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Abstract

We introduce CEMTM, a context-enhanced
multimodal topic model designed to infer co-
herent and interpretable topic structures from
both short and long documents containing text
and images. CEMTM builds on fine-tuned
large vision language models (LVLMs) to ob-
tain contextualized embeddings, and employs
a distributional attention mechanism to weight
token-level contributions to topic inference. A
reconstruction objective aligns topic-based rep-
resentations with the document embedding, en-
couraging semantic consistency across modali-
ties. Unlike existing approaches, CEMTM can
process multiple images per document without
repeated encoding and maintains interpretabil-
ity through explicit word-topic and document-
topic distributions. Extensive experiments on
six multimodal benchmarks show that CEMTM
consistently outperforms unimodal and multi-
modal baselines, achieving a remarkable aver-
age LLM score of 2.61 (1-3 scale). Further
analysis shows its effectiveness in downstream
few-shot retrieval and its ability to capture vi-
sually grounded semantics in complex domains
such as scientific articles1.

1 Introduction

Topic modeling aims to uncover the latent thematic
structure of a corpus by organizing documents into
interpretable clusters of topics. While classical
topic models like latent dirichlet allocation (LDA)
(Blei et al., 2003) have long been applied to tex-
tual corpora, the rapid growth of multimodal con-
tent, where images, captions, and structured text
co-exist, demands models that can jointly under-
stand and reason over multiple modalities. Tradi-
tional multimodal topic models (Feng and Lapata,
2010; Putthividhy et al., 2010) extended LDA to
incorporate image features alongside text, but often
failed to capture deeper cross-modal interactions.

1Code is publicly available at: https://github.com/
AmirAbaskohi/CEMTM.

Recent advances in neural topic modeling (Zhu
et al., 2024; Gonzalez-Pizarro and Carenini, 2024a)
have addressed some of these limitations by learn-
ing shared embeddings across modalities, enabling
more coherent and semantically unified topic dis-
covery.

Parallel to these developments, large language
models (LLMs) and large vision language mod-
els (LVLMs) have shown remarkable capacity to
encode rich semantic knowledge from vast and di-
verse corpora. In text-based topic modeling, LLMs
have been used both for generating and assigning
topic with zero- and few-shot prompting (Mu et al.,
2024; Pham et al., 2024b), significantly improving
topic coherence and interpretability. In multimodal
settings, early efforts have used prompt-based meth-
ods (Prakash et al., 2023). However, while mod-
els like TopicGPT produce interpretable outputs
through natural language, they lack corpus-level
topic distributions and robustness to prompt varia-
tion. They also do not model uncertainty or provide
consistent global topic structures, limiting their use-
fulness for exploratory analysis (Hosseiny Marani
and Baumer, 2023). A promising direction is to
combine the knowledge grounding and modality
alignment of LVLMs with the structured model-
ing of multimodal neural topic models, leveraging
LVLMs to enhance semantic understanding with-
out compromising the coherence and stability of
topic representations.

To address these limitations, we propose
CEMTM (Contextual Embedding-based Multi-
modal Topic Modeling), a novel topic modeling
framework that directly leverages the latent rep-
resentations produced by pretrained LVLMs. In-
stead of designing complex architectures to align
modalities, CEMTM uses the final token embed-
ding from an LVLM as a compact, unified represen-
tation of a multimodal document that contains both
textual and visual content (Jiang et al., 2025). This
approach not only captures deeply aligned cross-
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modal semantics but also simplifies the processing
of documents with multiple images. By avoiding
the need for separate modality-specific encoders,
CEMTM allows the entire document, including all
images and the accompanying text, to be encoded
holistically, making it well-suited for scalable and
coherent multimodal topic modeling. Additionally,
inspired by Fang et al. (2024), we incorporate a
learnable importance network to estimate the con-
tribution of each textual token and image patch
to the document-topic representation. CEMTM
achieves strong empirical performance across six
benchmark datasets, obtaining an average LLM co-
herence score of 2.61 out of 3, outperforming a
broad range of baselines.

Our contributions are: (I) We introduce
CEMTM, a multimodal topic model that uses pre-
trained vision-language representations to generate
coherent, diverse topics from long multimodal doc-
uments; (II) We propose a stochastic, distribution-
based mechanism to learn token importance, im-
proving semantic alignment and interpretability
when combined with fine-tuned LVLM embed-
dings; (III) CEMTM sets a new SOTA, outper-
forming strong baselines on topic quality and the
downstream task of few-shot question-answering
(QA), demonstrating the value of topic distributions
for retrieval-based tasks.

2 Related Work

Neural Multimodal Topic Modeling Early mul-
timodal topic models extended LDA to handle im-
age and text jointly (Blei and Jordan, 2003), but
often treated modalities independently. Neural ap-
proaches addressed this by learning shared repre-
sentations, such as SupDocNADE (Zheng et al.,
2014) and graph-based models for short documents
(Zhu et al., 2024). Gonzalez-Pizarro and Carenini
(2024b) conducted a large-scale comparison of
neural multimodal topic models, showing room
for improvement in coherence and diversity. Un-
like these models, CEMTM leverages pretrained
LVLMs and uses their final token embeddings to
capture aligned cross-modal semantics, eliminating
the need to learn modality alignment during topic
representation learning.

Language Models for Topic Modeling Lan-
guage models have advanced topic modeling
through prompting and contextual embeddings.
Prompt-based methods like TopicGPT (Pham et al.,
2024a) generate interpretable, natural-language

topics with LLMs, while CWTM (Fang et al., 2024)
integrates contextual BERT embeddings into neu-
ral topic models for improved coherence. In mul-
timodal settings, PromptMTopic (Prakash et al.,
2023) combines textual and visual cues via LLMs
to extract culturally aware topics from memes via
prompting. More broadly, LVLMs offer unified rep-
resentations for image–text pairs. However, their
application to multimodal topic modeling remains
underexplored. To address this, CEMTM leverages
LVLMs, using the final token as a compact and
aligned multimodal embedding, enabling efficient
and interpretable topic discovery by using LLM’s
pretrained knowledge, without separate modality
encoders or prompting.

3 Method

CEMTM is designed to perform soft topic model-
ing over long, multimodal documents. As shown in
Figure 1, CEMTM processes both text and image
inputs through an LVLM to produce contextual-
ized token embeddings for both image and text
tokens, learns importance-aware topic vectors, and
reconstructs semantic document-level representa-
tions as supervision. We present our approach in
three parts: document preprocessing (Section 3.1),
model training (Section 3.2), and topic extraction
(Section 3.3).

3.1 Preprocessing

Each document in the corpus contains both textual
content and one or more associated images. Prior
to training, we apply the following preprocessing
steps. We begin with text cleaning, where we apply
standard NLP preprocessing to remove punctuation,
normalize casing, and eliminate irrelevant tokens
(e.g., HTML tags). Following this, we perform vo-
cabulary construction by tokenizing all documents
and building a fixed vocabulary V that retains the
most frequent words while discarding stop-words
and rare terms. For the image processing step, all
associated images are resized and formatted to en-
sure compatibility with the input requirements of
the vision-language model.

