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Abstract

Large pre-trained language models have
demonstrated impressive capabilities, but there
is still much to learn about how they operate.
In this study, we conduct an investigation of
the autoregressive transformer’s ability to per-
form basic addition operations. Specifically, by
using causal analysis we found that a few differ-
ent attention heads in the middle layers control
the addition carry, with each head processing
carries of different lengths. Due to the lack
of global focus on the sequence within these
attention heads, the model struggles to handle
long-sequence addition tasks. By performing
inference intervention on mistral-7B, partial
task performance can be restored, with the accu-
racy on 20-digit long-sequence additions from
2% to 38%. Through fine-tuning, a new mecha-
nism branches out for handling complex cases,
yet it still faces challenges with length general-
ization. Our research reveals how the models
perform basic arithmetic task, and further pro-
vides insights into the debate on whether these
models are merely statistical.

1 Introduction

As large pre-trained language models increase in
scale, they demonstrate increasingly powerful per-
formance on an increasing number of tasks (Brown
et al., 2020). But their working principle is still
a black box. As the application of large models
expands, we have to start to care about safety and
ethical issues (Weidinger et al., 2021). On the one
hand, some studies believe that the model is just a
model that relies on statistics (Bender and Koller,
2020; Merrill et al., 2021). On the other hand, some
studies have found that the language model inter-
nally encodes other basic world concepts (Abdou
et al., 2021; Patel and Pavlick, 2021).

Addition and subtraction, despite being the sim-
plest arithmetic operations, are still challenging
tasks for current large language models (Nogueira

Figure 1: Two types of mistake commonly made by
LLMs: the model only uses localized information for
calculations, while the forward addition requires global
information to handle carries. When the model cannot
obtain information on whether to carry or not, it leads
to incorrect outputs.

et al., 2021). Understanding how these models per-
form such operations internally is highly beneficial
for improving their transparency and interpretabil-
ity.

We focus on the mainstream pre-trained mod-
els and investigate their behavior on integer addi-
tion tasks, with a focus on challenging but critical
cases. For example, when giving the following
input to ChatGPT 4: “answer directly without pro-
gramming: 633331+266667=”, the model is highly
likely to respond with 900,000 or another incor-
rect answer starting with 9 (the correct answer is
899,998). In this paper, we will investigate why
such errors occur and implement mitigation mea-
sures.

We conducted experiments on pre-trained mod-
els, including Mistral-7B (Jiang et al., 2023) and
LLaMA2-7B (Touvron et al., 2023). While these
models demonstrate a baseline accuracy in perform-
ing integer addition, they are far from achieving
precise results. Through causal analysis, we iden-
tified a subset of attention heads, primarily in the
middle layers, that are responsible for encoding
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digit information relevant to digit-wise addition. Vi-
sualizing the associated attention patterns showed
a high degree of interpretability. Ablation studies
further highlighted the critical role of these heads
in determining the output, governing whether the
model performs simple modular addition or full
addition with carry. However, as the length of the
carry chain increases, the information encoded in
the attention head gradually loses its significance,
accompanied by the rapid decline of interpretabil-
ity of the attention pattern, resulting in a decrease
in the accuracy of the model (See Fig 1).

Building on our discovery of the model’s un-
derlying mechanisms, we partially restored its
performance through targeted inference interven-
tion. Specifically, we manually adjusted the atten-
tion weights of selected attention heads, identified
through causal analysis, by either reweighting or
ablation during inference. This intervention led to
a substantial improvement in accuracy, particularly
on longer sequences.

Finally, we perform fine-tuning on Gemma2-2B
on specialized addition tasks. The results reveal
that while the model refines its original mechanism
for simple cases, it implements a new and more rea-
sonable method for summation judgment to handle
more complex cases. However, it continues to face
challenges with length generalization.

2 Related Work

Studying arithmetic on language models has be-
come popular with the continuous improvement of
model capabilities. Zhou et al. (2024) studies how
the Transformer processes modular addition from
the perspective of Fourier transforms, that the MLP
layer mainly approximates the size of the results
through low-frequency features, while the attention
layer performs modular operations through high-
frequency features. Quirke et al. (2023) shows how
a one-layer model decomposes the task into paral-
lel digit-specific computation streams and applies
different algorithms to each digit by analyzing the
training loss curve. Another similar work is Stolfo
et al. (2023), which uses a causal mediation anal-
ysis framework to reveal the internal information
flow in large language models during arithmetic
reasoning tasks. Our research aims to go a step
deeper and broader, providing a general framework
to explain any pre-trained transformer-based au-
toregressive models’ real internal operation pro-
cess, the findings in our work could be work on a

wide scale.
Lee et al. (2023); Zhou et al. (2022); Liu and

Low (2023) focus on improving the performance
of language models in arithmetic tasks. Their core
idea is to extend the reasoning steps of the model,
thereby reducing the complexity of serial calcula-
tions. This is done by employing training strategies
like the "scratchpad" approach, where intermediate
reasoning steps are made explicit, or by providing
the model with hint prompts that guide it through
mathematical expressions.

Broader interpretability research has recently fo-
cused on mechanistic interpretability (Geiger et al.,
2021; Conmy et al., 2023; Wang et al., 2022). Me-
chanical interpretation methods, which treat the
model as a computational graph composed of at-
tention and MLP components, seek to locate the
sub-graph responsible for the actual task computa-
tion within the entire computational graph. Hanna
et al. (2024) explores the mechanistic interpretabil-
ity of how GPT-2 performs mathematical compar-
ison (greater-than) tasks through internal circuits
without explicit training.

