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Abstract

In real-world scenarios, most of the data ob-
tained from the information retrieval (IR) sys-
tem is unstructured. Converting natural lan-
guage sentences into structured Knowledge
Graphs (KGs) remains a critical challenge. We
identified three limitations with respect to ex-
isting KG construction methods: (1) There
could be a large amount of noise in real-world
documents, which could result in extracting
messy information. (2) Naive LLMs usually ex-
tract inaccurate knowledge from some domain-
specific documents. (3) Hallucination phe-
nomenon cannot be overlooked when directly
using LLMs to construct KGs. In this paper,
we propose GraphJudge, a KG construction
framework to address the aforementioned chal-
lenges. In this framework, we designed an
entity-centric strategy to eliminate the noise in-
formation in the documents. And we fine-tuned
a LLM as a graph judge to finally enhance the
quality of generated KGs. Experiments con-
ducted on two general and one domain-specific
text-graph pair datasets demonstrate state-of-
the-art performance against various baseline
methods with strong generalization abilities.
Our code is available at https://github.com/hhy-
huang/GraphJudge.

1 Introduction

The transition from non-structured text to struc-
tured Knowledge Graphs (KGs) is a pivotal step
in the evolution of data management and informa-
tion retrieval systems. The task of automatic KG
construction aims to develop a structured represen-
tation of knowledge from various data sources with-
out the need for manual intervention. KGs usually
serve as the backbone of numerous data science
applications, including GraphRAG systems (Edge
et al., 2024; Peng et al., 2024; Huang et al., 2025)
and recommendation systems (Wang et al., 2019;
Jiang et al., 2024; Chen et al., 2025). Exploring a
way to construct high-quality KGs from unstruc-

tured data is crucial for different downstream appli-
cations based on KG (Ge et al., 2021; Huang et al.,
2024; Wei et al., 2024; Rabbani et al., 2023).

Recently, Large Language Models (LLMs) have
demonstrated significant generalization capabili-
ties in various Natural Language Processing (NLP)
tasks (Pan et al., 2024) and KG related tasks, such
as text generation (Li et al., 2024), KG Completion
(KGC) (Yao et al., 2023) and Open Information
Extraction (OpenIE) (Angeli et al., 2015; Dagde-
len et al., 2024). Consequently, there are many
works that utilize LLMs to construct KGs from
unstructured natural language documents. The in-
corporation of LLMs can address the issue of gener-
alization in open-domain applications (Carta et al.,
2023a). With its robust zero-shot generation ca-
pability, there is no need for us to gather a large
volume of annotated data for tasks such as named
entity recognition (NER), entity extraction, or rela-
tion extraction.

Although recent LLM-based methods (Mo et al.,
2025; Han et al., 2023; Lairgi et al., 2024) have
gained some success in the KG construction task,
we find that they may still face three challenges:

(1) Noise Information. Real-world documents
are not only voluminous but also rife with noise,
which poses a significant challenge for LLMs ex-
tracting valuable structured information. The sheer
volume of data can lead to the extraction of ex-
cessive and irrelevant information, overshadowing
the critical insights that LLMs are meant to un-
cover (Liu et al., 2024b; Shi et al., 2023a). For ex-
ample, as shown in Figure 1, the triple <Protein X,
is on, a 50% Discount>is incorrectly constructed
due to the irrelevant advertisement with red lines
in the document, which is the noise information
that makes the LLM incorrectly believed that the
Protein X is on sale with discounts.

(2) Domain-Specific Knowledge. Naive LLMs
often generate inaccurate triples with domain-
specific documents, which require a deep un-
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<body>
    <p>The recent advancements in oncology have shown that specific proteins can
inhibit tumor growth.Dr. Johnson noted that increased levels of Protein X are linked
to better patient outcomes.</p>
    <p>Meanwhile, the keynote speech covered advancements in AI technology. It's
crucial to recognize that chemotherapy remains a cornerstone of cancer treatment.
</p>
    <div style=.. >
        <h2>Special Offer: Save 50% on Your Next Purchase!</h2>
        <p>Don't miss out on our limited-time discount! Visit our website today and get
50% off on all products. Click <a href="https://example.com">here</a> to shop
now!</p>
    </div>
</body>
...

Figure 1: An demonstration of the challenges for constructing KGs with LLMs. The original document shown in
the left part, while the constructed KG with some failure cases is displayed on the right side. The triple highlighted
in red is wrongly formulated due to the presence of noisy information, the one in blue lacks domain knowledge, and
the green-highlighted triple is a result of hallucinations by LLMs.

derstanding of specialized terminology and con-
text (Zhong et al., 2023; Zhu et al., 2024). And this
kind of error is hard to be observed by naive LLMs.
For example, in Figure 1, the triple <Protein X,
cured, Patient>is inaccurately extracted due to a
lack of medical domain-specific knowledge. While
the document marks a reference with blue lines,
note that the original text only suggests a link be-
tween Protein X and better patient results, not that
it can cure patients in medical fields.

(3) Hallucinations of LLMs. When LLMs are
directly used to build KGs, they are prone to gen-
erating false or distorted information, which is a
phenomenon called hallucinations (Zhang et al.,
2023; Ji et al., 2023). This can lead to the incorpo-
ration of inaccurate or fabricated facts into the KG,
undermining the reliability of the KG. For example,
as shown in Figure 1, the triple marked in green
<AI Technology, replaces, Chemotherapy>is in-
correctly generated without any reference in the
original document, even in the entity-related text
highlighted with a green line.

To this end, we propose a new method called
GraphJudge, which utilizes a fine-tuned open
source LLM (e.g., LLaMA-2 (Touvron et al.,
2023)) as an expert to judge the correctness of the
triples generated by another closed-source LLM
(e.g., GPT-4o-mini). To address the first challenge,
we introduce the Entity-Centric Text Denoising
(ECTD) module. We clean up the original docu-
ments by eliminating redundant words and irrele-
vant information not pertinent to the entities iden-
tified by the LLM. This module also leverages the
robust zero-shot generation capabilities of LLMs
to ensure the recall of a sufficient number of triple
candidates (Wei et al., 2023; Carta et al., 2023a).

To overcome the second challenge, we suggest the
module of Knowledge Aware Supervised Fine-
Tuning (KASFT). We introduce the graph judge-
ment task from the triple classification task. To
verify the accuracy of the triples generated by the
closed-source LLM, we conduct supervised fine-
tuning (SFT) on an open-source LLM, which can
make it achieve over 90% accuracy on graph judge-
ment tasks with strong generalization abilities. To
settle the third challenge, the Graph Judgement
(GJ) module is introduced. We utilize the fine-
tuned open-source LLM to conduct judgement on
the generated triples in the first module and filter
out the wrong items to finally improve the quality
of generated KGs.

In summary, the main contributions made in this
work are as follows.

• Addressing challenges such as information
noise, domain knowledge gaps and halluci-
nations in LLMs represents a critical step to-
wards improving the quality of constructed
KGs with real-world documents. To the best
of our knowledge, we are the first to leverage
both open- and closed-source LLMs to tackle
these problems.

• We propose a new framework named Graph-
Judge to leverage their capability as a graph
judge and enhance the performance of LLMs
in KG construction tasks. We design an entity-
centric strategy to eliminate the irrelevant
and messy information in original documents.
And we introduce graph judgment as the SFT
task to enhance the quality of generated KGs.