3.2 Model Training

We use VLM2Vec (Jiang et al., 2025), a fine-tuned
version of LLaVA-Next-7B (Liu et al., 2024), to
encode each document’s text and image content
into contextualized representations. Our approach
is motivated by the hypothesis that while document
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Article

The Great Wall of China (traditional Chinese:
萬里長城; simplified Chinese: 万里长城;
pinyin: Wànlǐ Chángchéng, literally "ten

thousand li long wall") is a series of
fortifications in China. They were built across

the historical northern borders of ancient
Chinese states and Imperial China as

protection against various nomadic groups
from the Eurasian Steppe. The first walls
date to the 7th century BC; these were
joined together in the Qin dynasty.[4][5]

Successive dynasties expanded the wall
system; the best-known secti

Text

Fine-tuned Vision Language Model

Contextualized Image Embeddings + Word Embeddings (H)

Importance Network Encoder Forward Layer

Topic Token Vectors
[t1, t2, ... ti]

×
Token Importance (β)

Decoder Forward Layer

Last Token Embedding As Document
Embedding (ed)

Reconstructed Document Representation (ed')

Reconstruction Loss µ σ2

Images

Document Topic Vector (θd)

Figure 1: Overall architecture of CEMTM. Articles containing both text and images are encoded using a fine-tuned
vision–language model to produce contextualized embeddings. During training, only the decoder forward layer,
encoder forward layer, and importance network are fine-tuned, while the underlying vision–language backbone
remains frozen. The model learns to construct document topic vectors by weighting token embeddings through the
importance network, with reconstruction loss guiding optimization.

embeddings encode rich semantic information, us-
ing them alone to infer topic distributions prevents
access to vocabulary-level topic-word associations,
limiting interpretability.

We begin by considering the approach of infer-
ring latent document-topic vectors from document
embeddings. Let ed ∈ RD be the embedding of
a document d obtained from an LVLM, where D
denotes the dimensionality of the embedding space.
A straightforward method would use the document
embedding vector to generate the topics. However,
this formulation lacks a way to associate topics
with specific words, since it bypasses vocabulary-
level granularity. To address this, we instead extract
contextualized token embeddings from the docu-
ment:

H = [h1, . . . ,hN ] ∈ RN×D

where N is the number of textual tokens and visual
patches in the document. Each hi corresponds to
a context-dependent representation of a token or
an image patch. Each contextual embedding hi is
projected into the topic space using a learnable en-
coder with weight Wt ∈ RD×K , where K denotes

the number of latent topics, as follows:

ti = Softmax(hiWt) ∈ RK

We interpret ti = p(z | hi) as the soft topic dis-
tribution for token i. However, not all tokens con-
tribute equally to the semantic representation of
a document. To model the relative importance
of each token in shaping the document’s seman-
tics, we introduce a learnable importance net-
work that predicts a stochastic weight for each
token. The importance network consists of a trans-
former encoder followed by a feedforward projec-
tion layer. Given contextualized token embeddings
H = [h1, . . . ,hN ], the importance network out-
puts a mean and standard deviation for each token’s
importance score:

µi, σ
2
i = fθ(Transformer(H))i

αi ∼ N (µi, σ
2
i )

To produce normalized importance weights, we
apply a softmax across the sampled values:

β = Softmax([α1, . . . , αN ]) ∈ RN
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Advantageously, the importance network also
improves interpretability. The stochastic weights
β provide an explicit estimate of how much each
token or patch contributes to the document-level
semantics. This makes it possible to identify salient
tokens or regions and trace the evidence behind
topic assignments, offering a more transparent view
compared to standard attention mechanisms.

The document-topic vector is then computed by
taking a weighted average of the token-level topic
vectors:

θd = Softmax(
N∑

i=1

βiti)

The document-topic vector is then mapped into
the embedding space using a learnable decoder
with weight Wd ∈ RK×D, where K is the number
of latent topics and D is the embedding dimension:

ed′ = θdWd ∈ RD

For supervision, we use the final token’s hidden
state from VLM2Vec as the reference document
embedding (ed). The model maps the predicted
embedding (ed′) to this target, optimized with a
reconstruction loss:

Lrec = MSE(ed′ , ed)

This objective helps ensure that the learned top-
ics preserve the global semantics encoded by the
vision-language model, resulting in more coherent
and multimodally grounded topic representations.

To encourage sharp and interpretable importance
scores, we add an entropy regularization term to
the loss (Vulić and Mrkšić, 2018). This term pe-
nalizes high-entropy (i.e., overly uniform) distri-
butions over the importance weights βi, pushing
the model to concentrate attention on a smaller
subset of relevant elements. This promotes spar-
sity in the importance scores, making the model’s
decisions more focused and interpretable, which
benefits both transparency and performance in rea-
soning tasks. The entropy regularization is defined
as:

Lent =

N∑

i=1

βi log βi

We also apply a KL divergence penalty between
the predicted importance distribution q(αi) =
N (µi, σ

2
i ) and a standard normal prior p(αi) =

N (0, 1). This regularization keeps topic impor-
tance variables close to a standard Gaussian, re-
ducing overfitting and promoting a smooth, bal-
anced latent space (Jin et al., 2021). This is crucial
in multimodal settings to avoid overconfident or
modality-biased topic representations.

LKL =

N∑

i=1

(
log

1

σi
+

σ2
i + µ2

i − 1

2

)

The final loss function is:

L = Lrec + λentLent + λKLLKL

where λent and λKL are hyperparameters that con-
trol the strength of entropy and KL regularization,
respectively.

This formulation enables the model to learn a
flexible, distribution-based importance mechanism
over tokens, while ensuring that the topic vector
faithfully reconstructs document-level semantics
and supports interpretable word-topic associations.

3.3 Topic Extraction
Once the model is trained, we extract topic-word
associations by aggregating token-level topic vec-
tors for each word in the vocabulary. Let w ∈ V
be a word and Iw the set of all positions where w
appears in the corpus. We compute the aggregated
topic vector for word w as:

tw =
1

Zw

∑

i∈Iw
βiti,

where Zw =
∑

i∈Iw βi ensures normalization. The

topic score for word w in topic k is t(k)w , which is
guaranteed to be non-negative due to the softmax
used in the importance distribution. To extract
representative topic words, we rank all words w ∈
V by their value t

(k)
w for each topic k.

Topic words are extracted based on the vocabu-
lary. For image patches, we associate each patch
with its nearest word token in the embedding space
and use that token in the aggregation step. This
allows us to incorporate the semantic contribution
of visual information while keeping the topic-word
distributions interpretable.

4 Experiments and Results

We conduct extensive experiments to evaluate the
effectiveness of our proposed model, CEMTM, on
both topic modeling and its application to topic-
guided few-shot retrieval for multimodal question
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answering. We assess the quality of the extracted
topics using standard coherence and diversity met-
rics, and demonstrate the utility of the learned
document-topic vectors in improving few-shot ex-
ample selection. Additionally, we analyze the sen-
sitivity of the model to the underlying encoder and
provide qualitative insights into the learned topics
and retrieval behavior. Refer to Appendix B for
hyperparameter and experimental settings.

4.1 Datasets

We evaluate CEMTM across a diverse set of mul-
timodal and long-document datasets spanning en-
cyclopedic, scientific, narrative, educational, and
social domains. Table 1 summarizes the datasets
used in this study. Among these, only WikiWeb2M
and SPIQA provide explicit ground-truth topic la-
bels, which we use for quantitative evaluation. For
the remaining datasets, we assess topic quality us-
ing unsupervised metrics such as coherence and
diversity.

Dataset Domain # Docs Avg. Tokens Avg. Images
WikiWeb2M Encyclopedic 100,833 527 4.1
SPIQA Scientific 697 1342 3.7
VIST Narrative 50,000 152 5.0
TQA Educational 410 1086 2.9
MSCOCO Image Captions 30,000 13 1.0
T4SA Social Media 30,000 15 1.0
FHM Memes 10,000 9 1.0

Table 1: Summary of datasets used in our experiments.

