn ug kk za
chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc

Scene Text-Centric VQA Task
Qwen2-VL-7B-Instruct 36.21 33.21 31.85 26.55 14.35 14.2 27.79 19.96 3.32 2.66 21.66 16.15 24.37 22.41 33.86 31.70 22.20 18.33
GLM-4V-9B 44.39 32.51 31.91 28.6 26.17 18.37 31.69 29.98 9.59 6.79 24.51 17.77 8.41 6.67 41.63 38.18 27.29 23.92
LLaVA1.5-7B 32.88 31.29 28.97 24.32 12.39 11.38 24.28 17.41 3.11 2.61 18.36 13.62 21.59 18.14 27.08 28.71 20.17 15.76
InternVL2-8B 46.81 37.85 26.98 19.97 8.28 8.16 26.69 26.09 18.68 14.73 17.42 14.44 21.74 15.55 33.43 20.93 25.00 20.90
DeepSeek-VL-7B-Chat 79.21 78.06 27.57 22.36 9.83 7.26 32.77 31.7 13.72 9.88 6.43 4.85 9.63 8.23 51.63 46.18 28.85 26.06
GPT-4o 56.99 52.56 36.11 26.14 4.29 3.40 45.15 44.9 31.99 26.68 9.18 9.16 13.54 11.69 54.54 45.95 31.47 27.56
Claude-3.5-Sonnet 57.23 47.33 42.54 29.92 26.03 18.4 51.95 49.36 36.3 32.02 22.02 21.45 34.11 31.17 60.41 53.55 41.32 35.40
Qwen-VL-Max 72.06 55.0 51.67 40.62 32.92 27.34 55.44 39.04 27.07 21.80 45.23 34.19 47.12 42.8 69.94 53.32 50.18 39.26
LLaVA1.5-7B-CML-SFT 36.18 32.15 29.01 24.94 13.0 12.03 28.02 19.64 3.24 2.97 20.6 15.32 25.08 20.55 31.82 33.31 21.96 16.00
Qwen2-VL-7B-CML-SFT 41.19 40.37 37.4 30.93 16.52 16.21 31.78 23.88 4.04 3.31 24.50 18.60 27.67 25.01 38.56 38.18 27.71 22.51
Human_best 90.58 86.05 71.65 50.17 49.68 39.79 70.42 52.55 63.36 57.99 47.92 40.04 59.49 56.13 76.87 73.79 66.25 57.06

Document-Oriented VQA Task
Qwen2-VL-7B-Instruct 46.55 33.0 23.77 19.99 27.66 20.17 25.33 20.75 4.03 3.22 18.55 18.48 24.05 18.10 30.14 23.66 25.01 19.67
GLM-4V-9B 29.08 27.64 28.32 21.1 21.1 20.77 26.74 22.93 10.16 7.64 20.50 17.89 9.95 8.32 38.45 35.39 23.04 20.21
LLaVA1.5-7B 39.34 35.55 21.2 19.36 26.45 21.47 23.22 20.69 3.77 2.92 17.4 13.59 21.73 15.27 28.82 27.19 22.74 19.50
InternVL2-8B 32.05 30.39 21.11 15.06 6.39 5.43 22.31 18.69 19.98 14.84 18.76 14.04 11.90 10.05 38.19 29.5 21.34 17.25
DeepSeek-VL-7B-Chat 81.52 66.74 30.39 25.62 8.03 7.0 33.20 23.51 10.89 7.79 4.49 4.38 8.59 7.86 35.54 32.20 26.58 21.89
GPT-4o 53.28 37.81 36.89 35.59 3.25 2.52 26.16 18.82 25.85 23.66 9.26 8.13 14.26 10.82 37.35 35.23 25.79 21.57
Claude-3.5-Sonnet 50.65 38.49 45.58 36.52 30.09 25.67 46.3 37.77 41.16 33.98 23.96 23.58 37.88 37.44 47.56 47.22 40.40 35.08
Qwen-VL-Max 58.02 54.78 49.35 35.15 36.4 31.38 54.04 49.96 26.08 24.90 26.13 25.11 38.02 31.31 59.65 49.99 43.46 37.82
LLaVA1.5-7B-CML-SFT 46.51 46.38 24.58 19.89 29.43 21.17 25.78 21.69 4.34 4.05 19.60 19.59 23.93 17.04 32.61 23.23 25.85 21.63
Qwen2-VL-7B-CML-SFT 47.95 42.8 28.15 20.31 28.09 20.37 29.56 25.96 4.32 3.74 19.11 15.10 25.72 23.18 31.78 29.71 26.84 22.65
Human_best 74.06 52.95 63.27 45.74 54.05 44.97 64.45 52.07 62.79 58.14 43.87 43.1 53.36 53.33 69.03 53.36 60.61 50.46