• Experiments on two general and one domain-
specific text-graph pair datasets demonstrate
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that GraphJudge achieves state-of-the-art per-
formance against various baseline methods
with strong generalization abilities.

2 Related Work

In this section, we will introduce recent LLM-
based OpenIE and KG construction methods. Some
work(Agrawal et al., 2022; Wei et al., 2023) has
demonstrated that LLMs have remarkable zero-
shot and few-shot information extraction abilities.
However, they face difficulties when it comes to
more intricate tasks such as relation extraction and
event extraction (Carta et al., 2023a). To address
that, Kumar et al. (Kumar et al., 2020) propose
a unified approach to construct KGs from unpro-
cessed text. They initially fine-tuned a pre-trained
language model (PLM) for NER. Subsequently,
they introduced a ‘2-model BERT’ architecture to
extract relations. GPT-RE (Wan et al., 2023) in-
troduces the in-context learning method and task-
aware representations in demonstration retrieval
and aims to enhance the connections between ex-
amples and triples. PiVe (Han et al., 2023) de-
signs a paradigm that fine-tuning a PLM as the
verifier to predict the missing triples. With iterative
verifications, the graph-based generative capabil-
ity of LLMs can be improved. VicunaNER (Ji,
2023) utilizes the open-source LLM Vicuna to do
zero-shot or few-shot NER. Similarly, it also per-
forms recognition to identify entities that were
not recognized in the previous phase. Carta et
al. (Carta et al., 2023a) develops an iterative LLM
prompting-based pipeline to generate KGs with-
out requiring predefined sets or external ontologies.
iText2KG (Lairgi et al., 2024) proposes a zero-shot
method to construct consistent KGs from docu-
ments with LLMs. It restructures the unprocessed
documents using a preset template and identifies
distinct entities and connections in a semantic man-
ner. SAC-KG (Chen et al., 2024) exploits LLMs as
skilled automatic constructors for domain KGs and
employs a naive LLM to predict the correctness
of constructed triples. KGGen (Mo et al., 2025)
clusters related entities to reduce sparsity in the
KGs constructed by LLMs.

3 Preliminary and Definition

In this section, we first formulate the task of KG
construction and introduce the definitions we may
use throughout the paper. Then we detail the defi-
nition of the graph judgement task.

Definition 1: (Knowledge Graph Construc-
tion Task) We define the KG construction task as
a problem of how to extract entities E and relations
R from a documentD, which is also called the text-
to-graph generation (T2G) task. The constructed
KG, is defined as G = {(h, r, t)|h, t ∈ E , r ∈ R},
where E is the set of entities and R is the set of
relations in the graph G. In other words, each KG
G has a corresponding original text D. Our goal is
to get a better KG G from a document D.

We also define a set of KGs SG =
{G1,G2, ..,GN} and a set of documents SD =
{D1,D2, ..,DN}. In our implementation, we have
a set of graph-text pairs SP = {P1,P2, ..,PN},
where Pi = {(Gi,Di)|Gi ∈ SG ,Di ∈ SD}. And
N = |SP | is the number of graph-text pairs.

Definition 2: (Graph Judgement Task) We
introduce the task of graph judgement to classify
each triple in generated graphs is correct or not.

Here we define the KG we constructed from a
corresponding document as Ĝ and SĜ representing
the set of graphs we constructed. And T̂ in Equa-
tion (1) represents the triples on which we need
to make judgements. Our goal in the graph judge-
ment task is to predict the label of each triple in T̂ ,
represented as ŷ ∈ {0, 1}|T̂ |.

T̂ =
⋃

Ĝ∈SĜ

{(h, r, t)|(h, r, t) ∈ Ĝ}. (1)

4 Methodology

4.1 Overview
As shown in Figure 2, the proposed model Graph-
Judge consists of three modules. In the first mod-
ule, which is Entity-Centric Text Denoising, we
extract entities and relations separately following
results described in (Carta et al., 2023b). In the
phrase of entity extraction, we generate entities
with the denoised document. In the phrase of re-
lation extraction, we generate relations with the
entities and the denoised document as many as pos-
sible. Then, in the module of Knowledge Aware
Supervised Fine-Tuning, we perform SFT to let
the LLM become an expert in graph judgement by
enhancing their abilities to check facts from docu-
ments with the triple structure and deepening their
comprehension of domain-specific knowledge con-
tained in the text-graph pairs. After that, in the final
module we conduct the Graph Judgement. With
the denoised documents as contexts, we employ
the fine-tuned LLM as the graph judge to ascertain
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Figure 2: The overall architecture of our proposed GraphJudge framework for knowledge graph construction. It
consists of three modules: (a) is the Entity-Centric Text Denoising module, (b) is the Knowledge Aware Supervised
Fine Tuning module and (c) is the Graph Judgement module. The only component requiring training across the
entire architecture is the open-source LLM utilized in the second module.

the accuracy of each triple within the graphs we
generate. And then with the predicted results, we
can filter out the triples that are judged as wrong.
Finally, we can get high quality KGs.

4.2 Entity-Centric Text Denoising

Raw Document Entities Denoised Document

Draft KG

Figure 3: Illustrations of Entity-Centric Text Denoising.

In this module, a two-phrase extraction paradigm
is designed to extract the entities and relations re-
spectively. In phrase 1, we extract entities first and
then denoise the original documents with extracted
entities. In phrase 2, we conduct relation extraction
and then we obtain the draft KGs. And Figure 3
is an overview of this module. In both of the two
phrases we utilize a closed-source LLM to do the
extraction and denoising.

4.2.1 Text denoising and entity extraction
In phrase 1, we consider that a substantial portion
of real-world documents retrieved from informa-

tion retrieval systems are consist of considerable
noise information. And that may influence the qual-
ity of relations extracted by LLM (Shi et al., 2023b;
Liu et al., 2024c). So we design an iterative denois-
ing method to remove messy information from the
original text.

Specifically, we extract entities from the origi-
nal document using LLM. And as verified in Ap-
pendix E, the entities extracted by closed-source
LLMs have a high coverage rate and provide a good
foundation for the following denoising, relation ex-
traction and triple filtering processes. Subsequently,
we input these entities and the original document
into LLM to generate the denoised document. In
this way, we can achieve two goals: (1) The noise
information that is not related to the topic of the
document can be removed. (2) The content of the
documents can be reorganized in an entity-centric
way, which is friendly to the triple extraction in the
next phrase. Finally, for each raw document D we
will get the extracted entity set Ê and the denoised
document D∗. Note that important information can
be well preserved in D∗ as verified in Appendix G.

4.2.2 Relation extraction
In phrase 2, we aim to extract relationships (triples)
as many as feasible with the denoised document
D∗ and the entity set Ê obtained in phrase 1 uti-
lizing LLMs as shown in Equation (2). We create
numerous relationships between entities to ensure
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a sufficient number of suitable candidate triples for
filtering with LLM judgment in the Graph Judge-
ment module. Then we can construct a draft KG
G∗ for each original document D, as illustrated in
Equation (3), whereR∗ is the draft relation set we
generate.