4.2 Evaluation Metrics

We evaluate topic quality using five standard met-
rics: Normalized Pointwise Mutual Information
(NPMI) (Lau et al., 2014), Word Embedding score
(WE) (Fang et al., 2016), LLM score (Stammbach
et al., 2023), Inverse Rank-Biased Overlap (I-RBO)
(Terragni et al., 2021), and Topic Diversity (TD)
(Dieng et al., 2020). NPMI and WE measure word-
level coherence (co-occurrence and semantic sim-
ilarity), the LLM score uses a language model to
rate coherence (1–3 scale), and has strong corre-
lation with human judgments (Stammbach et al.,
2023). I-RBO and TD capture diversity, respec-
tively via rank-aware dissimilarity and unique word
coverage.

For datasets with gold topic labels (WikiWeb2M,
SPIQA), we also report clustering-based metrics:
Purity (Zhao and Karypis, 2001), Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985), and Normal-
ized Mutual Information (NMI) (Strehl and Ghosh,
2002), which measure alignment between predicted

Multimodal Document

Inference Network

Sampled 
Representation

Replacing Image 
With Captions

Document Representation
(Last Token Embedding from 

VLM2Vec)

Loss Computation

Figure 2: LVLM Zero-shot TM uses LVLM embeddings
for better multimodal alignment and more meaningful
topic vectors than Multimodal Zero-shot TM.

and true topic assignments.

4.3 Baselines

We compare CEMTM against a broad set of base-
lines spanning traditional, contextualized, and mul-
timodal topic modeling. As a classical reference,
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), trained with Gensim (Řehůřek and Sojka,
2010), models each document as a mixture of top-
ics over a bag-of-words representation. More re-
cent contextualized methods replace or augment
bag of words (BoW) features with embeddings: Ze-
roshotTM (Bianchi et al., 2021a) uses SBERT em-
beddings (Reimers and Gurevych, 2019) for zero-
shot topic modeling, and CombinedTM (Bianchi
et al., 2021b) improves interpretability by concate-
nating SBERT with BoW. Similarly, CWTM (Fang
et al., 2024) projects contextual token representa-
tions into a topic space and aggregates them using
fixed or learned importance scores.

We also adapt TopicGPT (Pham et al., 2024a),
which does not expose explicit topic-word distribu-
tions. To approximate them, we restrict the number
of topics to K and use token-level soft assignments
to construct interpretable topic-word vectors (see
Appendix B for more details). Building on this, we
introduce Multimodal TopicGPT, which incorpo-
rates both text and images at inference.

For other multimodal baselines, M3L-Contrast
(Zosa and Pivovarova, 2022) leverages im-
age–caption alignment to enforce consistent
document-topic representations, while Multimodal
ZeroshotTM (Gonzalez-Pizarro and Carenini,
2024a) extends ZeroshotTM by combining textual
embeddings with vision encoder features. Finally,
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

LDA .028 .095 2.40 .703 .953 .295 .131 .235 .022 .088 2.31 .717 .942 .299 .136 .244
CombinedTM .039 .150 2.46 .696 .948 .317 .149 .258 .033 .140 2.39 .705 .940 .315 .148 .258
Zero-shot TM .040 .172 2.51 .717 .966 .335 .149 .257 .036 .162 2.46 .731 .958 .331 .152 .263
CWTM .052 .188 2.56 .714 .965 .347 .167 .275 .047 .177 2.51 .729 .957 .344 .168 .278
TopicGPT .063 .212 2.59 .729 - .378 .189 .288 .057 .201 2.55 .748 - .377 .192 .294

M3L-Contrast .065 .226 2.62 .744 .981 .386 .196 .298 .059 .215 2.59 .763 .973 .387 .199 .304
Multimodal Zero-shot TM .071 .236 2.64 .756 - .395 .204 .308 .062 .223 2.60 .776 - .399 .206 .315
LVLM Zero-shot TM .074 .246 2.65 .763 .990 .407 .213 .320 .065 .233 2.63 .785 .980 .411 .215 .326
Multimodal TopicGPT .080 .255 2.67 .774 .993 .414 .224 .328 .071 .242 2.65 .798 .984 .419 .227 .335

CEMTM (ours) .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359

Table 2: Comparison of topic modeling performance on WikiWeb2M (Burns et al., 2023) and SPIQA (Pramanick
et al., 2024). We report coherence (NPMI, WE, LLM), diversity (TD), redundancy (I-RBO), and clustering
metrics (Purity, ARI, NMI), averaged over K = {25, 50, 75, 100} with three random seeds. CEMTM consistently
outperforms all baselines. See Table 12 in Appendix D for detailed results for each K.

VIST TQA
NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO

LDA .017 .077 2.23 .646 .935 .019 .081 2.25 .665 .940
CombinedTM .024 .119 2.31 .637 .933 .028 .129 2.32 .652 .937
Zero-shot TM .029 .138 2.38 .659 .949 .032 .151 2.39 .679 .955
CWTM .036 .155 2.44 .656 .946 .041 .169 2.45 .675 .953
TopicGPT .043 .179 2.47 .671 - .050 .194 2.48 .692 -
M3L-Contrast .044 .190 2.50 .681 .962 .052 .207 2.51 .705 .970
Multimodal Zero-shot TM .048 .197 2.52 .687 .971 .056 .215 2.53 .716 .976
LVLM Zero-shot TM .050 .208 2.54 .696 .974 .059 .226 2.55 .724 .977
Multimodal TopicGPT .055 .216 2.56 .707 - .064 .234 2.57 .736 -
CEMTM (ours) .062 .233 2.58 .723 .981 .071 .250 2.60 .752 .984

MSCOCO T4SA
NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO

LDA .016 .073 2.21 .618 .985 .012 .064 2.18 .597 .985
CombinedTM .023 .117 2.28 .605 .984 .018 .105 2.25 .585 .978
Zero-shot TM .027 .135 2.34 .629 .987 .023 .123 2.33 .610 .987
CWTM .034 .153 2.40 .626 .987 .029 .142 2.38 .607 .988
TopicGPT .042 .177 2.43 .642 - .035 .164 2.42 .623 -
M3L-Contrast .044 .189 2.46 .654 .990 .037 .175 2.45 .636 .991
Multimodal Zero-shot TM .047 .198 2.48 .662 .992 .040 .182 2.46 .644 .992
LVLM Zero-shot TM .050 .210 2.50 .670 .993 .043 .194 2.48 .652 .993
Multimodal TopicGPT .055 .218 2.52 .682 - .048 .202 2.50 .663 -
CEMTM (ours) .061 .233 2.54 .697 .995 .053 .218 2.52 .679 .995

Table 3: Unsupervised topic quality on VIST (Huang et al., 2016), TQA (Kembhavi et al., 2017), MSCOCO (Lin
et al., 2014), and T4SA (Vadicamo et al., 2017) using coherence (NPMI, WE, LLM), diversity (TD), and redundancy
(I-RBO). Results are averaged over K = {25, 50, 75, 100} with three random seeds. CEMTM outperforms all
baselines. See Table 13 in Appendix D for detailed results for each K.

our proposed LVLM ZeroshotTM strengthens this
approach by using embeddings from LVLMs, yield-
ing more semantically grounded and better aligned
multimodal topic vectors (as shown in Figure 2).

4.4 Quantitative Results

We evaluate the performance of CEMTM and base-
lines across a wide range of datasets, reporting
both intrinsic topic quality metrics (e.g., NPMI,
WE, LLM, TD, I-RBO) and extrinsic clustering
metrics (Purity, ARI, NMI) when ground-truth la-
bels are available. Results are averaged over four
topic counts (K = 25, 50, 75, 100), each run with

three random seeds.

