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Abstract

Existing reasoning datasets saturate and fail
to test abstract, multi-step problems, espe-
cially pathfinding and complex rule constraint
satisfaction. We introduce SPaRC (Spatial
Pathfinding Reasoning Challenge), a dataset of
1,000 2D grid pathfinding puzzles to evaluate
spatial and rule-based reasoning, requiring step-
by-step planning with arithmetic and geometric
rules. Humans achieve near-perfect accuracy
(98.0%; 94.5% on hard puzzles), while the best
reasoning models, such as o4-mini, struggle
(15.8%; 1.1% on hard puzzles). Models of-
ten generate invalid paths (>50% of puzzles
for o4-mini), and reasoning tokens reveal they
make errors in navigation and spatial logic. Un-
like humans, who take longer on hard puzzles,
models fail to scale test-time compute with dif-
ficulty. Allowing models to make multiple so-
lution attempts improves accuracy, suggesting
potential for better spatial reasoning with im-
proved training and efficient test-time scaling
methods. SPaRC can be used as a window into
models’ spatial reasoning limitations and drive
research toward new methods that excel in ab-
stract, multi-step problem-solving.

1 Introduction

Reasoning models made stark progress to solve
complex mathematical (Hendrycks et al., 2021b),
software-engineering (Jimenez et al., 2023; Quan
et al., 2025), and knowledge tasks (Hendrycks et al.,
2021a). With more capable models comes the ques-
tion of how to measure their progress in reasoning,
and how they compare to humans. As reasoning
benchmarks test specific tasks with priors (e.g.,
(MMLU-Pro (Wang et al., 2024b), GPQA (Rein
et al., 2023)), models started to achieve (super-)
human scores, leading to rapid dataset saturation.
Thus, datasets probing abstract reasoning with min-
imal priors have become increasingly important
as they are more robust to scaling training data
and pattern-matching. Notably, ARC-AGI (Chol-

?

Difficulty: 5 Puzzle: e836ae53a1a6b880

Difficulty: 2 Puzzle: 704931925890a56c

Difficulty: 1 Puzzle: 7ce0b04c1a28cca6

Figure 1: Example puzzles from SPaRC.

let, 2019) and related works (Song et al., 2025;
Wang et al., 2024a) challenge models with spa-
tial few-shot grid problems. However, they often
do not require a combination of step-by-step plan-
ning, pathfinding, and logic skills; abilities most
human possesses (Chollet, 2019). Spatial reason-
ing is an important component for solving tasks
like navigation and manipulation in robotics, scene
understanding in computer vision, and augmented
reality.

We propose SPaRC, a new dataset to overcome
limitations of current datasets, primarily focusing
on pathfinding and the combination of arithmetic
and geometric rules, such as counting, segregation,
and shape logic, by presenting multi-step constraint
problems. Our proposed task consists of 2D grid
puzzles through which a line must be drawn from
start to end while fulfilling various rules, such as
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Figure 2: Accuracy (%) of o4-mini on existing bench-
marks and on SPaRC, as well as on only hard puzzles
from SPaRC with difficulty 5.

collecting dots along the way or separating colored
elements (see Figure 1 for an example). These rules
can be combined in various non-trivial ways and
involve deep, abstract, rule-based reasoning within
a constrained spatial pathfinding environment. We
use text-based grids rather than images to avoid
testing perception and instead isolate pure spatial
reasoning and planning ability. Solving these puz-
zles requires an understanding of the individual
rules and their connections, and long-term plan-
ning to meet all rules simultaneously. This often
involves revising previous hypotheses where a sin-
gle wrong step can irrevocably lead to the wrong
path. We provide 500 train and 500 test puzzles of
different sizes and difficulty degrees from 1 (very
easy) to 5 (very hard).

Experiments with three instruction-tuned mod-
els, four reasoning models, and six human anno-
tators show puzzles are solved easily by humans
at 98% accuracy (94.5% for difficulty 5 puzzles)
but challenge the best reasoning model, o4-mini, at
15.8% accuracy (1.1% for difficulty 5 puzzles). Fig-
ure 2 compares the accuracy of the best reasoning
model we tested (o4-mini) on existing reasoning
benchmarks with our proposed SPaRC, showing
that it poses a new challenge for models. Models
often fail to generate valid paths, and reasoning
tokens reveal issues with grid navigation, spatial
logic, and careless mistakes that lead to irreversible
errors. Humans take up to 13 times longer on
harder puzzles. Instruction-tuned models increase
test-time tokens by ∼ 40%, and reasoning models
only by ∼ 5% with higher difficulty. Multiple at-
tempts per puzzle raise accuracy (e.g., 15.8% to
35.0% for o4-mini), indicating inefficient solution-
finding and potential for improved spatial reasoning
training. Ablations show prompt design (15.8% to
21.0%) and few-shot examples (12.6% to 15.8%)

have modest effects, and multimodal prompting
(i.e., puzzle screenshots) does not improve perfor-
mance over text (12.6% vs. 5.6% for o4-mini).

SPaRC provides a new challenge to evaluate
spatial and rule-based reasoning in large language
models (LLMs), addressing limitations of existing
saturated benchmarks.

Key Contributions:

▶ We propose SPaRC, a new challenging bench-
mark of 1,000 examples to test spatial and rule-
based reasoning on 2D pathfinding tasks. (§3)

▶ We conduct extensive manual and automated
evaluation with six human annotators, three
state-of-the-art instruction-tuned (Qwen 2.5,
GPT-4.1, Gemma 3) and four reasoning models
(o4-mini, o3-mini, QwQ, R1) on SPaRC. (§4.1)

▶ We analyze why models fail to solve puzzles
(e.g., rule cell crossing), causes for reason-
ing mistakes (e.g., logical fallacies), and upper
bounds for reasoning when increasing test-time
compute by using pass@k sampling. (§4.2)

▶ We perform various ablation studies on puzzle
representation (e.g., prompt design, visual repre-
sentation), and prompting (e.g., few-shot exam-
ples), underlining our results’ robustness. (§4.3)

2 Related Work

Benchmarking language models has shifted from
core NLP tasks like question answering (Rajpurkar
et al., 2016) and paraphrasing (Dolan and Brock-
ett, 2005; Wahle et al., 2023a, 2024) in GLUE
(Wang et al., 2019) to more complex evaluations,
as these tasks have saturated. Long-horizon reason-
ing datasets, including MATH (Hendrycks et al.,
2021b), AIME (Art of Problem Solving, 2025),
BBH (Suzgun et al., 2022), and MUSR (Sprague
et al., 2023), challenge models on multi-step
problem-solving. However, these benchmarks rely
on data priors, knowledge recall, or pattern match-
ing, enabling reasoning models like DeepSeek’s
R1 to saturate them, showing a gap in evaluating
spatial reasoning and complex planning.

Specifically related to our proposal are rule-
based and spatial benchmarks that use novel task
representations or underrepresented ones in LLM
training data (e.g., topological reasoning from text,
abstract diagrams). Notably, ARC-AGI (Chollet,
2019) tests abstract pattern recognition and induc-
tive reasoning from few-shot 2D grid examples,
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showing that even in simple scenarios, the most ad-
vanced reasoning models fail. However, ARC-AGI
does not require step-by-step planning or following
discrete rules. VisualPuzzles (Song et al., 2025)
presents algorithmic, analogical, and spatial rid-
dles, but every task is multiple choice, so the model
is not constructing individual solutions. SpatialE-
val (Wang et al., 2024a) covers navigation, relation,
and counting on images, 2D grids, and text. How-
ever, SpatialEval mazes span only a few moves,
and the counting or relation questions appear inde-
pendently, not within one combined task. PPNL
(Aghzal et al., 2023) tests spatial-temporal reason-
ing via 2D grid-based path planning. It focuses
on obstacle avoidance within the grid and does not
incorporate complex, interacting rules. Another
related task is EnigmaEval (Wang et al., 2025), but
it does not focus on pathfinding.

SPaRC addresses these limitations by requir-
ing long-term, step-by-step path planning, where
early errors in the reasoning chain can significantly
impact later steps. SPaRC requires path-finding,
counting, segregation, and logic involving colors
and shapes in a single task, and on different-sized
puzzle grids with complex, interacting rules. Un-
like other benchmarks, we also support problems
with multiple correct solutions, allowing for testing
different path-finding strategies and not relying on
a single solution per example.

3 Dataset

The primary goal of SPaRC is to test new pathfind-
ing capabilities not represented in current bench-
marks, specifically spatial navigation, rule under-
standing, constraint satisfaction, and multi-step
planning, and also combinations in new ways, such
as counting, segregation, and color or shape logic.
The design of the dataset is inspired by the puzzle
mechanics of the video game The Witness (Blow,
2016), adapted into a format suitable for LLM as-
sessment.

3.1 Puzzle Rules

Each puzzle in SPaRC is a 2D grid of m× n rule
cells with (x, y) = (0, 0) ∈ (m,n) being the top-
left corner of the grid, and x increases to the right,
and y downwards. Rule cells are surrounded by
edges that can be used to draw a path. There exists
one start point on the edges (large circle) and one
end point on the edges (extension of the edge). The
goal of solving a puzzle is to move from the start

point to the end point along the edges around the
rule cells to fulfill all rule cell conditions. The path
must be a single, continuous sequence of edges
from the start to the end point, without crossing or
overlapping itself at any edge segment. Central to
each puzzle are the rule cells, which we describe
together with what it means to fulfill the rule cell
condition. Appendix G contains puzzle examples
to illustrate the components of our dataset.

Item Collection (Dots): The solution path
needs to pass through every dot.