R∗ = LLM(Ê ,D∗), (2)

G∗ = {(h, r, t)|h, t ∈ Ê , r ∈ R∗}. (3)

4.3 Knowledge Aware Supervised
Fine-Tuning

In this module, inspired by KG-LLaMA (Yao et al.,
2023), we propose the method of treating triples
in the draft KG G∗ as textual sequences and model
graph judgement task as a sequence-to-sequence
problem. We construct instruction data from the
training set and fine-tune an open-source LLM to
achieve the goal of both excelling at checking facts
from documents with the triple structure and ac-
knowledgment of domain-specific knowledge. The
LLM can also learn how to verify the consistency
between the document and the extracted triples.
Checking facts with the triple structure refers to
the general structure of triples is often analogous
to a grammatical subject, predicate, and object or a
subject with a relational attribute. LLMs are antic-
ipated to have the ability to identify their correct-
ness from the give documents. Domain-specific
knowledge refers to the knowledge in the docu-
ments could be a new domain (Zhong et al., 2023),
which is typically not part of pre-training data of
LLMs. By employing SFT, the domain-specific
knowledge from the documents can be incorporated
into the LLM, thus enhances its graph judgment
performance. And only if LLMs are fine-tuned as
graph judges, these types of knowledge can be well
learned, as justified in Figure 5 and Appendix H.

Before we conduct SFT on the LLM, we con-
struct instructions for the graph judgement task
with text-graph pair data. Because we need to en-
sure that the LLM not only excels at verifying cor-
rect triples but also skilled at telling the incorrect
triples with the paired documents as contexts, we
employ negative sampling to construct instruction
data for training. In detail, we first sample the posi-
tive triple set T + from the KGs of training set as
described in Equation (4), where SGtrain is the set
of all KGs in the training set.

T + =
⋃

G∈SGtrain

{(h, r, t+)|(h, r, t+) ∈ G}. (4)

Similarly, we sample negative triple set T − from
the KGs in training set as described in Equation (5),
where E represents the entity set of the graph G.
(h, r, t−) is a negative triple of the graph G, where
t− is a negative entity. We replace the positive tail
entity t+ in each positive triple with a randomly
selected negative tail entity t−. Note that if the
selected negative entity is the same as or similar
to the original one, we will skip that because they
may not construct a triple reflecting a false fact.

T − =
⋃

G∈SGtrain

{(h, r, t−)|

(h, r, t+) ∈ G, t− ∈ E \ {t+}}.
(5)

Then we merge the positive triple set T + and
negative triple set T − constructed from KGs
SGtrain . Then we can obtain all the triples Ttrain
we need to construct instructions.

Ttrain = T + ∪ T −. (6)

Furthermore, we transfer the triples in Ttrain to
natural language sentences to construct the instruc-
tion data with paired documents D as contexts fol-
lowing the prompt templates shown in Appendix I.
The triple sentences either represent a real fact or a
fake fact. Then let the LLM make judgements with
these instructions. Mathematically, with tokenized
sentences XTtrain transferred from triples Ttrain
and paired documents D, and tokenized instruction
XI , for a sequence of length L, we compute the
probability of generating the target output XO as
follows:

p(XO|Xt,XI) =
L∏

i=1

pθ(xi|Xt,XI,<i,XO,<i),

(7)
whereXt ∈ XTtrain . And θ are the learnable param-
eters within the open-source LLM to be fine-tuned.

4.4 Graph Judgement
The KGs created in the first module are preliminary
and that is also why we call that draft KGs. In this
module, we will judge the factual correctness of the
triples in these draft KGs using our fine-tuned LLM
in the second module and filter out the incorrect
triples.

In detail, we let LLM do the graph judgement
task on the draft KGs G∗. Here we define draft KG
set as SG∗ , and the triples in all draft KGs can be
symbolized as

T ∗ =
⋃

G∗∈SG∗

{(h, r, t)|(h, r, t) ∈ G∗}. (8)
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Then, the LLM needs to assess the correctness of
each triple in T ∗ by considering whether it aligns
with the knowledge in paired documents and avoids
conflicting with both domain-specific knowledge
as it learned. We obtain the predictions of all
the triples in T ∗ with the learned parameters θ
as shown in Equation (9). And Pred(·) is a func-
tion that transforms the outputs of LLM into the
binary results ŷ ∈ {0, 1}|T ∗|. Based on the judg-
ments made by LLM, we filter the triples T ∗ in
draft KGs to obtain high-quality triples T̂ as de-
scribed in Equation (10), which form the final KGs
we seek. ŷ(h,r,t) is the predicted result of a triple
(h, r, t).

ŷ = Pred(pθ(XT ∗)), (9)

T̂ = {(h, r, t) ∈ T ∗|ŷ(h,r,t) = 1}. (10)

Similarly, the refined relation set R̂ =
{r|(h, r, t) ∈ G∗, ŷ(h,r,t) = 1} can also be ob-
tained. Lastly, for each draft KG G∗ ∈ SG∗ we
can get the refined KG Ĝ that we desire as shown
in Equation (11). The implementation details of
the graph judgment procedure are demonstrated in
Appendix D.

Ĝ = {(h, r, t)|h, t ∈ Ê , r ∈ R̂, (h, r, t) ∈ T̂ }.
(11)

5 Experiments

In this section, we will conduct experiments to ad-
dress the following key research questions: RQ1:
How well does GraphJudge perform on both gen-
eral knowledge data and domain-specific knowl-
edge data? RQ2: How do the different key com-
ponents in our proposed method GraphJudge con-
tribute to its overall performance? RQ3: How
about the generalization capability of GraphJudge
when applied across different datasets?

5.1 Experimental Settings

5.1.1 Dataset
In our study, we conduct experiments on two gen-
eral datasets (REBEL-Sub (Huguet Cabot and
Navigli, 2021) and GenWiki (Jin et al., 2020))
and two domain-specific datasets (SCIERC (Luan
et al., 2018) and the Windows-centric subset of
Re-DocRED (Tan et al., 2022) used by Sun et al.
(2025)) with golden ground truth KGs. We demon-
strate the detailed information and statistics of each
dataset in Appendix A. For each dataset we ran-
domly select a sample of 2000 data points from

the training data for validation purposes during the
fine-tuning of the LLM.

5.1.2 Baselines

In our performance comparison, we consider six
baselines for comprehensive evaluation: GPT-4o-
mini: We conduct experiments on GPT-4o with
one-shot learning method. The instructions we
have developed are identical to those outlined in
our method. GPT-4o (Hurst et al., 2024): The
same settings as GPT-4o-mini. RAKG (Zhang
et al., 2025), iText2KG (Lairgi et al., 2024), and
KGGen (Mo et al., 2025): We follow the default
settings of them and their official implementations
with GPT-4o-mini as the LLM. PiVe (Han et al.,
2023): We follow the default parameter settings of
PiVe. We use the largest verifier module in PiVe,
Flan-T5-XXL (Chung et al., 2024). We employ the
LoRA adapter checkpoint1, which has been well
trained. And the LLM we use in this model is GPT-
4o-mini. We implement an iterative prompting
approach with three rounds, which represents the
optimal number of iteration rounds as outlined in
their study.

5.1.3 Implementation Details

Large Language Model: The LLMs we employed
in this research are various in different modules.
In the ECTD module, we utilize the closed-source
LLM GPT-4o-mini to denoise the original docu-
ments and extract triples from documents. In the
KASFT module, an open-source LLM LLaMA-
2-7B (Touvron et al., 2023) is used as our base
model.