Long-document and In Domain Performance.
Table 2 presents results on WikiWeb2M and
SPIQA, both of which consist of long, multimodal
documents and include ground-truth topic annota-
tions. CEMTM outperforms all baselines across ev-
ery metric, demonstrating stronger topic coherence,
higher diversity, and more accurate topic assign-
ments. Notably, our model surpasses multimodal
baselines like Multimodal TopicGPT and LVLM
Zero-shot TM, while also being more efficient than
methods like TopicGPT that require autoregressive
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FHM
NPMI WE LLM TD I-RBO

LDA .005 .048 2.04 .530 .983
CombinedTM .009 .087 2.10 .518 .975
Zero-shot TM .014 .109 2.17 .543 .984
CWTM .019 .128 2.22 .540 .986
TopicGPT .025 .150 2.26 .554 .988
M3L-Contrast .030 .169 2.34 .566 .990
Multimodal Zero-shot TM .033 .177 2.36 .574 .992
LVLM Zero-shot TM .039 .194 2.43 .590 .993
Multimodal TopicGPT .043 .202 2.45 .601 .994
CEMTM (ours) .049 .217 2.47 .617 .995

Table 4: Unsupervised topic quality on the FHM dataset
(Kiela et al., 2020), which tests modeling under high
image–text semantic gaps. We report coherence (NPMI,
WE, LLM), diversity (TD), and redundancy (I-RBO),
averaged over K = {25, 50, 75, 100} with three seeds.
CEMTM outperforms all baselines, highlighting the
benefit of joint multimodal modeling. See Table 14 in
Appendix D for detailed results for each K.

decoding or multiple forward passes (for topic gen-
eration and topic assignment). Unlike other models,
CEMTM processes documents with multiple im-
ages in a single pass without repeated inference,
offering both performance and scalability benefits.

Generalization Across Domains. Table 3 shows
performance on four additional datasets—VIST,
TQA, MSCOCO, and T4SA—that include both
short and medium-length multimodal documents
but lack ground-truth topic labels. Again, CEMTM
achieves the best performance across all intrin-
sic metrics and datasets, highlighting its flexibil-
ity across domains including narratives (VIST),
educational content (TQA), captioned images
(MSCOCO), and social media posts (T4SA). These
results indicate that the model generalizes well
even beyond long-text scenarios.

Semantic Gap Analysis. A particularly challeng-
ing scenario in multimodal topic modeling arises
when there is a semantic gap between images and
text, as in the case of memes. Table 4 focuses on
the Facebook Hateful Memes dataset, where there
is a known semantic gap between images and their
accompanying captions. This setting is particularly
challenging for topic models that rely on textual
content alone. The results show a clear separation
between unimodal and multimodal models, with
image-aware approaches consistently outperform-
ing text-only counterparts. Furthermore, models
that use large vision-language models (LVLMs),
such as LVLM Zero-shot TM, Multimodal Top-
icGPT, and CEMTM, show the highest gains, sug-

Setting SPIQA TQA
METEOR BERTScore-F1 Acc F1-Macro

Zero-shot 26.3 67.48 84.87 83.79

3-shot Random Selection 27.4 68.92 85.36 84.28
3-shot Embedding Based Selection 28.7 70.11 86.09 85.12

3-shot Topic Based Selection 31.3 72.76 87.31 87.03

Table 5: Few-shot QA results on SPIQA and TQA test
sets. Topic-based selection leads to the best performance
across both datasets. For a detailed comparison of the
performance of different topic models used for topic-
based retrieval, refer to Table 11 in Appendix C.

gesting that better multimodal alignment signif-
icantly improves topic modeling in semantically
ambiguous contexts. This validates the design of
CEMTM, which leverages fine-tuned LVLM em-
beddings and a flexible importance-weighted fu-
sion mechanism to capture cross-modal semantics
effectively.

4.5 Improving Few-Shot Multimodal QA with
Topic-Aware Retrieval

Beyond evaluating CEMTM on topic modeling
tasks, we assess the utility of its learned document-
topic vectors for improving few-shot multimodal
question answering. Specifically, we use these
topic vectors (with the number of topics set to
K = 50) to retrieve in-context examples for
prompting a QA model in a few-shot setting. We
compare four retrieval strategies on the SPIQA
and TQA test sets: (1) a zero-shot baseline, (2)
random selection of 3 in-context examples, (3)
embedding-based retrieval using cosine similarity
over OpenAI’s text-embedding-3-small2, and
(4) our topic-based retrieval using document-topic
vectors produced by CEMTM. As shown in Table 5,
topic-based selection significantly outperforms all
other methods across all evaluation metrics, includ-
ing METEOR and BERTScore on SPIQA, and ac-
curacy and macro-F1 on TQA. This demonstrates
that topic distributions learned by CEMTM cap-
ture high-level semantic structure that can guide
effective example selection, providing relevant and
diverse context without relying on direct surface
similarity. These results highlight the potential of
CEMTM beyond topic interpretability.

4.6 Qualitative Results

To further evaluate how CEMTM captures visually
grounded semantics, we examine the Wikipedia
article titled Volcanic eruption, which describes

2https://platform.openai.com/docs/models/
text-embedding-3-small
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Model Topic Words Inferred from Text Topic Words Inferred from Visual Patches
CWTM eruption, magma, lava, ash, rock —
Multimodal Zero-shot TM eruption, lava, ash, magma, crater plume, smoke, debris, slope, flow
LVLM Zero-shot TM eruption, lava, ash, magma, vent cloud, plume, lava flow, crater rim, tephra
CEMTM (ours) eruption, lava, ash, magma, pyroclastic plume, flow, cloud, fountain, tephra

Table 6: Predicted top topic words for the Wikipedia page Volcanic eruption, separated into text-derived vs. visual
patch-derived words. The text columns intentionally show high overlap (e.g., eruption, lava, ash, magma) to reflect
consistent lexical signals across models, with CEMTM additionally capturing specialized geological terminology
such as pyroclastic. The visual columns highlight model-specific perceptual cues (e.g., plume, flow, cloud), showing
how multimodal integration introduces eruption-specific semantics not present in text alone.

Query Page: Saturn (planet) Top Topic Words: planet, ring, gas, orbit, atmosphere, moon, giant, solar, space, rotation
Random Barack Obama, Photosynthesis, Succulent plant
Embedding-based Solar System, Mars, Astronomy
Topic-based (CEMTM) Jupiter, Uranus, Gas giant
Query Page: French Revolution Top Topic Words: revolution, france, king, monarchy, liberty, citizens, republic, upris-

ing, power, 1789
Random Harry Potter, Mount Everest, DNA replication
Embedding-based American Revolution, Napoleon, History of France
Topic-based (CEMTM) Reign of Terror, Louis XVI, Constitution of 1791
Query Page: Photosynthesis Top Topic Words: plant, sunlight, chlorophyll, carbon, dioxide, glucose, energy, leaf,

oxygen, process
Random World War II, Twitter, Rome
Embedding-based Cellular respiration, Chloroplast, Botany
Topic-based (CEMTM) Light-dependent reactions, Carbon fixation, Thylakoid

Table 7: Comparison of retrieval methods for Wikipedia pages. CEMTM yields more fine-grained, thematically
aligned results by leveraging interpretable topic distributions.

types of volcanic eruptions, geological processes,
and associated hazards. The page includes key im-
ages such as eruption plumes, lava flows, and ash
clouds that visually differentiate between explosive
and effusive eruptions, information that is often
only implicitly mentioned or not described in detail
in the text. Table 6 presents a comparison of top
topic words predicted by CWTM (text-only), Mul-
timodal Zero-shot TM, LVLM Zero-shot TM, and
CEMTM. The text-only model generates general
geological terms and omits eruption-specific visual
cues. Multimodal Zero-shot TM incorporates vi-
sual features but lacks deep integration, leading to
less coherent topic-word clusters. LVLM Zero-shot
TM improves topic specificity, capturing visual el-
ements like “plume” and “cloud,” while CEMTM
further refines this by predicting visually aligned
and geologically grounded terms (e.g. “pyroclas-
tic”). CEMTM benefits from fine-grained fusion
of text and image semantics during training, and
its reconstruction objective ensures visual informa-
tion is preserved in the topic structure, something
BoW-based models discard.