3 Method

3.1 Background
Consider two n-digit integers X =
(x1, x2, . . . , xn) , Y = (y1, y2, . . . , yn) and
their addition result Z = (z1, z2, . . . , zn). The
numbers are tokenized digit by digit into the
sequence numbers of the vocabulary, mapping to
the hidden states h0i . In all our experiments, the
models used the tokenizer that breaks numbers
into individual digits.
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ã
(1,l)
i , . . . , ã
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Equations 1, 2, 3, and 4 outline how the trans-
former processes1 internally. Specifically, the

1For simplicity, we omit details of rotary positional encod-
ing in each layer, the implementation of the mixture of experts
in Mistral, and the grouped query attention
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query, key, and value vectors are defined as q(h,l)i =
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jection matrix, H denotes the number of atten-
tion heads, dk represents the hidden dimensions,
and l indicates the layer index, the hidden states
are updated through the residual stream h
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The σ is a non-linear function. γ is a normaliza-
tion function. Wup and Wdown are learned weight
matrices in the feed-forward network, where Wup

expands the dimensionality of the input, and
Wdown reduces it back to the original dimension.

Different from the way humans calculate, the
autoregressive model needs to output the answer
from front to back, which has been found to be a
more challenging task for the models (Lee et al.,
2023; Zhang-Li et al., 2024). Consider the process
needed for the model to output correct zi, there are
three cases. Case 1: When xi+1 + yi+1 < 9, zi =
(xi+yi) mod 10. Case 2: When xi+1+yi+1 > 9,
then zi = (xi + yi) mod 10 + 1. Case 3: When
xi+1+yi+1 = 9, we need to check if there is a carry
from subsequent digits. If xi+2 + yi+2 > 9, then
zi = (xi + yi) mod 10 + 1; if xi+2 + yi+2 < 9,
then zi = (xi + yi) mod 10; if xi+2 + yi+2 = 9,
continue checking further. The value of zi is not
only decided by xi and yi, but also by a chain of
conditions from subsequent digit pairs. In a worst
case, it must evaluate digits all the way to the end of
the sequence, making the task much more difficult
due to the need for multiple conditional judgments.

While modular addition can be easily computed
in parallel mathematically, full forward addition
is fundamentally different. To better capture the
nature of the task, we define two types of study ob-
jects. An equation with a carry chain of length d as
CCd (Carry Chain). For example, 44 + 28 is CC1,
and 35556 + 24447 is CC4. On the other hand,
an equation that only has a chain format without
an actual carry is called OCd (Only Chain). For
example, 3445 + 2552 is OC3, and 35556 + 24442
is OC4, as their corresponding digit sums equal 9
repeatedly, creating a pattern allowing propagation
without triggering actual carries. These two equa-
tions are similar in format but completely different
in result.

We analyze the behavior of Mistral-7B on OCd
and CCd tasks (Figure 2), where d ranges from

Figure 2: The average probability output of Mistral-
7B on OC and CC tasks, with each value of length
corresponding to 200 samples.

1 to 15. Each d corresponds to 200 samples (100
OC and 100 CC). For OC inputs X + Y and
CC inputs X ′ + Y ′, we focus on the model’s pre-
diction of the first output digit z1. Since z1 de-
pends on carry decisions propagated from all sub-
sequent digit pairs, it presents the state for the en-
tire problem. Once z1 is predicted, the state is
fixed and will directly influencing the remaining
outputs. We compute the average correct proba-
bility distributions p(z1|X,Y ), p(z′1|X ′, Y ′), and
error probability p(z′1 − 1|X ′, Y ′) (missed carry),
p(z1 + 1|X,Y ) (spurious carry). To simulate gen-
eral scenarios, a randomly generated sequence of
length d is appended to each number, resulting in a
number length of 2d+ 1.

The result shows a reasonable overall decline
in performance as the sequence length increases.
However, beyond the simplest case d = 1, the
model can hardly distinguish CC tasks from OC
tasks. When d > 3, the lines nearly overlap, sug-
gesting inputs like ‘13337+16663’ may not be dif-
ferent from ‘13337+16662’ for the model.

3.2 Causal Analysis

Causal analysis (Vig et al., 2020; Pearl, 2022; Meng
et al., 2022) is a technique based on activation re-
placement, helping to reveal the causal roles of
internal model components and understand how
they contribute to outcomes. We first create a
set of two similar but different inputs, OCd in-
put X + Y and CCd input X ′ + Y ′. Naturally,
z1 = x1 + y1, z′1 = x′1 + y′1 + 1. And set restric-
tion: xi = x′i, yi = y′i(i < d+1); y′d+1+xd+1 > 9
or x′d+1 + yd+1 > 9 (randomly chosen). Figure
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Figure 3: An interpretation of the causal analysis is
presented in this example, where y′d+1 + xd+1 > 9,
causing the output shift from 5 to 6.

3 explains how our method works. Two OC in-
puts can produce the same results as long as the
constraints are maintained (see Appendix A).

We conduct three rounds of model inference.
The symbols below refer to Equations 1,2, 3, 4.

• In the first run: (X+Y ) as the input to obtain
the final probability output p(z1|X,Y ) and
p(z′1|X,Y ), collect the activation o at yd+1

token position at l layer if yd+1 + x′d+1 > 9,
or xd+1 token position if xd+1 + y′d+1 > 9,

o ∈ {m(1)
d+1, . . . ,m

(L)
d+1, v

(1)
d+1, . . . , v

(L)
d+1}.

• In the second run: (X ′ + Y ′) as the input
and collect the activation o′ at y′d+1 token
position if y′d+1 + xd+1 > 9, or x′d+1

token position if x′d+1 + yd+1 > 9, o′ ∈
{m′

d+1
(1), . . . ,m′

d+1
(L), v′d+1

(1), . . . , v′d+1
(L)}.

