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Abstract

Contemporary theories model language pro-
cessing as integrating both top-down expec-
tations and bottom-up inputs. One major
prediction of such models is that the qual-
ity of the bottom-up inputs modulates ease of
processing—noisy inputs should lead to diffi-
cult and effortful comprehension. We test this
prediction in the domain of reading. First, we
propose an information-theoretic operational-
ization for the “quality” of bottom-up informa-
tion as the mutual information (MI) between
visual information and word identity. We for-
malize this prediction in a mathematical model
of reading as a Bayesian update. Second, we
test our operationalization by comparing par-
ticipants’ reading times in conditions where
words’ information quality has been reduced,
either by occluding their top or bottom half,
with full words. We collect data in English and
Chinese. We then use multimodal language
models to estimate the mutual information be-
tween visual inputs and words. We use these
data to estimate the specific effect of reduced in-
formation quality on reading times. Finally, we
compare how information is distributed across
visual forms. In English and Chinese, the up-
per half contains more information about word
identity than the lower half. However, the asym-
metry is more pronounced in English, a pattern
which is reflected in the reading times.

https://github.com/DiLi-Lab/
Bottom-Up-Information.git

1 Introduction

During reading, individuals actively expend cog-
nitive effort to extract information. Many contem-
porary theories of language comprehension in gen-
eral, and reading in particular, model this process
as a rational integration of bottom-up and top-down
information (Legge et al., 1997; Norris, 2006; Bick-
nell and Levy, 2010; Gibson et al., 2013; Gau-
thier and Levy, 2023). Bottom-up information
refers to the perceptual input (e.g., visual forms

of words), while top-down information includes
the prior beliefs and expectations about what mes-
sages or word-forms are likely to be encountered,
and is guided by the reader’s linguistic and con-
textual knowledge. A central prediction of such
models is that the ease of reading should be influ-
enced by the quality of the bottom-up information.
In the modality of visual reading, visual signals that
effectively convey information about the intended
message are expected to facilitate fast and effort-
less comprehension (Balota, 1994). Conversely,
degraded visual signals—caused by factors such
as lighting, occlusion, or visual interference—are
likely to increase processing effort and raise the
likelihood of errorful reading.

This prediction fits well within noisy channel
models of reading. In a noisy channel model (Shan-
non, 1948), a message is encoded and sent over
a channel, where it is potentially corrupted. A re-
ceiver, at the other end of the channel, must decode
the most probable intended message given the re-
ceived inputs. Previous work has looked at the role
of noise during reading, demonstrating how noise
over uncertain inputs can lead to non-veridical in-
terpretations (Levy, 2008b; Gibson et al., 2013).

While intuitive, to the best of our knowledge,
the impact of noisy inputs on reading effort has
not been quantified within a formal computational
model of reading. That is, although many theo-
ries of reading assume that poorer sensory input
leads to more effortful processing, and classic ex-
perimental work has shown that reduced visual
signals increase processing difficulty and interact
with other lexical properties (Rumelhart and Siple,
1974), they have not derived or tested this relation-
ship quantitatively. In this paper, we aim to fill
this gap by providing an information-theoretically
grounded, quantitative account of how bottom-up
input quality affects processing effort. Our central
proposal is that input quality can be formalized as
the mutual information (MI) between (visual) input

11721



and word identity. From an information-theoretic
perspective, a signal is informative to the extent
that it reduces uncertainty about a target variable—
in this case, the identity of a word. We assume
that greater processing effort manifests in longer
reading times, and therefore predict that reductions
in mutual information should lead to systematic
slowdowns in reading.

This paper makes three contributions: First, we
instantiate the above operationalization of visual
input quality in reading under a formal model of
reading as a Bayesian update. Second, we pro-
vide a quantitative estimate of the cost of reduced
input quality on processing effort. To do so, we
use multimodal language models to estimate mu-
tual information over a dataset of partially masked
word images. We then collect human reading times
on the same stimuli, using the MoTR paradigm
(Wilcox et al., 2024), which simulates eye-tracking,
and can be used to collect data over the web. We
use these data to estimate the relationship as a spe-
cific slowdown in terms of nats of information gain
(the pointwise variant of mutual information) per
millisecond of processing time. Our data suggest
that the cost of reduced information is not linear—
small losses in informational quality can lead to
disproportionately large increases in reading time,
particularly in the upper regions of a signal’s infor-
mational range.

Our third contribution is to compare how infor-
mation is distributed across visual forms of words
in two typologically distinct languages. To that
end, we collect data in both English and Chinese,
representing alphabetic and logographic scripts, re-
spectively. We find that, in both languages, the
upper half of a word contains more information
about word identity than the lower half. However,
the asymmetry is more pronounced in English than
in Chinese, a pattern that is reflected in the reading
times.