Table 7 qualitatively illustrates how CEMTM
enhances semantic retrieval by leveraging inter-

pretable document-topic vectors. For each query
Wikipedia article, CEMTM retrieves thematically
precise pages by comparing topic distributions,
outperforming both random and embedding-based
baselines. While embedding-based methods re-
trieve broadly related pages (e.g., Mars for Saturn),
they often lack topical granularity. In contrast,
CEMTM identifies highly specific, contextually
aligned documents such as Gas giant or Constitu-
tion of 1791, grounded in the core semantic fields
of the queries. This demonstrates that topic-based
retrieval with CEMTM not only captures more in-
terpretable signals but also better models thematic
structure, making it particularly useful for few-shot
prompting and corpus exploration.

5 Ablation Studies

5.1 Impact of Vision-Language Embedding
Quality

To assess the effect of vision-language pretrain-
ing and fine-tuning, we compare several variants
that adjust how VLM2Vec is used in CEMTM. As
shown in Table 8, replacing the VLM2Vec version
of LLaVA-Next-7B model, obtained by fine-tuning
LLaVA-Next-7B, entirely with pretrained LLaVA-
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

CEMTM .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359
Without Distribution As Importance Netowork .087 .269 2.69 .789 .996 .432 .242 .348 .078 .255 2.68 .814 .987 .441 .248 .356

No VLM2Vec .083 .260 2.67 .776 .994 .424 .231 .335 .074 .246 2.66 .797 .985 .429 .235 .342
VLM2Vec only for Word Embedding .085 .265 2.68 .780 .994 .426 .234 .338 .075 .249 2.67 .801 .986 .432 .239 .346
VLM2Vec only for Document Embedding .085 .266 2.68 .781 .995 .428 .235 .340 .076 .251 2.67 .802 .986 .434 .240 .348

Table 8: Ablation results on WikiWeb2M and SPIQA, showing the impact of using distribution-based importance
modeling and fine-tuned VLM2Vec embeddings for word and document representations.

WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

CEMTM .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359
CEMTM w/o Image .070 .228 2.64 .765 .981 .398 .205 .310 .062 .215 2.62 .785 .973 .400 .207 .318
CEMTM w/ Caption .077 .246 2.66 .778 .988 .417 .221 .332 .068 .235 2.64 .800 .980 .425 .229 .340

Table 9: Modality ablation results on WikiWeb2M and SPIQA. CEMTM w/o Image indicates removing the image
modality entirely, while CEMTM w/ Caption replaces the image modality with GPT-4o generated captions.

Next-7B results in the largest performance drop,
particularly in document clustering metrics. This
confirms that alignment-aware fine-tuned embed-
dings are crucial for accurate topic representation.
Using VLM2Vec only for token embeddings or
only for document embeddings results in interme-
diate performance: both help individually, but full
use of VLM2Vec (as in the original model) pro-
vides the strongest gains. These results highlight
the importance of semantically aligned, multimodal
representations at both word and document levels.
We further investigated the sensitivity of CEMTM
across different LVLMs in Appendix A.

5.2 Role of Distributional Supervision in the
Importance Network

We further evaluate the effect of modeling impor-
tance weights as samples from a learned Gaussian
distribution, rather than as deterministic values. As
shown in Table 8, removing this distributional su-
pervision and replacing it with a simple softmax
network leads to a consistent drop in performance
across coherence (NPMI, WE, LLM), diversity
(TD), and clustering metrics (Purity, ARI, NMI).
This confirms that stochastic importance modeling
not only improves robustness, but also helps the
model better focus on semantically relevant tokens
or image regions, ultimately yielding higher-quality
and more interpretable topic structures.

5.3 Role of Visual Signals in Multimodal
Topic Modeling

Table 9 presents the results of our modality abla-
tion study on WikiWeb2M and SPIQA. We observe
that removing the image modality (w/o Image)
substantially degrades performance across all met-

rics, confirming the crucial role of visual signals in
enhancing topic coherence and clustering quality.
When substituting images with automatically gen-
erated captions (w/ Caption), the performance im-
proves compared to removing images entirely, but
it still falls short of the full model (CEMTM). This
finding is consistent with prior work emphasizing
that captions only provide partial information about
visual content, whereas direct image features cap-
ture richer multimodal cues. Overall, these results
highlight the importance of incorporating image
representations directly, rather than relying solely
on textual surrogates.

6 Conclusion

We presented CEMTM, an interpretable multi-
modal topic model designed to extract coherent
topics from both short and long documents contain-
ing text and images. CEMTM leverages fine-tuned
LVLM embeddings alongside a distributional at-
tention mechanism, combining contextualized rep-
resentations with a reconstruction-based training
objective and importance-weighted fusion. This en-
ables the model to capture document-level seman-
tics while preserving interpretability. Evaluated on
six benchmark datasets, CEMTM achieves a strong
average LLM score of 2.61 out of 3 and a Purity
score of 0.44, outperforming a broad range of uni-
modal and multimodal baselines. Ablation results
further highlight the value of fine-tuned LVLMs
and distributional supervision in guiding topic qual-
ity. Overall, CEMTM is a scalable, explainable
framework that enables tasks like few-shot retrieval,
multimodal summarization, and corpus-level topic
analysis with efficiency and interpretability.
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Limitations

While CEMTM demonstrates strong performance
and scalability across diverse multimodal datasets,
several limitations remain. First, the model relies
heavily on pretrained LVLMs, which introduces
significant computational overhead and requires ac-
cess to large-scale GPU resources (See Appendix
B for more information). This may limit the appli-
cability of CEMTM in low-resource or real-time
settings. Second, although the reconstruction ob-
jective aligns topic vectors with semantic document
embeddings, this does not guarantee that each topic
is fully disentangled or interpretable in isolation–
particularly when documents cover overlapping
concepts or when visual information is noisy or
redundant. Additionally, our evaluation focuses
on English-language datasets and does not explore
multilingual or cross-cultural settings, where visual
semantics and topic interpretability may differ sig-
nificantly. Lastly, while the importance network
encourages interpretability through attention spar-
sity, its learned weights are not explicitly validated
against human judgments, leaving room for future
work in explainability and user-in-the-loop topic
refinement.

Ethical Considerations

Potential Risks This research presents potential
risks related to the use of real-world multimodal
data, which may contain harmful biases or inac-
curacies. To mitigate these risks, all experiments
were conducted in controlled settings, and none
of the resulting models were deployed in public-
facing systems. Additionally, we carefully mon-
itored model outputs during evaluation to ensure
that no harmful content was propagated.

FHM Offensive Data We used the Facebook
Hateful Memes (FHM) dataset, which contains po-
tentially offensive content, strictly for experimental
purposes in this study. To minimize harm, we do
not release any models trained on this dataset. This
precaution ensures that any biased or harmful pat-
terns present in the data are not disseminated or
used beyond the limited scope of our research.

AI Assistance AI tools were used during this
project to assist with both writing and coding.
Specifically, AI assistance supported drafting text,
refining code structure, and improving clarity.
However, all scientific contributions, including
experimental design, analysis, and interpretation,

were solely conducted by the authors to preserve
research integrity.
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A Encoding Model Sensitivity

To evaluate the impact of the underlying vision-
language encoder on CEMTM, we compare
VLM2Vec variants fine-tuned from LLaVA-Next-
7B (Li et al., 2024a) and QWen2VL-7B (Yang et al.,
2024) (as described in Jiang et al. (2025)) with sev-
eral non–fine-tuned baselines, including Phi-3.5-
V (Abdin et al., 2024), LLaVA-1.6-7B (Li et al.,
2024b), CLIP (Radford et al., 2021a), and BLIP2-
OPT-7B (Li et al., 2023). As shown in Table 10,
the choice of encoder has a clear effect on topic
quality and clustering performance. QWen2VL-7B
achieves the strongest results on both WikiWeb2M
and SPIQA, while LLaVA-1.6-7B emerges as the
most competitive non–fine-tuned baseline. These
results highlight the importance of robust multi-
modal grounding for improving coherence and in-
terpretability in CEMTM.