Supervised Fine-Tuning: We employ LLaMA-
2-7B as the base model to carry out SFT with
LoRA (Hu et al., 2021). The instructions are con-
structed with the documents, query sentences, and
the triple sentences. We perform SFT on autore-
gression generation tasks, which is a common ap-
proach to fine-tune LLMs (Black et al., 2022). The
expected responses (labels) are either ‘Yes, that is
true.’ or ‘No, that is not true.’. Training settings are
illustrated in Appendix C. The training was done
using a single L20 GPU with 48GB of RAM.

5.1.4 Evaluation Metrics

We acknowledge that conventional evaluation tech-
niques are rule-based. They assess the resemblance
between predictions and ground-truth KGs through

1https://huggingface.co/Jiuzhouh/flan-t5-xxl-lora-verifier
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Dataset Method G-BS-Acc↑ G-BS-Recall↑ G-BS-F1↑ G-BL-Acc↑ G-BL-Recall↑ G-BL-F1↑ G-RO-Acc↑ G-RO-Recall↑ G-RO-F1↑

REBEL-Sub

GPT-4o-mini 0.3571 0.9024 0.4289 0.2343 0.6687 0.3018 0.2095 0.6266 0.2779
GPT-4o 0.3131 0.9432 0.4163 0.2345 0.7284 0.3158 0.2201 0.6851 0.2966
RAKG 0.1196 0.9571 0.2127 0.1078 0.8625 0.1917 0.1012 0.8095 0.1799
iText2KG 0.3847 0.9342 0.4937 0.2704 0.6579 0.3504 0.2180 0.5475 0.2864
PiVe 0.3082 0.9378 0.4090 0.2217 0.7089 0.3010 0.2068 0.6693 0.2823
KGGen 0.4190 0.8937 0.4995 0.2587 0.5794 0.3146 0.2233 0.5037 0.2719
GraphJudge 0.4868 0.9144 0.5796 0.3391 0.6490 0.4057 0.3032 0.5878 0.3571

GenWiki

GPT-4o-mini 0.7825 0.9334 0.8368 0.6136 0.7353 0.6577 0.5451 0.6568 0.5857
GPT-4o 0.7871 0.9393 0.8428 0.6318 0.7561 0.6774 0.5614 0.6742 0.6028
RAKG 0.4695 0.9521 0.6058 0.3804 0.7991 0.5035 0.3397 0.7196 0.4507
iText2KG 0.8984 0.7611 0.7986 0.7193 0.6007 0.6310 0.6042 0.5227 0.5432
PiVe 0.7463 0.9485 0.8230 0.5884 0.7516 0.6503 0.5251 0.6746 0.5817
KGGen 0.8578 0.8230 0.8169 0.5799 0.4700 0.5542 0.4845 0.5598 0.4641
GraphJudge 0.7936 0.9375 0.8457 0.6407 0.7591 0.6836 0.5714 0.6796 0.6106

SCIERC

GPT-4o-mini 0.5974 0.9183 0.6882 0.4368 0.6725 0.5040 0.3876 0.6065 0.4490
GPT-4o 0.6272 0.9079 0.7035 0.4469 0.6530 0.5032 0.3914 0.5807 0.4425
RAKG 0.2137 0.9528 0.3474 0.1647 0.7334 0.2678 0.1556 0.6864 0.2524
iText2KG 0.8100 0.6674 0.6724 0.5747 0.4732 0.4772 0.4836 0.3968 0.3999
PiVe 0.5738 0.9225 0.6725 0.4192 0.6757 0.4924 0.3719 0.6092 0.4385
KGGen 0.8394 0.6500 0.6635 0.6045 0.4594 0.4725 0.5426 0.4100 0.4211
GraphJudge 0.6847 0.8775 0.7283 0.4898 0.6273 0.5216 0.4321 0.5591 0.4603

Re-DocRED

GPT-4o-mini 0.8036 0.7460 0.6807 0.4840 0.4659 0.4254 0.3337 0.3338 0.2938
GPT-4o 0.7508 0.7588 0.6864 0.4438 0.4682 0.4066 0.3076 0.3383 0.2833
RAKG 0.3121 0.9243 0.4422 0.2144 0.6377 0.3044 0.1613 0.4922 0.2306
iText2KG 0.7957 0.5519 0.5502 0.4930 0.3741 0.3522 0.3704 0.2958 0.2678
PiVe 0.7963 0.6769 0.6289 0.4545 0.4193 0.3729 0.2848 0.2955 0.2506
KGGen 0.8422 0.3914 0.4372 0.5284 0.2594 0.2768 0.3662 0.1937 0.1959
GraphJudge 0.7801 0.7579 0.7051 0.4776 0.4830 0.4322 0.3350 0.3532 0.3048

Table 1: Comparisons of GraphJudge with six baseline methods across four datasets. The cells marked with
red color hold the worst performance in each column of Acc and Recall. The best and second-best results are also

highlighted in each column of F1 scores.

strict string matching, potentially overlooking se-
mantic similarities. Therefore, to better evaluate
the quality of the produced KGs against the ground-
truth KGs, similar to PiVe (Han et al., 2023), we
utilize one semantic level and two soft string match-
ing evaluation metrics to calculate the Accuracy,
Recall, and F1 scores: G-BERTScore (G-BS),
G-BLEU (G-BL) and G-ROUGE (G-RO). We
elaborate on them in Appendix B.

5.2 Overall Performance Comparison (RQ1)

We demonstrate the evaluation results of our
method GraphJudge with GPT-4o-mini and other
baseline methods across three datasets in Table 1.
We have the following insights:

GraphJudge’s superior performance. Graph-
Judge outperforms other baselines in most of the
cases. The superiority of GraphJudge’s F1 scores
(marked with gray color) demonstrates that, while
maintaining a reasonable level of recall for triples,
it also achieves improvement in accuracy. For ex-
ample, as the results marked with red color show,
although RAKG and PiVe exhibit stronger recall
ability, they overlook triple accuracy. KGGen ex-
cels in accuracy but fails at recall. In contrast,

GraphJudge leverages the ECTD module based
on a closed-source LLM to ensure recall ability,
while the KASFT and GJ modules with a fine-tuned
open-source LLM guarantee accuracy, enabling its
F1 score to surpass those of other baseline mod-
els. We can also observe that GraphJudge excels
not only with domain-specific documents, but also
demonstrates superior performance with general
documents.

GraphJudge is cost-effective. Remarkably,
GraphJudge achieves state-of-the-art performance
by fine-tuning only a 7B LLM, which is signifi-
cantly more efficient and cost-effective compared
to the 70B LLM employed in PiVe. In addition,
GraphJudge can even outperform GPT-4o with
GPT-4o-mini, which is a small model with lower
token cost. However, other baseline methods fail
to achieve that.