2 Formal Model

2.1 Reading as Bayesian Update

Following an extensive prior literature (Norris,
2006; Bicknell and Levy, 2010; Gauthier and Levy,
2023), we model word recognition as a Bayesian
update process. Readers incrementally process
a word w drawn from a vocabulary W , where
w ∈ W denotes a realization of a random vari-
able W taking values in W . We refer to a word at a
particular timestep, t, as wt and the corresponding

random variable at this timestep as W t. We assume
that readers intake individual samples of input e,
where e ∈ R denotes a realization of a random vari-
able E ranging over the samples1. Input samples
could be either a patch of visual input for visual
reading or a haptic percept in the case of braille.
Following previous work (e.g., Bicknell and Levy,
2010), we model the process of reading as one of se-
quential word identification given input e and a pre-
vious context of words w<t. In such models, read-
ers are assumed to rationally integrate their prior
expectations about a word, P (wt | w<t), with the
likelihood of the observed input e, P (e | wt,w<t).
Instead of a single sample, we assume that read-
ers integrate evidence over k samples, e1:k. The
rational update process we use to model reading is
therefore:

P (wt | e1:k,w<t) ∝ (1)

P (wt | w<t)×
k∏

i=1

P (ei | wt,w<t)

This tells us how readers update beliefs about
a word given inputs and priors. But reading is a
dynamic process. How do readers choose when to
move on to the next word? Previous work models
this by proposing that readers draw samples until
the uncertainty about the current word reaches a
threshold, ϕ, at which point they move on (e.g.,
Li and Futrell, 2024). We quantify uncertainty as
the entropy of the posterior distribution. That is,
sampling continues until:

H(P (wt | e1:k,w<t)) ≤ ϕ (2)

However, given a particular actual input w∗ we
cannot be certain how many samples a reader draws
or what information each sample contains. To ac-
count for this uncertainty, we therefore make the
prediction that readers will move on when the ex-
pected entropy falls below this threshold, where
the expectation is taken over uncertain inputs:

EE1:k
[H(W t | E1:k,w<t)] ≤ ϕ (3)

Although we assume that reading does take place
given a context, for the rest of this section, we will
drop the word-context term, w<t. We note that
it would be easy to add this term back into the
subsequent equations as a conditioning variable
without changing the overall model.

1For simplicity, we model inputs as continuous and uni-
variate. However, we acknowledge that inputs may be more
aptly modeled as multivariate and see this as an easy extension
of the formal presentation given here.

11722



2.2 Quality of Bottom-Up Evidence
We model the quality of the inputs as the mutual
information between the inputs and the word iden-
tity, i.e., as I(W ;E). High-quality inputs do a
better job of reducing uncertainty over words. For
a given word-identification step, we can write the
mutual information between a word and the total
number of samples drawn as I(W ;E1:k). Using
the chain rule of mutual information (Cover, 1999)
and assuming that there is conditional indepen-
dence between samples, given W , we can derive
the following inequality:2

I(W ;E1:k) =

k∑

i=1

I(W ;Ei | E1:i−1) (4a)

assuming

cond. independence
≤

k∑

i=1

I(W ;Ei) (4b)

≤ k × I(W ;E); (4c)

How is the mutual information between inputs
and words related to the reading process, as de-
scribed above? We assume that taking samples
and processing these samples takes cognitive effort.
Following previous work, we also assume a link
between effort and time (Levy, 2008a; Hale, 2001).
Therefore, the more samples, k, a reader needs to
take in order to reduce uncertainty, the longer it
will take them to read a given word.

We can now link the quality of inputs to our
reading process through the definition of mutual
information:

I(W ;E1:k) = H(W )−H(W | E1:k) (5)

Plugging in the inequality from 4c, and the def-
inition of conditional entropy,3 we rearrange the
terms:

EE1:k
[H(W | E1:k)] ≥ H(W )− k × I(W ;E)

(6)

That is, the expected entropy of the posterior dis-
tribution, given uncertain inputs, is greater than the
entropy over words minus the number of samples
taken times the mutual information between the
samples and the words.

For our model of reading, we are interested in
when the entropy of the posterior distribution is
approximately ϕ. In particular, we are interested

2For more discussion of these assumptions, see Section A.
3That is: H(X | Y ) = EY [H(X | Y )].

in how many samples must be drawn to reach
this threshold, as this determines the effort (and
therefore the time) required to reduce uncertainty
enough to move on to the subsequent word. Substi-
tuting in our threshold parameter in and rearranging
the terms, we have:

k ≥ H(W )− ϕ

I(W ;E)
(7)

The minimum number of samples required to
reach the threshold grows with the entropy of the
distribution over W . Likewise, it decreases with
the mutual information between W and E. Be-
cause we assume a link among the number of sam-
ples, effort and time, this leads us to the following
two predictions:

Prediction 1 Top-Down Processing & Entropy:
As the entropy of a word-position W increases,
average reading time increases.

Prediction 2 Bottom-up Processing & Mutual In-
formation: As the mutual information between
words W and their visual representations E de-
creases, average reading time increases.

In fact, Prediction 1 has already been investi-
gated by Pimentel et al. (2023), whose results con-
firm our prediction. Pimentel et al. refer to the
entropy over the next word, given a set of previ-
ous words H(W t | w<t) as a word’s contextual
entropy. They find that as word-level contextual
entropy increases, so too does reading time. For
the rest of this paper, therefore, we are interested in
testing Prediction 2, namely whether the quality of
bottom-up evidence, modeled as mutual informa-
tion between words and visual information, affects
word-by-word reading times.

