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Abstract

We introduce CEMTM, a context-enhanced
multimodal topic model designed to infer co-
herent and interpretable topic structures from
both short and long documents containing text
and images. CEMTM builds on fine-tuned
large vision language models (LVLMs) to ob-
tain contextualized embeddings, and employs
a distributional attention mechanism to weight
token-level contributions to topic inference. A
reconstruction objective aligns topic-based rep-
resentations with the document embedding, en-
couraging semantic consistency across modali-
ties. Unlike existing approaches, CEMTM can
process multiple images per document without
repeated encoding and maintains interpretabil-
ity through explicit word-topic and document-
topic distributions. Extensive experiments on
six multimodal benchmarks show that CEMTM
consistently outperforms unimodal and multi-
modal baselines, achieving a remarkable aver-
age LLM score of 2.61 (1-3 scale). Further
analysis shows its effectiveness in downstream
few-shot retrieval and its ability to capture vi-
sually grounded semantics in complex domains
such as scientific articles'.

1 Introduction

Topic modeling aims to uncover the latent thematic
structure of a corpus by organizing documents into
interpretable clusters of topics. While classical
topic models like latent dirichlet allocation (LDA)
(Blei et al., 2003) have long been applied to tex-
tual corpora, the rapid growth of multimodal con-
tent, where images, captions, and structured text
co-exist, demands models that can jointly under-
stand and reason over multiple modalities. Tradi-
tional multimodal topic models (Feng and Lapata,
2010; Putthividhy et al., 2010) extended LDA to
incorporate image features alongside text, but often
failed to capture deeper cross-modal interactions.

!Code is publicly available at: https://github.com/
AmirAbaskohi/CEMTM.

Recent advances in neural topic modeling (Zhu
et al., 2024; Gonzalez-Pizarro and Carenini, 2024a)
have addressed some of these limitations by learn-
ing shared embeddings across modalities, enabling
more coherent and semantically unified topic dis-
covery.

Parallel to these developments, large language
models (LLMs) and large vision language mod-
els (LVLMs) have shown remarkable capacity to
encode rich semantic knowledge from vast and di-
verse corpora. In text-based topic modeling, LLMs
have been used both for generating and assigning
topic with zero- and few-shot prompting (Mu et al.,
2024; Pham et al., 2024b), significantly improving
topic coherence and interpretability. In multimodal
settings, early efforts have used prompt-based meth-
ods (Prakash et al., 2023). However, while mod-
els like TopicGPT produce interpretable outputs
through natural language, they lack corpus-level
topic distributions and robustness to prompt varia-
tion. They also do not model uncertainty or provide
consistent global topic structures, limiting their use-
fulness for exploratory analysis (Hosseiny Marani
and Baumer, 2023). A promising direction is to
combine the knowledge grounding and modality
alignment of LVLMs with the structured model-
ing of multimodal neural topic models, leveraging
LVLMs to enhance semantic understanding with-
out compromising the coherence and stability of
topic representations.

To address these limitations, we propose
CEMTM (Contextual Embedding-based Multi-
modal Topic Modeling), a novel topic modeling
framework that directly leverages the latent rep-
resentations produced by pretrained LVLMs. In-
stead of designing complex architectures to align
modalities, CEMTM uses the final token embed-
ding from an LVLM as a compact, unified represen-
tation of a multimodal document that contains both
textual and visual content (Jiang et al., 2025). This
approach not only captures deeply aligned cross-

11675

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11675-11692
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/AmirAbaskohi/CEMTM
https://github.com/AmirAbaskohi/CEMTM

modal semantics but also simplifies the processing
of documents with multiple images. By avoiding
the need for separate modality-specific encoders,
CEMTM allows the entire document, including all
images and the accompanying text, to be encoded
holistically, making it well-suited for scalable and
coherent multimodal topic modeling. Additionally,
inspired by Fang et al. (2024), we incorporate a
learnable importance network to estimate the con-
tribution of each textual token and image patch
to the document-topic representation. CEMTM
achieves strong empirical performance across six
benchmark datasets, obtaining an average LLM co-
herence score of 2.61 out of 3, outperforming a
broad range of baselines.

Our contributions are: (I) We introduce
CEMTM, a multimodal topic model that uses pre-
trained vision-language representations to generate
coherent, diverse topics from long multimodal doc-
uments; (IT) We propose a stochastic, distribution-
based mechanism to learn token importance, im-
proving semantic alignment and interpretability
when combined with fine-tuned LVLM embed-
dings; (II) CEMTM sets a new SOTA, outper-
forming strong baselines on topic quality and the
downstream task of few-shot question-answering
(QA), demonstrating the value of topic distributions
for retrieval-based tasks.

2 Related Work

Neural Multimodal Topic Modeling Early mul-
timodal topic models extended LDA to handle im-
age and text jointly (Blei and Jordan, 2003), but
often treated modalities independently. Neural ap-
proaches addressed this by learning shared repre-
sentations, such as SupDocNADE (Zheng et al.,
2014) and graph-based models for short documents
(Zhu et al., 2024). Gonzalez-Pizarro and Carenini
(2024b) conducted a large-scale comparison of
neural multimodal topic models, showing room
for improvement in coherence and diversity. Un-
like these models, CEMTM leverages pretrained
LVLMs and uses their final token embeddings to
capture aligned cross-modal semantics, eliminating
the need to learn modality alignment during topic
representation learning.

Language Models for Topic Modeling Lan-
guage models have advanced topic modeling
through prompting and contextual embeddings.
Prompt-based methods like TopicGPT (Pham et al.,
2024a) generate interpretable, natural-language

topics with LLMs, while CWTM (Fang et al., 2024)
integrates contextual BERT embeddings into neu-
ral topic models for improved coherence. In mul-
timodal settings, PromptMTopic (Prakash et al.,
2023) combines textual and visual cues via LLMs
to extract culturally aware topics from memes via
prompting. More broadly, LVLMs offer unified rep-
resentations for image—text pairs. However, their
application to multimodal topic modeling remains
underexplored. To address this, CEMTM leverages
LVLMs, using the final token as a compact and
aligned multimodal embedding, enabling efficient
and interpretable topic discovery by using LLM’s
pretrained knowledge, without separate modality
encoders or prompting.

3 Method

CEMTM is designed to perform soft topic model-
ing over long, multimodal documents. As shown in
Figure 1, CEMTM processes both text and image
inputs through an LVLM to produce contextual-
ized token embeddings for both image and text
tokens, learns importance-aware topic vectors, and
reconstructs semantic document-level representa-
tions as supervision. We present our approach in
three parts: document preprocessing (Section 3.1),
model training (Section 3.2), and topic extraction
(Section 3.3).

3.1 Preprocessing

Each document in the corpus contains both textual
content and one or more associated images. Prior
to training, we apply the following preprocessing
steps. We begin with text cleaning, where we apply
standard NLP preprocessing to remove punctuation,
normalize casing, and eliminate irrelevant tokens
(e.g., HTML tags). Following this, we perform vo-
cabulary construction by tokenizing all documents
and building a fixed vocabulary V that retains the
most frequent words while discarding stop-words
and rare terms. For the image processing step, all
associated images are resized and formatted to en-
sure compatibility with the input requirements of
the vision-language model.