We also observe that VLM2Vec fine-tuning sub-
stantially improves document representations, en-
abling stronger topic coherence and clustering.
Among the non–fine-tuned models, multimodal
language models such as LLaVA-1.6 and Phi-
3.5-V generally outperform vision-only encoders
like CLIP, underscoring the advantage of joint vi-
sion–language reasoning in capturing corpus-level
semantics.

B Experimental and Hyperparameter
Settings

Experimental Settings All experiments were
conducted using two NVIDIA A100 80GB GPUs.
To account for variance in training, we report re-
sults averaged over 3 random seeds. This setup
ensures consistency and robustness across different
runs, especially when training large-scale models
such as our proposed CEMTM and the multimodal
baselines.

Hyperparameter Settings For our model,
CEMTM, we use VLM2Vec as the encoder,
based on a fine-tuned LLaVA-Next-7B. As
detailed in Appendix A, we explore the impact
of different LVLMs. All token embeddings are
projected into a K-dimensional topic space. The
importance network is a 2-layer Transformer (4
heads), followed by a feedforward layer predicting
Gaussian token-level importance scores. The
encoder forward layer is a 2-layer MLP with
hidden size 512. We train with batch size 8,
learning rate 2 × 10−5, for 30 epochs using

Adam. Regularization weights are λent = 0.05 and
λKL = 0.1.

For baselines, we use public implementations
when available. LDA is trained via Gensim with
100 passes and α = 0.01. ZeroshotTM and Com-
binedTM use SBERT (all-MiniLM-L6-v2) with
default settings from Bianchi et al. (2021a). Top-
icGPT and its multimodal variants are run with
our modified version, limiting to K topics and as-
signing tokens sequentially to reflect topic pref-
erence. We then extract topic-word distributions
by aggregating the token-topic assignments across
the corpus, using soft alignment weights to repre-
sent each word’s contribution to each topic. M3L-
Contrast and Multimodal Zeroshot TM use CLIP
ViT-B/32 (Radford et al., 2021b) for image fea-
tures and SBERT (all-MiniLM-L6-v2) for text
encoding. For text-only models (e.g., LDA, Ze-
roshotTM, CombinedTM, CWTM), we append
GPT-4o-generated image captions to inputs to en-
able multimodal evaluation. All models use the
same number of topics, tokenization, and docu-
ment splits for fair comparison.

C Topic Models Comparison for Few-shot
Retrieval

To better understand the role of topic models in
guiding few-shot retrieval, we conduct a detailed
comparison of different strategies for selecting in-
context examples. The results in Table 11 reveal
several important trends. First, simple baselines
such as random selection or nearest-neighbor re-
trieval using document embeddings provide only
modest improvements over the zero-shot setting.
While these methods occasionally retrieve seman-
tically similar examples, they lack the ability to
capture higher-level topical coherence, which is
crucial for complex multimodal QA tasks.

By contrast, topic-driven retrieval methods de-
liver more consistent and meaningful gains across
datasets and metrics. Models such as CWTM and
M3L-Contrast highlight the benefit of leveraging
contextualized topic spaces, where representations
capture recurring semantic patterns that extend be-
yond surface-level similarity. Extending this idea to
multimodal topic models, Multimodal ZeroshotTM
and our multimodal adaptation of TopicGPT fur-
ther improve retrieval quality by incorporating both
textual and visual signals. This demonstrates that
aligning topics across modalities helps identify
examples that are not only textually relevant but
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VLM2Vec WikiWeb2M SPIQA
Fine Tuned NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

LLava-Next-7B ✓ .087 .269 2.69 .789 .996 .432 .242 .348 .080 .258 2.68 .817 .987 .444 .251 .359
QWen2VL-7B ✓ .093 .280 2.72 .796 .997 .444 .254 .361 .084 .269 2.71 .824 .991 .459 .263 .371
Phi-3.5-V × .083 .255 2.67 .777 .993 .414 .228 .332 .074 .244 2.65 .804 .984 .425 .235 .342
LLaVA-1.6-7B × .088 .272 2.70 .792 .996 .435 .245 .351 .080 .258 2.68 .817 .987 .444 .251 .359
CLIP × .081 .251 2.67 .774 .991 .410 .222 .328 .072 .241 2.65 .800 .982 .421 .231 .339
BLIP2-OPT-7B × .083 .255 2.67 .777 .993 .414 .228 .332 .074 .244 2.65 .805 .984 .425 .235 .343

Table 10: Impact of the underlying LVLM encoder on CEMTM performance. We compare LoRA fine-tuned vision-
language models—LLaVA-Next-7B, LLaVA-1.6-7B, QWen2VL-7B, Phi-3.5-V, CLIP, and BLIP—as backbone
encoders for CEMTM. Results are reported on WikiWeb2M and SPIQA across topic coherence (NPMI, WE, LLM).

Setting SPIQA TQA
METEOR BERTScore-F1 Accuracy F1-Macro

Zero-shot 26.3 67.48 84.87 83.79
3-shot Random Selection 27.4 68.92 85.36 84.28
3-shot Embedding-Based Selection 28.7 70.11 86.09 85.12
3-shot Topic-Based (CWTM) 28.3 69.85 85.82 84.96
3-shot Topic-Based (M3L-Contrast) 28.9 70.22 86.09 85.18
3-shot Topic-Based (Multimodal Zero-shot TM) 29.4 70.63 86.23 85.43
3-shot Topic-Based (LVLM Zero-shot TM) 29.8 71.18 86.58 85.84
3-shot Topic-Based (Multimodal TopicGPT) 30.5 71.89 86.82 86.39
3-shot Topic-Based (CEMTM) 31.3 72.76 87.31 87.03

Table 11: Few-shot multimodal QA performance on SPIQA and TQA using various retrieval strategies for selecting
3 in-context examples. Topic-based retrieval with CEMTM consistently outperforms baselines across all metrics.

also visually coherent, which is particularly impor-
tant in settings like SPIQA that require reasoning
over mixed modalities. Among all topic-based ap-
proaches, CEMTM achieves the best performance.
Its contextualized embeddings, projected into a
coherent topic space, allow for more fine-grained
retrieval that balances both semantic richness and
cross-modal alignment. This enables the model
to consistently select in-context examples that are
well-suited to the target question, leading to mea-
surable improvements in answer quality.