3 Methods

3.1 Materials

We use a portion of the advanced OneStopQA
dataset (Berzak et al., 2020). This dataset contains
Guardian news articles, along with carefully con-
structed reading comprehension questions, which
are linked to individual spans in the text. For our
study, we selected three articles: “101-Year-Old
Bottle Message”, “Inky the Octopus Escapes from
Aquarium”, and “Japan Calls Time on Long Hours
Work Culture”. A team member with experience in
English-Chinese translation hand-translated these
texts and their questions into Mandarin. This small
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Unoccluded Upper half visible Lower half visible

Figure 1: Example showing a screen from a MoTR trial
with our three different reading conditions.

translated corpus, which we term the Chinese On-
eStopQA, is released along with the publication of
this article (see code repository).

The English subset contains 1,793 words (mean
word length = 4.6, SD = 2.53), while the Chi-
nese subset contains 3,182 characters. In terms of
experimental presentation, one Chinese character
occupies roughly 1.46 times the pixel space of an
English letter, making an average English word
about 3.2 times longer than a Chinese character.
The average Zipf frequency is slightly higher in
English (M = 5.77, SD = 1.45) than in Chinese
(M = 4.84, SD = 1.90), largely due to the low
frequency of transliterated Western named entities
in the Chinese translations.

Creating Noisy Words To create noised reading
conditions, we occluded (i.e., masked with white)
either the upper or lower half of every word in the
dataset. There are potentially many ways to add
noise to the texts. Other options would be to oc-
clude the first half or the second half of words, as
well as Gaussian noise. Previous work has shown
that the beginnings of words tend to carry more
disambiguatory information than their endings.
For example, Pimentel et al. (2021) demonstrates
this cross-linguistically using information-theoretic
measures, while Alhama et al. (2019) presents a
perceptually constrained connectionist model ex-
plaining fixation biases toward word onsets. These
findings are consistent with psycholinguistic evi-
dence of the optimal viewing position effect in vi-
sual word recognition(Brysbaert and Nazir, 2005).

However, these studies focus on the linear distri-
bution of information across letter positions, which
applies naturally to alphabetic scripts such as En-
glish but not to logographic systems like Chinese,
where characters are two-dimensional and not ar-

ranged linearly. We were also concerned that com-
pletely removing some letters or characters would
make reading too difficult or frustrating for partici-
pants, and that the removal of letters or characters
demands very careful handling to avoid confounds
(Rayner, 1998; Rayner et al., 2006). Masking the
upper or lower half retains some information about
each character, which presents a paradigm that is
relatively readable for participants, especially in
the degraded conditions. In addition, unlike sim-
ply adding Gaussian noise, upper and lower half
occlusion allows us to investigate where, in verti-
cal space, information is localized in English and
Chinese orthographic systems. Our strategy leads
to two additional research questions:

Sub Research Question 1 Is information split up
differentially between the upper and lower halves
of orthographic words?

Sub Research Question 2 Does the relative infor-
mativeness of upper vs. lower halves differ across
languages?

3.2 Data Collection

Mouse Tracking for Reading (MoTR) To test
our main predictions, we need a way of measuring
(average) human reading times in our different con-
ditions. To do so, we use Mouse Tracking for Read-
ing (MoTR; Wilcox et al., 2024). In a MoTR trial,
a blurred text is presented on a screen. A small re-
gion around the tip of a user’s mouse brings the text
into focus. Participants move the mouse to incre-
mentally reveal and read the text, while their mouse
location is recorded and used as a proxy for gaze
location. The time-stamped x/y coordinates are
then turned into incremental word-by-word read-
ing times, similar to word-level reading times in
an eye-tracking-while-reading experiment. As in
eye-tracking, there are several ways to compute
reading times. For our main analysis, we use the
first-pass reveal time (FPRT), defined as the total
amount of time a participant spends revealing a
word during their first pass reading. Conveniently,
the same acronym (FPRT) is used in eye-tracking
for first-pass reading time, but we use “reveal” to
emphasize that it is computed from mouse move-
ments rather than eye fixations.

Wilcox et al. (2024) show that MoTR reading
measures are strongly correlated with eye-tracking
and self-paced-reading measures. MoTR has been
used to collect data in English and Russian (Oğuz
et al., 2025), but not in Chinese.
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Participants We recruited 54 English and 57 Chi-
nese speakers on Prolific, requiring a minimum ap-
proval rate of 98% and the corresponding language
to be their first and native language. Participants
were compensated 3.75 GBP for a median reading
time of 25 minutes.

Procedure Each participant read the article para-
graphs presented screen by screen, with each screen
randomly assigned to one of three conditions:
upper-half occluded (i.e., lower-half visible), lower-
half occluded (i.e., upper-half visible), or unoc-
cluded (see Figure 1). In addition to reading texts
and answering comprehension questions, we ask
participants to rate the ease of reading after finish-
ing all the trials using a multiple-choice question:
“Which do you find easier to read: text showing
only the top half or only the bottom half?” The
options are “Top half only,” “Bottom half only,”
and “About the same.” The actual experiments are
available online for Chinese4 and English5.