Path Breaks (Gaps): The solution path
cannot go through any edge segment con-

taining a gap. Gaps act as local barriers.

Color Separation (Stones): The solution
path must be drawn to separate stones of

different colors. All stones located within any sin-
gle enclosed region must be of the same color.

Pairing (Stars): Each star must share its
region with exactly one other symbol of the

same color. No unpaired stars are allowed.

Edge Count (Triangles): The solution
path must touch the number of edges shown

by the triangles in the cell, e.g., two triangles mean
the path must touch exactly two edges of that cell.

Shape Fitting (Polyominoes): If a cell
contains a polyomino (poly), the solution

path must enclose a region that matches its exact
shape and area. The region must not rotate or mir-
ror the poly. Multiple polys can share a region if
their shapes fit without overlapping.

Shape Subtraction (Ylop): A ylop must
be enclosed in the same region as one or

more polys. Its shape and area subtract from the
total required by the polys. If a ylop cancels out a
poly exactly, that pair imposes no constraint.

3.2 Dataset Creation

Generation. Our process starts with randomly
creating an x by y grid, where x and y range from
2 to 6 (e.g., 3 × 5). Figure 10 in Appendix B
provides an indexing example. We then randomly
fill half of the grid with rule cells. The rule cell to
grid cell percentage is termed rule density and set
a random start and end point.

To solve puzzles automatically, we implement
a generation-validation loop. First, we generate
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an initial puzzle and solve it using brute-force by
exhaustively testing all valid paths from start to
end.1 If the initial puzzle fails to produce a solvable
puzzle, we decrease the rule density and regenerate
the puzzle. Conversely, if the solver finds over k
distinct solutions (indicating the puzzle might be
too unconstrained), rule density is increased, and
the puzzle is regenerated. We found 50 solutions
to be a reasonable hyperparameter choice for k
empirically by testing different generation setups.

We generate the SPaRC dataset containing 500
training and 500 testing examples. The distribu-
tions of different rules in SPaRC are shown in Ta-
ble 1. When sampling puzzles, we aim for an ap-
proximately equal distribution between rules. How-
ever, puzzles tend to have fewer stars (color pairing
rule) and triangles (edge counting rule) than other
rules. Observe how in Table 1, we only generated
25 puzzles containing ylops. This is for two rea-
sons: they can only exist if polys are available,
and they are the hardest rule, as judged by humans.
For later tests on specific rules, we also created
single-rule splits (more on this in Section 4.1).

Difficulty Estimation. To quantify puzzle com-
plexity, we created a difficulty metric that weights
individual spatial reasoning tasks. More specifi-
cally, the number of distinct rules, the total number
of rule cells, the rule cell density, and an estimate
of potential complex rule interactions. Each el-
ement contributes via a weighted sum to a raw
score, which we then statistically normalize onto
a standardized 1 (easiest) to 5 (hardest) scale (see
Appendix D for calculation specifics). As our later
experiments with humans and reasoning models
will demonstrate, this difficulty estimate is robust.
The distribution of difficulties of SPaRC is detailed
in Table 1. We sample with an approximately uni-
form distribution between puzzles, ending up with
slightly more level 3 (121) and level 2 puzzles (118)
than level 1 (86), level 4 (86), and level 5 (89).

4 Experiments

We assess SPaRC through automated and manual
studies. In the automated evaluation, we consider
instruction-based models - Gemma 3 27B (Team
et al., 2025), Qwen 2.5 72B (Research, 2024), GPT
4.1 (OpenAI, 2025a); and reasoning models - QwQ
32B (Team, 2024), DeepSeek R1 Distill Llama

1Brute-force is necessary because many puzzles fall into
NP or NP-Complete complexity classes (Abel et al., 2018).

Statistics Count

Puzzles with Rule Type
Gaps 313
Dots 292
Stones 355
Stars 210
Triangles 233
Polygons 305
Ylops 25

Puzzles with Difficulty Level
Level 1 86
Level 2 118
Level 3 121
Level 4 86
Level 5 89

Table 1: Counts of puzzles for SPaRCfor different diffi-
culties and rules based on the test set.

70B (DeepSeek-AI et al., 2025), o3-Mini (Ope-
nAI, 2025c), and o4-mini (OpenAI, 2025b). We
measure model accuracy on solving our puzzles
(Section 4.1), performance on specific rule cells,
reasoning errors (Section 4.2), and conduct abla-
tion studies regarding the stability of our findings
(Section 4.3). For the manual inspection, we test
human performance and time on the same puzzles
(Section 4.4). We used six annotators (aged 22-27)
with CS backgrounds.

Setup. All puzzles are presented to the LLMs
using prompts with a human-annotated example
solution. Our textual representation is inspired by
the ARC challenge (Chollet, 2019). Extraction
occurs using regex after a predefined sequence of
“####” as stated in the prompt. By default, we pro-
vide a one-shot example with a human-annotated
path, as it yielded the best results (Section 4.3).
Appendix I.4 contains details about the prompts,
examples, and their solution. Details on models,
hardware, and tokens processed are in Appendix A.

4.1 Main Results
We present key baseline evaluations across models
and difficulty. Scaling test-time compute allows us
to identify upper bounds of model capabilities.

Baselines. We want to understand how reasoning-
and instruction-tuned LLMs solve spatial multi-
step reasoning tasks compared to humans. We
compute accuracy (% of solved puzzles) for these
models. Human baseline results use majority votes
from three annotators per puzzle (details on the
human evaluation later in Section 4.4). Figure 3
shows accuracy for humans and LLMs. Humans
solve puzzles nearly perfectly at 98.0% (98/100
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puzzles solved). The top reasoning model, o4-mini,
performs much worse at 15.8% (79/500 puzzles).
GPT-4.1 is the best instruction-tuned model at 1.6%
(8/500 puzzles). Reasoning models perform better
overall (avg. 8.5%). Closed models outperform
open ones: o4-mini (15.8%) and o3-mini (8.2%)
versus R1 70B (4.0%) and QwQ (5.8%), with simi-
lar trends in instruction-tuned models. Results sug-
gest these puzzles are very challenging for LLMs,
while relatively easy for humans. We hypothesize
errors arise from models’ spatial understanding
limitations, such as misunderstanding rules, logical
fallacies, and misinterpreting grid representations
(Huang and Chang, 2022; Turpin et al., 2023).

Difficulty Level. We decompose the results in
Figure 3 by difficulty. We compare the best model
(o4-mini) against human performance. Humans
achieve 100% accuracy at difficulty level 1, while
o4-mini reaches 47.7%, showing it solves nearly
half of the simple puzzles. At level 2, o4-mini
drops to 19.5%, but humans remain at 100%. For
higher difficulties, with larger grids and complex
rules, o4-mini’s rate decreases further, reaching
1.2% at level 4 (solving 1 of 89 puzzles), compared
to 94.4% for humans. Level 5 shows similar re-
sults to level 4 (similar trends across all models).
Results for all models are in Appendix J. Overall,
LLMs have severe reasoning challenges as puzzle
difficulty increases. A possible explanation could
be that models conclude reasoning prematurely in
complex puzzles by ignoring certain rules and run-
ning into dead ends. Specific rules or combinations
of rules may also be particularly challenging.

Rule Specific Analysis. We examine the accu-
racy of models on splits containing individual rules
or specific rule combinations to analyze which rules
the models succeed or fail on. Specifically, we
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Figure 4: Accuracy (%) at different difficulty (1-5)
between o4-mini (orange) and human annotators (teal).
Higher is better.

create puzzles only containing gaps, dots, stones,
stars, triangles, polys, or ylops. We also create
multi-rule combination splits to investigate how
models handle the interaction between a few dis-
tinct types of rules, stones x stars, gaps x dots x
triangles, and dots x stars x polys. Because ylops
can only exist in the presence of polys, this split
contains puzzles with ylops and polys. Each split
contains 50 training and 50 test samples, and we
also make them available in our release.

Figure 5 shows accuracy for the primary dataset
(top row) and the relative performance delta (∆)
of specific splits (e.g., gap accuracy minus full set
accuracy; bottom rows).

The gaps split shows superior performance
across all models, whereas dots hover near the av-
erage model performance on all puzzles. Dots and
gaps tasks are similar yet differ in performance:
gaps explicitly forbid using edges, providing im-
mediate error feedback, whereas dots require edge
use, with errors apparent only after path comple-
tion. Polys produce mixed results; stronger models
(o4-mini, o3-mini) show minor performance dif-
ferences compared to all puzzles, while smaller
reasoning and instruction-tuned models markedly
improve. Polys and ylops lead to substantial per-
formance decreases, which are also the most chal-
lenging rules perceived by humans. Some weaker
models (QwQ, Gemma) markedly outperform their
average on polys (improvements of 13.2 and 12.8
points, respectively), suggesting smaller models
might solve some puzzles more intuitively, while
others tend to “overthink” problems, leading to
higher success in simpler setups (more details later
in Section 4.2). Performance differences may also
result from fundamental path construction errors,
logical mistakes, or model rule misinterpretations.
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4.2 Path Errors and Reasoning Mistakes

We analyze model-constructed paths and their rea-
soning tokens to shed light on why reasoning mod-
els fail to solve puzzles.

Path Errors We analyze common errors in con-
structing a valid path (e.g., ignoring rules to solve
the game for now). We assess five error types for
all models: Incorrect Start/End (i.e., line starts or
ends at the wrong edge), Disconnected Line (i.e.,
line not continuous), Intersecting Line (i.e., line
crosses an edge multiple times), Rule Cell Cross-

ing (i.e., line does not stay on edges but crosses
rule cells). Paths with any such errors are deemed
Invalid Path. Examples for each error type can be
found in Appendix K.