D Detailed Results For All Ks

We present the detailed results of various topic mod-
eling approaches. Table 12 reports results across
all K values (25, 50, 75, 100) for the WikiWeb2M
and SPIQA datasets. Table 13 provides the corre-
sponding results for the VIST, MSCOCO, T4SA,
and TQA datasets. Table 14 shows the detailed
performance of different topic modeling models on
the FHM dataset across all K values.
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO Purity ARI NMI NPMI WE LLM TD I-RBO Purity ARI NMI

K=25
LDA .031 .098 2.39 .708 .956 .306 .138 .240 .024 .090 2.30 .726 .944 .311 .142 .248
CombinedTM .042 .154 2.45 .700 .950 .322 .155 .262 .035 .143 2.38 .715 .942 .324 .153 .263
Zero-shot TM .042 .176 2.50 .724 .968 .340 .153 .261 .038 .166 2.45 .740 .961 .341 .157 .268
CWTM .057 .193 2.55 .720 .967 .352 .172 .279 .049 .181 2.50 .739 .960 .354 .174 .282
TopicGPT .068 .218 2.59 .736 .980 .384 .195 .292 .059 .205 2.54 .758 .972 .386 .198 .298

M3L-Contrast .070 .232 2.62 .749 .982 .392 .202 .302 .061 .219 2.57 .772 .975 .396 .205 .308
Multimodal Zero-shot TM .075 .240 2.63 .763 .990 .402 .210 .312 .064 .226 2.59 .785 .981 .408 .212 .318
LVLM Zero-shot TM .078 .251 2.64 .770 .990 .414 .220 .324 .067 .237 2.62 .794 .982 .419 .221 .330
Multimodal TopicGPT .085 .259 2.66 .782 .994 .421 .231 .331 .072 .245 2.64 .806 .985 .428 .233 .339

CEMTM .092 .273 2.68 .796 .996 .438 .247 .351 .081 .262 2.67 .825 .988 .452 .256 .362

K=50
LDA .029 .096 2.40 .705 .954 .296 .132 .238 .023 .088 2.31 .720 .943 .302 .137 .245
CombinedTM .040 .152 2.45 .698 .949 .319 .151 .261 .033 .141 2.39 .708 .941 .317 .149 .259
Zero-shot TM .041 .174 2.51 .719 .967 .337 .150 .259 .037 .163 2.46 .733 .959 .334 .153 .265
CWTM .053 .190 2.55 .717 .966 .349 .169 .277 .047 .179 2.51 .732 .958 .346 .169 .279
TopicGPT .064 .214 2.59 .732 .979 .380 .192 .290 .058 .202 2.55 .751 .970 .378 .193 .295

M3L-Contrast .066 .229 2.62 .746 .982 .389 .198 .300 .060 .217 2.58 .766 .974 .388 .200 .305
Multimodal Zero-shot TM .072 .238 2.64 .758 .989 .398 .206 .310 .063 .224 2.60 .779 .980 .400 .207 .316
LVLM Zero-shot TM .075 .248 2.65 .766 .990 .409 .216 .322 .066 .234 2.63 .788 .981 .412 .216 .327
Multimodal TopicGPT .081 .257 2.67 .777 .993 .416 .227 .330 .072 .243 2.65 .800 .984 .420 .228 .336

CEMTM .088 .271 2.69 .791 .996 .433 .244 .349 .081 .26 2.68 .82 .987 .445 .252 .360

K=75
LDA .027 .094 2.40 .702 .952 .291 .129 .233 .021 .087 2.32 .714 .941 .296 .134 .242
CombinedTM .038 .149 2.46 .695 .947 .315 .147 .257 .032 .139 2.39 .701 .939 .312 .146 .256
Zero-shot TM .039 .171 2.51 .714 .965 .334 .148 .255 .035 .161 2.46 .727 .957 .328 .151 .262
CWTM .050 .186 2.56 .712 .964 .345 .166 .274 .046 .176 2.51 .726 .956 .341 .166 .276
TopicGPT .061 .210 2.60 .727 .978 .376 .188 .287 .056 .199 2.56 .745 .969 .374 .19 .293

M3L-Contrast .064 .224 2.63 .742 .981 .384 .195 .296 .058 .214 2.59 .760 .972 .384 .197 .303
Multimodal Zero-shot TM .069 .234 2.64 .753 .989 .393 .202 .306 .062 .222 2.61 .773 .978 .397 .204 .314
LVLM Zero-shot TM .072 .244 2.66 .761 .990 .404 .211 .318 .065 .232 2.63 .782 .980 .408 .213 .325
Multimodal TopicGPT .078 .253 2.67 .772 .993 .412 .223 .326 .070 .241 2.66 .795 .983 .417 .225 .334

CEMTM .085 .267 2.70 .787 .995 .430 .240 .347 .079 .257 2.69 .815 .987 .441 .250 .358

K=100
LDA .025 .092 2.41 .698 .951 .288 .126 .230 .020 .085 2.32 .709 .940 .289 .131 .239
CombinedTM .037 .147 2.46 .692 .946 .311 .144 .253 .030 .137 2.40 .696 .938 .306 .143 .253
Zero-shot TM .038 .169 2.52 .710 .964 .330 .144 .251 .034 .159 2.47 .722 .955 .323 .148 .258
CWTM .049 .183 2.56 .708 .962 .341 .162 .270 .044 .173 2.52 .720 .954 .336 .163 .273
TopicGPT .059 .207 2.60 .722 .977 .371 .183 .283 .054 .196 2.57 .739 .967 .369 .187 .289

M3L-Contrast .062 .221 2.63 .737 .980 .379 .190 .293 .057 .211 2.60 .754 .971 .379 .194 .300
Multimodal Zero-shot TM .067 .231 2.65 .748 .988 .388 .197 .303 .061 .219 2.61 .767 .977 .392 .201 .311
LVLM Zero-shot TM .070 .242 2.66 .755 .989 .399 .206 .315 .063 .229 2.64 .776 .979 .404 .210 .322
Multimodal TopicGPT .076 .251 2.68 .766 .992 .407 .217 .323 .069 .238 2.67 .789 .982 .413 .222 .331

CEMTM .083 .266 2.70 .781 .995 .425 .238 .345 .078 .254 2.70 .808 .986 .438 .247 .356

Table 12: Comparison of topic modeling performance on WikiWeb2M and SPIQA. We report coherence (NPMI,
WE, LLM), diversity (TD), redundancy (IRBO), and clustering metrics (Purity, ARI, NMI).
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VIST TQA MSCOCO T4SA
NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO NPMI WE LLM TD I-RBO

K=25
LDA .019 .080 2.23 .653 .937 .021 .083 2.24 .670 .942 .018 .075 2.21 .624 .986 .013 .066 2.18 .602 .985
CombinedTM .026 .123 2.30 .644 .935 .030 .132 2.32 .658 .939 .025 .121 2.27 .611 .985 .020 .108 2.25 .590 .977
Zero-shot TM .031 .142 2.38 .666 .951 .034 .155 2.39 .684 .957 .029 .138 2.34 .635 .987 .025 .127 2.32 .614 .987
CWTM .039 .159 2.43 .664 .949 .043 .173 2.44 .681 .955 .037 .157 2.39 .633 .987 .031 .145 2.38 .612 .988
TopicGPT .046 .183 2.47 .678 .961 .052 .199 2.48 .697 .968 .044 .180 2.43 .648 .990 .037 .167 2.41 .627 .990

M3L-Contrast .047 .194 2.50 .688 .964 .054 .211 2.51 .711 .972 .046 .193 2.46 .661 .990 .039 .179 2.44 .640 .991
Multimodal Zero-shot TM .051 .201 2.51 .694 .973 .058 .219 2.52 .722 .978 .050 .201 2.47 .669 .992 .042 .186 2.46 .648 .992
LVLM Zero-shot TM .053 .212 2.53 .703 .975 .061 .230 2.55 .730 .979 .053 .213 2.50 .677 .993 .045 .197 2.48 .656 .993
Multimodal TopicGPT .058 .220 2.55 .714 .978 .066 .238 2.57 .742 .982 .057 .221 2.51 .688 .994 .050 .205 2.50 .667 .994

CEMTM .065 .237 2.58 .730 .981 .073 .255 2.59 .758 .986 .063 .237 2.54 .703 .995 .055 .221 2.52 .683 .995

K=50
LDA .018 .078 2.23 .648 .936 .02 .081 2.24 .667 .940 .017 .074 2.21 .620 .986 .012 .065 2.18 .599 .985
CombinedTM .025 .120 2.31 .639 .934 .028 .130 2.32 .654 .937 .024 .118 2.28 .607 .984 .019 .106 2.25 .587 .978
Zero-shot TM .029 .139 2.38 .661 .950 .033 .152 2.39 .680 .955 .028 .136 2.34 .631 .987 .024 .124 2.32 .611 .987
CWTM .037 .157 2.44 .659 .948 .041 .170 2.45 .677 .953 .035 .154 2.40 .628 .987 .029 .143 2.38 .609 .988
TopicGPT .044 .180 2.47 .673 .959 .050 .195 2.48 .693 .967 .042 .178 2.43 .643 .990 .035 .165 2.42 .624 .990