3.3 Mutual Information Estimation
In Section 2, our model concerns the mutual infor-
mation between words, W , and (visual) evidence
sampled by the reader, E. However, we do not
have direct access to this evidence. Instead, as
a proxy for our visual evidence, we estimate the
mutual information between words W and their
orthographic representations o ∈ Rd, where o is
a realization of a random variable O that ranges
over representations of different words. Following
Pimentel et al. (2020), we decompose the mutual
information as

I(W ;O) = H(W )−H(W | O) (8a)

≈ Hθ(W )−Hθ(W | O) (8b)

where θ denotes the parameters of the models em-
ployed for entropy estimation. We estimate each of
these two terms separately.

We estimate unconditional entropy Hθ(W )
with a maximum likelihood estimation of the un-
igram distribution of Chinese characters and En-
glish words. We take the 9, 933 unique Chinese
characters included in the modern Chinese charac-
ter database6, and the 60, 384 English words in the
SUBTLEXus database (Brysbaert and New, 2024),
and look up their frequencies using the Python li-
brary wordfreq (Speer, 2022) that supports both

4https://cuierd.github.io/Re-Veil/multilingual_motr/zh/
5https://cuierd.github.io/Re-Veil/multilingual_motr/en/
6https://lingua.mtsu.edu/chinese-computing/

languages and aggregates data from multiple do-
mains, including subtitles, Wikipedia, news, fiction,
and web content. Normalizing the frequencies, we
obtain the empirical distribution pθ(w) and from
it we can directly compute the entropy Hθ(W ).
The empirical entropies are 5.59 and 7.12 nats for
Chinese characters and English words.

We estimate the conditional entropy Hθ(W |
O) in two stages. First, we compute the word
entropy conditioned on a specific orthographic rep-
resentation, Hθ(W | O = o). We refer to this
as pointwise conditional entropy. We compute
this value by taking the expectation of the infor-
mation content, or surprisal of all words given
the orthographic representation ιθ(w | o), where
ιθ(·) = − log pθ(·). Given a model with parame-
ters θ that can produce our probability distribution
of interest, that is, pθ(w | o), the pointwise condi-
tional entropy is calculated as:

Hθ(W | o) ≈
∑

w∈W
pθ(w | o)ιθ(w | o) (9)

We then estimate conditional entropy as the ex-
pectation of the pointwise conditional entropy with
respect to O, following the identity H(W | O) =
EO[H(W | O = o)]. We take the expectation over
a set of held-out test samples:

Hθ(W | O) ≈ 1

N

N∑

n=1

Hθ(W | on) (10)

where on is the nth orthographic representation in
the test set.

We note that using these methods, we can esti-
mate not only the mutual information I(W ;O), but
also its pointwise variant, also called the informa-
tion gain (IG), for a particular orthographic repre-
sentation, where IG(W ;o) = H(W )−H(W | o).
While our formal prediction is made in terms of
mutual information, in Section 4.3, we use IG to
investigate the relationship between information
contained in individual visual inputs and their
respective reading times.

In recent work, similar methods have been used
to study the relationship between words (as rep-
resented by text) and prosody, or the melody of
speech (Wolf et al., 2023; Regev et al., 2025;
Wilcox et al., 2025). However, these previous
works learn distributions over real-valued variables
that represent pitch. We wish to learn distributions
over discrete w-valued variables pθ(w | o). To ob-
tain this distribution, we use multimodal language
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Figure 2: Results of fine-tuned Qwen2.5 model for the
Chinese character美 (“beautiful”) and the English word
hear. The preference for hear over heal in upper half oc-
clusion likely reflects pre-training frequency bias, which
we control for by training TransOCR from scratch.

models, which we fine-tune to produce condition-
alized distributions over words, given visual inputs.
We do so with the following methods:

Data Generation We adapt the Python library
TRDG7 to generate images of Chinese characters
and English words from text as their orthographic
representations, applying upper-, lower-half occlu-
sion to create our different experimental conditions.
For each character or word under each condition,
we generated six images with different fonts and
font weights8 to enhance visual variability, and
added a small amount of Gaussian noise to the
image backgrounds (Li et al., 2025). We gener-
ate 16, 800 Chinese character images and 44, 800
English word images under each of the three oc-
clusion conditions as training data. For test data,
we generate images of all Chinese characters in
the Chinese OneStopQA dataset and all English
words in the selected OneStopQA subset, again
under each occlusion condition.