5.3 Module Ablation Study (RQ2)

We perform an ablation study to explore the specific
impacts of various modules within GraphJudge,
and the results are reported in Table 2. The insights
are outlined below:

Effect of Entity-Centric Text Denoising. We
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Dataset Method G-BS-F1↑ G-BL-F1↑ G-RO-F1↑

REBEL-Sub

GraphJudge 0.5796 0.4057 0.3571
w/o ECTD 0.4548 0.3343 0.3094
w/o GJ 0.4203 0.3052 0.2820
w/o KASFT 0.4506 0.3219 0.2935

SCIERC

GraphJudge 0.7283 0.5216 0.4603
w/o ECTD 0.6818 0.5029 0.4509
w/o GJ 0.7172 0.5146 0.4552
w/o KASFT 0.6700 0.4644 0.4084

Table 2: The results of ablation study on REBEL-Sub
dataset and SCIERC dataset.
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Figure 4: (a) The left map is the semantic similarity
between the original document and paired KG triples.
(b) The right map is the semantic similarity between the
denoised document and paired KG triples.

investigate the benefit of introducing entity-centric
denoising paradigm using the variant ‘w/o ECTD’,
where we do not conduct document denoising and
directly extract entities and relations from original
documents. The results show that our full model
performs significantly better than this ablated ver-
sion. It suggests that ECTD module can avoid
LLMs extract wrong structured information from
irrelevance or not well-formatted corpus.

Furthermore, to showcase the noise reduction
capability of ECTD, we visualize the semantic
correlation of the triples in a known KG with
the denoised and original document, respectively.
As shown in Figure 4, deeper color in the heat
maps suggests a stronger relevance. The refined
document exhibits greater relevance to the triples,
demonstrating the effectiveness of ECTD. Imple-
mentation details are described in Appendix F.
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Figure 5: A comparison of the capabilities of bert-
base-uncased (SFT) (Devlin et al., 2019), LLaMA-2-7B,
GPT-4o, and our GraphJudge in graph judgment tasks.

Effect of Knowledge Aware Supervised Fine-

Tuning. We conduct graph judgement on the triples
without fine-tuning the open-source LLM, which is
denoted as ‘w/o KASFT’. The result in Table 2 in-
dicates that without SFT, the naive LLM has weak
graph judgement abilities. And with a fine-tuned
LLM as a graph judge, the performance can be im-
proved a lot. Because KASFT enables the LLM to
acquire both fact-checking capabilities and domain-
specific knowledge within the triples in our instruc-
tion training data.

Furthermore, we apply negative sampling to con-
struct instructions on the test set like what we did
on the training set. We randomly select 500 sam-
ples and perform graph judgement to compare the
capabilities of different models. As shown in Fig-
ure 5 and Appendix H, both fine-tuned small mod-
els like BERT and naive powerful LLMs like GPT-
4o show poor performance on the graph judgement
task even with documents as contexts. However,
GraphJudge can achieve over 90% judgement
accuracy on REBEL-Sub and GenWiki, which
demonstrates the KASFT module can indeed en-
hance the effectiveness of LLMs as a graph judge.

Effect of Graph Judgement. We compare the
performances of our full model and the model with-
out GJ module denoted as ‘w/o GJ’. The result
suggests that GJ module plays a very important
role in GraphJudge. It can significantly enhance
the quality of KGs generated by the closed-source
LLM and reduce the effects of the inaccuracies
or hallucinations that may arise from LLMs. The
closed-source LLM excels in zero-shot generation,
boosting recall but suffering accuracy due to hallu-
cinations or knowledge inadequacy. The GJ mod-
ule relieves this by filtering inaccurate triples, en-
hancing the quality of constructed KGs.

5.4 Generalization Capabilities of
GraphJudge (RQ3)

To demonstrate the generalization abilities of
GraphJudge, we conduct experiments in cross-
dataset scenarios, which are training the LLM on
GenWiki and then evaluate it on REBEL-Sub, train-
ing the LLM on REBEL-Sub and then evaluate it
on GenWiki and SCIERC, respectively. As shown
in Table 3, our method can still outperform baseline
methods, which indicates GraphJudge has great ca-
pabilities of generalization across various corpus.
This is because the ability to check facts with triple
structure learned from graph judgement tasks can
be generalized. It also suggests that GraphJudge
once well trained on a general dataset, can be
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Method
GenWiki @ REBEL-Sub REBEL-Sub @ GenWiki REBEL-Sub @ SCIERC

G-BS-F1↑ G-BL-F1↑ G-RO-F1↑ G-BS-F1↑ G-BL-F1↑ G-RO-F1↑ G-BS-F1↑ G-BL-F1↑ G-RO-F1↑

GPT-4o 0.4163 0.3158 0.2966 0.8428 0.6774 0.6028 0.7035 0.5032 0.4425
PiVe 0.4090 0.3010 0.2823 0.8230 0.6503 0.5817 0.6725 0.4924 0.4385
KGGen 0.4995 0.3146 0.2719 0.8169 0.5542 0.4641 0.6635 0.4725 0.4211
GraphJudge 0.5814 0.4055 0.3649 0.8587 0.6792 0.5911 0.7431 0.5156 0.4572

Table 3: Results of generalization study on REBEL-Sub, GenWiki, and SCIERC with the LLM fine-tuned on
GenWiki (GenWiki @ REBEL-Sub) and REBEL-Sub (REBEL-Sub @ GenWiki, REBEL-Sub @ SCIERC),
respectively.

readily applied to diverse datasets with common
knowledge. We also note that there is a gentle per-
formance drop on SCIERC dataset, which is rea-
sonable because there is less in-domain knowledge
in the REBEL-Sub dataset than that in SCIERC
dataset. And this result can further demonstrate
the domain-specific knowledge within the training
corpora is usefull in GraphJudge.

6 Conclusions

In this paper, we introduce a new method called
GraphJudge for automatically constructing KGs,
which leverages the potential of LLMs to act as
graph judges. In GraphJudge, we propose ECTD,
KASFT and GJ modules to mitigate the impact of
irrelevant information from documents and exploit
the benefits of trainable open-source LLMs and
harnessing the strong zero-shot generation capa-
bilities of closed-source LLMs. The experiments
conducted on two general and one domain-specific
datasets demonstrate GraphJudge’s consistent su-
periority against various baseline methods.

7 Limitations

GraphJudge has the following limitations. First,
even though we employ the LLMs act as both the
extractor and the judge to improve the quality of
constructed KGs, we still use the entity-level triples
to construct KGs and there could be better knowl-
edge units to form a better KG. Second, a more
reasonable benchmark to evaluate the quality of
constructed KGs should be proposed in the future.
Currently, most of the work just utilize the ‘ground
truth’ KGs to calculate the correctness and com-
prehensiveness of constructed KGs, However, the
quality of ‘ground truth’ KGs may still deserve
suspicion. So using a self-supervised approach to
evaluate the KGs is in demands. We will research
for more KG constructing and evaluating method to
improve the performance of knowledge extraction.
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Appendix

A Datasets

Dataset REBEL-Sub GenWiki SCIERC

# of Train KGs 45,791 69,788 350
# of Test KGs 1,799 1,000 100

# of Train Triples 268,864 588,642 6,429
# of Test Triples 5,595 3,915 974

Table 4: Statistics of datasets.

We conduct experiments on the following three
datasets, And we also calculate the percentages of
KGs with different numbers of triples and different
lengths of original documents in each dataset in
Figure 6. The statistics of each dataset are shown
in Table 4.