M3L-Contrast .045 .191 2.50 .683 .963 .052 .208 2.51 .707 .970 .044 .190 2.46 .656 .990 .037 .176 2.45 .637 .991
Multimodal Zero-shot TM .049 .199 2.52 .690 .972 .057 .215 2.53 .718 .976 .048 .199 2.48 .664 .992 .040 .183 2.46 .645 .992
LVLM Zero-shot TM .051 .209 2.54 .698 .974 .060 .227 2.55 .726 .978 .051 .211 2.50 .672 .993 .044 .195 2.48 .653 .993
Multimodal TopicGPT .056 .217 2.56 .709 .977 .065 .234 2.57 .738 .981 .056 .219 2.52 .683 .994 .048 .203 2.50 .665 .994

CEMTM .063 .234 2.58 .725 .981 .072 .251 2.60 .754 .985 .062 .234 2.54 .698 .995 .054 .219 2.52 .681 .995

K=75
LDA .017 .076 2.23 .643 .934 .019 .080 2.25 .664 .939 .016 .072 2.21 .616 .985 .011 .063 2.18 .596 .985
CombinedTM .023 .117 2.31 .635 .933 .027 .129 2.32 .651 .936 .022 .116 2.28 .603 .984 .018 .104 2.25 .584 .978
Zero-shot TM .028 .136 2.38 .656 .948 .032 .151 2.39 .677 .954 .027 .133 2.34 .627 .986 .022 .122 2.33 .608 .987
CWTM .035 .154 2.44 .654 .946 .041 .168 2.45 .674 .952 .034 .152 2.40 .624 .987 .028 .140 2.38 .606 .988
TopicGPT .042 .177 2.48 .669 .958 .049 .193 2.48 .690 .965 .041 .175 2.44 .640 .989 .034 .163 2.42 .621 .990

M3L-Contrast .043 .189 2.50 .679 .961 .052 .205 2.52 .703 .969 .043 .188 2.46 .652 .990 .036 .174 2.45 .634 .991
Multimodal Zero-shot TM .047 .196 2.52 .685 .971 .055 .213 2.53 .714 .975 .046 .197 2.48 .660 .992 .039 .181 2.46 .642 .992
LVLM Zero-shot TM .049 .207 2.54 .694 .973 .059 .225 2.55 .722 .977 .049 .209 2.50 .668 .993 .042 .193 2.49 .650 .993
Multimodal TopicGPT .054 .215 2.56 .705 .976 .063 .233 2.57 .734 .980 .054 .217 2.52 .679 .994 .047 .201 2.50 .661 .993

CEMTM .061 .232 2.58 .722 .980 .071 .249 2.60 .749 .984 .060 .232 2.54 .695 .995 .053 .217 2.53 .677 .995

K=100
LDA .015 .074 2.23 .638 .933 .018 .078 2.25 .659 .938 .015 .071 2.21 .612 .985 .011 .062 2.18 .593 .985
CombinedTM .022 .115 2.31 .630 .931 .026 .126 2.32 .646 .934 .021 .113 2.28 .599 .984 .016 .102 2.26 .581 .977
Zero-shot TM .027 .134 2.38 .652 .946 .031 .148 2.39 .673 .953 .025 .131 2.35 .623 .986 .021 .119 2.33 .605 .987
CWTM .033 .151 2.44 .649 .944 .039 .165 2.45 .670 .950 .032 .149 2.40 .620 .987 .027 .138 2.39 .602 .987
TopicGPT .040 .174 2.48 .664 .956 .048 .190 2.49 .686 .964 .039 .173 2.44 .636 .989 .033 .161 2.42 .618 .99

M3L-Contrast .042 .186 2.51 .674 .960 .050 .203 2.52 .699 .968 .041 .186 2.47 .649 .990 .035 .172 2.45 .631 .991
Multimodal Zero-shot TM .046 .193 2.52 .681 .970 .054 .211 2.53 .710 .974 .045 .194 2.48 .657 .992 .038 .179 2.47 .639 .992
LVLM Zero-shot TM .048 .204 2.55 .690 .973 .057 .222 2.56 .719 .975 .048 .206 2.51 .665 .992 .041 .191 2.49 .647 .992
Multimodal TopicGPT .053 .213 2.56 .701 .975 .062 .230 2.58 .731 .979 .053 .215 2.52 .676 .993 .046 .199 2.51 .658 .993

CEMTM .059 .229 2.59 .718 .980 .069 .247 2.60 .746 .983 .059 .230 2.55 .691 .994 .051 .215 2.53 .674 .995

Table 13: Comparison of topic modeling performance on VIST, TQA, MSCOCO, and T4SA. We report coherence
(NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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FHM
NPMI WE LLM TD I-RBO

K=25
LDA .006 .051 2.04 .535 .983
CombinedTM .011 .091 2.10 .523 .975
Zero-shot TM .016 .113 2.17 .548 .985
CWTM .021 .132 2.21 .546 .986
TopicGPT .027 .154 2.26 .559 .989

M3L-Contrast .032 .173 2.33 .571 .990
Multimodal Zero-shot TM .034 .181 2.35 .580 .992
LVLM Zero-shot TM .041 .198 2.42 .595 .993
Multimodal TopicGPT .045 .206 2.44 .607 .994

CEMTM (ours) .051 .221 2.47 .622 .995

K=50
LDA .005 .049 2.04 .531 .983
CombinedTM .010 .089 2.10 .519 .975
Zero-shot TM .015 .110 2.17 .545 .984
CWTM .020 .129 2.22 .542 .986
TopicGPT .026 .151 2.26 .556 .988
M3L-Contrast .030 .170 2.33 .567 .990
Multimodal Zero-shot TM .033 .179 2.35 .576 .992
LVLM Zero-shot TM .039 .196 2.43 .592 .993
Multimodal TopicGPT .044 .204 2.45 .603 .994
CEMTM (ours) .050 .219 2.47 .618 .995

K=75
LDA .004 .047 2.04 .528 .983
CombinedTM .009 .086 2.10 .516 .975
Zero-shot TM .013 .108 2.17 .541 .984
CWTM .019 .126 2.22 .539 .985
TopicGPT .024 .149 2.26 .552 .988
M3L-Contrast .029 .167 2.34 .564 .990
Multimodal Zero-shot TM .032 .176 2.36 .573 .991
LVLM Zero-shot TM .038 .193 2.43 .588 .993
Multimodal TopicGPT .043 .201 2.45 .599 .993
CEMTM (ours) .048 .216 2.47 .615 .995

K=100
LDA .004 .045 2.05 .525 .982
CombinedTM .008 .083 2.11 .512 .974
Zero-shot TM .012 .105 2.17 .538 .984
CWTM .018 .123 2.22 .535 .985
TopicGPT .023 .146 2.27 .549 .988
M3L-Contrast .028 .165 2.34 .561 .990
Multimodal Zero-shot TM .031 .173 2.36 .569 .991
LVLM Zero-shot TM .037 .190 2.43 .584 .993
Multimodal TopicGPT .041 .198 2.45 .595 .993
CEMTM (ours) .047 .213 2.47 .611 .995

Table 14: Unsupervised topic quality on the FHM dataset, which tests modeling under high image–text semantic
gaps. We report coherence (NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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