• In the third run: (X + Y ) as the input and
replace the activation o with o′ to obtain the
probability output p∗(z′1|X,Y ).

We sequentially use o′ to override the original ac-
tivation o to change the model’s probability output
during inferencing. Intuitively, this should lead to
an increase in the model’s output probability for z′1.
The total effect is defined as equation 5. We used
100 sets of number pairs as input for Mistral-7B
and calculated their average TE. For activation re-
placement of the attention layer, v is chosen instead
of ã or a because non-trivial result first and only
occurs on v. Causal analysis of other components
(ã and a) refer to Appendix A.

Total Effect = p∗(z′1|X,Y )− p(z′1|X,Y ) (5)

Through our experimental analysis, we have the
following findings (See Fig 4): the most significant
impact occurs in the middle to later layers, partic-
ularly between layers 15 and 20. For the simplest

case d = 1, a few attention heads strongly influ-
ence the output, causing up to a 50% change in
probability. However, as d increases, the maximum
probability difference declines rapidly, with only
2% difference at d = 2. For MLP layers, their ef-
fect primarily arises from their indirect influence on
the attention heads that are identified. Additionally,
to have a general conclusion, we also conduct anal-
ysis with prefixes and suffixes padding on the input,
and observe similar model behavior. (Causal analy-
sis of MLP, other models, effect breakdown, anal-
ysis with padding, refer to Appendix A, a TSNE
visualization in Appendix B).

The equation 2 illustrates how the replaced v vec-
tor affects the output through the attention pattern.
To recall that the v vector position we replaced in
Section 3.2 is pos(y′d+1) (or pos(x′d+1) depending
on the sample), so replaced v affects the output
through the attention weight αn,pos(y′d+1)

, where n
the last sequence position.

Among the attention heads observed in the
causal analysis, we visualize the top two attention
heads that cause the largest TE for each value of d
(See Fig 5).

It is observed that when “=” token appears, the
model focuses on xi+1 and yi+1 in order to calcu-
late zi, just like a double pointer. As the length
of the output sequence increases, it continues to
move towards, forming a double staircase pattern.
For more complex cases d > 1, the model ide-
ally needs to attend to xi+d and yi+d to retrieve
the correct carry information, in practice, the atten-
tion heads fail to maintain this staircase structure,
and weights are unevenly distributed on each digit.
This indicates that the model have far less control
over more complex cases, which aligns with its
declining accuracy (See table 1).

3.3 Attention implements incomplete carry
Our research focuses on two objectives: first, to as-
sess the influence of the targeted attention heads on
the corresponding CC task, the second is to inves-
tigate whether the model’s significant performance
decline on CC tasks with d > 1 is solely due to in-
sufficient attention weights allocation. To address
the first objective, we perform ablation on the top
two attention heads for the corresponding CC task,
by setting αn,pos(y′d+1)

= 0, αn,pos(x′
d+1)

= 0 to
eliminate the influence of the v vector. Addition-
ally, we randomly select heads in the same layer
and conduct a zero ablation on the same token po-
sition for comparison. For the second question, we
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 4: The attention heads located through causal analysis for mistral-7B under different values of d. Mistral-7B
has 32 attention heads per layer, for a total of 32 layers.

Figure 5: Superimposed top-2 attention heads on
Mistral-7B, 34316+24352=58669 is used as a demon-
stration example. For simplicity, the pattern omits the
prompt and only retains the question.

dynamically perform re-weighting (6) according to
the input.

αn,pos(x′
d+1/y

′
d+1)

= αn,pos(x′
d+1/y

′
d+1)

+ λ (6)

The result shows that for the CC1 task with
high accuracy, there is a strong correlation between
attention and output (See Table 1). Ablating the
top-2 heads has an immediate and dramatic effect.
Notably, after ablating on Gemma, the accuracy of
the CC1 task drops from 99.3% to just 1.47%. The
ablation removes the carry operation and reverts the
output to z′1−1, while leaving the modular addition
unaffected. (See Fig 6 and details of reverting in
Appendix A). As d increases, the accuracy declines,
and the impact of ablation diminishes accordingly.

When re-weighting weights to match CC1 level,
we observed varying degrees of improvement
across different CCd tasks. As d increases, the
effect of re-weighting continues to diminish. This
suggests that the model’s difficulty in handling car-
ries is not solely due to insufficient attention weight
allocation, but rather a deeper issue in the model’s
mechanism for processing such operations. Addi-
tionally, the relatively low accuracy of Llama2 can
be attributed to its inherently lower performance in
modular addition (See Appendix C).

To summarize the experimental findings, pre-
trained autoregressive models rely on the staircase

12736



Table 1: Ablation study (with λ = 0.6) on Mistral-7B, Llama2-7B, and Gemma-7B models. Numbers in parentheses
are the baseline for the OC task.

Model Method CC1 CC4 CC6 CC10

Mistral-7B

Baseline 99.21(98.32) 29.99(80.24) 20.31(67.18) 17.93(23.26)
Zero ablation 34.80 24.51 19.21 17.09

Random ablation 96.99 29.46 21.32 17.45
Re-weighting 98.12 41.83 23.87 19.20

Llama2-7B

Baseline 91.17(98.09) 48.21(44.23) 17.33(12.41) 0.67(0.21)
Zero ablation 17.51 42.14 17.23 0.67

Random ablation 88.92 49.21 17.30 0.68
Re-weighting 89.32 58.43 22.78 4.63

Gemma-7B

Baseline 99.33(99.21) 80.60(37.26) 49.98(31.65) 25.17(26.88)
Zero ablation 1.47 49.72 28.69 20.64

Random ablation 96.84 78.53 48.57 25.07
Re-weighting 95.10 92.73 58.48 31.46

Figure 6: Zero ablation causes the output of the model
to revert back to modular operation.

attention patterns to transmit carry-encoded value
tokens to the final token for prediction. When this
information transmission is disrupted, the model
defaults to modular addition. As the carry length
increases, the model loses its ability to transmit
this information, leading to disordered attention
patterns and a loss of carry-related information in
the value vectors.