Figure 6 shows the percentage of path rule vi-
olations for four selected models. Results for all
models can be found in Table 7 in Appendix J.
Smaller enclosed areas in the figure imply better
adherence to path rules. The two reasoning mod-
els (o4-mini and R1 70B) have similar violation
patterns, but o4-mini performs better overall. No-
tably, over 50% of puzzles fail because models do
not construct valid paths. Instruction models (GPT-
4.1, Gemma-3 27B) perform worse, showing dis-
tinct weaknesses. GPT-4.1 frequently produces dis-
connected lines, while Gemma-3 27B commonly
crosses rule cells. Interestingly, Gemma-3 27B
produces fewer disconnected lines than the larger
reasoning model R1 70B. Reasoning models have
higher accuracy despite similar basic path errors,
suggesting successful path construction is only the
first hurdle. Across models, the most common
error is Rule Cell Crossing, indicating frequent vi-
olations by paths moving through rule cells rather
than along edges. However, up to this point, our ex-
planations of other model failures have been largely
hypotheses, and the precise underlying causes re-
quire further investigation.

Causes for Reasoning Mistakes. To shed light
on the “why” of reasoning model failures, we manu-
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Figure 7: Accuracy (%) for generating k ∈ {1, 2, 4, 8}
solutions and evaluating whether the correct path is
in one of the k attempts (pass@k) for o4-mini across
difficulty (1-5). Higher is better.

ally analyzed R1 70B puzzles (as it openly provides
reasoning tokens) with the puzzles containing only
single rule types (e.g., only stones). We selected
puzzles where models produced valid paths (with-
out path errors) but failed to fulfill all rule cells.
This resulted in 48 puzzle solutions for analysis.

Models most commonly failed due to logical
fallacies (36/48), grid/index system misinterpreta-
tion (26/48), and careless shortcutting of multiple
reasoning steps (23/48). Interestingly, R1 often
recognized mistakes or dead ends (25/48) before
concluding, indicating limited reasoning but aware-
ness of its constraints.

Different splits revealed specific reasoning lim-
itations. With dots, models typically recognized
missed ones during path construction but failed
to correct their paths accordingly (e.g., Figure 23
in Appendix L). With gaps, models frequently
made careless, unvalidated multi-step moves, vi-
olating rules by crossing gaps (e.g., Figure 21 in
Appendix L). We provide further examples with
highlights of R1’s reasoning tokens in Appendix L.

Mistakes, like unvalidated multi-step moves
and grid misinterpretation, highlight ongoing chal-
lenges in long-term spatial planning, as even minor
shortcuts lead to significant rule violations. How-
ever, models’ recognition of errors and dead ends
points toward opportunities and gives space for
future contributions to improve spatial reasoning,
e.g., via iterative reasoning or sampling multiple
parallel paths with strategies to find correct ones.

Upper Reasoning Bounds. A common strategy
to improve performance on complex tasks is to
scale test-time compute, for instance through multi-
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Figure 8: Accuracy (%) for zero-shot (blue), one-shot
(orange), and two-shot (green) examples provided to
o4-mini across difficulty (1-5). Higher is better.

agent debate (Becker et al., 2025a). However, this
approach can suffer from performance degradation
in discussions requiring longer reasoning chains
(Becker et al., 2025b). Given that SPaRC requires
long-term, step-by-step planning where early er-
rors can be critical, this makes such a debate-based
approach potentially less suitable. Therefore, to de-
termine models’ upper limits, we purposefully in-
crease test-time compute by generating up to eight
attempts per puzzle for each model (i.e., pass@1
to pass@8).

Figure 7 shows accuracy rising from 15.8%
(pass@1) to 35.0% (pass@8) for o4-mini. This
improvement is expected as we scale computation.
Importantly, this setting is not practical at test-time,
as we only verify if the solution appears among
the k generations. In practice, a decision mecha-
nism like majority voting would be more suitable
(Kaesberg et al., 2025).

Still, additional attempts are not sufficient to
solve complex puzzles. Success rates improve by
32.5 points for level 1 puzzles (easy), but only 2.3
points for level 4 and 5 (difficult ones). This shows
that our puzzles cannot be easily solved by just
increasing the computation, but the reasoning steps
have to get more sophisticated and have to adjust
according to the difficulty level. Higher results for
larger k give hope that future work can find better
training methods to improve reasoning.

4.3 Ablations

We investigate how changes to the prompting (e.g.,
few-shot examples, different prompts) and puzzle
representation (e.g., text and images) affect our
results through various ablations.
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Figure 9: Comparison of Accuracy (%) for o4-mini
using a textual representation (blue) vs. a puzzle screen-
shot (orange) across difficulty (1-5). Higher is better.

Few-Shot Prompting. We investigate the effect
of in-context learning by comparing zero-shot, one-
shot, and two-shot configurations (see Appendix I.4
for few-shot examples). Previous experiments al-
ways defaulted to one-shot.

Figure 8 shows that one-shot has the highest
overall accuracy (15.8%), while zero-shot performs
worst (12.6%) for o4-mini. At difficulty 1, two-shot
outperforms one-shot, but this reverses at higher
levels. Examples generally help model comprehen-
sion, but too many examples seem to have no bene-
fit, and sometimes negatively impact performance.
Additional analysis in Appendix M.3 shows that
zero-shot has fewer path violations than few-shot.

Improved one-shot over zero-shot performance
is expected, but two-shot’s slightly lower perfor-
mance than one-shot is surprising, as more exam-
ples should clarify rule interactions; however, given
small differences, stochastic variance is possible.
Similar findings were reported by Ye et al. (2023),
suggesting increased examples do not always help,
possibly due to cognitive overload or excessive fo-
cus on example analysis instead of task solving.

Visual Representation. Another factor that
might influence our results is the textual 2D rep-
resentation of the puzzles. Therefore, we provide
screenshots of the puzzle, similar to Figure 1, and
adjust the prompt accordingly. We compare visual
results to zero-shot textual results, as the visual
prompt lacks an example solution. Details on this
configuration are available in Appendix I.3.

Figure 9 compares the accuracy of o4-mini us-
ing default textual prompts versus visual prompts
across difficulty levels. The visual representation
reduces overall performance from 12.6% to 5.6%.
The gap between text and image prompts is larger at
easier difficulty levels, but diminishes at higher dif-
ficulty levels. Additional analysis in Appendix M.1

Difficulty Level 1 2 3 4 5

Hum. Acc. (%) 100 % 100 % 100 % 94.4 % 94.5 %
Hum. Avg. (s) 10.7 18.3 26.7 60.7 131.5
Hum. Mdn. (s) 7.1 13.7 15.6 28.8 85.6

QwQ Acc. (%) 20.9% 5.9% 2.5% 1.2% 0.0%
QwQ #Tokens 14433 14200 13983 14072 13114
Qwen 2.5 Acc. (%) 0.0% 1.7% 0.0% 0.0% 0.0%
Qwen 2.5 #Tokens 790 888 953 1037 1161

Table 2: Accuracy, Average and Median human solve
time (seconds), and Accuracy and Number of (#) Gen-
erated Tokens for QwQ 32B and Qwen 2.5 72B over
Difficulty Level (1-5).

shows that a main cause for bad results on easy
puzzles is invalid path constructions.

These results suggest that current textual rep-
resentations are easier for multi-modal reasoning
models to understand. Likely, connecting textual
descriptions to visual puzzle elements adds com-
plexity compared to purely textual prompts. How-
ever, whether the current textual representation is
also optimal requires more investigation.

Alternative Prompt. We test if our results are
affected by different formulations in our prompts,
i.e., prompt engineering (White et al., 2023; Wahle
et al., 2024). Because paths previously failed due
to violations of path rules, we adjusted the prompt
to emphasize these rules more explicitly. This ad-
justment improved o4-mini’s accuracy from 15.8%
to 21.0% and reduced path errors, with Rule Cell
Crossing decreasing from 51.2% to 29.0%, and
Intersecting Line dropping from 31.2% to 21.2%.
However, at higher difficulty (level 5), there was
no improvement, with o4-mini still only solving
1 out of 89 puzzles (more details in Figure 26 in
Appendix M). Prompt engineering moderately in-
creases performance at lower difficulty levels, but
it does not have a marked impact at higher levels.
In additional experiments, long-context reasoning-
tuned models provided only modest gains (see Fig-
ure 11 in Appendix E). Markdown-based grids also
did not improve over the array format puzzle rep-
resentation (see Figure 12 in Appendix E). These
results suggest that low task performance is due to
limited spatial reasoning skills rather than represen-
tation style or prompting.

4.4 Human Evaluation

For a human baseline, we asked six annotators aged
22-27, with a background in computer science and
data science, to solve 100 i.i.d. drawn puzzles from
the dataset, divided into two subsets of 50 samples
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each. Each of the 100 puzzles is annotated three
times, and a puzzle is marked as solved if the ma-
jority found a correct solution. Even though we did
not test all 500 test samples of SPaRC, sampling
i.i.d., and using two non-overlapping sets with three
annotators each gives us a fair estimate of human
performance. We recorded the accuracy, number of
attempts, and solving time. Details on annotation
instructions are in Appendix N.

Table 2 shows humans achieve near-perfect per-
formance, with 100% accuracy at difficulty levels
1–3 and around 95% at levels 4 and 5. Average
solve time increases exponentially with difficulty,
from 10.7 seconds for difficulty 1 to 26.7 seconds
for difficulty 3, then starkly increasing to 60.7 sec-
onds for difficulty 4 and 131.5 seconds for difficulty
5. Median solve times are consistently lower than
average times, indicating that a few very difficult
puzzles significantly increase the average.