3.2 Model Training

We use VLM2Vec (Jiang et al., 2025), a fine-tuned
version of LLaVA-Next-7B (Liu et al., 2024), to
encode each document’s text and image content
into contextualized representations. Our approach
is motivated by the hypothesis that while document
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Figure 1: Overall architecture of CEMTM. Articles containing both text and images are encoded using a fine-tuned
vision—language model to produce contextualized embeddings. During training, only the decoder forward layer,
encoder forward layer, and importance network are fine-tuned, while the underlying vision—language backbone
remains frozen. The model learns to construct document topic vectors by weighting token embeddings through the
importance network, with reconstruction loss guiding optimization.

embeddings encode rich semantic information, us-
ing them alone to infer topic distributions prevents
access to vocabulary-level topic-word associations,
limiting interpretability.

We begin by considering the approach of infer-
ring latent document-topic vectors from document
embeddings. Let e; € R” be the embedding of
a document d obtained from an LVLM, where D
denotes the dimensionality of the embedding space.
A straightforward method would use the document
embedding vector to generate the topics. However,
this formulation lacks a way to associate topics
with specific words, since it bypasses vocabulary-
level granularity. To address this, we instead extract
contextualized token embeddings from the docu-
ment:

H = [h;,...,hy] € RV*P

where N is the number of textual tokens and visual
patches in the document. Each h; corresponds to
a context-dependent representation of a token or
an image patch. Each contextual embedding h; is
projected into the topic space using a learnable en-
coder with weight W, € RP*K where K denotes

the number of latent topics, as follows:
t; = Softmax(h;Wy) € RE

We interpret t; = p(z | h;) as the soft topic dis-
tribution for token ¢. However, not all tokens con-
tribute equally to the semantic representation of
a document. To model the relative importance
of each token in shaping the document’s seman-
tics, we introduce a learnable importance net-
work that predicts a stochastic weight for each
token. The importance network consists of a trans-
former encoder followed by a feedforward projec-
tion layer. Given contextualized token embeddings
H = [hy,..., hy], the importance network out-
puts a mean and standard deviation for each token’s
importance score:

ti, 02 = fo(Transformer(H));

ai ~ N (pi, 07)

To produce normalized importance weights, we
apply a softmax across the sampled values:

B = Softmaz ([, ..., an]) € RN
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Advantageously, the importance network also
improves interpretability. The stochastic weights
3 provide an explicit estimate of how much each
token or patch contributes to the document-level
semantics. This makes it possible to identify salient
tokens or regions and trace the evidence behind
topic assignments, offering a more transparent view
compared to standard attention mechanisms.

The document-topic vector is then computed by
taking a weighted average of the token-level topic
vectors:

N
0, = Softma$(z Biti)
i=1

The document-topic vector is then mapped into
the embedding space using a learnable decoder
with weight Wy € REXP where K is the number
of latent topics and D is the embedding dimension:

eq =0, Wy € RD

For supervision, we use the final token’s hidden
state from VLM2Vec as the reference document
embedding (e;). The model maps the predicted
embedding (ey) to this target, optimized with a
reconstruction loss:

Lrec = MSE(eq, €q)

This objective helps ensure that the learned top-
ics preserve the global semantics encoded by the
vision-language model, resulting in more coherent
and multimodally grounded topic representations.

To encourage sharp and interpretable importance
scores, we add an entropy regularization term to
the loss (Vuli¢ and MrkSi¢, 2018). This term pe-
nalizes high-entropy (i.e., overly uniform) distri-
butions over the importance weights [3;, pushing
the model to concentrate attention on a smaller
subset of relevant elements. This promotes spar-
sity in the importance scores, making the model’s
decisions more focused and interpretable, which
benefits both transparency and performance in rea-
soning tasks. The entropy regularization is defined
as:

N
ﬁent - Z 62 log 52
i=1

We also apply a KL divergence penalty between
the predicted importance distribution ¢(a;) =
N (pi,0?) and a standard normal prior p(o;) =

N(0,1). This regularization keeps topic impor-
tance variables close to a standard Gaussian, re-
ducing overfitting and promoting a smooth, bal-
anced latent space (Jin et al., 2021). This is crucial
in multimodal settings to avoid overconfident or
modality-biased topic representations.

N

1 Z4p2—1
=3 (o 5+ )
7

i=1

The final loss function is:
L= ﬁrec + )\entﬁent + )\KLEKL

where \epe and Agp, are hyperparameters that con-
trol the strength of entropy and KL regularization,
respectively.

This formulation enables the model to learn a
flexible, distribution-based importance mechanism
over tokens, while ensuring that the topic vector
faithfully reconstructs document-level semantics
and supports interpretable word-topic associations.

3.3 Topic Extraction

Once the model is trained, we extract topic-word
associations by aggregating token-level topic vec-
tors for each word in the vocabulary. Let w € V
be a word and Z,, the set of all positions where w
appears in the corpus. We compute the aggregated
topic vector for word w as:

by = Zi > Biti,

Y ieT,
where Z,, = ) ;.7 [3; ensures normalization. The

topic score for word w in topic k is tgff ), which is
guaranteed to be non-negative due to the softmax
used in the importance distribution. To extract
representative topic words, we rank all words w €
V by their value t%ﬂ ) for each topic k.

Topic words are extracted based on the vocabu-
lary. For image patches, we associate each patch
with its nearest word token in the embedding space
and use that token in the aggregation step. This
allows us to incorporate the semantic contribution
of visual information while keeping the topic-word
distributions interpretable.

4 Experiments and Results

We conduct extensive experiments to evaluate the
effectiveness of our proposed model, CEMTM, on
both topic modeling and its application to topic-
guided few-shot retrieval for multimodal question
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answering. We assess the quality of the extracted
topics using standard coherence and diversity met-
rics, and demonstrate the utility of the learned
document-topic vectors in improving few-shot ex-
ample selection. Additionally, we analyze the sen-
sitivity of the model to the underlying encoder and
provide qualitative insights into the learned topics
and retrieval behavior. Refer to Appendix B for
hyperparameter and experimental settings.

4.1 Datasets

We evaluate CEMTM across a diverse set of mul-
timodal and long-document datasets spanning en-
cyclopedic, scientific, narrative, educational, and
social domains. Table 1 summarizes the datasets
used in this study. Among these, only WikiWeb2M
and SPIQA provide explicit ground-truth topic la-
bels, which we use for quantitative evaluation. For
the remaining datasets, we assess topic quality us-
ing unsupervised metrics such as coherence and
diversity.

Dataset Domain # Docs Avg. Tokens  Avg. Images
WikiWeb2M Encyclopedic 100,833 527 4.1
SPIQA Scientific 697 1342 3.7
VIST Narrative 50,000 152 5.0
TQA Educational 410 1086 29
MSCOCO Image Captions 30,000 13 1.0
T4SA Social Media 30,000 15 1.0
FHM Memes 10,000 9 1.0

Table 1: Summary of datasets used in our experiments.