4 Inference intervention

Based on the findings in Section 3, we performed
a full intervention enhancement experiment on the
model’s addition task. Many of the model’s errors
stemmed from incorrect handling of carries— miss-
ing or introducing an unnecessary one. In contrast,
errors related to modular addition were relatively
minor (See Appendix B). The primary goal of this
experiment is to explore the potential for improving
the model’s performance by attempting to restore
its internal mechanisms without training, rather
than transforming the model into an accurate cal-
culator.

4.1 Experiments
Our experimental procedure is summarized in Al-
gorithm 1. When the model processes X + Y , it
dynamically intervenes in the internal activations.

During the generation of zi, we determine whether
a carry occurs from the subsequent sequence. If
no carry is detected, we perform zero ablations on
the attention weights for xi+1 and yi+1, allowing
the model to carry out modular addition. If a carry
arises from a chain of length m, the correspond-
ing attention weight an,i+m is re-weighted. The
attention heads are chosen from the top two that
produce the largest TE when d = m. For further
details, see Appendix C.

In the experiment, number pairs of each length
n were randomly sampled from the interval
(10n−1, 10n). For every length, we constructed
a dataset of 9,000 questions using greedy sampling
to ensure adequate coverage across the input space.
Since evaluating numbers of length n requires n
sequential interferences, the computational cost
grows rapidly with sequence length. As a result,
we limited the experiment to sequences of length
at most 20, which already represent a demanding
computational setting.

Our methodology is related to prior work on ac-
tivation intervention, a technique that manipulates
the activations of specific components in the rea-
soning process to adjust or steer the behavior of
the model. This line of work originates from in-
terpretability studies of deep neural networks (Adi
et al., 2016; Finlayson et al., 2021; Vig et al., 2020),
where interventions are typically applied to gain in-
sights into internal mechanisms. In contrast, our ex-
periments involve only lightweight modifications,
often adjusting no more than a few dozen scalar
values, yet these small-scale interventions are suffi-
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cient to produce measurable changes in the model’s
behavior.

Algorithm 1 Inference intervention
1: Input: X + Y , L: The last sequence position,

m: Length of the carry chain, Am: Top 2 at-
tention heads located in causal analysis when
d = m.

2: Output: Z
3: for i← 0 to n− 1 do
4: if xi+1 + yi+1 < 9 then
5: zi ← Inference with ablation

(aL,pos(xi+1), aL,pos(yi+1)) on Head A1

6: else
7: if Carry exist: then
8: zi ← Inference with re-weighting

(aL,pos(xi+m), aL,pos(yi+m)) on Head Am

9: else
10: zi ← Inference with ablation

(aL,pos(xi+1), aL,pos(yi+1)) on Head A1

11: end if
12: end if
13: end for

4.2 Results
The results (Fig. 7) indicate consistent improve-
ment across most cases, with longer sequences
showing more substantial gains (see additional
models in Appendix C). For short sequences, how-
ever, the improvement is negligible. This is largely
because the proportion of randomly sampled short
sequences that include CC2 or higher is relatively
small. For example, among sequences of length
3, only about 17% contain a CCd instance where
d ̸= 1. This proportion rises to 56% at length 10
and reaches 86% by length 20. As shown in Table 1,
the benefits of re-weighting are concentrated in
more challenging cases, while performance slightly
deteriorates for CC1, where the baseline model al-
ready performs well without intervention.

Despite these improvements, the effect has a
clear upper bound. Accuracy remains close to zero
for sequences of length 60 (Appendix C), suggest-
ing that re-weighting alone cannot overcome fun-
damental limitations. One reason, as discussed in
Section 3, is that adjusting weights only partially
mitigates the degradation caused by information
loss and cannot fully recover long-range depen-
dencies. Another limiting factor is that while the
intervention enhances the model’s ability to man-
age carry operations, it does not improve its core

Figure 7: Comparison of accuracy between the baseline
and inference intervention augmentation on Mistral-7B.

ability to perform modular addition. Furthermore,
a large fraction of errors stem from misalignment
issues, where the model incorrectly adds xi with
yj for i ̸= j (Appendix B). Prior studies (McLeish
et al., 2024; Shen et al., 2023) suggest that posi-
tional encodings are a major contributing factor
to such alignment errors, further constraining the
effectiveness of re-weighting.

(a) Performance on CC tasks

(b) Accuracy on CC tasks and maximum TE
trained on a maximum length of 10

Figure 8: (a): Performance of Gemma2-2B on CCd
under different max training length d. (b): The accuracy
of CCd task on training length d = 10, along with the
corresponding and maximum TE tracked throughout.
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Figure 9: Causal Analysis on fine-tuned Gemma2-2B. “233331+366671=600002” is used as the demonstration
example. Left: The Detection Head Pattern. Middle Left: Causal analysis on all layers and heads. Middle Right:
Target head patterns. Right: Target head patterns with detection head melted.

5 Fine-tuning

Furthermore, we extend our investigation to the
model’s internal processing after fine-tuning on
more complex tasks, conducting full-parameter
fine-tuning experiments on the Gemma2-2B. The
dataset consists of 30% CCd, 30% OCd equations,
and 40% randomly generated number pairs with a
length upper limit of 80 for ensuing basic modular
addition accuracy. The fine-tuned model results are
shown in Figure 8. The detailed training parame-
ters and dataset are provided in Appendix E.