Compared to humans, models show two relevant
time-scaling aspects. First, previous pass@k ex-
periments (Figure 7 in Section 4.3) showed that
multiple attempts to solve puzzles improved perfor-
mance on easy puzzles but did not increase perfor-
mance on difficult puzzles. Second, analyzing the
number of generated tokens (Table 2), instruction-
tuned models such as Qwen 2.5, increase token
counts with puzzle difficulty (from 790 to 1161),
while reasoning models, such as QwQ maintain
relatively constant token counts across difficulties
(14433 to 13114). See Table 4 in Appendix F for
all models. This suggests models do not effectively
scale spatial reasoning at test-time.

5 Conclusion

We introduced SPaRC, a dataset of 1,000 examples
designed to evaluate spatial and rule-based reason-
ing capabilities on 2D grid pathfinding puzzles.
This dataset tests reasoning skills not evaluated
by existing benchmarks, focusing specifically on
multi-step constraint satisfaction problems requir-
ing spatial and rule-based reasoning.

We evaluated puzzles with six human annotators,
three instruction-tuned models (GPT-4.1, Gemma
3, Qwen 2.5), and four reasoning models (o4-mini,
o3-mini, QwQ, R1). Humans achieved a 98% accu-
racy. The best reasoning model, o4-mini, reached
only 16%. Performance was drastically affected by
puzzle difficulty, with models solving 48% at level
1, 20% at level 2, and just 1.1% at level 5. Humans
consistently solved puzzles across levels, includ-

ing 95% at level 5. Our error analysis revealed
that path errors and reasoning mistakes stemmed
from logical fallacies, grid misunderstandings, and
performing too many reasoning steps at once. Gen-
erating up to eight attempts per puzzle improved
accuracy up to 30% for difficulty 1 puzzles and
2% for difficulty 5. Humans needed up to 13
times more time to solve hard puzzles than easy
ones, and instruction-tuned models scaled token us-
age with difficulty by ∼ 40%. Reasoning models
showed only a ∼ 5% increase for harder difficulties.
Ablation studies on visual puzzle representation,
prompting, and few-shot examples show only mild
variations and support the robustness of our results.

Empirically, SPaRC reveals critical limitations in
current reasoning models regarding spatial reason-
ing, rule-based reasoning, multi-step planning, and
constraint satisfaction. Existing methods, including
enhanced prompting and increased computational
sampling, offer only partial improvements. Funda-
mental advances in model reasoning capabilities
are still needed to reach human-level results.

Limitations

Our evaluation depends on a fixed delimiter
(“####”) and a regex that collects the following
coordinate list. When a model omits the delimiter,
writes several delimiter lines, or inserts natural lan-
guage text between coordinates, extraction can fail,
producing false negatives. These events are rare in
practice, and we stress the required format in every
prompt, but complete robustness is unattainable
when testing many different models.

OpenAI models (i.e., o4-mini, o3-mini) return
only final coordinates with a small explanation,
but redact intermediate reasoning tokens. Conse-
quently, detailed failure analysis is restricted to
open models like R1 70B. Intermediate reasoning
can differ from final answers in models of any scale,
as previously documented by Turpin et al. (2023);
Chen et al. (2025), thus potentially limiting gener-
alization from trace-based analyses.

The dataset covers single-rule puzzles and a lim-
ited set of two- and three-rule combinations but
does not exhaustively represent all possible inter-
actions among the seven rule types. Future re-
leases could introduce underrepresented combina-
tions (e.g., stars × triangles × polys × ylops) to
probe generalization more comprehensively. How-
ever, as models fail on most easy tasks already and
current splits reveal clear error patterns and sup-
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port comparative ranking of the different rule types,
we leave this to future work when models become
more capable.

The poly set in Figure 5 in Section 4.1 shows
improvements for weaker but not stronger models.
The poly rule sometimes fills the entire grid with
poly shapes, necessitating a path along the grid’s
edge. This condition impacts only the poly subset,
explaining performance spikes. Smaller models
find this shortcut more frequently, likely because
simpler solutions emerge when overwhelmed by
many complex poly shapes.
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Appendix

A Models & Hardware

This section details the large language models
(LLM) used in our experiments, the hardware on
which they were run, and the approximate number
of tokens processed for each model.

For open models we used Gemma 3 27B (Team
et al., 2025), QwQ 32B (Team, 2024), Qwen
2.5 72B (Research, 2024) and DeepSeek R1 70B
(DeepSeek-AI et al., 2025).

For propietary models we used GPT-4.1 (Ope-
nAI, 2025a), o3-mini (OpenAI, 2025c) and o4-mini
(OpenAI, 2025b). For both OpenAI reasoning mod-
els, the default medium effort reasoning mode was
used.

Table 3 shows the details regarding model size,
tokens processed, and hardware used.

Model Name Size Tokens Processed Hardware

Open Models
Gemma 3 27B 875,711 4x Nvidia A100
QwQ 32B 13,863,364 4x Nvidia A100
Qwen 2.5 72B 955,167 8x Nvidia A100
DeepSeek R1 70B 9,136,467 8x Nvidia A100

Propietary Models
GPT-4.1 N/A 5,057,588 OpenAI API
o3-mini N/A 19,776,881 OpenAI API
o4-mini N/A 59,192,466 OpenAI API

Table 3: Overview of models, hardware, and token
counts. Token counts are approximate.

For all ablations and the main study, o4-mini
was analyzed on 6500 puzzles overall. For a com-
parable 1000 puzzles, this would equate to approx-
imately 9,865,411 tokens. Both OpenAI reasoning
models were used with the medium reasoning ef-
fort.

B Grid Indexing

Figure 10 shows a puzzle grid with all its coor-
dinates according to the prompts in Appendix I.

Figure 10: Puzzle grid from Figure 1 with all grid cells
annotated with their coordinates.
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D Difficulty Metric Calculation

This section provides the details for calculating the
difficulty metric used to rate SPaRC puzzles in this
paper. The metric aims to capture multiple aspects
of complexity. The calculation involves determin-
ing individual component scores, combining them
via a weighted sum, and normalizing the result.
The score function is described in Appendix D.1
and its components in Appendix D.2.

D.1 Combination and Normalization
The individual component scores (Appendix D.2)
are combined using a weighted sum to produce a
raw difficulty score (Sraw). The specific weights
reflect the empirically determined relative impor-
tance of each component:
Sraw = wmechSmech + winteractSinteract + wgridSgrid

+ wdensitySdensity + wcountScount
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where the weights used are: wmech = 1.2,
winteract = 1.2, wgrid = 2.5, wdensity = 1.0, and
wcount = 1.2. Notably, grid size (Sgrid) is weighted
most heavily.

Finally, to produce a standardized and inter-
pretable difficulty score (typically ranging from
0 to 5), the raw score (Sraw) is normalized. This is
achieved by:

1. Calculating the Z-score of Sraw relative to a
pre-determined normal distribution, charac-
terized by a mean (µ = 12.06) and standard
deviation (σ = 5.27). These parameters were
derived empirically from a large dataset of
puzzle scores.

Z =
Sraw − µ

σ

2. Converting the Z-score to a value between 0
and 1 using the standard normal cumulative
distribution function (CDF), often denoted as
Φ(Z).

CDF_value = Φ(Z)

3. Linearly scaling this CDF value to the target
range [0, 5].

Scaled_Score = CDF_value × 5

4. Clamping the result to ensure the final dif-
ficulty score strictly falls within the [0, 5]
bounds.

Final Score = max(0,min(5,Scaled_Score))

This normalization process ensures that scores are
comparable across different puzzles and provides
a distribution more amenable to interpretation as a
rating.

D.2 Component Scores
Five distinct aspects of the puzzle contribute to the
overall difficulty score:

• Mechanics Score (Smech): This score reflects
the cognitive load associated with understand-
ing different rules. It is directly proportional
to the number of unique rule types present in
the puzzle (Nmech).

• Interaction Score (Sinteract): This score quan-
tifies complexity from the interplay between
different mechanics. It is calculated only

when multiple rule types (Nmech > 1) are
present. It is proportional to both the num-
ber of potentially interacting mechanics (ap-
proximated as Nmech − 1) and the rule density
(ρrules), where rule density is the total number
of rule instances (Nrules) divided by the grid
area (A = width × height).

• Grid Score (Sgrid): This component reflects
the complexity associated with the search
space size. It increases proportionally with
the grid area (A). Larger grids generally re-
quire more path exploration.

• Density Score (Sdensity): This score measures
constraint concentration. It is directly de-
rived from the rule density (ρrules = Nrules/A).
Higher density can make satisfying all con-
straints simultaneously more challenging.

• Rule Count Score (Scount): Independent of
density, this score considers the absolute num-
ber of constraints. It is proportional to the
total number of rule instances (Nrules) on the
grid. A puzzle with many rules can be com-
plex even if spread over a large grid.

E Prompting and Representation

In addition to the main results, we also evalu-
ated the effect of a different reasoning-oriented
fine-tuning method and puzzle grid representation.
These experiments provide insights into whether
prompting style or input format can improve the
bad spatial reasoning performance of LLMs ob-
served on SPaRC.