A Bayesian Baseline Model As a simple refer-
ence, we implement a Bayesian baseline to estimate
the pointwise conditional entropy H(W | O = o).
In this model, lexical frequencies provide priors
p(w), and structural similarity (SSIM; Wang et al.,
2004), computed with scikit-image (Van der Walt
et al., 2014), serves as a likelihood p(o | w). Poste-
rior probabilities p(w | o) are obtained by normal-
izing the product of priors and likelihoods across

7https://github.com/Belval/TextRecognitionDataGenerator
8For Chinese, the fonts are XinYiJiXiangSong, FZHei-

B01, FZKai-Z03, NotoSansSC-Regular, NotoSerifSC-
SemiBold, and SourceHanSans. For English, they are Droid-
Sans, Lato-Bold, NotoSans, PTSerif, Raleway, and Sansation.

all candidate images, with the denominator corre-
sponding to the marginal likelihood p(o). We then
compute H(W | O = o) from these posteriors for
each input image and average across the dataset
to obtain H(W | O). While straightforward, this
baseline has some limitations. First, its computa-
tional cost scales quadratically with dataset size
(O(N2)). Second, SSIM captures only low-level
pixel similarity, often producing clustered scores
for orthographically distinct characters or words.
Third, its estimates are largely driven by lexical fre-
quency. For these reasons, we turn to multimodal
models based on artificial neural networks (ANNs)
for more reliable and scalable estimation.

ANN-based Predictive Multimodal Models We
use three different multimodal model settings:
First, we evaluate the pre-trained Qwen2.5-VL-
7B-Instruct9 in a zero-shot setting. Qwen2.5-VL-
7B is an open-source vision-language model de-
veloped by Alibaba, designed for high-accuracy
multimodal analysis with enhanced visual under-
standing and text-image alignment (Wang et al.,
2024; Bai et al., 2025). As upper- and lower-half
occluded words are likely out-of-distribution with
respect to the model’s training data, we do not ex-
pect the mutual information estimate to be tight in
this setting. For a better estimate, we then fine-tune
Qwen2.5-VL-7B on our task-specific data to im-
prove its performance. To complement the estimate
from the pre-trained model, we also train a sepa-
rate transformer-based OCR model (TransOCR;
Yu et al., 2023), from scratch, to perform the same
prediction task. The model combines a ResNet
encoder with a Transformer decoder for charac-
ter recognition. Full training configurations and
prompt designs for the Qwen and TransOCR mod-
els are provided in Section B and Section C, respec-
tively.

4 Results

4.1 Human Reading Results

We show reading times in Figure 3(a). In both lan-
guages, reading full words resulted in the shortest
average FPRT, as predicted. Interestingly, both lan-
guages follow a Full < Upper < Lower pattern, with
lower-half visibility leading to the longest FPRT.
To quantify these effects, we fit linear mixed-effects
models with visibility condition as a predictor, us-
ing sliding contrasts to compare Upper vs. Full and

9https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
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Figure 3: (a) Reading times (FPRT) measured under three visibility conditions. Boxes represent the interquartile
range (middle 50%), center lines indicate the median, and whiskers show the overall data spread. Grey lines trace
each participant’s mean across conditions. EN: English; ZH: Simplified Chinese (b) Information gain (IG) between
word identity and visual form under the three conditions, obtained with each of our estimation techniques.

Lower vs. Upper. Word length (EN only), lexical
frequency, surprisal, and contextual entropy are in-
cluded as control variables, with random intercepts
for subjects and items. In Chinese, both contrasts
are significant: β = 37.79ms (p < 2e−16) and
β = 12.64ms (p < 2e−16). In English, the ef-
fects are larger: β = 69.93ms (p < 2e−16) and
β = 90.09ms (p < 2e−16)10.

These results can be interpreted as implying a
visual asymmetry in both languages between ease
of processing with respect to just upper and lower
halves of words. The asymmetry is stronger in
English, where the lower half leads to greater slow-
downs. Participants’ subjective ratings confirm
this asymmetric pattern and further show that En-
glish lower halves are perceived as harder to read
than Chinese ones (Appendix D). In addition, we
summarize comprehension question performance
in Appendix E. Accuracy declines with occlusion,
but remains well above chance (25%), indicating
that reading is effective.

4.2 Mutual Information Results

To give a visual sense of how our models perform,
in Figure 2, we show sample images in the three
experimental conditions, along with the predictions
from the fine-tuned Qwen2.5 model. As a perfor-
mance check, we also report the model accuracies
(Acc) in Table 1. Baseline accuracies are not re-
ported because they only compare each test image
against other images in the test set, rather than pre-
dicting over the full vocabulary. This makes its ac-

10FPRT is calculated for Chinese characters and English
words, which may explain the generally longer reading times
in English.

Acc (%) MI (nat)

Language Model Full Upper Lower Full Upper Lower

Baseline - - - 4.85 4.42 4.41
Qwen2.5-zs 97.9 5.2 3.2 5.42 0.27 0.32

ZH Qwen2.5-ft 99.0 48.6 44.3 5.57 3.62 3.27
TransOCR 97.9 78.8 65.7 5.26 4.09 3.17

Baseline - - - 6.43 6.12 5.99
Qwen2.5-zs 98.8 84.1 51.5 6.99 5.74 3.86

EN Qwen2.5-ft 99.7 93.1 68.1 7.11 7.01 6.66
TransOCR 98.8 95.7 65.8 7.07 7.00 6.68

Table 1: Model accuracy (%) and mutual information
estimates, I(W ;O), for Chinese (ZH) and English (EN)
with different models.

curacy values not directly comparable to the other
models. Accuracies in the unoccluded Full condi-
tion are uniformly high (>97%). Under occlusion,
zero-shot Qwen2.5 drops dramatically in Chinese
(<6%) but is still strong in English (52–85%). Fine-
tuning improves performance in both languages,
while TransOCR achieves the most robust accuracy
overall.