Key Information Extraction Task
Qwen2-VL-7B-Instruct 46.49 43.52 26.3 22.51 11.21 8.92 37.07 26.02 4.14 3.31 24.25 17.66 19.63 14.93 36.03 26.34 25.64 20.40
GLM-4V-9B 45.37 36.57 33.2 29.84 28.17 20.70 34.59 29.45 20.26 18.96 12.21 12.21 7.62 6.62 53.24 51.66 29.33 25.75
LLaVA1.5-7B 39.83 34.79 22.69 21.77 10.43 8.69 25.37 24.60 3.70 3.65 20.82 15.64 18.56 18.22 31.51 23.32 21.61 18.84
InternVL2-8B 41.37 33.26 30.96 25.18 6.61 5.94 25.41 21.46 24.50 20.85 16.77 14.71 19.34 19.13 52.81 38.06 27.22 22.32
DeepSeek-VL-7B-Chat 79.79 71.75 36.12 34.18 10.18 8.52 32.42 32.27 14.16 10.10 6.88 5.38 11.24 10.34 64.08 63.38 31.86 29.49
GPT-4o 84.74 66.36 40.38 38.63 4.99 4.23 38.46 34.82 27.68 23.59 8.74 7.28 18.97 18.16 47.93 36.49 33.99 28.70
Claude-3.5-Sonnet 68.05 61.83 65.69 61.71 30.73 23.83 58.87 50.33 34.07 29.81 20.04 15.94 55.5 44.63 72.23 65.88 50.65 44.24
Qwen-VL-Max 64.52 46.10 54.02 51.26 41.68 32.58 58.09 49.82 27.51 23.53 50.64 46.42 28.05 19.83 60.74 55.97 48.16 40.69
LLaVA1.5-7B-CML-SFT 47.66 43.74 22.81 18.14 10.85 8.68 28.25 21.59 4.05 3.97 22.29 21.89 21.05 18.26 36.45 32.35 24.18 21.08
Qwen2-VL-7B-CML-SFT 52.30 41.21 31.27 28.49 13.78 10.75 41.62 33.99 5.08 4.50 27.6 21.24 24.28 17.2 42.26 31.03 29.77 23.55
Human_best 92.54 77.65 65.01 47.78 60.75 50.93 88.12 66.12 63.49 53.51 53.85 37.91 58.75 44.55 88.39 63.56 71.36 55.25

Text Recognition Task
Qwen2-VL-7B-Instruct 35.88 35.05 21.25 18.74 19.59 17.04 28.1 26.47 3.10 2.82 12.07 10.90 19.46 15.11 34.67 33.40 21.77 19.94
GLM-4V-9B 49.24 42.03 37.43 35.33 26.26 20.17 31.09 30.68 12.71 11.50 30.90 27.63 10.02 8.40 39.42 34.82 29.63 26.32
LLaVA1.5-7B 34.23 31.69 19.26 18.69 16.69 13.91 23.31 21.16 2.89 2.51 10.90 9.32 16.97 15.38 29.80 28.43 19.26 17.64
InternVL2-8B 40.58 29.53 26.4 23.02 6.65 5.73 34.97 34.25 21.94 19.31 19.92 19.87 18.63 17.27 47.52 38.18 27.08 23.40
DeepSeek-VL-7B-Chat 85.77 84.89 35.01 32.45 11.69 8.77 41.53 30.15 14.06 13.91 6.11 4.48 9.69 8.87 8.70 56.91 32.82 30.05
GPT-4o 83.28 78.66 30.25 27.81 4.35 3.46 41.22 34.46 30.09 26.04 15.78 15.06 8.20 8.11 43.98 42.01 32.14 29.45
Claude-3.5-Sonnet 65.11 62.52 44.02 34.8 42.90 34.25 56.79 55.43 32.25 24.49 28.92 20.65 42.43 34.49 66.86 55.50 47.41 40.27
Qwen-VL-Max 76.78 73.09 55.96 52.32 45.69 41.82 51.12 46.87 25.62 21.07 45.91 34.89 34.15 31.69 75.98 66.44 51.4 46.02
LLaVA1.5-7B-CML-SFT 38.95 35.66 22.98 16.4 21.51 18.72 28.10 27.22 3.28 2.53 12.49 9.71 21.18 19.22 36.09 31.42 23.07 20.11
Qwen2-VL-7B-CML-SFT 49.48 44.72 28.73 28.21 27.41 21.37 35.97 34.90 4.16 3.74 15.78 14.71 26.69 25.24 46.16 41.45 29.30 26.79
Human_best 95.38 87.52 71.34 64.49 67.03 51.31 74.95 69.45 59.71 42.08 59.15 44.11 69.29 61.89 80.13 71.55 72.12 61.55