E.1 Reasoning Fine-Tuned Models

While most existing prompting methods are de-
signed for instruction-tuned models, we investi-
gated the ReasonFlux family of reasoning fine-
tuned models, which use a different reasoning
method in the fine-tuning step compared to the
Qwen 3 models and should perform better on long
context tasks (Zou et al., 2025). Figure 11 com-
pares Qwen 3 32B against ReasonFlux-F1 32B.

We find that the ReasonFlux-F1 32B model
performs comparably to another reasoning-tuned
model of the same size (8.6% vs. 6.0%). These
results show that the long-context specific reason-
ing fine-tuning can help, but gains remain small
relative to human performance.

10371



0 2 4 6 8 10
Qwen 3 32B
ReasonFlux

6.0%
8.6%

Overall Accuracy (%)

1 2 3 4 5
Difficulty Level

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

23.3%
29.1%

5.9%
8.5%

1.7%
5.8%

1.2%
1.2%

0.0%
0.0%

ReasonFlux Qwen 3 32B

Figure 11: Accuracy (%) of reasoning-tuned models
(Qwen 3 32B vs. ReasonFlux variants) across difficulty
levels (1–5). Higher is better.

E.2 Puzzle Grid Representations

We also investigated the influence of puzzle grid
representations. Besides the default ARC-AGI-
inspired array representation (Array), we tested
two markdown-based formats: a plain markdown
table without headers (Table), and a table including
row and column coordinates to assist with spatial
referencing (Coords).

As shown in Figure 12, neither markdown vari-
ant yielded consistent improvements. The baseline
array format achieved the highest overall accuracy
(21.0%), slightly outperforming both markdown
representations (19.0% and 20.8%). These results
suggest that failures on SPaRC stem from funda-
mental limitations in spatial reasoning rather than
representation format.
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Array Table Coords

Figure 12: Accuracy (%) of different puzzle grid rep-
resentations (array vs. markdown table variants) across
difficulty levels (1–5). Higher is better.

F Tokens by Puzzle Difficulty

Table 4 shows the average tokens produced by the
different models, decomposed by puzzle difficulty.

Model Level 1 Level 2 Level 3 Level 4 Level 5
Reasoning

QwQ 32B 14433.3 14200.6 13983.1 14072.8 13114.1
R1 70B 7646.5 9119.8 9374.6 10134.4 9989.6

Instruction
Qwen 2.5 72B 790.6 888.7 953.1 1037.7 1161.2
Gemma-3 27B 802.8 874.6 910.0 941.2 1033.3

Table 4: Average tokens per puzzle by difficulty level.

G Rule Visualizations

Figures 13 to 19 provide visual context for the dif-
ferent puzzle rule types discussed in our evaluation
(Section 4), this section presents examples of each
core subtype. For each rule, we show the unsolved
puzzle grid (a) with a valid solution path (b).
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(a) Unsolved Dots puzzle. (b) Solved Dots puzzle.

Figure 13: Example of the Dots rule. The solution path must pass through all dots present on its segments.

(a) Unsolved Gaps puzzle. (b) Solved Gaps puzzle.

Figure 14: Example of the Gaps rule. The solution path cannot cross specific marked edges on the grid.

(a) Unsolved Stones puzzle. (b) Solved Stones puzzle.

Figure 15: Example of the Stones rule. The solution path must separate grid cells containing different colored stones
into distinct regions.
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(a) Unsolved Stars puzzle. (b) Solved Stars puzzle.

Figure 16: Example of the Stars rule. Each region with a star must contain exactly one other rule of the same color.

(a) Unsolved Triangles puzzle. (b) Solved Triangles puzzle.

Figure 17: Example of the Triangles rule. The solution path must touch the number of grid edges equal to the
number of triangles in the adjacent cell.

(a) Unsolved Polys puzzle. (b) Solved Polys puzzle.

Figure 18: Example of the Polys rule (Polyominoes). The solution path must outline a region that perfectly contains
the depicted poly shape. Multiple polys in one region can be combined.
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(a) Unsolved Polys & Inverse Polys puzzle. (b) Solved Polys & Inverse Polys puzzle.

Figure 19: Example of the Polys & Ylops (Inverse Polys) rule combination. The solution path must outline a region
satisfying both polyomino shape inclusion and subtraction constraints.

H Additional Dataset Statistics

Table 5 provides the rule distributions of the full set of SPaRC and all of its splits.

Statistics Full Set Gaps Dots Stones Stars Tri Polys P-Y St-S G-D-T D-S-P

Train Set Size 500 50 50 50 50 50 50 50 50 50 50
Test Set Size 500 50 50 50 50 50 50 50 50 50 50
Count per Difficulty Level

Puzzles (Level 1) 86 34 29 0 0 13 0 3 0 21 7
Puzzles (Level 2) 118 6 9 5 29 17 24 4 12 13 9
Puzzles (Level 3) 121 7 7 13 15 12 22 9 13 6 7
Puzzles (Level 4) 86 3 3 18 5 4 4 18 12 4 9
Puzzles (Level 5) 89 0 2 14 1 4 0 16 13 6 18

Count per Rule Type
Puzzles with Gaps 313 50 0 0 0 0 0 0 0 40 0
Puzzles with Dots 292 0 50 0 0 0 0 0 0 47 46
Puzzles with Stones 355 0 0 50 0 0 0 0 49 0 0
Puzzles with Stars 210 0 0 0 50 0 0 0 32 0 39
Puzzles with Triangles 233 0 0 0 0 50 0 0 0 37 0
Puzzles with Polygons 305 0 0 0 0 0 50 50 0 0 43
Puzzles with Ylops 25 0 0 0 0 0 0 43 0 0 0

Table 5: Statistics for all splits of SPaRC. Difficulty and rule statistics are only based on the test set, as only these
are used for evaluation.

I Prompting

Listings 1 to 5 in Appendices I.1 to I.4 provide the prompts and few-shot examples used for the experiments
in Section 4.

I.1 Default Prompt

You are an expert spatial reasoning AI specializing in solving puzzles from the game ’The Witness’.
Your task is to solve the following puzzle by finding a valid line from the Start Node to the
End Node.

10375



GRID DEFINITION:
- The puzzle involves a grid of {grid_size[’width’]}x{grid_size[’height’]} cells.
- COORDINATE SYSTEM: Nodes are indexed (x, y). Node (0,0) is the top-left node. x increases to the

right, y increases downward.
- Line: The solution line travels along grid edges, connecting adjacent nodes horizontally or

vertically. The line cannot visit the same node twice.
- RULE PLACEMENT: Rule symbols (squares, stars, polyshapes, negative polyshapes, triangles) are

located at cells with all odd coordinates. The line goes AROUND cells containing rules, forming
boundaries.

SOLVING RULES:
1. Draw a continuous line from the START NODE to the END NODE by connecting adjacent nodes (

horizontally or vertically) without visiting the same node twice.
2. The line can only be placed on (+) and (.) cells. These cells have at least one even coordinate.

The line can NEVER be placed on a rule cell (all odd coordinates).
3. The line acts as a boundary, potentially dividing the grid cells into one or more distinct

regions.
4. All rules associated with symbols on the grid must be satisfied:

- Gaps (’G’): The line CANNOT traverse a cell marked by a Gap.
- Dots (’.’): The line MUST pass through a cell marked by a Dot.
- Squares (’o-X’): All squares within a single region created by the line must be the same color.
Different colored squares MUST be separated into different regions by the line.

- Stars (’*-X’): Each star must be paired with EXACTLY one other element of the same color in a
region. Other colors are ignored.
- Triangles (’A-X (1)’, ’B-X (2)’, ’C-X (3)’, ’D-X (4)’): The line must touch EXACTLY the number
of edges specified by the triangle count (edges are top, right, bottom, left of the cell).
- Polyshapes (’P-X-Y’): The region containing this symbol must be shaped EXACTLY like the defined
polyshape Y. The shape must fit entirely within the region’s boundaries. If multiple positive

polyshapes are in one region, the region’s shape must accommodate their combined, non-
overlapping forms (like Tetris pieces).
- Negative Polyshapes (’Y-X-Y’): The negative polyshape can only be placed on top of already
placed normal polyshapes. The negative polyshapes must fit on the grid, but can allow overlap
between normal polyshapes or placement of polyshapes that extend beyond the area defined by the
line. If the negative polyshapes exactly cancel the normal polyshapes, there is no restriction
on the grid shape anymore. A negative polyshape only counts as valid if it is used.

START POSITION: {start_pos}
END POSITION: {end_pos}

GRID NOTATION:
- ’S’: Start point
- ’E’: End point
- ’+’: Cell on which the line can be drawn
- ’N’: Empty rule cell
- ’G’: Gap (cannot be crossed)
- ’.’: Dot line must cross this cell
- ’o-X’: Stone of color X
- ’*-X’: Star of color X
- ’A-X’ Triangle with count 1
- ’B-X’ Triangle with count 2
- ’C-X’ Triangle with count 3
- ’D-X’ Triangle with count 4
- ’P-X-Y’: Positive polyshape of color X and shape ID Y
- ’Y-X-Y’: Negative polyshape (ylop) of color X and shape ID Y

COLOR CODES:
R=red, B=blue, G=green, Y=yellow, W=white, O=orange, P=purple, K=black

{example_section}

PUZZLE GRID:
{grid_str}

POLYSHAPE DEFINITIONS:
Defines the shapes referenced by P-X-Y and Y-X-Y symbols in the grid.
In the 2D array, 1 indicates a cell occupied by the shape, 0 indicates an empty cell.
{polyshapes_str}
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Please solve this puzzle.
First, explain your reasoning step-by-step, including key deductions and constraint checks made along

the way.
Then, provide the final solution as a sequence of node coordinates in (x, y) format (dont skip any

intermediate nodes), starting with the start node and ending with the end node, after this
string: "####".