5.1 Generalization

In circuit complexity theory, addition and subtrac-
tion belong to AC0, while studies have found that
transformers have a best upper bound of TC0 (Mer-
rill and Sabharwal, 2023). There are also stud-
ies showing the difficulties transformers face in
generalizing addition and subtraction. Zhou et al.
(2023) show that, due to the existence of complex
carry, addition cannot be expressed by RASP-L lan-
guages and therefore cannot be generalized. Like-
wise, Huang et al. (2024) demonstrates that addi-
tion cannot be represented by limit transformers,
as it violates the PERIODIC and LOCAL condi-
tions. Even simpler tasks, such as counting (Chang
and Bisk, 2024) and PARITY (Hahn and Rofin,
2024), are empirically difficult for transformers to
generalize.

Studies (Sabbaghi et al., 2024; McLeish et al.,
2024) emphasize the importance of positional en-
coding in enabling length generalization for arith-
metic tasks. Effective positional encoding en-
hances generalization by capturing the structural
alignment (Sabbaghi et al., 2024; McLeish et al.,

2024). However, long carry chains remain challeng-
ing (Sabbaghi et al., 2024), as they require precise
digit alignment and conditional reasoning based
on digit sums. While Gemma2-2B utilizes RoPE,
Kazemnejad et al. (2024) highlights its limitations
in achieving length generalization.

Figure 8 shows the fine-tuning performance of
Gemma2-2B, where accuracy drops sharply be-
yond the maximum training length, indicating poor
generalization. We attribute this to attention head
formation, as results in Figure 8b reveal that maxi-
mum TE declines beyond the training length, sug-
gesting insufficient attention heads to transfer carry-
digit information effectively. Detailed causal anal-
ysis heatmaps and OC task performance refer to
Appendix D.

5.2 Emergence of new strategy

Pre-trained models address cases such as OC1 and
CC1 by statically focusing attention on the digit
right after the current calculation digit. After fine-
tuning, the model not only retains and refines this
original mechanism (see Appendix D) but also
develops a complementary and dynamical strat-
egy (See Fig 9) for handling more complex cases
(d > 2). The original mechanism remains active
for simpler cases (d ≤ 2) and operates in parallel
with the new strategy.

Notably, fine-tuning introduces a specialized at-
tention head, termed the Target Head, which di-
rectly focuses on the actual carry digit. For exam-
ple, in Figure 9, the attention weight is centralized
on the digit “7”. Additionally, a second attention
head, referred to as the Detection Head, emerges.
This head becomes active prior to the appearance
of the “=” token, enabling it to transmit the rele-
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Table 2: Ablation study on the fine-tuned Gemma2-2B
model (trained on a maximum length of 10).

Method/Task CC1 CC2 CC4 CC10

Baseline 100 100 99.67 91.72
Detection Head Ablation 100 100 55.42 54.32
Target Head Ablation 100 100 51.58 54.21
Combined Ablation 100 99.47 44.11 48.12
Random Ablation 99.68 99.02 99.12 90.47

vant xi information to the current yi token when it
appears (See result of other model in Appendix D).

A guess is that the detection head obtains the in-
formation of xi and yi to determine whether xi+yi
is greater than 9. The carry chain length-related
information is then passed to the Target Head, en-
abling it to focus on the actual carry token and
execute the carry operation. To validate this, we
performed zero ablation on the Detection Head and
observed a disruption in the Target Head’s atten-
tion patterns, resulting in a significant accuracy
decrease for complex cases, while simpler cases re-
mained unaffected (see ablation studies in table 2).
Intuitively, the differentiation of attention functions
is more reasonable, since it involves the concept
of sum judgment. From the perspective of mech-
anism formation, it is recommended to explicitly
include the infrequent arithmetic cases in the train-
ing dataset rather than relying on randomly sam-
pled numbers. But the underlying reason for the
phase change remains unclear and addressing this
question will require further studies.

6 Conclusion

In this study, we investigated how pre-trained au-
toregressive language models perform addition op-
erations.

We found the model relies on localized attention
distribution for handling carry operations, which
makes it challenging to process inputs with long se-
quences. Some task performance can be recovered
by intervening in attention during inference with-
out training, but the inherent limitations remain.
Finally, fine-tuning on specialized addition tasks
led the model to develop a more efficient mecha-
nism for complex cases while retaining the original
strategy for simpler ones, yet still challenging to
achieve generalization, likely due to its inability to
form functional attention heads.

Our findings offer valuable insights into how
language models process arithmetic tasks and help
assess whether they rely on statistical patterns or

deeper reasoning.

Limitations

While our study focuses on addition tasks, this
represents only a small subset of arithmetic. Mul-
tiplication and division are much more complex
operations that require further investigation. Al-
though we propose a general framework for an-
alyzing autoregressive models, one limitation is
the tokenization, as some models like GPT 3.5/4
don’t apply a ‘single-digit’ tokenization approach,
and our method needs to be adjusted. Our conclu-
sions are also constrained by the architecture of the
specific pre-trained models studied. Models with
larger scales or different components (particularly
positional encoding) may exhibit different behav-
iors. Training different models from scratch with
customized architectures can get more generaliz-
able insights.
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A Appendix - Additional information for
casual analysis

This section discusses details for other models, gen-
eral addition task analysis, output reverting, and
some interactions we observed between attention
and MLP.

The causal analyses of Llama2-7B and Gemma-
7B are shown in Figure 10 and Figure 12, respec-
tively. In Llama2-7B, the influential attention heads
are located earlier than those in Mistral, with sig-
nificant TE emerging as early as layer 13. As
d increases, the maximum TE decreases rapidly.
Some heads, such as (4,14) and (11,17), show a
degree of robustness across different values of d.
In contrast, the key attention heads in Gemma-7B
are found much later, between layers 20 and 23.