4.2 Evaluation Metrics

We evaluate topic quality using five standard met-
rics: Normalized Pointwise Mutual Information
(NPMI) (Lau et al., 2014), Word Embedding score
(WE) (Fang et al., 2016), LLM score (Stammbach
et al., 2023), Inverse Rank-Biased Overlap (I-RBO)
(Terragni et al., 2021), and Topic Diversity (TD)
(Dieng et al., 2020). NPMI and WE measure word-
level coherence (co-occurrence and semantic sim-
ilarity), the LLM score uses a language model to
rate coherence (1-3 scale), and has strong corre-
lation with human judgments (Stammbach et al.,
2023). I-RBO and TD capture diversity, respec-
tively via rank-aware dissimilarity and unique word
coverage.

For datasets with gold topic labels (WikiWeb2M,
SPIQA), we also report clustering-based metrics:
Purity (Zhao and Karypis, 2001), Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985), and Normal-
ized Mutual Information (NMI) (Strehl and Ghosh,
2002), which measure alignment between predicted
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Figure 2: LVLM Zero-shot TM uses LVLM embeddings
for better multimodal alignment and more meaningful
topic vectors than Multimodal Zero-shot TM.

and true topic assignments.

4.3 Baselines

We compare CEMTM against a broad set of base-
lines spanning traditional, contextualized, and mul-
timodal topic modeling. As a classical reference,
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), trained with Gensim (Rehtifek and Sojka,
2010), models each document as a mixture of top-
ics over a bag-of-words representation. More re-
cent contextualized methods replace or augment
bag of words (BoW) features with embeddings: Ze-
roshotTM (Bianchi et al., 2021a) uses SBERT em-
beddings (Reimers and Gurevych, 2019) for zero-
shot topic modeling, and CombinedTM (Bianchi
et al., 2021b) improves interpretability by concate-
nating SBERT with BoW. Similarly, CWTM (Fang
et al., 2024) projects contextual token representa-
tions into a topic space and aggregates them using
fixed or learned importance scores.

We also adapt TopicGPT (Pham et al., 2024a),
which does not expose explicit topic-word distribu-
tions. To approximate them, we restrict the number
of topics to K and use token-level soft assignments
to construct interpretable topic-word vectors (see
Appendix B for more details). Building on this, we
introduce Multimodal TopicGPT, which incorpo-
rates both text and images at inference.

For other multimodal baselines, M3L-Contrast
(Zosa and Pivovarova, 2022) leverages im-
age—caption alignment to enforce consistent
document-topic representations, while Multimodal
ZeroshotTM (Gonzalez-Pizarro and Carenini,
2024a) extends ZeroshotTM by combining textual
embeddings with vision encoder features. Finally,
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WikiWeb2M SPIQA

NPMI WE LLM TD I-RBO | Purity ARI NMI | NPMI WE LLM TD I-RBO | Purity ARI NMI
LDA 028 .095 240 .703 953 295 131 235 | 022 .088 231 717 942 299 136 244
CombinedTM 039 150 246 .696 948 317 149 258 | 033 140 239 705  .940 315 148 258
Zero-shot TM 040 172 251 717 966 335 149 257 | 036  .162 246 731 958 331 152 263
CWIM 052 188 256 714 965 347 167 275 | .047 177 251 729 957 344 168 278
TopicGPT 063 212 259 729 378 189 288 | .057 201 255 748 377 192 294
M3L-Contrast 065 226 2.62 .744 981 386 196 298 | .059 215 259 763 973 387 199 304
Multimodal Zero-shot TM | .071 236 2.64 .756 - 395 204 308 | 062 .223 2.60 .776 - 399 206 315
LVLM Zero-shot TM 074 246 265 .763  .990 407 213 320 | .065 233 2.63 785  .980 A1l 215 326
Multimodal TopicGPT 080 255 267 774 993 414 224 328 | 071 242 265 .798 984 419 227 335
CEMTM (ours) 088 272 270 792 .996 435 245 351 | .080 .258 2.68 817 .987 444 251 359

Table 2: Comparison of topic modeling performance on WikiWeb2M (Burns et al., 2023) and SPIQA (Pramanick
et al., 2024). We report coherence (NPMI, WE, LLM), diversity (TD), redundancy (I-RBO), and clustering
metrics (Purity, ARI, NMI), averaged over K = {25, 50, 75,100} with three random seeds. CEMTM consistently
outperforms all baselines. See Table 12 in Appendix D for detailed results for each K.

VIST TQA

NPMI WE LLM TD IRBO | NPMI WE LLM 1D ILRBO
LDA 017 077 223 .646 935 | 019 081 225 .665 .940
Combined TM 024 119 231 637 933 | 028 .129 232 652 .937
Zero-shot TM 029 138 238 659 .949 | .032 .151 239 679 .955
CWTM 036 155 244 656 946 | 041 .169 245 675 953
TopicGPT 043 179 247 671 - 050 .194 248 692 -
MB3L-Contrast 044 190 250 681 962 | 052 207 251 705 970
Multimodal Zero-shot TM | .048 .197 252 .687 971 | 056 215 253 716 .976
LVLM Zero-shot TM 050 208 254 696 974 | 059 226 255 724 977
Multimodal TopicGPT 055 216 256 .707 - 064 234 257 736 -
CEMTM (ours) 062 233 258 .723 981 | 071 250 2.60 .752 .984

MSCOCO T4SA

NPMI WE LLM TD ILRBO | NPMI WE LLM 1D ILRBO
LDA 016 073 221 618 985 | 012 .064 2.18 .597 .985
Combined TM 023 117 228 605 984 | 018 .105 225 585 .978
Zero-shot TM 027 135 234 629 987 | 023 .123 233 610 .987
CWTM 034 153 240 626 987 | 029 .142 238 607 .988
TopicGPT 042 177 243 642 - 035 164 242 623 -
M3L-Contrast 044 189 246 654 990 | 037 .175 245 636 .991
Multimodal Zero-shot TM | .047 .198 248 662 992 | .040 .182 246 .644 992
LVLM Zero-shot TM 050 210 250 .670 993 | 043 .194 248 652 .993
Multimodal TopicGPT 055 218 252 682 - 048 202 250 .663 -
CEMTM (ours) 061 233 254 .697 995 | .053 218 252 .679 .995

Table 3: Unsupervised topic quality on VIST (Huang et al., 2016), TQA (Kembhavi et al., 2017), MSCOCO (Lin
etal., 2014), and T4SA (Vadicamo et al., 2017) using coherence (NPMI, WE, LLM), diversity (TD), and redundancy
(I-RBO). Results are averaged over K = {25,50, 75,100} with three random seeds. CEMTM outperforms all
baselines. See Table 13 in Appendix D for detailed results for each K.

our proposed LVLM ZeroshotTM strengthens this  three random seeds.
approach by using embeddings from LVLMs, yield-
ing more semantically grounded and better aligned

multimodal topic vectors (as shown in Figure 2).