REBEL-Sub. REBEL (Huguet Cabot and Nav-
igli, 2021) dataset comes from Wikipedia text be-
fore the table of contents, as well as Wikidata for
the triplets annotation. The dataset is collected by
the extraction pipeline cRocoDiLe (Huguet Cabot
and Navigli, 2021). The original REBEL dataset
is a large-scale corpus. We utilize a subset of
REBEL referred to as REBEL-sub, consisting of
50,000/2,000/2,000 samples for the training, vali-
dation, and test set respectively, randomly chosen
from the original dataset. Moreover, we filter out
the samples with empty ground truth KG.
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Figure 6: The figure above is the normalized distribution
of the number of triplets in each dataset and the figure
below is the normalized distribution of the length of
documents in each dataset.

GenWiki. GenWiki (Jin et al., 2020) is an exten-
sive dataset sourced from general Wikipedia, com-
prising 1.3 million non-parallel texts and graphics
that share content. In our study, for efficient valida-
tion, we use a subset of GenWikiFINE as our training
set and employ another subset of GenWikiFINE for
testing. And the documents in original testing data
are too short for us to validate our method. To en-
hance the quality of training data lacking human
annotations, we also exclude the triples with incor-
rect formats.

SCIERC. SCIERC (Luan et al., 2018) is a scien-
tific domain-specific dataset comprises annotations
for scientific entities, their relations, and corefer-
ence clusters within 500 scientific abstracts. It ex-
pands upon the datasets from SemEval 2017 Task
10 (Augenstein et al., 2017) and SemEval 2018
Task 7 (Gábor et al., 2018) by introducing addi-
tional entity types, relation types, broader relation
coverage, and incorporating cross-sentence rela-
tions through coreference links. In addition, we
filter out the samples with empty ground truth KG.

Re-DocRED. Re-DocRED (Tan et al., 2022) is a
well annotated domain-specific dataset that is used

10940



in LKD-KGC (Sun et al., 2025). It is a refined
version of DocRED (Yao et al., 2019), enhanced
through reannotation of omitted relation triples.
We follow the settings in LKD-KGC to use the
Windows-centric subset containing domain knowl-
edge about Windows Operation Systems. And be-
cause there is no enough samples in this dataset
for us to train our model, we use the model trained
on GenWiki to evaluate the performance of Graph-
Judge on this dataset.

B Experimental Metrics

In this section, we explain the details of our evalua-
tion metrics.

G-BERTScore (G-BS): Here we use a match-
ing metric that evaluate the degree of similarity be-
tween the ground-truth and predicted graphs, which
is called G-BERTScore(Saha et al., 2021). And
it is designed as an extension of the text genera-
tion metric BERTScore(Zhang et al., 2019). In G-
BERTScore, each triple within knowledge graphs
is treated as a sentence, and subsequently, the sim-
ilarity score between sentences of triples in the
ground-truth and predicted knowledge graphs is
computed. And we compute the accuracy, recall,
and F1 score of each constructed KG against the
ground-truth using G-BERTScore, denoted as G-
BS-Acc, G-BS-Recall, and G-BS-F1, respectively.

G-BLEU (G-BL): BLEU (Bilingual Evalua-
tion Understudy)(Papineni et al., 2002) is a metric
for evaluating the quality of text which has been
machine-translated from one natural language to
another. Here we use this approach to determine
the resemblance between the triple sentences in the
ground-truth and predicted KGs, which is called G-
BLEU. The formulas are shown in (16), (15), (12),
(13), (14). N is the maximum order of n-grams
considered in the evaluation and we set N = 4,
which is a default number in the Python package2.
BP is the brevity penalty, which is used to avoid giv-
ing too much credit to short translations. And we
compute the accuracy, recall, and F1 score of each
constructed KG against the ground-truth using G-
BLEU, denoted as G-BL-Acc. G-BL-Recall, and
G-BL-F1, respectively.

Match(n) =
∑

Xt∈XT

∑

gram(n)∈Xt

Count(gram(n),Xt̂),
(12)

2https://pypi.org/project/bert-score/

Total(n) =
∑

Xt∈XT

∑

gram(n)∈Xt̂

Count(gram(n),Xt̂),
(13)

BP =




1 if |Xt̂| > |Xt|
e
(1− |Xt|

|X
t̂
| ) if |Xt̂| ≤ |Xt|,

(14)

wn =
Match(n)
Total(n)

, (15)

G-BLEU = BP× (

N∏

n=1

wn)
1
N . (16)

G-ROUGE (G-RO): ROUGE (Recall-Oriented
Understudy for Gisting Evaluation)(Lin, 2004) is
a set of metrics for evaluating automatic summa-
rization and machine translation systems. And here
we utilize ROUGE to compare the similarities be-
tween the triple sentences in the ground-truth and
predicted KGs, which is G-ROUGE. Here our G-
ROUGE score is based on the notion of n-gram
co-occurrence statistics and we set n = 2. For
G-ROUGE-N, which focuses on the overlap of
n-grams between the ground-truth triple sentence
and the predicted triple sentence, the formulas are
shown in (17), (18), (19). Unlike G-BLEU, G-
ROUGE is computed using recall as a metric. And
Count(gram(n),Xt̂) is the number of times the n-
gram appears in the predicted triple sentence Xt̂.
And we compute the accuracy, recall, and F1 score
of each constructed KG against the ground-truth
using G-ROUGE, denoted as G-RO-Acc, G-RO-
Recall, and G-RO-F1, respectively.

Match(n) =
∑

Xt∈XT

∑

gram(n)∈Xt

Count(gram(n),Xt̂),
(17)

Total(n) =
∑

Xt∈XT

∑

gram(n)∈Xt

Count(gram(n),Xt), (18)

G-ROUGE =
Match(n)
Total(n)

. (19)

C Experimental Settings

During the Knowledge Aware Supervised Fine-
Tuning module, we follow the parameter settings
in Table 5 referring to the tuning process used for
triple classification tasks in the KG-LLaMA (Yao
et al., 2023).
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Hyper-parameter Experimental Setting
Micro Batch Size 8

Batch Size 128
Gradient Accumulation Steps 16

Training Steps 500
Learning Rate 3e-4

Lora Attention Dimension 8
Alpha Parameter 16
Target Modules q proj, v proj
Warmup Steps 100

Optimizer AdamW

Table 5: Implementation detail of SFT in GraphJudge.

Algorithm 1 The Graph Judgement procedure of
GraphJudge
Input: The fine-tuned expert LLM pθ ; Candidate

triples T ∗ in the draft KGs SG∗ ; Paired refined
text D∗ of the candidate triples;

Output: The predicted KGs SĜ with refined
triples T̂ ;

1: SĜ ← {};
2: T̂ ← {};
3: for each G∗ in SG∗ ,

each denoised document d∗ in D∗ do
4: R̂ ← {};
5: Ê ← {};
6: for each triple t∗ =< h, r, t >∈ G∗ do
7: /*Transform the triple and refined text

into a sentence*/
8: Xt∗ = Sentence(< h, r, t >, d∗);
9: /*Verify the correctness of the current

triple with fine-tuned LLM*/
10: ŷt∗ = Pred(pθ(Xt∗));
11: if ŷt∗ is not ‘False’ then
12: T̂ ← t∗;
13: R̂ ← R̂ ∪ {r};
14: Ê ← Ê ∪ {h, t};
15: end if
16: end for
17: Ĝ = {< h, r, t > |h, t ∈ Ê , r ∈ R̂, <

h, r, t >∈ T̂ };
18: SĜ ← SĜ ∪ {Ĝ};
19: end for

D Graph Judgement Algorithm

The detailed procedure of the graph judgement
algorithm is demonstrated in Algorithm 1.