Our main analyses focus on mutual informa-
tion, I (W ;O) in Table 1 and information gain,
IG(W ;o) in Figure 3(b), across conditions and
models. Figure 3(b) shows IG between word
identity and visual input under three visibility
conditions, estimated with the Bayesian base-
line, Qwen2.5-VL-7B-Instruct (zero-shot and fine-
tuned), and TransOCR. Table 1 reports MI as the
IG averaged across all inputs. MI decreases sys-
tematically from Full to Upper to Lower in both
languages.

For a statistical test of our observed trends, we
fit linear mixed-effects models for each language–
model pair, with visibility as the main predic-
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Figure 4: Relationship between informational quality of individual words (information gain; IG) and excess reading
time. Solid blue lines are smoothed GAM fits; shaded regions show bootstrapped 95% confidence intervals. Red
tick marks along the bottom (rug plots) indicate the distribution of IG data points. Reading times are aligned to end
at zero at the highest MI end to emphasize the relative excess reading time when information quality decreases.

tor. As in the reading time analysis, we use the
same sliding contrasts. Word length (EN only),
lexical frequency, surprisal, and contextual en-
tropy are included as controls, with random inter-
cepts for items.11 In Chinese, all models show
significant IG reductions when only the upper
half is visible (Baseline: β = −.58; Qwen2.5-
Zeroshot: β = −4.55; Qwen2.5-Finetuned: β =
−1.85; TransOCR: β = −.99 nats), and IG
from fine-tuned models dropped further when vis-
ibility changed from Upper to Lower (Qwen2.5-
Finetuned: β = −.37; TransOCR: β = −1.01
nats). In English, the zero-shot model showed the
largest overall drop (Upper vs. Full: β = −1.43;
Lower vs. Upper: β = −2.09 nats), while the
baseline and fine-tuned models show smaller but
consistent reductions (Baseline: β = −.36, −.07;
Qwen2.5-Finetuned: β = −.11, −.47; TransOCR:
β = −.08, −.35 nats). All effects were statisti-
cally significant at p < .0001. Panels (a) and (b) of
Figure 3, taken together, reveal a clear pattern: as
visual input degrades from Full to Upper to Lower,
as measured by IG, reading times increase.

11Empirically, IG shows little correlation with these con-
trols (−.03 to .05 in Chinese; −.22 to .15 in English). An ex-
ception is the Bayesian baseline, where IG correlates strongly
with frequency (>0.9) in both languages.

4.3 Word-Level Relationship

In this section, we test the relationship between
reading time and informational quality at the word
level. To do so, we fit linear mixed-effects models
with reading time of an orthographic representation
as the dependent variable and its IG as a fixed effect.
We also included frequency, surprisal, contextual
entropy, and (in EN) word length as additional fixed
effects, as well as by-subject and by-item random
intercepts.

We find a significant effect of IG on reading time
across all models and measures, with a consistent
negative effect: the higher the informational qual-
ity of the input, the faster it is read. In Chinese,
all four IG estimates were significant predictors of
FPRT: β = −14.94 ms (Baseline), β = −7.53 ms
(Qwen2.5-Zeroshot), β = −10.19 ms (Qwen2.5-
Finetuned), and β = −4.97 ms (TransOCR). In En-
glish, the effects were even larger: β = −15.36 ms
(Baseline), β = −23.67 ms (Qwen2.5-Zeroshot),
β = −51.48 ms (Qwen2.5-Finetuned), and β =
−66.42 ms (TransOCR). All effects were statisti-
cally significant at p < .0001.

4.4 Nonlinear Relationship Between
Information Quality and Reading Time

While our linear regression models show that in-
formational quality affects reading time, it makes
strong assumptions about the functional form of
this relationship. In order to get a better sense of
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how these two variables are related, we visualize
them together in Figure 4. We used generalized
additive models (GAMs). GAMs are models that
allow for non-linear relationships between predic-
tor and response variables. We fit GAMs to predict
reading times with smooth terms for IG, control-
ling for frequency, surprisal, contextual entropy,
and (for English) word length. 12 We applied boot-
strap smoothing over 20 resamples and computed
confidence intervals for the estimated effects. We
observe a consistent trend across both languages
and all multimodal models: reading time remains
relatively stable at lower IG estimates but decreases
rapidly as IG increases in the upper end of its range.
The Bayesian baseline does not show this pattern,
as its IG values largely reflect lexical frequency.

5 Discussion

Turning back to our main prediction, we argue that
our results provide converging evidence that visual
quality, as measured by mutual information or in-
formation gain, impacts ease of processing. First,
we find a consistent ordering, both in terms of read-
ing times and mutual information, across our three
experimental conditions. Second, we find a signif-
icant effect of the pointwise mutual information,
or information gain, of individual words on read-
ing times. While intuitive, the idea that bottom-up
informational quality impacts ease of reading has
not been quantified within a formal framework of
reading. Our methods and experiments provide a
specific estimate for the relationship between vi-
sual informational quality and reading times, which
in English is between 25–66 ms/nat and in Chinese
5–10 ms/nat. However, these numbers should be
taken only as rough estimates, as the exact func-
tional form may not be linear.