Example coordinate list: [(0,0), (1,0), (2,0), (2,1), ...]

Listing 1: The LLM prompt used for generating the results discussed in Section 4.1.

I.2 Alternative Prompt

## Objective
You are a specialized AI proficient in spatial reasoning and solving puzzles from the game ’The

Witness’. Your goal is to find a valid path (a continuous line) from the specified Start Node to
the End Node on the provided grid, adhering to all puzzle rules.

## Core Concepts & Grid Basics
* **Grid Dimensions:** The puzzle grid has {grid_size[’width’]} columns and {grid_size[’height’]}

rows.
* **Coordinate System:** Nodes are identified by ‘(x, y)‘ coordinates. ‘(0,0)‘ is the top-left node

. ‘x‘ increases to the right, ‘y‘ increases downwards.
* **Path:** The solution is a single, continuous line connecting adjacent nodes either horizontally

or vertically.
* **No Revisits:** The path **CANNOT** visit the same node more than once.
* **Valid Path Cells:** The path travels along the grid lines (edges between nodes). It can only

occupy positions marked ‘+‘ or ‘.‘ in the grid layout (these correspond to positions with at
least one even coordinate).

* **Rule Cells:** Cells containing rule symbols (squares, stars, etc.) have coordinates where both
‘x‘ and ‘y‘ are odd. The path goes *around* these rule cells, never *on* them.

* **Regions:** The drawn path divides the grid cells into one or more distinct enclosed areas (
regions). Many rules apply based on the contents of these regions.

## Puzzle Input Data
* **Start Node:** {start_pos}
* **End Node:** {end_pos}
* **Grid Layout:**

‘‘‘
{grid_str}
‘‘‘

* **Polyshape Definitions (if applicable):**
* Shapes are defined by 2D arrays where ’1’ indicates an occupied cell and ’0’ indicates an
empty cell.
‘‘‘
{polyshapes_str}
‘‘‘

## Symbol Legend (Grid Notation)
* ‘S‘: **Start Node** (Path begins here)
* ‘E‘: **End Node** (Path ends here)
* ‘+‘: Valid cell for the path to occupy
* ‘N‘: Empty rule cell (no rule)
* ‘G‘: **Gap** (Path **CANNOT** cross this cell)
* ‘.‘: **Dot** (Path **MUST** pass through this cell)
* ‘o-X‘: **Square** of color X
* ‘*-X‘: **Star** of color X
* ‘A-X‘: **Triangle** (touch 1 edge)
* ‘B-X‘: **Triangle** (touch 2 edges)
* ‘C-X‘: **Triangle** (touch 3 edges)
* ‘D-X‘: **Triangle** (touch 4 edges)
* ‘P-X-Y‘: **Polyshape** (positive) of color X and shape ID Y
* ‘Y-X-Y‘: **Negative Polyshape** (ylop) of color X and shape ID Y

**Color Codes:** R=Red, B=Blue, G=Green, Y=Yellow, W=White, O=Orange, P=Purple, K=Black

## Detailed Solving Rules
The drawn path must satisfy **ALL** applicable constraints:

1. **Path Constraints:**
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* Path **MUST** start at ‘S‘ and end at ‘E‘.
* Path connects adjacent nodes (horizontal/vertical moves only).
* Nodes **CANNOT** be revisited.
* Path **MUST** pass through all Dot (‘.‘) cells.
* Path **CANNOT** pass through any Gap (‘G‘) cells.

2. **Region-Based Rules** (Apply to areas enclosed by the path):
* **Squares (‘o-X‘):** All squares within a single region **MUST** be the same color. Squares
of different colors **MUST** be separated into different regions by the path.
* **Stars (‘*-X‘):** Within a single region, each star symbol **MUST** be paired with exactly
**ONE** other element (star or square) *of the same color*. Other colors within the region are
irrelevant to this specific star’s rule.
* **Polyshapes (‘P-X-Y‘):** The region containing this symbol **MUST** be able to contain the
specified shape (defined in Polyshape Definitions). The shape must fit entirely within the
region’s boundaries. If multiple positive polyshapes are in one region, the region must
accommodate their combined, non-overlapping forms. Rotation of polyshapes is generally allowed
unless context implies otherwise.
* **Negative Polyshapes (‘Y-X-Y‘):** These "subtract" shape requirements, typically within the
same region as corresponding positive polyshapes. A negative polyshape cancels out a positive
polyshape of the exact same shape and color within that region. If all positive shapes are
canceled, the region has no shape constraint. A negative shape is only considered ’used’ if it
cancels a positive one. Negative shapes can sometimes rationalize apparent overlaps or boundary
violations of positive shapes if interpreted as cancellations.

3. **Path-Based Rules (Edge Touching):**
* **Triangles (‘A-X‘, ‘B-X‘, ‘C-X‘, ‘D-X‘):** The path **MUST** touch a specific number of
edges of the cell containing the triangle symbol.

* ‘A-X‘ (1): Path touches **EXACTLY 1** edge of the triangle’s cell.
* ‘B-X‘ (2): Path touches **EXACTLY 2** edges of the triangle’s cell.
* ‘C-X‘ (3): Path touches **EXACTLY 3** edges of the triangle’s cell.
* ‘D-X‘ (4): Path touches **EXACTLY 4** edges (fully surrounds) the triangle’s cell.

{example_section}

## Task & Output Format
1. **Solve the Puzzle:** Determine the valid path from the Start Node to the End Node that satisfies

all rules.
2. **Explain Reasoning:** Provide a step-by-step explanation of your thought process. Detail key

deductions, how constraints were applied, and any backtracking or choices made.
3. **Provide Solution Path:** After the reasoning, output the exact marker string ‘####‘ followed

immediately by the solution path as a list of node coordinates ‘(x, y)‘. Include all
intermediate nodes from start to end.

**Example Solution Path Format:**
####
[(0, 0), (1, 0), (2, 0), (2, 1), ...]

Listing 2: The LLM prompt used for generating the results discussed in prompt ablation in Section 4.3.

I.3 Vision Prompt

You are an expert spatial reasoning AI specializing in solving puzzles from the game ’The Witness’.
Your task is to solve the puzzle in the image by finding a valid line from the Start Node to the End

Node.

The image shows a Witness puzzle grid of size {grid_size[’width’]*2}x{grid_size[’height’]*2}. In this
puzzle:

- The solution is a continuous line from the start circle to the end marker
- The line travels along grid edges, connecting adjacent nodes horizontally or vertically
- The line cannot visit the same node twice
- The line must satisfy all constraints represented by the symbols on the grid
- The line can not be placed on rule cells
- The line can only travel 1 cell per step (no diagonal moves and provide each step as a separate

coordinate)

COORDINATE SYSTEM:
- Nodes are indexed (x, y) where (0,0) is the top-left node
- x increases to the right, y increases downward
- The grid cells have rule symbols located at cells with all odd coordinates
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- The line goes AROUND cells containing rules, forming boundaries
- Both line and rule cells are on the same grid. Therefore each intersection has a distance of 2 to

the next intersection.

SOLVING RULES:
1. Draw a continuous line from the START NODE (big circle on the line) to the END NODE (rounded end)

without visiting the same node twice.
2. The line can only be placed on valid path cells.
3. The line acts as a boundary, potentially dividing the grid cells into one or more distinct regions

.
4. All rules associated with symbols on the grid must be satisfied:

- Dots: The line MUST pass through each dot.
- Colored squares: All squares within a single region created by the line must be the same color.
Different colored squares MUST be separated into different regions by the line.

- Colored stars: Each star must be paired with EXACTLY one other element of the same color in a
region. Other colors are ignored.

- Triangles: The line must touch EXACTLY the number of edges specified by the number of triangles
in that cell (edges are top, right, bottom, left of the cell).

- Tetris-like polyomino shapes: The region containing this symbol must be shaped EXACTLY like the
defined polyshape.

- Negative polyshapes: These cancel out regular polyshapes if they overlap.

Text description of the puzzle:
{puzzle_data.get("text_visualization", "")}

Analyze the puzzle image carefully and determine the solution path.
First, explain your reasoning step-by-step, including key deductions and constraint checks made along

the way.
Then, provide the final solution as a sequence of node coordinates in (x, y) format, starting with

the start node and ending with the end node, after this string: "####".. DON’T SKIP ANY
intermediate nodes (the distance between each node must be 1).

Example coordinate list: [(0,0), (1,0), (2,0), (2,1), ...]

Listing 3: The LLM prompt used for generating the results discussed in vision ablation in Section 4.3.

I.4 Few-Shot Example

EXAMPLE PUZZLE GRID:

["+",".","+","+","+","E","+"]
["+","C-R","+","o-K","+","o-K","+"]
["S","+","+","+","+","+","+"]
["+","P-G-112","+","*-G","+","P-B-624","+"]
["+","+","+","+","+","+","+"]
["+","*-G","+","*-G","+","o-K","+"]
["+","+","+",".","+","+","+"]

EXAMPLE POLYSHAPE DEFINITIONS:
Shape 112:
[0,1,0,0]
[0,1,0,0]
[0,1,0,0]
[0,0,0,0]

Shape 624:
[0,1,0,0]
[0,1,1,0]
[0,1,0,0]
[0,0,0,0]

EXAMPLE SOLUTION:

We start at (0,2) and draw a line to (0,0).
We then draw a line to (2,0) to reach the dot at (1,0) and surround the 3 count triangle.
We then draw a line to (2,2) here we go down to touch the third side of the triangle cell and

therefore validate the 3 count triangle.
We continue down to (2,6) to validate the polyshape 112 and also the green star with the green

polyshape
After this we draw a line to (4,6) to start validating the polyshape 624 by surrounding it.
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Therefore we have to draw a line to (6,4) over (4,4) which creates a region for the stone at (5,5)
which validates the stone.