Long-document and In Domain Performance.
Table 2 presents results on WikiWeb2M and
SPIQA, both of which consist of long, multimodal

4.4 Quantitative Results documents and include ground-truth topic annota-

We evaluate the performance of CEMTM and base-
lines across a wide range of datasets, reporting
both intrinsic topic quality metrics (e.g., NPMI,
WE, LLM, TD, I-RBO) and extrinsic clustering
metrics (Purity, ARI, NMI) when ground-truth la-
bels are available. Results are averaged over four
topic counts (K = 25,50, 75, 100), each run with

tions. CEMTM outperforms all baselines across ev-
ery metric, demonstrating stronger topic coherence,
higher diversity, and more accurate topic assign-
ments. Notably, our model surpasses multimodal
baselines like Multimodal TopicGPT and LVLM
Zero-shot TM, while also being more efficient than
methods like TopicGPT that require autoregressive
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FHM
NPMI WE LLM TD I-RBO
LDA .005 .048 2.04 530 983
CombinedTM .009 .087 2.10 .518 975
Zero-shot TM .014 109 2.17 543 984
CWTM 019 128 222 540 986
TopicGPT 025 150 226 554 988
M3L-Contrast 030  .169 234 566 .990
Multimodal Zero-shot TM | .033 .177 236 574 992
LVLM Zero-shot TM 039 194 243 590 993
Multimodal TopicGPT 043 202 245 .601 994
CEMTM (ours) 049 217 247 617 995

Table 4: Unsupervised topic quality on the FHM dataset
(Kiela et al., 2020), which tests modeling under high
image—text semantic gaps. We report coherence (NPMI,
WE, LLM), diversity (TD), and redundancy (I-RBO),
averaged over K = {25,50, 75,100} with three seeds.
CEMTM outperforms all baselines, highlighting the
benefit of joint multimodal modeling. See Table 14 in
Appendix D for detailed results for each K.

decoding or multiple forward passes (for topic gen-
eration and topic assignment). Unlike other models,
CEMTM processes documents with multiple im-
ages in a single pass without repeated inference,
offering both performance and scalability benefits.

Generalization Across Domains. Table 3 shows
performance on four additional datasets—VIST,
TQA, MSCOCO, and T4SA—that include both
short and medium-length multimodal documents
but lack ground-truth topic labels. Again, CEMTM
achieves the best performance across all intrin-
sic metrics and datasets, highlighting its flexibil-
ity across domains including narratives (VIST),
educational content (TQA), captioned images
(MSCOCO), and social media posts (T4SA). These
results indicate that the model generalizes well
even beyond long-text scenarios.

Semantic Gap Analysis. A particularly challeng-
ing scenario in multimodal topic modeling arises
when there is a semantic gap between images and
text, as in the case of memes. Table 4 focuses on
the Facebook Hateful Memes dataset, where there
is a known semantic gap between images and their
accompanying captions. This setting is particularly
challenging for topic models that rely on textual
content alone. The results show a clear separation
between unimodal and multimodal models, with
image-aware approaches consistently outperform-
ing text-only counterparts. Furthermore, models
that use large vision-language models (LVLMs),
such as LVLM Zero-shot TM, Multimodal Top-
icGPT, and CEMTM, show the highest gains, sug-

Setting SPIQA TQA
METEOR BERTScore-F1 | Acc  F1-Macro
Zero-shot 26.3 67.48 84.87 83.79
3-shot Random Selection 274 68.92 85.36 84.28
3-shot Embedding Based Selection 28.7 70.11 86.09 85.12
3-shot Topic Based Selection 313 72.76 87.31 87.03

Table 5: Few-shot QA results on SPIQA and TQA test
sets. Topic-based selection leads to the best performance
across both datasets. For a detailed comparison of the
performance of different topic models used for topic-
based retrieval, refer to Table 11 in Appendix C.

gesting that better multimodal alignment signif-
icantly improves topic modeling in semantically
ambiguous contexts. This validates the design of
CEMTM, which leverages fine-tuned LVLM em-
beddings and a flexible importance-weighted fu-
sion mechanism to capture cross-modal semantics
effectively.

4.5 Improving Few-Shot Multimodal QA with
Topic-Aware Retrieval

Beyond evaluating CEMTM on topic modeling
tasks, we assess the utility of its learned document-
topic vectors for improving few-shot multimodal
question answering. Specifically, we use these
topic vectors (with the number of topics set to
K = 50) to retrieve in-context examples for
prompting a QA model in a few-shot setting. We
compare four retrieval strategies on the SPIQA
and TQA test sets: (1) a zero-shot baseline, (2)
random selection of 3 in-context examples, (3)
embedding-based retrieval using cosine similarity
over OpenAl’s text-embedding-3-small?, and
(4) our topic-based retrieval using document-topic
vectors produced by CEMTM. As shown in Table 5,
topic-based selection significantly outperforms all
other methods across all evaluation metrics, includ-
ing METEOR and BERTScore on SPIQA, and ac-
curacy and macro-F1 on TQA. This demonstrates
that topic distributions learned by CEMTM cap-
ture high-level semantic structure that can guide
effective example selection, providing relevant and
diverse context without relying on direct surface
similarity. These results highlight the potential of
CEMTM beyond topic interpretability.

4.6 Qualitative Results

To further evaluate how CEMTM captures visually
grounded semantics, we examine the Wikipedia
article titled Volcanic eruption, which describes

2https://platform.openai.com/docs/models/
text-embedding-3-small
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Model

Topic Words Inferred from Text

Topic Words Inferred from Visual Patches

CWTM
Multimodal Zero-shot TM
LVLM Zero-shot TM

eruption, magma, lava, ash, rock
eruption, lava, ash, magma, crater
eruption, lava, ash, magma, vent

plume, smoke, debris, slope, flow
cloud, plume, lava flow, crater rim, tephra

CEMTM (ours)

eruption, lava, ash, magma, pyroclastic

plume, flow, cloud, fountain, tephra

Table 6: Predicted top topic words for the Wikipedia page Volcanic eruption, separated into text-derived vs. visual
patch-derived words. The text columns intentionally show high overlap (e.g., eruption, lava, ash, magma) to reflect
consistent lexical signals across models, with CEMTM additionally capturing specialized geological terminology
such as pyroclastic. The visual columns highlight model-specific perceptual cues (e.g., plume, flow, cloud), showing
how multimodal integration introduces eruption-specific semantics not present in text alone.

Query Page: Saturn (planet)

Top Topic Words: planet, ring, gas, orbit, atmosphere, moon, giant, solar, space, rotation

Random
Embedding-based
Topic-based (CEMTM)

Barack Obama, Photosynthesis, Succulent plant
Solar System, Mars, Astronomy
Jupiter, Uranus, Gas giant

Query Page: French Revolution

Top Topic Words: revolution, france, king, monarchy, liberty, citizens, republic, upris-
ing, power, 1789

Random
Embedding-based
Topic-based (CEMTM)

Harry Potter, Mount Everest, DNA replication
American Revolution, Napoleon, History of France
Reign of Terror, Louis XVI, Constitution of 1791

Query Page: Photosynthesis

Top Topic Words: plant, sunlight, chlorophyll, carbon, dioxide, glucose, energy, leaf,
oxygen, process

Random
Embedding-based
Topic-based (CEMTM)

World War 11, Twitter, Rome
Cellular respiration, Chloroplast, Botany
Light-dependent reactions, Carbon fixation, Thylakoid

Table 7: Comparison of retrieval methods for Wikipedia pages. CEMTM yields more fine-grained, thematically

aligned results by leveraging interpretable topic distributions.

types of volcanic eruptions, geological processes,
and associated hazards. The page includes key im-
ages such as eruption plumes, lava flows, and ash
clouds that visually differentiate between explosive
and effusive eruptions, information that is often
only implicitly mentioned or not described in detail
in the text. Table 6 presents a comparison of top
topic words predicted by CWTM (text-only), Mul-
timodal Zero-shot TM, LVLM Zero-shot TM, and
CEMTM. The text-only model generates general
geological terms and omits eruption-specific visual
cues. Multimodal Zero-shot TM incorporates vi-
sual features but lacks deep integration, leading to
less coherent topic-word clusters. LVLM Zero-shot
TM improves topic specificity, capturing visual el-
ements like “plume” and “cloud,” while CEMTM
further refines this by predicting visually aligned
and geologically grounded terms (e.g. “pyroclas-
tic”). CEMTM benefits from fine-grained fusion
of text and image semantics during training, and
its reconstruction objective ensures visual informa-
tion is preserved in the topic structure, something
BoW-based models discard.