Table 3: Overall results of different models on different domains (under the zero-shot setting).

Models

Languages Avg. ±▽zh ko ii bo mn ug kk za
chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc chrF Acc

Text Recognition Task (PS)
Qwen2-VL-7B-Instruct 41.01 32.32 22.22 17.85 20.27 14.76 30.19 29.56 3.17 2.83 12.11 9.76 19.61 16.07 36.46 34.18 23.13 19.67
GLM-4V-9B 51.45 47.74 39.89 36.32 26.65 26.09 29.97 22.1 12.2 8.67 28.49 22.53 10.21 9.75 41.19 38.41 30.01 26.45
LLaVA1.5-7B 35.95 32.21 20.16 17.6 20.07 18.43 27.52 24.69 2.73 2.35 10.72 9.26 18.72 13.93 34.45 31.89 21.29 18.8
InternVL2-8B 39.01 36.44 28.41 26.35 6.74 6.35 34.89 29.52 22.08 21.94 19.29 16.21 18.75 15.90 51.09 38.47 27.53 23.90
DeepSeek-VL-7B-Chat 93.57 67.35 36.35 35.60 10.77 8.92 40.09 29.49 13.17 11.53 5.87 4.19 9.31 6.58 62.77 59.51 33.99 27.90
GPT-4o 77.25 68.2 31.32 23.84 4.60 3.28 44.79 41.94 27.80 25.03 16.03 11.95 8.84 7.55 47.68 47.32 32.29 28.64
Claude-3.5-Sonnet 58.89 56.6 41.51 32.08 42.86 34.87 58.92 51.59 29.88 21.66 29.16 28.14 38.68 32.23 68.49 51.12 46.05 38.54
Qwen-VL-Max 74.13 57.08 53.47 48.91 47.66 43.83 55.04 53.98 28.16 26.83 45.88 43.05 34.9 29.33 80.83 62.48 52.51 45.69
LLaVA1.5-7B-CML-SFT 46.20 32.35 22.45 21.80 21.79 15.98 33.36 31.53 3.49 3.18 12.95 10.32 21.43 17.13 40.23 34.01 25.24 20.79
Qwen2-VL-7B-CML-SFT 51.96 43.46 27.86 20.16 25.84 22.86 38.33 37.85 3.97 3.34 15.4 15.07 24.79 24.52 45.83 40.47 29.25 25.97

Text Recognition Task (IS)
Qwen2-VL-7B-Instruct 40.99 32.31 22.2 17.83 20.25 14.74 30.18 29.54 3.16 2.82 12.09 9.75 19.59 16.05 36.45 34.16 23.11 19.65 0.02↓
GLM-4V-9B 51.44 47.72 39.87 36.31 26.63 26.07 29.96 22.08 12.18 8.65 28.47 22.52 10.19 9.73 41.18 38.39 29.99 26.43 0.02↓
LLaVA1.5-7B 35.93 32.2 20.15 17.59 20.05 18.41 27.50 24.68 2.72 2.33 10.70 9.25 18.7 13.91 34.43 31.87 21.27 18.78 0.02↓
InternVL2-8B 38.99 36.42 28.39 26.34 6.73 6.33 34.88 29.50 22.07 21.93 19.28 16.20 18.73 15.89 51.07 38.46 27.52 23.88 0.02↓
DeepSeek-VL-7B-Chat 93.55 67.34 36.33 35.59 10.75 8.91 40.07 29.48 13.16 11.51 5.85 4.17 9.3 6.57 62.75 59.49 33.97 27.88 0.02↓
GPT-4o 77.23 68.19 31.31 23.83 4.58 3.26 44.78 41.93 27.79 25.02 16.01 11.94 8.82 7.54 47.67 47.3 32.27 28.63 0.01↓
Claude-3.5-Sonnet 58.87 56.59 41.5 32.06 42.85 34.86 58.9 51.58 29.87 21.65 29.15 28.13 38.66 32.22 68.47 51.11 46.03 38.53 0.01↓
Qwen-VL-Max 74.12 57.07 53.46 48.89 47.65 43.81 55.02 53.96 28.14 26.82 45.87 43.03 34.88 29.31 80.81 62.47 52.49 45.67 0.02↓
LLaVA1.5-7B-CML-SFT 44.52 29.92 20.61 19.94 19.86 13.72 31.03 29.82 1.72 1.02 11.34 8.56 19.07 14.93 38.58 31.97 23.34 18.73 2.06↓
Qwen2-VL-7B-CML-SFT 49.94 41.41 25.87 18.33 23.95 20.78 36.73 36.23 2.41 1.07 13.38 12.72 22.91 22.1 43.43 38.45 27.33 23.89 2.08↓