We continue up to (6,2) for the polyshape 624 and then go to (4,2) and after this to (4,0) to finaly
validate the polyshape 624.

This also validates the two green stars at (3,3) and (3,5) with each other and the black stone at
(3,1) because its the only stone in its region.

This line also creates a region for the black stone at (5,1) because its the only stone in its region
.

Now we can draw a line to (5,0) to reach the end node.

#### (0,2),(0,1),(0,0),(1,0),(2,0),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(4,5),(4,4),(5,4)
,(6,4),(6,3),(6,2),(5,2),(4,2),(4,1),(4,0),(5,0)

Listing 4: The examples used for generating the results discussed in few-shot ablation in Section 4.3.

SECOND EXAMPLE PUZZLE GRID:
["+","E","+","+","+","+","+","+","+"]
["+","N","+","N","+","o-B","+","N","S"]
["+","+","+","+","+","+","+","+","+"]
["+","P-W-8992","G","Y-W-18","+","P-W-48","+","P-W-48","+"]
["+","+","+","G","+","+","+","+","+"]

SECOND EXAMPLE POLYSHAPE DEFINITIONS:
Shape 18:
[0,1,0,0]
[1,0,0,0]
[0,0,0,0]
[0,0,0,0]

Shape 48:
[0,1,0,0]
[0,1,0,0]
[0,0,0,0]
[0,0,0,0]

Shape 8992:
[0,0,1,0]
[0,1,1,1]
[0,0,0,0]
[0,0,0,0]

SECOND EXAMPLE SOLUTION:

We start at (8,1) and draw a line to (8,2).
Then we draw a straight line to (4,2).
From here we go up to (4,0).
This creates one region with only a blue stone at (5,1) which makes it valid.
The other region contains numerus polyshapes and ylops. But the region already has a valid shape.
The P-W-8992 gets placed on the bottom left and combined with the Y-W-18 to form a 2x1 region.
The other part of the region can exactly be formed by the two P-W-48 polyshapes.
Now we can draw a line to (1,0) to reach the end node.

#### (8,1),(8,2),(7,2),(6,2),(5,2),(4,2),(4,1),(4,0),(3,0),(2,0),(1,0)

Listing 5: The examples used for generating the results discussed in few-shot ablation in Section 4.3.

J Full Tabular Main Results

Tables 6 to 8 provide the detailed and complete results for the experiments in Section 4.1.
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J.1 Difficulty per Level

Model All Level 1 Level 2 Level 3 Level 4 Level 5

Reasoning
o4-mini 15.8% 47.7% 19.5% 10.7% 1.2% 1.1%
o3-mini 8.2% 29.1% 10.2% 2.5% 1.2% 0.0%
QwQ 32B 5.8% 20.9% 5.9% 2.5% 1.2% 0.0%
R1 70B 4.0% 17.4% 2.5% 1.7% 0.0% 0.0%

Instruction
GPT-4.1 1.6% 7.0% 0.8% 0.8% 0.0% 0.0%
Gemma-3 27B 1.2% 3.5% 0.8% 0.8% 0.0% 1.1%
Qwen 2.5 72B 0.4% 0.0% 1.7% 0.0% 0.0% 0.0%

Table 6: Accuracy (%) for SPaRC puzzles achieved by various LLMs, categorized as Reasoning or Instruction
models. The table displays the overall accuracy (All) and the breakdown by puzzle Difficulty Level (1-5) for each
model. Performance generally decreases sharply as the difficulty level increases. The highest overall performance is
achieved by o4-mini (15.8%). Values are shown in percent (%).

J.2 Path Metrics

Model Incorrect Start/End Disconnected Line Intersecting Line Rule Cell Crossing Invalid Path

Reasoning
o4-mini 3.8% 27.6% 31.2% 51.2% 59.2%
o3-mini 3.0% 13.2% 8.0% 56.2% 63.2%
QwQ 32B 1.6% 26.2% 30.8% 70.0% 76.4%
R1 70B 10.2% 52.4% 35.8% 57.6% 82.2%

Instruction
GPT-4.1 53.8% 87.0% 51.0% 55.0% 93.6%
Gemma-3 27B 40.8% 37.6% 42.0% 84.6% 88.0%
Qwen 2.5 72B 8.0% 41.0% 20.2% 59.0% 90.6%

Table 7: Percentage of generated solutions with path violations for SPaRC puzzles across different LLMs. Models
are grouped into Instruction and Reasoning categories. Columns show the rate (%) for specific violation types.

J.3 Rule Specific Analysis

Model Full Set Gaps Dots Stones Stars Tri Polys St-S P-Y G-D-T D-S-P

Reasoning
o4-mini 15.8% 84.0% 22.0% 16.0% 34.0% 14.0% 16.0% 20.0% 4.0% 18.0% 8.0%
o3-mini 8.2% 48.0% 10.0% 6.0% 8.0% 4.0% 2.0% 6.0% 2.0% 8.0% 10.0%
QwQ 32B 5.8% 52.0% 6.0% 8.0% 28.0% 2.0% 20.0% 8.0% 2.0% 0.0% 6.0%
R1 70B 4.0% 32.0% 4.0% 2.0% 2.0% 4.0% 8.0% 6.0% 0.0% 4.0% 2.0%

Instruction
GPT-4.1 1.6% 10.0% 0.0% 2.0% 4.0% 0.0% 4.0% 6.0% 0.0% 0.0% 2.0%
Gemma-3 27B 1.2% 6.0% 0.0% 0.0% 2.0% 0.0% 14.0% 2.0% 2.0% 0.0% 0.0%
Qwen 2.5 72B 0.4% 2.0% 0.0% 0.0% 0.0% 0.0% 8.0% 0.0% 0.0% 0.0% 2.0%

Table 8: Accuracy (%) for various LLMs on SPaRC puzzles, broken down by puzzle split type. Models are
categorized as Reasoning or Instruction. Columns display the overall accuracy (Full Set) and the accuracy (%) on
splits featuring specific single rules (Gaps, Dots, Stones, Stars, Tri, Polys) or rule combinations (St-S: Stones &
Stars, P-Y: Polys & Ylops, G-D-T: Gaps & Dots & Triangles, D-S-P: Dots & Stars & Polys). Values are shown in
percent (%).

K Details on Path Errors

Figure 20 shows the examples of SPaRC puzzle structure and the fundamental path violation types
discussed in Section 4.

10381



(a) Empty puzzle grid. (b) Solved puzzle (correct). (c) Incorrect start/end (incorrect).

(d) Disconnected line (incorrect). (e) Self-intersecting path (incorrect). (f) Rule-cell crossing (incorrect).

Figure 20: (a)–(b): An empty puzzle and its solution. (c)–(f): The four kinds of path-generation errors.
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L Details on Reasoning Mistakes

Figures 21 to 24 provide four examples of common reasoning mistakes for DeepSeek R1 70B and
highlights the steps that lead to the mistake.

Puzzle: 80a59619e323acba. Model: DeepSeek R1 Distill Llama 70B.

Puzzle Grid Model’s Path Correct Path

Reasoning Excerpts:
...

Alright, so I’ve got this Witness puzzle to solve. Let me try to figure it out step by step.

...

From (8,3) -> (8,2) -> (8,1). From there, perhaps moving left to (7,1), then (6,1), etc., but I need to avoid ’G’s and ’N’s.

...

Wait, but from (8,3) to (8,2) to (8,1) to (8,0)

...

From from (8,0) to (7,0) to (6,0)

...

From (6,0), can go left to (5,0) or down to (6,1). Let’s go left to (5,0). (6,0) -> (5,0). From (5,0), can go left to (4,0) or down

to (5,1). Let’s go left to (4,0). (5,0) -> (4,0).

...

So:

...

- (8,0) -> (7,0

- (7,0) -> (6,0)

- (6,0) -> (5,0)

- (5,0) -> (4,0)

- (4,0) -> (3,0)

...

...

But let me double-check if I missed any ’G’s along the way. For example, in row 0, column 5 is ’G’, but the path doesn’t go

near there. Similarly, row 1 has ’G’s at 2 and 5, but the path goes through row 1, columns 0 and 1, which are ’+’, so that’s

okay.

...

Yes, this path should work.

Figure 21: Analysis of puzzle 80a59619e323acba with an incorrect solution attempt by DeepSeek R1 Llama 70B
Distill. The model tends to commit to a sequence of reasoning steps without thoroughly validating each one, leading
to careless mistakes.
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Puzzle: cf36a0865a1ed242. Model: DeepSeek R1 70B.

Puzzle Grid Model’s Path Correct Path

Reasoning Excerpts:
...

Since the line starts at (1,0) and ends at (1,4), it’s a vertical line in the middle. So maybe the line goes straight down the

middle, but that would split the grid into two halves. But then the blue stars are on the top-left and bottom-right, and the red

stars are on the top-right and bottom-left. So if the line goes straight down the middle, each blue star would be in a separate

region, which might not satisfy the rule because each needs to be paired with exactly one other. Similarly for the red stars.

...

But how can the line enclose both blue stars in one region and both red stars in another, given the line starts and ends in the

middle?

...

Wait, perhaps the line can loop around the blue stars. Let me try to imagine a path that starts at (1,0), goes around the top-left

blue star, then around the bottom-right blue star, and then proceeds to the end.