Table 7 qualitatively illustrates how CEMTM
enhances semantic retrieval by leveraging inter-

pretable document-topic vectors. For each query
Wikipedia article, CEMTM retrieves thematically
precise pages by comparing topic distributions,
outperforming both random and embedding-based
baselines. While embedding-based methods re-
trieve broadly related pages (e.g., Mars for Saturn),
they often lack topical granularity. In contrast,
CEMTM identifies highly specific, contextually
aligned documents such as Gas giant or Constitu-
tion of 1791, grounded in the core semantic fields
of the queries. This demonstrates that topic-based
retrieval with CEMTM not only captures more in-
terpretable signals but also better models thematic
structure, making it particularly useful for few-shot
prompting and corpus exploration.

5 Ablation Studies

5.1 Impact of Vision-Language Embedding
Quality

To assess the effect of vision-language pretrain-
ing and fine-tuning, we compare several variants
that adjust how VLM2Vec is used in CEMTM. As
shown in Table 8, replacing the VLM2Vec version
of LLaVA-Next-7B model, obtained by fine-tuning
LLaVA-Next-7B, entirely with pretrained LLaVA-
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WikiWeb2M

SPIQA

NPMI

WE

LLM

TD

I-RBO

Purity

ARI

NMI

NPMI

WE

LLM

TD

I-RBO

Purity

ARI

NMI

CEMTM

088

272

2.70

792

996

435

245

351

.080

258

2.68

817

987

444

251

359

Without Distribution As Importance Netowork

087

.269

2.69

789

996

432

242

348

078

.255

2.68

814

.987

441

248

.356

No VLM2Vec
VLM2Vec only for Word Embedding
VLM2Vec only for Document Embedding

083
085
085

.260

.265
.266

2.67
2.68
268

776
780
781

994
994
995

424
426
428

231
234

235

.335
338
340

074
075
076

246
249
251

2.66
2.67
2.67

797
801
802

.985
.986
.986

429
432
434

235
239
240

342
.346
.348

Table 8: Ablation results on WikiWeb2M and SPIQA, showing the impact of using distribution-based importance

modeling and fine-tuned VLM2Vec embeddings for word and document representations.

WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO | Purity ARI NMI | NPMI WE LLM TD I-RBO | Purity ARI NMI
CEMTM 088 272 270 .792  .996 435 245 351 | 080 .258 2.68 .817 .987 444 251 359
CEMTM w/o Image .070 228 2.64 765 981 398 205 310 | .062 215 2,62 785 973 400 207 318
CEMTM w/ Caption | .077 246 2.66 .778  .988 417 221 332 | 068 235 2.64 800 .980 425 229 340

Table 9: Modality ablation results on WikiWeb2M and SPIQA. CEMTM w/o Image indicates removing the image
modality entirely, while CEMTM w/ Caption replaces the image modality with GPT-40 generated captions.

Next-7B results in the largest performance drop,
particularly in document clustering metrics. This
confirms that alignment-aware fine-tuned embed-
dings are crucial for accurate topic representation.
Using VLM2Vec only for token embeddings or
only for document embeddings results in interme-
diate performance: both help individually, but full
use of VLM2Vec (as in the original model) pro-
vides the strongest gains. These results highlight
the importance of semantically aligned, multimodal
representations at both word and document levels.
We further investigated the sensitivity of CEMTM
across different LVLMs in Appendix A.

5.2 Role of Distributional Supervision in the
Importance Network

We further evaluate the effect of modeling impor-
tance weights as samples from a learned Gaussian
distribution, rather than as deterministic values. As
shown in Table 8, removing this distributional su-
pervision and replacing it with a simple softmax
network leads to a consistent drop in performance
across coherence (NPMI, WE, LLM), diversity
(TD), and clustering metrics (Purity, ARI, NMI).
This confirms that stochastic importance modeling
not only improves robustness, but also helps the
model better focus on semantically relevant tokens
or image regions, ultimately yielding higher-quality
and more interpretable topic structures.

5.3 Role of Visual Signals in Multimodal
Topic Modeling

Table 9 presents the results of our modality abla-

tion study on WikiWeb2M and SPIQA. We observe

that removing the image modality (w/o Image)

substantially degrades performance across all met-

rics, confirming the crucial role of visual signals in
enhancing topic coherence and clustering quality.
When substituting images with automatically gen-
erated captions (w/ Caption), the performance im-
proves compared to removing images entirely, but
it still falls short of the full model (CEMTM). This
finding is consistent with prior work emphasizing
that captions only provide partial information about
visual content, whereas direct image features cap-
ture richer multimodal cues. Overall, these results
highlight the importance of incorporating image
representations directly, rather than relying solely
on textual surrogates.

6 Conclusion

We presented CEMTM, an interpretable multi-
modal topic model designed to extract coherent
topics from both short and long documents contain-
ing text and images. CEMTM leverages fine-tuned
LVLM embeddings alongside a distributional at-
tention mechanism, combining contextualized rep-
resentations with a reconstruction-based training
objective and importance-weighted fusion. This en-
ables the model to capture document-level seman-
tics while preserving interpretability. Evaluated on
six benchmark datasets, CEMTM achieves a strong
average LLLM score of 2.61 out of 3 and a Purity
score of 0.44, outperforming a broad range of uni-
modal and multimodal baselines. Ablation results
further highlight the value of fine-tuned LVLMs
and distributional supervision in guiding topic qual-
ity. Overall, CEMTM is a scalable, explainable
framework that enables tasks like few-shot retrieval,
multimodal summarization, and corpus-level topic
analysis with efficiency and interpretability.
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Limitations

While CEMTM demonstrates strong performance
and scalability across diverse multimodal datasets,
several limitations remain. First, the model relies
heavily on pretrained LVLMs, which introduces
significant computational overhead and requires ac-
cess to large-scale GPU resources (See Appendix
B for more information). This may limit the appli-
cability of CEMTM in low-resource or real-time
settings. Second, although the reconstruction ob-
jective aligns topic vectors with semantic document
embeddings, this does not guarantee that each topic
is fully disentangled or interpretable in isolation—
particularly when documents cover overlapping
concepts or when visual information is noisy or
redundant. Additionally, our evaluation focuses
on English-language datasets and does not explore
multilingual or cross-cultural settings, where visual
semantics and topic interpretability may differ sig-
nificantly. Lastly, while the importance network
encourages interpretability through attention spar-
sity, its learned weights are not explicitly validated
against human judgments, leaving room for future
work in explainability and user-in-the-loop topic
refinement.