Turning now to our two sub research questions
outlined in section 3.1: Interestingly, we find that
information is not distributed evenly between the
top and bottom halves of words. Both English and
Chinese place more information about word iden-
tity in the top half of their orthographic systems, a
feature which we argue is reflected in the quicker
reading times for our Upper condition. This asym-
metry may connect to more general visual biases,
such as the top-heavy bias in object recognition
(Viola Macchi et al., 2004) or the upper visual field

12For example, for EN data, the GAM was specified
as: FPRT ~ s(IG, bs=‘cr’, k=6) + te(freq, len,
bs=‘cr’) + te(surp, len, bs=‘cr’) + te(entropy,
len, bs=‘cr’).

advantage (Previc, 1990), as well as the way writ-
ing systems are shaped by reading and writing di-
rection.

Interestingly, Pimentel et al. (2021) find similar
informational asymmetries between the beginnings
and ends of words, using an even wider set of lan-
guages. Exploring whether their asymmetry in
reading times and extending our results to more
languages is an important direction for future re-
search. Finally, we find some suggestive evidence
that this asymmetry is stronger in English, reflected
in the larger effect sizes for the Upper vs. Lower
contrast in our reading data. Future work should
investigate such differences in greater detail.

Limitations

There are several limitations with the present work.
In our formal model, we made several assumptions:
that visual samples of a given word E are drawn
i.i.d. during reading, and that visual inputs are con-
ditionally independent from each other given W .
While these assumptions are strong, they are com-
patible with a “simple but fast” approach to reading.
We discuss them in more detail in Section A. More-
over, our model assumes that the entropy threshold
ϕ (Eq. 2) is always eventually reached, whereas
in reality, readers may sometimes move on with-
out reaching this threshold, especially under poor
input quality. Besides, our model treats reading
as a linear process, abstracting away from regres-
sions, skips, and parafoveal preview. By focusing
on FPRT as an index of early lexical processing,
we capture word-level difficulty while necessarily
ignoring the full dynamics of scanpaths. These
simplifications keep the model straightforward but
also mark directions for future work.

Another limitation concerns our approach to es-
timating mutual information between word identity
and orthographic representation in Chinese. We
used characters, rather than lexical words, as the
unit of analysis. This choice was motivated by two
considerations: first, the average word length in
our OneStopQA Chinese dataset is approximately
1.4 characters; second, Chinese characters, unlike
English letters, carry substantial visual and seman-
tic complexity. As such, characters may serve as
a more suitable unit for modeling bottom-up vi-
sual processing in Chinese, analogous to words in
English. Nonetheless, using lexical words might
produce slightly different estimates of mutual in-
formation. Future work could examine whether

11729



similar patterns hold when words are used instead
of characters.

Another limitation of the present work is that we
did not extensively explore how top-down (contex-
tual) processing can be integrated into the investiga-
tion of bottom-up processing. While much current
research in psycholinguistics emphasizes the role
of top-down expectations, our study is intended
as a contribution specifically to the modeling of
bottom-up processing. As described in Section 2.1,
our formal Bayesian model is capable of incorpo-
rating contextual terms in a straightforward manner.
However, for the scope of this analysis, we opted
to exclude this component, leaving its exploration
for future work.

Moreover, our study is limited to English and
Chinese, as they are chosen to represent alphabetic
and logographic systems, given the available cor-
pora and our expertise. While this provides mean-
ingful cross-linguistic insight, extending to more
languages is important to generalize the conclu-
sions of this work. In particular, the omission of
Semitic languages is a notable gap, as their noncon-
catenative morphology and distinct reading behav-
iors provide a critical test of generalizability (see
e.g., Alhama et al., 2019 and Lerner et al., 2014).
Including such languages remains an important di-
rection for future work.
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A Assumptions of Formal Model

In this appendix, we discuss the assumption(s) of
our formal model, namely that our samples E are
conditionally independent of each other, given W .
First, we walk through the step from 4a to 4b. We
have by the definition of mutual information:

I(W ;E1:i) (11)

=
k∑

i=1

I(W ;Ei | E1:i−1) (12)

=
k∑

i=1

H(Ei | E1:i−1)−H(Ei | W,E1:i−1)

(13)

For the first term in this sum we can use the in-
equality H(E | E1:i−1) ≤ H(E). This is be-
cause adding information can only decrease en-
tropy. Furthermore, assuming conditional indepen-
dence between the samples, given W , we have that
H(E | W,E1:i−1) = H(E | W ). Therefore, we
can rewrite as:

≤
k∑

i=1

H(Ei)−H(Ei | W ) (14)

≤
k∑

i=1

I(Ei;W ) (15)

which, given the symmetry of mutual information,
is what we have in 4b.13

Regarding the assumption of conditional inde-
pendence: This means that if the reader knows the
word’s identity, then previous samples do not nec-
essarily predict what will be sampled next. We
believe that this assumption is somewhat strong.
However, it may be compatible with the view that
readers adopt a simple, but fast, sampling strategy,
in which prior evidence or even incremental knowl-
edge about the word’s identity from samples does
not determine future sampling behavior. Given that
reading happens at a very quick timescale, where
word identification takes potentially only tens of
milliseconds, such a “simple but fast” approach is
not unreasonable.