Dataset Context Model

LLaMA-3-8B LLaMA-3-70B

REBEL-Sub
[Lower-Upper] 47.33-99.33 76.67-100.0

D∗ 94.67 96.00
Ĝ 85.33 90.67

GenWiki
[Lower-Upper] 53.33-100.0 68.00-100.0

D∗ 98.00 96.00
Ĝ 93.00 93.00

SCIERC
[Lower-Upper] 65.00-99.67 77.00-99.67

D∗ 95.67 96.33
Ĝ 90.33 93.67

Table 6: MCQ performance across datasets. Each row
displays the lower-upper bound performance (no con-
text vs. original document), denoised document perfor-
mance, and our KG performance for different models.
Using D∗ and Ĝ preserves most information for an-
swering MCQs, perform close to the using the original
document (upper bound) across datasets and models.

Dataset Method Recall Acc

REBEL-Sub w/o GJ 0.9784 0.3709
w/ GJ 0.9411 0.5495

GenWiki-Hard w/o GJ 0.9365 0.7932
w/ GJ 0.9018 0.8343

SCIERC w/o GJ 0.9392 0.6916
w/ GJ 0.9187 0.7176

Table 7: Entity coverage and accuracy across datasets.

E Entity Coverage of the LLM Extraction

To verify the comprehensiveness of extracted enti-
ties by the LLM, we evaluate the entity coverage
as well as accuracy across three datasets. In detail,
we use the semantic metric of Recall and Accuracy
based on BertScore to measure the entity coverage
and accuracy, similar to the metric G-BS described
in the paper. As shown in Table 7, we report the
coverage as well as accuracy of the extracted en-
tities before (w/o GJ) and after (w/ GJ) the GJ
module. And here are the insights: (1) The entities
extracted from the original text have high coverage
and low accuracy, which verifies that the extracted
entities can provide good foundation for both de-
noising and relation extraction. (2) The entities
within the triples filtered by GJ module still keep
a high coverage and have a significantly higher ac-
curacy. It further validates the effectiveness of our
GJ module.

F Effect of ECTD Module

To validate that ECTD module can lead to a cleaner
refined text, we sample a text-graph pair from the
REBEL-Sub dataset. Then we split the original and
refined document into the same number of chunks,
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Figure 7: A comparison of the capabilities of bert-base-uncased (SFT) (Devlin et al., 2019), DeepSeek-V3 (Liu
et al., 2024a), LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, GPT-4o, and our GraphJudge in graph judgment tasks.

which we set 20 here. And we use a PLM BERT
(bert-base-uncased3) (Devlin et al., 2019) to pro-
cess these chunks and get the embedding of each
chunk. And we calculate the cosine similarities be-
tween these document chunks and triple sentences,
as shown in Figure 4. Deeper color in the heat
maps suggests a stronger relevance between the
specific triple and document chunk.

G Knowledge Retention of ECTD Module
and KG

While the ECTD module has the ability to remove
irelevant information contained in the original doc-
uments, it is also necessary to verify that the impor-
tant knowledge is well preserved in the documents
denoised by ECTD. We test how well multiple-
choice question (MCQ) performance is preserved
after we refined the original documents.

In detail, similar to the existing work (Schuh-
mann et al., 2025), we generate various MCQs
with LLaMA-3-70B for each original document.
For REBEL-Sub, we randomly sample 500 docu-
ments and generate 3 MCQs for each document.
For SCIERC, because the test set of that is very
small, we used the full test set of SCIERC with
3 MCQs for each document. For GenWiki, be-
cause the average lengths of the documents are
very short, we generate only 1 MCQ for each docu-
ment. Then we ask LLaMA-3-8B to answer them
with no context (denoted as lower bound), then ask
them again with the original passage (denoted as
upper bound) for sanity check. Finally, we con-
duct tests using denoised documents (denoted as
D∗) and KG triples constructed by GraphJudge (de-
noted as Ĝ). The results in Table 6 demonstrates

3https://huggingface.co/google-bert/bert-base-uncased

that MCQs performance with D∗ or Ĝ remains far
above the lower bound baseline and approaches
the original-document upper bound. It proofs that
important information is well preserved in both
our denoised documents and constructed KG.

H Effect of KASFT Module

In this section, we extend the baseline models to
explore their abilities to be a graph judge with
the same experimental settings in Section 5.3. As
shown in Figure 7, We extend baseline models
to fine-tuned BERT, DeepSeek-V3, LLaMA-2-7B,
LLaMA-3-8B, LLaMA-3-70B, and GPT-4o. Com-
pared with them, our proposed GraphJudge demon-
strates consistent superiority in graph judgement
tasks, which further proofs that the KASFT module
can improve the capabilities of open-source LLMs
as a graph judge. And neither fine-tuning a PLM
with a smaller parameter size nor directly employ-
ing a powerful closed-source LLM can achieve a
high accuracy on graph judgement tasks, which
suggests the necessity to introduce our proposed
GraphJudge.

I Prompt Templates

As shown in Figure 8 and Figure 11, we demon-
strate the prompt templates for the closed-source
LLM to conduct relation extraction and for the
open-source LLM to perform graph judgements
on the results generated from the closed-source
LLM. We also provide the prompt templates used
to generate and answer MCQs in Appendix G.

J Case Study

In this section, we present an instance of construct-
ing a KG from a document, achieved through the
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Prompt Template for Graph Judgement.

Goal:
You need to do the graph judgement task, which means you need to clarify the correctness of the
given triples with the given original document.
Here is the question:
According to the original document: {text}
Is this true: {head entity} {relation} {tail entity}?

Output:
No, it is not true./ Yes, it is true.

Figure 8: The prompt template for the open-source LLM LLaMA to construct graph judgement instructions.

Prompt Template for MCQ Answering.

Given the context or evidence:
{context}
Here is a multiple-choice question:
Question:
{question}
Options:
A. {option A}
B. {option B}
C. {option C}
D. {option D}
Please select the correct answer by choosing A, B, C, or D. Respond with only the letter of your
choice.

Output:
A/B/C/D

Figure 9: The prompt template for the MCQ answering.

integration of a naive LLM (GPT-4o-mini) and our
GraphJudge. We select a text-graph pair from the
SCIERC dataset and contrast the results yielded by
our approach with that of GPT-4o-mini. As shown
in Table 8, the KG constructed by GPT-4o-mini
with the given original document includes lots of
meaningless triples. For example, <We, suggest,
goal>, <We, suggest, evaluation criterion>, <We,
present, measure>, <We, present, selection func-
tion>, etc. It is obvious that these triples do not
convey any beneficial information that could be
applied to subsequent tasks. And the triple <eval-
uation criterion, new, goal>does not even follow
the general structure of triples, which means that
the adjective word ‘new’ is generally not employed
as a relational term within triples. The naive LLM
have strong zero-shot ability to generate them but it

does not have the capability to determine whether
they are useful. However, there are no such triples
in the KG constructed by our GraphJudge. On the
one hand, this is because the triples without any
useful information will be clarified as wrong triples
by our fine-tuned LLM in graph judgement mod-
ule. On the other hand, as demonstrated in the case,
the document refined by ECTD module exhibits
enhanced standardization and a reduction in irrele-
vant terms, for instance, terms such as ‘-LRB-’ and
‘-RRB-’ have been excluded as they are irrelevant
to the document’s subject matter.
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Prompt Template for Entity Extraction.