Ethical Considerations

Potential Risks This research presents potential
risks related to the use of real-world multimodal
data, which may contain harmful biases or inac-
curacies. To mitigate these risks, all experiments
were conducted in controlled settings, and none
of the resulting models were deployed in public-
facing systems. Additionally, we carefully mon-
itored model outputs during evaluation to ensure
that no harmful content was propagated.

FHM Offensive Data We used the Facebook
Hateful Memes (FHM) dataset, which contains po-
tentially offensive content, strictly for experimental
purposes in this study. To minimize harm, we do
not release any models trained on this dataset. This
precaution ensures that any biased or harmful pat-
terns present in the data are not disseminated or
used beyond the limited scope of our research.
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A Encoding Model Sensitivity

To evaluate the impact of the underlying vision-
language encoder on CEMTM, we compare
VLM2Vec variants fine-tuned from LLaVA-Next-
7B (Lietal., 2024a) and QWen2VL-7B (Yang et al.,
2024) (as described in Jiang et al. (2025)) with sev-
eral non—fine-tuned baselines, including Phi-3.5-
V (Abdin et al., 2024), LLaVA-1.6-7B (Li et al.,
2024b), CLIP (Radford et al., 2021a), and BLIP2-
OPT-7B (Li et al., 2023). As shown in Table 10,
the choice of encoder has a clear effect on topic
quality and clustering performance. QWen2VL-7B
achieves the strongest results on both WikiWeb2M
and SPIQA, while LLaVA-1.6-7B emerges as the
most competitive non—fine-tuned baseline. These
results highlight the importance of robust multi-
modal grounding for improving coherence and in-
terpretability in CEMTM.

We also observe that VLM?2Vec fine-tuning sub-
stantially improves document representations, en-
abling stronger topic coherence and clustering.
Among the non—fine-tuned models, multimodal
language models such as LLaVA-1.6 and Phi-
3.5-V generally outperform vision-only encoders
like CLIP, underscoring the advantage of joint vi-
sion—language reasoning in capturing corpus-level
semantics.

B Experimental and Hyperparameter
Settings

Experimental Settings All experiments were
conducted using two NVIDIA A100 80GB GPUs.
To account for variance in training, we report re-
sults averaged over 3 random seeds. This setup
ensures consistency and robustness across different
runs, especially when training large-scale models
such as our proposed CEMTM and the multimodal
baselines.

Hyperparameter Settings For our model,
CEMTM, we use VLM2Vec as the encoder,
based on a fine-tuned LLaVA-Next-7B. As
detailed in Appendix A, we explore the impact
of different LVLMs. All token embeddings are
projected into a K -dimensional topic space. The
importance network is a 2-layer Transformer (4
heads), followed by a feedforward layer predicting
Gaussian token-level importance scores. The
encoder forward layer is a 2-layer MLP with
hidden size 512. We train with batch size 8,
learning rate 2 x 107°, for 30 epochs using

Adam. Regularization weights are e = 0.05 and

For baselines, we use public implementations
when available. LDA is trained via Gensim with
100 passes and o = 0.01. ZeroshotTM and Com-
binedTM use SBERT (all-MinilLM-L6-v2) with
default settings from Bianchi et al. (2021a). Top-
icGPT and its multimodal variants are run with
our modified version, limiting to K topics and as-
signing tokens sequentially to reflect topic pref-
erence. We then extract topic-word distributions
by aggregating the token-topic assignments across
the corpus, using soft alignment weights to repre-
sent each word’s contribution to each topic. M3L-
Contrast and Multimodal Zeroshot TM use CLIP
ViT-B/32 (Radford et al., 2021b) for image fea-
tures and SBERT (all-MinilLM-L6-v2) for text
encoding. For text-only models (e.g., LDA, Ze-
roshotTM, CombinedTM, CWTM), we append
GPT-40-generated image captions to inputs to en-
able multimodal evaluation. All models use the
same number of topics, tokenization, and docu-
ment splits for fair comparison.

C Topic Models Comparison for Few-shot
Retrieval

To better understand the role of topic models in
guiding few-shot retrieval, we conduct a detailed
comparison of different strategies for selecting in-
context examples. The results in Table 11 reveal
several important trends. First, simple baselines
such as random selection or nearest-neighbor re-
trieval using document embeddings provide only
modest improvements over the zero-shot setting.
While these methods occasionally retrieve seman-
tically similar examples, they lack the ability to
capture higher-level topical coherence, which is
crucial for complex multimodal QA tasks.

By contrast, topic-driven retrieval methods de-
liver more consistent and meaningful gains across
datasets and metrics. Models such as CWTM and
M3L-Contrast highlight the benefit of leveraging
contextualized topic spaces, where representations
capture recurring semantic patterns that extend be-
yond surface-level similarity. Extending this idea to
multimodal topic models, Multimodal ZeroshotTM
and our multimodal adaptation of TopicGPT fur-
ther improve retrieval quality by incorporating both
textual and visual signals. This demonstrates that
aligning topics across modalities helps identify
examples that are not only textually relevant but
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VLM2Vec WikiWeb2M SPIQA
Fine Tuned | NPMI WE LLM TD I-RBO | Purity ARI NMI | NPMI WE LLM TD I-RBO | Purity ARI NMI
LLava-Next-7B v 087 269 2.69 .789  .996 432 242 348 | 080 258 2.68 817 .987 444 251 359

QWen2VL-7B v 093 280 272 .796 .997 444 254 361 | .084 269 2.71 .824 991 459 263 371
Phi-3.5-V x 083 255 267 777 993 | 414 228 332 | 074 244 265 804 984 | 425 235 342
LLaVA-1.6-7B x 088 272 270 792 996 | 435 245 351 .080 258 2.68 817 .987 | 444 251 .359
CLIP x 081 251 267 774 991 | 410 222 328 | 072 241 265 .800 .982 | 421 231 .339
BLIP2-OPT-7B X 083 255 267 777 993 | 414 228 332 | 074 244 265 805 984 | 425 235 343

Table 10: Impact of the underlying LVLM encoder on CEMTM performance. We compare LoRA fine-tuned vision-
language models—LLaVA-Next-7B, LLaVA-1.6-7B, QWen2VL-7B, Phi-3.5-V, CLIP, and BLIP—as backbone
encoders for CEMTM. Results are reported on WikiWeb2M and SPIQA across topic coherence (NPMI, WE, LLM).