Table 4: Overall results of different MLLMs on text recognition task. ±▽: the score gap between IS and PS sets.
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the challenges MLLMs face in multilingual text-
centric VQA, particularly in understanding visual
semantics and producing grounded answers across
diverse languages.

Language-wise Analysis. Figure 1 reveals that
model performance varies significantly across lan-
guages. High-resource languages such as Chi-
nese and Zhuang (which shares similar lexical and
grammatical traits with Chinese and English) yield
better results. Tibetan and Korean also perform
moderately well due to their similar linguistic fea-
tures with high-resource languages. In contrast,
Kazakh, Uyghur, Mongolian, and Sichuan Yi per-
form poorly, attributed to factors such as phonetic
alphabets, right-to-left scripts, and limited repre-
sentation in pretraining corpora. These findings
emphasize the persistent disparity between high-
and low-resource languages in current MLLMs.

Model-wise Analysis. As shown in Table
2, most models perform best on Chinese tasks,
with Claude-3.5-Sonnet slightly outperforming
on Zhuang, possibly due to cross-cultural image
descriptions in its training data. Across mod-
els, closed-source MLLMs generally outperform
open-source ones (except DeepSeek-VL-7B-Chat).
Qwen-VL-Max achieves the highest average chrF
score (48.30%) among all models. Among open-
source models, DeepSeek-VL-7B-Chat leads, es-
pecially on Chinese (81.57% chrF). However, text-
centric models such as MiniCPM-V 2.6 offer only
marginal gains, primarily benefiting high-resource
scenarios.

Effectiveness of Instruction Tuning. Fine-
tuning on TVQACML significantly enhances
model performance. As shown by LLaVA1.5-7B-
CML-SFT and Qwen2-VL-7B-CML-SFT, instruc-
tion tuning yields consistent improvements across
all languages and tasks. Compared to their base
counterparts, both models show notable gains in
chrF and Acc, particularly in low-resource lan-
guages such as Kazakh, Uyghur, and Mongolian.
These improvements are evident across all evalua-
tion settings (0-shot, 2-shot, 5-shot), demonstrating
the dataset’s well-structured supervision and its
adaptability to few-shot learning. Moreover, fine-
tuned models exhibit competitive or near-human
performance in some chrF cases, highlighting the
benchmark’s effectiveness not only as a training
resource but also as a rigorous evaluation standard.
The improvements span multiple task types—text
recognition, scene text VQA, document VQA,
and key information extraction—validating the

dataset’s generality and its capacity to enhance
multilingual visual text understanding across ar-
chitectures (e.g., LLaVA and Qwen series).

4.2 Ablation Study
To further investigate the capabilities and limita-
tions of state-of-the-art MLLMs in low-resource
multilingual TEC-VQA tasks, we conduct an in-
depth ablation analysis across four task types. De-
tailed results are presented in Table 3.

Scene Text-Centric VQA. Despite recent
progress in MLLMs, our evaluation exposes a
critical gap between semantic localization and
visual-linguistic generalization. Models such as
DeepSeek-VL-7B-Chat perform well on high-
resource languages like zh, yet their accuracy drops
drastically on structurally and scriptually distinct
minority languages—for instance, falling to just
6.43% on ug. Interestingly, Claude-3.5-Sonnet
achieves relatively strong results on za, hinting that
some closed-source models may implicitly benefit
from broader multilingual exposure or more
effective cross-lingual representation alignment.
These disparities go beyond simple language
imbalance, highlighting a deeper vulnerability:
the inability of current MLLMs to generalize in
scene-text VQA when deprived of dominant-script
priors.