When applying causal analysis, using two OC
inputs does not produce significant differences in
results compared to one CC and one OC input,
figure 11 shows the causal analysis results based
on two OCd inputs. The targeted heads are similar
to the heads in shown in figure 4.

When performing activation intervention on a
certain component, its total effect can be divided
into two parts (Vig et al., 2020): one is that the
component directly affects the output probability
by writing the residual stream value to cause di-
rect effects (DE), and the other is that the residual
stream passes the influence to downstream compo-
nents to cause indirect effects (IE) (See Fig 13).

We found that the TE caused by MLP mainly
comes from the indirect effect on downstream atten-
tion components, especially on the Top 2 attention
heads. We set up an additional experimental pro-
cess to distinguish the degree of influence between
the two. Specifically, when we perform activation
intervention on m′

1
l we fix the top 2 attention heads

components as their original activation aTop2
i .

The results (See Fig 14) show that the impact of
MLP on the results was concentrated in the early
stage of the model, and most of it was earlier than
the influence range of the attention heads. After
restoring the top 2 attention heads, the impact of
MLP decreased to an insignificant level. This may
represent that the role of MLP in the early stage is
to provide the basic work of information processing
for attention layers.

In addition to the activation replacement of v,
we also conducted experiments on ã and a. (there
is no concept of head index in a.) The results (See
Fig 15b, 15a, 16b, 16a) show that these compo-
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 10: The attention heads located through causal analysis show that for Llama2-7B under different values of d.
Llama2-7B has 32 attention heads per layer, for a total of 32 layers.
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 11: The attention heads located through causal analysis based on two OC inputs in Mistral-7B

nents are difficult to significantly impact the output
probability (even if d = 1).

To generalize our findings, we conduct an ad-
ditional analysis by applying prefix and suffix
padding to the input numbers (See table 3,4). These
paddings do not form carry chains and therefore
do not affect the chain length d, but they allow us
to extend the study from a specialized setting to
a more general addition scenario. For example, a
CC2 case like 445 + 357 can be transformed into
2144552 + 3235715 with 2-digit prefix and suffix
padding. To avoid interference with modular addi-
tion accuracy, the padding length is set as 2d. The
results show similar model behavior: the locations
of the Top-2 attention heads remain unchanged,
and the maximum TE caused by these heads does
not significantly differ from the analysis without
padding.

Zero ablation on Top-2 attention heads can
greatly influence the model output, and most of
the changes of the output are reverting to modular
addition (See Table 5), each task corresponds to
500 samples. This confirms that ablating the Top-2
attention heads primarily disrupts the carry mech-
anism while having minimal impact on modular
addition.

B Appendix - Visualization

We provide some visualizations in this section,
mainly including the process of handling modu-
lar additions and additions with carry inside the
model.

In Figure 17, layer 12 shows that data points with
similar labels (indicated by similar colors) are inter-
mixed. Each color represents an addition question
categorized by its first-digit answer. For example,
34+12 and 25+17 fall into the same category since
both yield a first-digit answer of 4. The activations
are collected at the “=” token position. At layer
13, the clustering pattern immediately undergoes
a sudden change, and the model distinguishes be-
tween carry and non-carry equations, which are
much closer to the output of the final layer. Layer
13 is also the earliest layer to be located through
causal analysis (See Fig 10a).

Similarly, a similar process also occurs in the
mistral-7B model (See Fig 18). After passing
through the 17th layers, the model quickly dis-
tinguishes between CC and OC tasks, the causal
analysis location of the 17th layer refers to 4a.

For modular addition, the visualization results
show that the model is implemented in a pro-
gressive manner, rather than dealing with abrupt
changes like handling carry.
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(a) d = 1 (b) d = 2

(c) d = 3 (d) d = 4

Figure 12: The attention heads located through causal analysis show that for Gemma-7B under different values of d.
Gemma-7B has 16 attention heads per layer, for a total of 26 layers.

Table 3: Causal analysis on Mistral-7B. The maximum TE and the top-2 attention heads under different input
formatting conditions.

Metric/Task OC1 and CC1 2-digit Prefix 2-digit Suffix 2-digit Prefix + Suffix

Maximum TE 0.521 0.506 0.542 0.536
Top-2 Attention Heads (Layer, Head) (20, 30), (17, 25) (20, 30), (17, 25) (20, 30), (17, 25) (20, 30), (17, 25)

Metric/Task OC2 and CC2 4-digit Prefix 4-digit Suffix 4-digit Prefix + Suffix

Maximum TE 0.023 0.021 0.023 0.023
Top-2 Attention Heads (Layer, Head) (15, 20), (3, 17) (15, 20), (3, 17) (15, 20), (3, 17) (15, 20), (3, 17)

Figure 13: Total Effect, Direct Effect and Indirect Effect

C Appendix - Details in Inference
Intervention

In this section, we give more details about the in-
ference intervention.

The inference intervention results of LLaMA2-
7B are shown in Table 6, the length stops at 11
instead of 20 because the inference intervention
experiment has to be conducted under a basic accu-
racy since inference intervention doesn’t improve
the modular addition performance. Additionally,
the input format could massively influence the per-
formance. Specifically speaking, ‘X+Y=’ and ‘X +
Y =’ are different, while Llama and Mistral work
better on the former, Gemma only works well on
the later.

We first classify the incorrect answer obtained
by the model into four situations. When the model
treats the CC question as the OC question, it is
called a missing carry; When treating the OC ques-
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(a) Mistral-7B (b) Llama2-7B

Figure 14: The TE caused by MLP activation replacement and the effect caused by restoring the top 2 attention
heads, the results are averaged among 100 samples.