Setting SPIQA TQA
METEOR BERTScore-F1 | Accuracy F1-Macro

Zero-shot 26.3 67.48 84.87 83.79
3-shot Random Selection 274 68.92 85.36 84.28
3-shot Embedding-Based Selection 28.7 70.11 86.09 85.12
3-shot Topic-Based (CWTM) 28.3 69.85 85.82 84.96
3-shot Topic-Based (M3L-Contrast) 28.9 70.22 86.09 85.18
3-shot Topic-Based (Multimodal Zero-shot TM) 29.4 70.63 86.23 85.43
3-shot Topic-Based (LVLM Zero-shot TM) 29.8 71.18 86.58 85.84
3-shot Topic-Based (Multimodal TopicGPT) 30.5 71.89 86.82 86.39
3-shot Topic-Based (CEMTM) 31.3 72.76 87.31 87.03

Table 11: Few-shot multimodal QA performance on SPIQA and TQA using various retrieval strategies for selecting
3 in-context examples. Topic-based retrieval with CEMTM consistently outperforms baselines across all metrics.

also visually coherent, which is particularly impor-
tant in settings like SPIQA that require reasoning
over mixed modalities. Among all topic-based ap-
proaches, CEMTM achieves the best performance.
Its contextualized embeddings, projected into a
coherent topic space, allow for more fine-grained
retrieval that balances both semantic richness and
cross-modal alignment. This enables the model
to consistently select in-context examples that are
well-suited to the target question, leading to mea-
surable improvements in answer quality.

D Detailed Results For All Ks

We present the detailed results of various topic mod-
eling approaches. Table 12 reports results across
all K values (25, 50, 75, 100) for the WikiWeb2M
and SPIQA datasets. Table 13 provides the corre-
sponding results for the VIST, MSCOCO, T4SA,
and TQA datasets. Table 14 shows the detailed
performance of different topic modeling models on
the FHM dataset across all K values.
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WikiWeb2M SPIQA
NPMI WE LLM TD I-RBO | Purity ARI NMI | NPMI WE LLM TD I-RBO ‘ Purity ARI NMI
K=25
LDA 031 .098 239 .708  .956 306 138 240 | .024 .090 230 726 944 311 142 248
CombinedTM 042 154 245 700 950 322 155 262 | 035 143 238 715 942 324 153 263
Zero-shot TM 042 176 250 724 968 340 153 261 038 166 245 740 .96l 341 157 268
CWTM 057 .193 255 720 .967 352 172 279 | .049 181 2.50 739 960 354 174 282
TopicGPT 068 218 259 736  .980 384 195 292 | 059 205 2.54 758 972 386 198 298
M3L-Contrast 070 232 262 749 982 392 202 302 | .061 219 257 772 975 396 205 308
Multimodal Zero-shot TM | .075 240 2.63 .763 990 402 210 312 | .064 226 259 785 981 408 212 318
LVLM Zero-shot TM 078 251 264 770  .990 414 220 324 | 067 237 2.62 794 982 419 221 330
Multimodal TopicGPT 085 259 266 782 .994 421 231 331 072 245 264 806 985 428 233 339
CEMTM 092 273 268 796 .996 438 247 351 081 262 2.67 .825 988 452 256 .362
K=50
LDA 029  .096 240 .705 954 296 132 238 023 088 231 720 .943 302 137 245
CombinedTM 040 152 245 698  .949 319 151 261 033 141 239 708  .941 317 149 259
Zero-shot TM .041 174 251 719 967 337 150 259 | 037 163 246 733 959 334 153 265
CWTM 053 190 255 717 966 349 169 277 | 047 179 251 732 958 346 169 279
TopicGPT 064 214 259 732 979 380 192 290 | .058 202 2.55 751 970 378 193 295
M3L-Contrast 066 229 262 746 982 3890 198 300 | .060 217 2.58 766 974 388 .200 .305
Multimodal Zero-shot TM | .072 238 2.64 .758 .989 398 206 310 | .063 224 2.60 .779  .980 400 207 316
LVLM Zero-shot TM 075 248 265 766  .990 409 216 322 | 066 234 263 .788 981 412216 327
Multimodal TopicGPT 081 257 267 777 993 416 227 330 | 072 243 2,65 .800 .984 420 228 336
CEMTM 088 271 269 791  .996 433 244 349 | 081 26 268 .82  .987 445 252 360
K=75
LDA 027 .094 240 .702 952 291 129 233 021 087 232 714 941 296 134 242
CombinedTM 038 149 246 .695 947 315 147 257 032 139 239 .701 939 312 146 256
Zero-shot TM 039 171 251 714 965 334 148 255 035 161 246 727 957 328 151 262
CWTM 050 .186 256 712 964 345 166 274 | 046 176 2.51 726 956 341 166 276
TopicGPT 061 210 260 727 978 376 188 287 | .056 199 256 745  .969 374 .19 293
MB3L-Contrast 064 224 263 742 981 384 195 296 | .058 214 259 760 972 384 197 303
Multimodal Zero-shot TM | .069 234 2.64 .753 989 393 202 306 | 062 222 261 .773 978 397 204 314
LVLM Zero-shot TM 072 244 266 .761 990 404 211 318 065 232 263 782  .980 408 213 325
Multimodal TopicGPT 078 253 267 772 993 412223 326 | .070 241 2.66 .795 983 417 225 334
CEMTM 085 267 270 787 995 430 240 347 079 257 269 815 987 441 250 358
K=100
LDA 025 092 241 698 951 288 126 230 | .020 .085 232 709 .940 289 131 239
CombinedTM 037 147 246 692 946 311 144 253 030 .137 240 .696 938 306 143 253
Zero-shot TM 038 169 252 710 .964 330 144 251 034 159 247 722 955 323 148 258
CWTM 049 183 256 708  .962 341 162 270 | .044 173 252 720 954 336 163 273
TopicGPT 059 207 260 722 977 371 183 .283 054 196 257 739 967 369 187 289
M3L-Contrast 062 221 263 .737 980 379 190 293 057 211 260 .754 971 379 194 300
Multimodal Zero-shot TM | .067 231 2.65 .748 .988 388 197 303 | .061 219 261 767 977 392 201 311
LVLM Zero-shot TM 070 242 2,66 .755 989 399 206 315 063 229 264 776 979 404 210 322
Multimodal TopicGPT 076 251 268 766 .992 407 217 323 069 238 2.67 .789 982 413 222 331
CEMTM 083 266 270 .781 995 425 238 345 078 254 270 .808  .986 438 247 356