...

But the line can’t cross itself, so it’s challenging. Alternatively, maybe the line goes from (1,0) down to (1,4), but that’s a

straight line, which might not satisfy the star rules.

...

Wait, maybe I need to create a loop that goes around the top-left and bottom-right blue stars. Let’s try:

(1,0) → (0,0) → (0,1) → (0,2) → (1,2) → (2,2) → (2,3) → (3,3) is blocked. So can’t. So from (2,3), go down to (2,4). Then

left to (1,4).

...

Wait, maybe the line can go from (1,0) to (0,0), then down to (0,1), then right to (1,1) is blocked, so go down to (0,2), then

right to (1,2), then down to (1,3) is blocked, so go right to (2,2), then down to (2,3), then right to (3,3) is blocked, so go down

to (2,4), then left to (1,4).

...

But this doesn’t enclose the blue stars. I’m stuck.

...

I think I’m stuck and need to conclude that I can’t find a solution right now.

Figure 22: Analysis of puzzle cf36a0865a1ed242 from the stars split with incorrect solution by DeepSeek R1 70B.
The model fails to realize that the grid can form one large region with two stars of each color, leading to an incorrect
path. It often tries to loop around stars and run into grid cells, which is impossible. The model notices it got stuck
and provides the latest attempt to a valid solution.
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Puzzle: a49a784ae7d91339. Model: DeepSeek R1 Llama 70B Distill.

Puzzle Grid Model’s Path Correct Path

Reasoning Excerpts:
...

Wait, that seems like a 5x5 grid of nodes, but the actual cells are 2x2 because each cell is four nodes. Hmm, maybe I’m

misunderstanding.

...

Wait, I’m getting confused. Let me clarify. The grid is 2x2 cells, each cell being a square. So the nodes are the intersections,

making a 3x3 grid of nodes. So the nodes go from (0,0) to (2,2). The start is at (0,2) which is the bottom-left node, and the

end is at (2,0), the top-right node.

...

Start at (0,2). From there, go up to (0,1), then right to (1,1) — but (1,1) is a rule cell, so can’t go there. So instead, go right to

(1,2), which is a ’.’ that must be passed through. So from (0,2) to (1,2).

...

Wait, but the line must pass through (2,4). So perhaps from (1,2), go down to (2,2), then right to (2,3), then down to (2,4),

which is a ’.’.

...

So path so far: (0,2) → (1,2) → (2,2) → (2,3) → (2,4).

...

From (2,4), need to get to (4,4), which is another ’.’. So go right to (3,4), then to (4,4).

...

Now, from (4,4), need to get to (4,0), another ’.’. So go down to (4,3), (4,2), (4,1), (4,0).

...

But wait, (4,0) is a ’.’ and the end is at (2,0). So from (4,0), go left to (3,0), then to (2,0). But (2,0) is the end point, so that’s

acceptable.

...

But does this path cover all the ’.’s? Let’s see:

- (1,2): yes

- (2,4): yes

- (4,4): yes

- (4,0): yes

I think this path satisfies all the constraints.

Figure 23: Analysis of puzzle a49a784ae7d91339 from the dots split with incorrect solution by DeepSeek R1 Llama
70B Distill. The model has issues interpreting the grid sizes as 5x5 initially, but converges to the correct dimensions
after some reasoning steps. The model tries to draw paths on rule cells but corrects itself quickly. Finally, the model
mixes up x and y coordinates, thinking it had drawn the correct path but drawing an inverse indexed path.
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Puzzle: d9e6e97a86d583d9. Model: DeepSeek R1 70B.

Puzzle Grid Model’s Path Correct Path

Reasoning Excerpts:
...

Okay, so I’m trying to solve this puzzle from The Witness. It’s a bit tricky, but I’ll take it step by step. Let me first understand

the problem.

...

Starting at (4,0), which is the bottom-right corner. The end is at (0,0), top-left. So the line needs to move up and left.

...

From (4,2), move left to (3,2). From (3,2), move down to (3,3) is blocked by a rule cell, so instead move left to (2,2).

...

This path would create a region on the left that includes (1,1) and (3,1), and a region on the right that includes (1,3) and (3,3).

...

Yes, this should satisfy the rules because each region has only one color of stones.

Figure 24: Analysis of puzzle d9e6e97a86d583d9 of the stones split with incorrect solution by DeepSeek R1 70B.
The model misinterprets the coordinate system, assuming (4,0) is the bottom-right corner, which is incorrect, as
(4,4) is the bottom-right. The model also often attempts to draw a line over rule cells. This leads to an incorrect path
that fails to satisfy the puzzle’s rules.
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M Details on Ablations

Figures 25 to 27 provide more details for the ablation experiments in Section 4.3, considering vision
models, alternative prompts, and few-shot examples.

M.1 Vision Mode
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Figure 25: Comparison of the standard o4-mini Zero-Shot (blue) and its vision-enabled counterpart o4-mini Vision
(orange) on SPaRC puzzles. Left Panel: Bar chart showing the Error Rate (%) for different types of path violations
across all generated solutions. o4-mini Vision generally exhibits higher rates of these structural errors. Right Panel:
Line chart displaying the Accuracy (%) against puzzle Difficulty Level (1-5). The standard o4-mini Zero-Shot
achieves a significantly higher overall accuracy (12.6%, blue dotted line) compared to o4-mini Vision (5.6%, orange
dotted line), outperforming it at nearly all difficulty levels.

M.2 Alternative Prompt
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Figure 26: Performance comparison of o4-mini using its standard prompt (blue) versus an alternative prompt
(orange) on SPaRC puzzles. Left Panel: Bar chart showing the Error Rate (%) for different types of path violations
across all generated solutions. The alternative prompt generally reduces the frequency of these structural errors.
Right Panel: Line chart displaying the Accuracy (%) against puzzle Difficulty Level (1-5). The alternative prompt
results in a higher accuracy across all difficulties, improving the overall success from 15.8% (standard, blue dotted
line) to 21.0% (alternative, orange dotted line).
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M.3 Few-Shot
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Figure 27: Impact of few-shot prompting on o4-mini’s performance and error profile for SPaRC puzzles. Compares
zero-shot (blue), one-shot (orange), and two-shot (green) prompting strategies. Left Panel: Bar chart showing the
Error Rate (%) for different types of fundamental path violations across all generated solutions. Few significant
differences emerge in the error profiles across prompting strategies. Right Panel: Line chart displaying the
Accuracy (%) against puzzle Difficulty Level (1-5). While one-shot prompting achieves the highest overall success
rate (15.8%, orange dotted line) compared to zero-shot (12.6%, blue dotted line) and two-shot (14.8%, green dotted
line), all strategies show a sharp decline in performance as puzzle difficulty increases.

Figure 28: Visual explanation of how each rule looks on the puzzle grid for the annotators of the dataset.
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N Details on Human Annotation

N.1 Annotators

The annotators are two Ph.D. students and four
research assistants (two bachelor students and two
master students) in Computer Science and Data
Science. They are all male and between 22 and 27
years old. As part of their research job, they receive
at least the minimum wage in Germany.

N.2 Annotation Instructions

Introduction. This guide provides the rules and
instructions for annotating SPaRC puzzles. We
want to compare whether there are patterns/similar-
ities that make the puzzles difficult for humans or
LLMs to solve. Therefore, we have created 6 test
sets of 50 puzzles each. These sets contain puzzles
with all possible combinations of rules and grid
sizes.

Task. Annotate all the samples in the dataset in
as little time as possible per puzzle. Each puzzle is
solvable, but if you can’t think of a solution after
a reasonable amount of time (5-10 minutes), you
can click Show Solution or Skip Puzzle to continue.
Once you have completed all 50 puzzles, please
e-mail the annotated file back to us. By sending
the file back to us, you agree that we can publish
your annotations anonymously. This includes solve
time, required attempts, and solution path.

Rules. The line must connect Start with End with
a continuous path without using the same cell twice.
It must also follow all rules defined by the puzzle.
A visual explanation of the rules can be seen in
Figure 28.

• Gaps: The line CANNOT traverse a cell
marked by a Gap.

• Dots: The line MUST pass through a cell
marked by a Dot.

• Stone: All stones within a single region cre-
ated by the line must be the same color. Differ-
ent colored squares MUST be separated into
different regions by the line.

• Stars: Each star must be paired with EX-
ACTLY one other element of the same color
in a region. Other colors are ignored.

• Triangles: The line must touch EXACTLY
the number of edges specified by the triangle

count (edges are top, right, bottom, left of the
cell).

• Polyshapes (Poly): The region containing
this symbol must be shaped EXACTLY like
the defined polyshape. The shape must fit
entirely within the region’s boundaries. If
multiple positive polyshapes are in one region,
the region’s shape must accommodate their
combined, non-overlapping forms (like Tetris
pieces).

• Negative Polyshapes (Ylop): The negative
polyshape can only be placed on top of al-
ready placed normal polyshapes. The neg-
ative polyshapes must fit on the grid, but
can allow overlap between normal polyshapes
or placement of polyshapes that extend be-
yond the area defined by the line. If the neg-
ative polyshapes exactly cancel the normal
polyshapes, there is no restriction on the grid
shape anymore. A negative polyshape only
counts as valid if it is used.

Example Dataset. You can use the following
dataset to experiment and get familiar with the puz-
zles and all rules:

Link redacted for anonymity.

Important Hints

• The annotation state gets saved even when
closing the window, but to be safe, also always
download the current annotated dataset when
you stop annotating.

• If you reload the page, don’t overwrite the
existing data.
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