13Thank you to Tiago Pimentel for pointing out an earlier
issue with our derivation, which has been corrected in this
version of the paper. Any remaining mistakes are, of course,
the fault of the authors.

B Qwen2.5-VL-7B-Instruct Fine-Tuning
Details

We fine-tune Qwen2.5-VL-7B-Instruct using
QLoRA with 4-bit quantization and LoRA adapters
applied to attention projection layers with rank 8,
α = 16, and dropout 0.05. The model is trained
for up to 100 epochs. Early stopping is applied
based on validation loss. The training will ter-
minate if no improvement for three consecutive
epochs. AdamW (learning rate 2e-4), batch size
4, gradient accumulation of 8, and gradient clip-
ping of 1.0. Training data consists of system and
user prompts with bottom-half character images;
the model predicts a single Chinese character. We
format inputs using Qwen’s chat template and pass
them, along with images, through the model. The
LM head outputs token-level logits, which are con-
verted to probabilities. We compute cross-entropy
loss directly on the gold assistant tokens, i.e., on the
predictive distribution of the LM head, rather than
on sampled outputs. Image inputs are processed
using the Qwen processor. Training is conducted
on a single GPU (RTX 3090 Ti). Each training
sample consists of a fixed system prompt and a
task-specific user prompt. For example, for the
lower-half recognition task, the templates used are
as follows:

Chinese prompt

<system prompt> 你是一个善于识别
汉字的智能助手。图片只展示了一
个汉字的下半部分，请你根据下半
部分准确识别该汉字，只回答一个汉
字。

<user prompt> 这张图片显示的是一
个汉字的下半部分，上半部分被遮挡
住了。请根据可见部分判断这是什么
汉字，只回答一个汉字，不要包含其
他内容。这个汉字是：

English prompt

<system prompt> You are a helpful as-
sistant that can identify English words
in images. The image will show only
the lower half of an English word, with
the upper half masked. Identify the word
accurately based on the visible portion.
Please answer with a single word, and do
not include any other text.

<user prompt> The image contains the
lower half of an English word. The upper
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Figure 5: Self-rated ease of reading across visibility
conditions. Participants were asked to judge whether
the upper or lower half of words was easier to read.

half is masked. What is the word in the
image? Please answer with a single word,
and do not include any other text. The
word is:

C TransOCR Training Details

We trained the Transformer-based OCR model
(TransOCR) for character recognition using the
PyTorch framework. The model takes grayscale
images resized to 32×256 pixels as input and is
trained to predict character sequences in an autore-
gressive manner. Training was conducted using the
Adadelta optimizer (ρ = 0.9, weight decay = 1e-4)
with an initial learning rate of 1.0 and a batch size
of 16. The loss function was standard cross-entropy
over predicted character classes. We applied early
stopping with a patience of 5 epochs based on vali-
dation accuracy.

All models were trained on two NVIDIA GPUs
(RTX 3090 Ti) with multi-GPU support (DataParal-
lel), and model checkpoints were saved at each
epoch. The best-performing model was selected
based on validation accuracy.

During inference, character predictions were
generated step-by-step. At each step, the model out-
puts a probability distribution over the character vo-
cabulary via a softmax layer. We denote this distri-
bution given the image input o as pθ(c | o), where
c is a realization of a random variable C ranging
over characters. We first compute the character-
level conditional entropy Hθ(C | o) at each step
using Hθ(C | o) = −∑

c pθ(c | o) log pθ(c | o),
and then sum up the entropies of all steps to obtain
the word-level conditional entropy Hθ(W | o) =
−∑

CHθ(C | o).

D Self-Rated Ease of Reading

As shown in Figure 5, in both Chinese and English,
participants overwhelmingly rated the upper half
of words as easier to read. This asymmetry was
more pronounced in English, where 91% of partici-

pants preferred the upper half, compared to 75% in
Chinese.

E Human Performance on
Comprehension Questions

Language Full Upper Lower

Chinese Acc 66% 60% 56%
English Acc 81% 77% 60%

Table 2: Comprehension question accuracy (Acc) for
Chinese and English participants.

We did not include these results from Table 2 in
the main text due to limitations in our experimental
design. In the Chinese experiment, some screens
lacked questions due to paragraph splitting, leading
to mismatches between question accuracy and oc-
clusion condition, i.e., answers for a given question
could appear on the previous screen under a differ-
ent occlusion condition. This likely explains the
lower overall accuracy in Chinese. In the English
experiment, we corrected this issue by including
questions for all screens, though they were not
generated with the original OneStopQA procedure
(Berzak et al., 2020) due to resource constraints.
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