Table 4: Causal analysis on LLaMA2-7B. The maximum TE and the top-2 attention heads under different input
formatting conditions.

Metric/Task OC1 and CC1 2-digit Prefix 2-digit Suffix 2-digit Prefix + Suffix

Maximum TE 0.315 0.313 0.309 0.321
Top-2 Attention Heads (Layer, Head) (15, 15), (13, 23) (15, 15), (13, 23) (15, 15), (13, 23) (15, 15), (13, 23)

Metric/Task OC2 and CC2 4-digit Prefix 4-digit Suffix 4-digit Prefix + Suffix

Maximum TE 0.036 0.032 0.036 0.034
Top-2 Attention Heads (Layer, Head) (14, 4), (14, 7) (14, 4), (14, 7) (14, 4), (14, 7) (14, 4), (14, 7)

tion as a CC question, it is called extra carry; align-
ment errors caused by incorrect numerical align-
ment; basic modular addition errors.

The model runs on a dataset of randomly gener-
ated numbers of a specified length. By classifying
each error, it can be found that the most common
error made by the model in low sequence lengths
is missing carry (See Fig 19). As the length in-
creases, errors caused by alignment account for the
vast majority, rather than basic modular additions.
Our inference intervention is only optimized for
missing carry and extra carry situations.

We give a more detailed explanation of the algo-
rithm for inference intervention (See Algorithm2).
The algorithm explains more concretely about the
carry detection progress.

The improved accuracy data beyond length of
20 is listed in table 7.

D Appendix - Details in Fine-tuning

We first perform a causal analysis on the fine-tuned
Gemma-2B (trained on a maximum length of 10)
under different d values (See Fig 21). In the case of
length=12, which is beyond the maximum training
length, the attention heads did not exhibit signifi-

cant TE, and the attention heads heatmap pattern
is different from others in the case of d=1 case,
representing a functional differentiation of these
attention heads. The training details are listed in
Appendix E.

Figure 20 shows the OC tasks performance after
fine-tuning. Similar to the result of CC task (Figure
8a), the accuracy drops sharply after surpassing the
maximum training length.

In Section 5.2, we discussed the emergence of a
new pattern, the original mechanism remains and
is refined. Figure 24 shows the top-2 attention
heads overlay pattern located in casual analysis.
23333+36667=60000 is used as a demonstration ex-
ample, figure 24a shows how the fine-tuned model
tries to output the first-digit 6 by gathering atten-
tion weights on the following digit(2 and 3), figure
24b shows the model tries to extend one more step
to focus on the second digit.

The new strategy is also observed in the fine-
tuned Llama2-7B. The detection and target heads
are located in layers 7 and 24, respectively (see
Figure 22). These heads exhibit similar attention
patterns as well (see Figure 23). And the corre-
sponding ablation study results are show in Table
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Table 5: Output distribution under zero ablation on tasks CC1, CC4, and CC10

Model / Output Case Revert to Modular Addition (%) Error on Modular Addition (%) Fail to Output Number (%)

Task CC1

LLaMA2-7B 98.3 1.3 0.4
Mistral-7B 97.8 2.2 0.0
Gemma-7B 99.4 0.6 0.0

Task CC4

LLaMA2-7B 98.0 0.9 1.1
Mistral-7B 97.3 2.7 0.0
Gemma-7B 99.4 0.6 0.0

Task CC10

LLaMA2-7B 97.8 1.3 0.9
Mistral-7B 97.7 2.3 0.0
Gemma-7B 99.6 0.4 0.0

Algorithm 2 Model Inference with Ablation and Reweighting

1: Input: X + Y . L: The last position in the sequence. m: Length of the carry chain. Am: Top 2
attention heads when d = m in causal analysis.

2: Output: Z
3: for i← 0 to n− 1 do
4: Initialize: m← i
5: if xi+1 + yi+1 < 9 then
6: Set ablation: aL,xi+1 , aL,yi+1 ← 0
7: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xi+1 , aL,yi+1))
8: Output: zi
9: else if xi+1 + yi+1 > 9 then

10: Re-weighting: aL,xi+1 , aL,yi+1 ← Am

11: Perform model inference: zi ← ModelInference(X,Y, reweighting(aL,xi+1 , aL,yi+1))
12: Output: zi
13: else
14: while xi+1 + yi+1 == 9 do
15: m← m+ 1
16: if xm + ym < 9 then
17: Set ablation: aL,xm , aL,ym ← 0
18: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xm , aL,ym))
19: Output: zi
20: else if xm + ym > 9 then
21: Re-weighting: aL,xm , aL,ym ← Am

22: Perform model inference: zi ← ModelInference(X,Y, reweighting(aL,xm , aL,ym))
23: Output: zi
24: end if
25: end while
26: Set ablation: aL,xi+1 , aL,yi+1 ← 0
27: Perform model inference: zi ← ModelInference(X,Y, ablation(aL,xm , aL,ym))
28: Output: zi
29: end if
30: X + Y ← X + Y + zi
31: end for
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(a)

(b)

Figure 15: Casual analysis of other components in Llama2-7B. (a) Replacing ã. (b) Replacing a.

Table 6: Comparison of accuracy between the baseline and inference-time intervention augmentation on LLaMA2-
7B. Performance is measured on numbers of varying length (in digits).

Number Length 2 3 4 5 6 7 8 9 10 11

Baseline (LLaMA2-7B) 0.955 0.933 0.853 0.693 0.363 0.132 0.094 0.061 0.041 0.008
Augmentation 0.942 0.923 0.883 0.793 0.663 0.432 0.264 0.200 0.155 0.131

8.

E Appendix - Implementation details

First, we provide a consolidated summary of the
models used throughout our experiments, as shown
in Table 9.