Document-Oriented VQA. Performance on
document-based tasks is significantly lower than
scene text tasks, reflecting the added difficulty of
parsing structured layouts and hierarchical content.
The challenge is amplified by the syntactic and
visual complexity of documents in low-resource
languages such as Kazakh (kk), Uyghur (ug), and
Mongolian (mn). These languages also introduce
script directionality challenges (e.g., right-to-left
(kk, ug) and top-to-bottom (mn)), which current
models are ill-equipped to handle.

Key Information Extraction (KIE). Results on
KIE tasks reveal performance imbalance across lan-
guages. While models like GPT-4o achieve reason-
able score on zh and za, they struggle on languages
such as ii, possibly due to the complex structure and
varying length of ii texts, which require MLLMs to
capture fine-grained details accurately.

Text Recognition. Text recognition remains
challenging, particularly without strong semantic
cues. To investigate this, we design two test set-
tings: Positive Sequence (PS) with natural text or-
der and Inverse Sequence (IS) with shuffled text. In-
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terestingly, models without instruction fine-tuning
perform consistently on IS, while instruction-tuned
models show a marked drop. This suggests two
points: (1) Pre-tuned models lack semantic priors
and are unaffected by disrupted context, supporting
the absence of data leakage; (2) Fine-tuned models
acquire semantic understanding from our dataset,
as their performance degrades when such context
is removed. These results validate the semantic
richness and evaluative effectiveness of our dataset
for low-resource language modeling.

Error Typology and Analysis. We conducted a
qualitative error analysis across languages and task
types in the TVQACML benchmark and identified
five major error types, with (1) text recognition
failures being the most dominant, e.g. models of-
ten omit entire words in Uyghur and Mongolian
street signs. (2) Cross-modal misalignment is
also common, where models incorrectly extract
information from irrelevant regions. In (3) low-
resource scripts like Tibetan and Kazakh, mod-
els frequently fail to handle special glyphs or non-
standard writing directions. Additionally, in (4)
document-oriented VQA, models misinterpret ta-
ble structures, leading to mismatched labels and
values. Finally, (5) reasoning failures arise in
multi-step questions requiring comparison or se-
quencing, such as identifying the earlier of two
dates. These issues highlight the need for enhanced
OCR accuracy, cross-modal grounding, multilin-
gual robustness, and reasoning capabilities in future
MLLMs.

A deeper qualitative review indicates that these
errors cannot be fully explained by high-level
factors alone. Smaller models often exhibit vi-
sion–text decoupling, misreferencing objects or
attributes across modalities. In low-resource lan-
guages, hallucination rates increase, with models
fabricating entities or properties. Moreover, cross-
linguistic variations—such as multi-script usage,
diacritics, agglutination, and complex morphol-
ogy—reduce tokenization fidelity and hinder ef-
fective transfer from pretrained bases. Instruction-
tuning further amplifies these issues: differences
in knowledge density and task difficulty across lan-
guages lead to inconsistent adherence to answer
formats, resulting in verbosity or multiple, drift-
ing answers. Overall, bad cases cluster into four
recurring patterns: misgrounded references, hallu-
cinated facts, script/orthography-induced semantic
drift, and instruction non-compliance. These pat-
terns are particularly prominent in typologically

distant, multi-script, and low-coverage languages,
as well as in smaller models.

5 Conclusion

We presents TVQACML, a low-resource multi-
lingual text-Centric VQA dataset. It includes
8 languages, 4 tasks, and 30 scenarios, with
each question offering multiple plausible answers.
TVQACML is the first multilingual VQA bench-
mark fully relying on human annotations, tailored
for text-centric scenarios. Experimental results
show that current models still have significant room
for improvement in low-resource multilingual text-
centric scenarios, with performance gaps compared
to human experts. TVQACML will provide valu-
able evaluation tools and contribute to the develop-
ment of expert-level AGI.

Limitation

The current version of the TVQACML dataset,
while dialectally diverse, has limitations in lan-
guage coverage. Despite encompassing many lan-
guages, it lacks inclusivity, omitting numerous
lesser-spoken ones. Currently, experiments cover
only some domestic ethnic languages, not yet oth-
ers. In the future, we will integrate all ethnic
languages in China with a written form, ensuring
broader representation across the linguistic spec-
trum. Additionally, the dataset now provides a
single canonical response per question, which may
not fully capture the range of answers for different
expressions of the same semantics. Recognizing
this, future versions will include multiple plausible
answers to reflect varied perspectives.
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