Table 12: Comparison of topic modeling performance on WikiWeb2M and SPIQA. We report coherence (NPMI,
WE, LLM), diversity (TD), redundancy (IRBO), and clustering metrics (Purity, ARI, NMI).
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VIST \ TQA \ MSCOCO \ T4SA
NPMI_ WE LLM TD IRBO [NPMI WE LLM TD [RBO |NPMI WE LLM TD IRBO|NPMI WE LLM TD [RBO
K=25
LDA 019 080 223 653 937 | 021 083 224 670 942 | 018 075 221 624 986 | 013 066 218 .602 985
CombinedTM 026 123 230 644 935 | 030 132 232 658 939 | 025 121 227 611 985 | 020 .108 225 590 977
Zero-shot TM 031 142 238 666 951 | 034 155 239 684 957 | 029 138 234 635 987 | 025 127 232 614 987
CWTM 039 159 243 664 949 | 043 173 244 681 955 | 037 157 239 633 987 | 031 145 238 612 988
TopicGPT 046 183 247 678 961 | 052 199 248 697 968 | 044 180 243 648 990 | 037 .167 241 627 990
MB3L-Contrast 047 194 250 688 964 | 054 211 251 711 972 | 046 .193 246 661 990 | 039 179 244 .640 991
Multimodal Zero-shot TM | 051 201 251 .694 973 | 058 219 252 722 978 | 050 201 247 .669 992 | 042 .186 246 .648 .92
LVLM Zero-shot TM 053 212 253 703 975 | 061 230 255 730 979 | 053 213 250 .677 993 | 045 197 248 .656 993
Multimodal TopicGPT 058 220 255 714 978 | 066 238 257 742 982 | 057 221 251 688 994 | 050 205 250 .667 .994
CEMTM 065 237 258 730 981 | 073 255 259 758 986 | 063 237 254 703 995 | 055 221 252 .683 995
=50
LDA 018 078 223 648 936 | 02 081 224 667 940 | 017 074 221 620 98 | 012 065 2.18 .599 985
CombinedTM 025 120 231 639 934 | 028 130 232 654 937 | 024 118 228 607 984 | 019 .106 225 .587 978
Zero-shot TM 029 139 238 661 950 | 033 .152 239 680 955 | 028 .136 234 631 987 | 024 124 232 611 987
CWIM 037 157 244 659 948 | 041 170 245 677 953 | 035 .154 240 628 987 | 029 .143 238 609 .988
TopicGPT 044 180 247 673 959 | 050 .195 248 693 967 | 042 178 243 643 990 | 035 165 242 624 990
MB3L-Contrast 045 191 250 683 963 | 052 208 251 707 970 | 044 190 246 656 990 | 037 176 245 637 991
Multimodal Zero-shot TM | 049 199 252 690 972 | 057 215 253 718 976 | .048 .19 248 664 992 | 040 .183 246 645 992
LVLM Zero-shot TM 051 209 254 698 974 | 060 227 255 726 978 | 051 211 250 672 993 | 044 195 248 653 993
Multimodal TopicGPT 056 217 256 709 977 | 065 234 257 738 981 | 056 219 252 683 994 | 048 203 250 665 .994
CEMTM 063 234 258 725 981 | 072 251 260 754 985 062 234 254 698 995 | 054 219 252 681 995
K=75
LDA 017 076 223 643 934 | 019 080 225 664 939 | 016 072 221 616 985 | 011 063 218 .596 985
CombinedTM 023 117 231 635 933 | 027 129 232 651 936 | 022 116 228 603 984 | 018 104 225 584 978
Zero-shot TM 028 136 238 656 948 | 032 151 239 677 954 | 027 133 234 627 98¢ | 022 122 233 608 987
CWTM 035 154 244 654 946 | 041 168 245 674 952 | 034 152 240 624 987 | 028 140 238 606 988
TopicGPT 042 177 248 669 958 | 049 193 248 690 965 | 041 175 244 640 989 | 034 163 242 621 990
MB3L-Contrast 043 189 250 679 961 | 052 205 252 703 969 | .043 188 246 652 990 | 036 .174 245 .634 991
Multimodal Zero-shot TM | .047 .196 252 685 971 | 055 213 253 .714 975 | 046 .197 248 .660 992 | 039 .181 246 .642 .92
LVLM Zero-shot TM 049 207 254 694 973 | 059 225 255 722 977 | 049 209 250 .668 993 | 042 193 249 650 993
Multimodal TopicGPT 054 215 256 705 976 | 063 233 257 734 980 | 054 217 252 679 994 | 047 201 250 .661 993
CEMTM 061 232 258 722 980 | 071 249 260 749 984 | 060 232 254 695 995 | 053 217 253 .677 995
K=100
LDA 015 074 223 638 933 | 018 078 225 659 938 | 015 071 221 612 985 | 01l 062 218 .593 985
CombinedTM 022 115 231 630 931 | 026 126 232 646 934 | 021 113 228 599 984 | 016 .102 226 .581 977
Zero-shot TM 027 134 238 652 946 | 031 148 239 673 953 | 025 131 235 623 98 | 021 .119 233 605 987
CWIM 033 U501 244 649 944 | 039 165 245 670 950 | 032 .149 240 620 987 | 027 138 239 602 987
TopicGPT 040 174 248 664 956 | 048 190 249 686 964 | 039 173 244 636 989 | 033 161 242 618 .99
MB3L-Contrast 042 186 251 674 960 | 050 203 252 699 968 | 041 186 247 649 990 | 035 172 245 631 991
Multimodal Zero-shot TM | 046 193 252 681 970 | 054 211 253 710 974 | 045 .194 248 657 992 | 038 .179 247 639 992
LVLM Zero-shot TM 048 204 255 690 973 | 057 222 256 719 975 | 048 206 251 665 992 | 041 191 249 647 992
Multimodal TopicGPT 053 213 256 701 975 | 062 230 258 731 979 | 053 215 252 676 993 | 046 .199 251 658 993
CEMTM 059 229 259 718 980 | 069 247 260 746 983 | 059 230 255 691 994 | 051 215 253 674 995

Table 13: Comparison of topic modeling performance on VIST, TQA, MSCOCO, and T4SA. We report coherence
(NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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FHM
NPMI WE LLM TD I-RBO

K=25
LDA .006 .051 2.04 .535 983
CombinedTM 011 .091 2.10 .523 975
Zero-shot TM 016 113 2.17 548 985
CWTM 021 132 221 546 986
TopicGPT 027 154 226 559  .989
M3L-Contrast 032 173 233 571 990
Multimodal Zero-shot TM | .034 .181 235 .580 .992
LVLM Zero-shot TM 041 198 242 595 993
Multimodal TopicGPT 045 206 244 607 994
CEMTM (ours) 051 221 247 622 995

K=50
LDA 005 .049 2.04 531 983
CombinedTM .010 .089 2.10 .519 975
Zero-shot TM 015 110 2.17 545 984
CWTM 020 129 222 542 986
TopicGPT 026 151 226 556  .988
M3L-Contrast 030 .170 2.33 567  .990
Multimodal Zero-shot TM | .033 .179 235 .576 .992
LVLM Zero-shot TM 039 196 243 592 993
Multimodal TopicGPT 044 204 245 603 994
CEMTM (ours) 050 219 247 618 995

K=75
LDA 004 .047 204 528 983
CombinedTM .009 .086 2.10 .516 .975
Zero-shot TM 013 108 2.17 541 984
CWTM 019 126 222 539 985
TopicGPT 024 149 226 552 988
M3L-Contrast 029 167 234 564 990
Multimodal Zero-shot TM | .032 .176 236 573 .991
LVLM Zero-shot TM .038 .193 243 588  .993
Multimodal TopicGPT 043 201 245 599 993
CEMTM (ours) 048 216 247 615 995

K=100
LDA 004 .045 205 525 982
CombinedTM .008 .083 2.11 512 974
Zero-shot TM 012 105 2.17 .538 .984
CWTM 018 123 222 535 985
TopicGPT 023 146 227 549 988
M3L-Contrast 028 165 234 561 .990
Multimodal Zero-shot TM | .031 .173 236 .569  .991
LVLM Zero-shot TM 037 190 243 584 993
Multimodal TopicGPT 041 198 245 595 993
CEMTM (ours) 047 213 247 611 995

Table 14: Unsupervised topic quality on the FHM dataset, which tests modeling under high image—text semantic
gaps. We report coherence (NPMI, WE, LLM), diversity (TD), and redundancy (I-RBO).
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