The prompts in Table 10 are applied in the fine-
tuning experiment (randomly sampled), in the ex-
periments related to model inference (Section 3,
Section 4), the prompt is fixed to the first prompt
shown in the table. The complete format is a
prompt plus the question ‘X + Y =’ format as
input. The temperature is set as 1 and use greedy
sampling. The reason for choosing accuracy in-
stead of digit match as the evaluation metric is due
to the accumulation of errors during model infer-
ence.

The detailed fine-tuning parameters are listed in

table 11. The batch size (varies from 4 to 64) and
taken epoch (usually 6-9) varies depending on the
specific CCd and OCd tasks. The entire training
process is done with one Nvidia A800 GPU, all
experiments in the paper could be done within 15
hours.

The dataset includes questions of CCd, OCd,
and randomly generated number pairs. To ensure
that modular addition does not affect the results,
40% of the dataset consists of randomly sampled
numbers with a length upper limit of 80 (sam-
pled between 10 and 1079), 30% consists of CCd
tasks, and 30% consists of OCd tasks. The dataset
includes 106 samples for each length d, which
means 4 ∗ 105 randomly sampled numbers pairs,
3 ∗ 105 CCd samples, and 3 ∗ 105 OCd samples.
For the CCd and OCd tasks, we add a number
padding of length d in the front and behind. For
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(a)

(b)

Figure 16: Casual analysis of other components in Mistral-7B. (a) Replacing ã. (b) Replacing a.

example, a CC2 input “234+468=702” could be
“22344+34682=57026” in the dataset. The fine-
tuning training process has musked the prompt,
‘X + Y =” sequence, and only predicts for Z.
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(a) Layer 0 (b) Layer 12

(c) Layer 13 (d) Layer 31

Figure 17: TSNE visualization of the last token hidden state on Llama2-7B, each color represents the label z1.

(a) Layer 0 (b) Layer 16

(c) Layer 17 (d) Layer 31

Figure 18: TSNE visualization of the last token hidden state on Mistral-7B, each color represents the label z1.
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(a) Length 5 (b) Length 10

(c) Length 15 (d) Length 20

Figure 19: Four types of error that Mistral-7B makes on different lengths.

Figure 20: OC tasks performance after fine-tuning
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Table 7: Further accuracy information about inference intervention on Mistral-7B, Llama-7B, and Gemma-7B.

Model Method Length

10 20 30 40 50 60

Mistral-7B Baseline (%) 48.21 2.98 0.05 0.00 0.00 0.00
Inference Intervention (%) 72.45 38.21 14.12 4.63 1.12 0.22

Llama-7B Baseline (%) 0.04 0.00 0.00 0.00 0.00 0.00
Inference Intervention (%) 3.73 3.51 0.06 0.00 0.00 0.00

Gemma-7B Baseline (%) 7.73 0.08 0.01 0.00 0.00 0.00
Inference Intervention (%) 15.45 4.32 1.14 0.42 0.11 0.00

Table 8: Fine-tuned Llama2-7B ablation study (%)

Method / Task CC1 CC2 CC4 CC10

Baseline 100.00 100.00 100.00 97.27
Detection Head Ablation 100.00 100.00 45.22 42.22
Target Head Ablation 100.00 100.00 42.58 43.27
Combined Ablation 100.00 99.15 41.51 40.12
Random Ablation 99.91 98.02 99.12 95.20

Section Models Used
3.1 Mistral-7B
3.2 Mistral-7B (main text); LLaMA2-7B, Gemma-7B (Appendix A)
3.3 Mistral-7B, LLaMA2-7B, Gemma-7B (main text)
4 Mistral-7B (main text); LLaMA2-7B, Gemma-7B (Appendix C)
5.1 Gemma2-2B (main text)
5.2 Gemma2-2B (main text); LLaMA2-7B (Appendix D)

Table 9: Summary of model usage across experiments.

12752



(a) d = 1 (b) d = 3

(c) d = 5 (d) d = 12

Figure 21: The attention heads located through causal analysis show that for fine-tuned Gemma2-2B under different
values of d, d = 12 analysis is based on OOD input.

Figure 22: Causal Analysis on fine-tuned Llama2-7B.
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(a) Detection head (b) Target head

Figure 23: The result of superimposing the attention heads on fine-tuned LLama2-2B, 233331+366671=600002 is
used as a demonstration example. For simplicity, the attention pattern displayed omits the prompt and only retains
the question.

(a) d=1 (b) d=2

Figure 24: The result of superimposing the attention heads on fine-tuned Gemma2-2B, 23333+36667=60000 is
used as a demonstration example. For simplicity, the attention pattern displayed omits the prompt and only retains
the question. For d from 1 to 2, the selected top 2 attention heads (Head, Layer) are (16, 6) and (19, 0); (16, 6) and
(19, 9).
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Table 10: Examples of Prompts

Prompt Examples

Do math calculations:

Calculate:

Compute the following sum:

Solve the addition:

Calculate the result of:

Solve the following problem:

Perform the calculation:

Determine the result of:

Find the value of:

Complete the calculation:

What is the solution to:

Solve this equation:

Compute the answer for:

What is the sum of:

Figure out the result of:

Determine the answer to:

Find the solution to:

Perform the operation:
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Table 11: Key Training Arguments Configuration, d represents the CCd and OCd task.

Parameter Value

num_train_epochs 15

number of training tokens about (6d+ 1) ∗ 106

learning_rate 5e-5

bf16 True

weight_decay 0.0

adam_beta1 0.9

adam_beta2 0.999

adam_epsilon 1e-08

gradient_accumulation_steps 1

seed 42

lr_scheduler_type linear

optim adamw_torch
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