Goal:
Transform the text into a list of entities. Please ensure the comprehensiveness and accuracy of the
extracted entities, which should be related to the topic of the text.

Here are two examples:
Example#1:
Text: ”Shotgate Thickets is a nature reserve in the United Kingdom operated by the Essex Wildlife
Trust.”
List of entities: [”Shotgate Thickets”, ”Nature reserve”, ”United Kingdom”, ”Essex Wildlife
Trust”]
Example#2:
Text: ”Garczynski Nunatak is a cone-shaped nunatak, the highest in a cluster of nunataks close
west of Mount Brecher, lying at the north flank of Quonset Glacier in the Wisconsin Range of the
Horlick Mountains of Antarctica.”
List of entities: [”Garczynski Nunatak”, ”nunatak”, ”Wisconsin Range”, ”Mount Brecher”,
”Quonset Glacier”, ”Horlick Mountains”, ”Antarctica”]

Refer to the examples and here is the question:
Text: {text}
List of entities:

Output:
[{ entity_1}, {entity_2}, ... , {entity_n }]

Figure 10: The prompt template for the closed-source LLM GPT-4o-mini to extract entities.
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Prompt Template for Relation Extraction.

Goal:
Transform the text into a semantic graph(a list of triples) with the given text and entities. Extract
subject-predicate-object triples from the assistant message. A predicate (1-3 words) defines the
relationship between the subject and object. Relationship may be fact or sentiment based on
assistant’s message. Subject and object are entities. Entities provided are from the assistant
message and prior conversation history, though you may not need all of them. This is for an
extraction task, please be thorough, accurate, and faithful to the reference text.

Note:
1.Generate triples as many as possible.
2.Make sure each item in the list is a triple with strictly three items.
Here are two examples:
Example#1:
Text: “Shotgate Thickets is a nature reserve in the United Kingdom operated by the Essex Wildlife
Trust.”
Entity List: [“Shotgate Thickets”, ... , “Essex Wildlife Trust”]
Semantic Graph: [[S̈hotgate Thickets,̈ “instance of”, “Nature reserve”], ...]
Example#2:
Text: ..
Semantic Graph: ..
Refer to the examples and here is the question:
Text: {text}
Entity List: {entities}
Semantic graph:

Output:

```
[

{triple_1},
{triple_2},
...
{triple_n}

]
```

Figure 11: The prompt template for the closed-source LLM GPT-4o-mini to construct KGs.
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Prompt Template for MCQ Generation.

You are an expert in generating multiple-choice questions (MCQs) from scientific text. Your task
is to generate {n} MCQs based on the following document:
Each question should:
- Focus on the factual claims, numerical data, definitions, or relational knowledge from the
document.
- Have 4 options (one correct and three plausible distractors).
- Clearly indicate the correct answer.

The output should be in JSON format, with each question as a dictionary containing:
- “question”: The MCQ question.
- “options”: A list of 4 options (e.g., [“A: ...”, “B: ...”, “C: ...”, “D: ...”]).
- “answer”: The correct answer (e.g., “A”).

Output Example:
```
[

{
"question ": "What is the primary role of a catalyst in a chemical reaction?",
"options ": [

"A": "A catalyst is a substance that increases the rate of a chemical reaction
without being consumed in the reaction.",
"B": "A catalyst is a substance that decreases the rate of a chemical reaction
without being consumed in the reaction.",
"C": "A catalyst is a substance that is consumed in the reaction.",
"D": "A catalyst is a substance that is not consumed in the reaction ."

],
"answer ": "A"

},
...

]
```

Passage:
{passage}

Output:
```
[

{MCQ_1},
{MCQ_2},
...
{MCQ_n}

]
```

Figure 12: The prompt template for the MCQ generations.
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Original Document: We suggest a new goal and evaluation criterion for word similarity measures .The new criterion
– meaning entailing substitutability – fits the needs of semantic-oriented NLP applications and can be evaluated directly
-LRB-independent of an application -RRB- at a good level of human agreement. Motivated by this semantic criterion we
analyze the empirical quality of distributional word feature vectors and its impact on word similarity results, proposing an
objective measure for evaluating feature vector quality. Finally, a novel feature weighting and selection function is presented ,
which yields superior feature vectors and better word similarity performance.

Ground-Truth Knowledge Graph:

[[”feature weighting and selection function”, ”used for”, ”word similar-
ity”], [”measure”, ”evaluate for”, ”feature vector quality”], [”feature vec-
tors”, ”conjunction”, ”word similarity”], [”evaluation criterion”, ”used for”,
”word similarity measures”], [”meaning-entailing substitutability”, ”used
for”, ”semantic-oriented NLP applications”], [”human agreement”, ”evaluate
for”, ”meaning-entailing substitutability”], [”semantic criterion”, ”evaluate
for”, ”distributional word feature vectors”], [”distributional word feature
vectors”, ”used for”, ”word similarity”], [”feature weighting and selection
function”, ”used for”, ”feature vectors”]]

GPT-4o-mini:

[[”We”, ”suggest”, ”goal”], [”We”, ”suggest”, ”evaluation criterion”], [”We”,
”propose”, ”measure”], [”evaluation criterion”, ”new”, ”goal”], [”evalua-
tion criterion”, ”fits”, ”needs”], [”evaluation criterion”, ”evaluated directly”,
”good level of human agreement”], [”We”, ”analyze”, ”quality”], [”qual-
ity”, ”impact on”, ”word similarity results”], [”measure”, ”evaluating”,
”feature vector quality”], [”feature vector quality”, ”yield”, ”superior fea-
ture vectors”], [”feature vector quality”, ”yield”, ”better word similarity
performance”], [”We”, ”present”, ”feature weighting function”], [”feature
weighting function”, ”yields”, ”superior feature vectors”], [”We”, ”present”,
”selection function”], [”selection function”, ”yields”, ”superior feature vec-
tors”]]

GraphJudge:

[[’evaluation criterion’, ’related to’, ’word similarity measures’], [’evaluation
criterion’, ’assessed by’, ’human agreement’], [’evaluation criterion’, ’related
to’, ’semantic-oriented NLP applications’], [’evaluation criterion’, ’related
to’, ’meaning-entailing substitutability’], [’word similarity measures’, ’qual-
ity assessed by’, ’distributional word feature vectors’], [’distributional word
feature vectors’, ’impact on’, ’word similarity results’], [’distributional word
feature vectors’, ’quality evaluated by’, ’objective measure’], [’feature vec-
tors’, ’generated by’, ’feature weighting and selection function’], [’feature
vectors’, ’enhances’, ’word similarity performance’]]

Denoised Document: We propose a new evaluation criterion for word sim-
ilarity measures, called meaning-entailing substitutability, which is suitable
for semantic-oriented NLP applications. This criterion can be assessed inde-
pendently of any specific application with a high level of human agreement.
We examine the quality of distributional word feature vectors and their impact
on word similarity results, introducing an objective measure for evaluating

the quality of these feature vectors. Additionally, we present a novel feature weighting and selection function that generates
superior feature vectors and enhances word similarity performance.

Table 8: Comparison of Construction Results between our GraphJudge and GPT-4o-mini.
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