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Abstract

As Large Language Models (LLMs) expand
across domains, LLM judges have become
essential for systems evaluation. Current
benchmarks typically compare system outputs
against baselines. This baseline-mediated ap-
proach, though convenient, yields lower relia-
bility than direct comparison between systems.
We propose Arena-Lite which integrates tour-
nament structure on top of head-to-head com-
parison. The application of a tournament struc-
ture and direct comparison eliminates the need
for baseline outputs, reduces the number of re-
quired comparisons, and allows higher reliabil-
ity in system rankings. We conducted two ex-
periments: (1) controlled stochastic modeling
and (2) empirical validation with a real LLM
judge. Those experiments collectively demon-
strate that Arena-Lite consistently achieves
higher reliability with fewer comparisons, even
with smaller datasets or weaker judges. We
release an easy-to-use web demonstration and
code to foster adoption of Arena-Lite, stream-
lining model selection across research and in-
dustry communities. Arena-Lite demo and
code are available on https://huggingface.
co/spaces/NCSOFT/ArenaLite

1 Introduction

LLMs excel in diverse tasks, from chatbots to code
generation, due to their powerful generative capa-
bilities (Ouyang et al., 2022; Roziere et al., 2023).
As their versatility grows, accurately evaluating
their performance becomes critical. To address
this, benchmarks like MMLU and BigBench have
emerged to assess LLM capabilities across various
domains (Hendrycks et al., 2020; Srivastava et al.,
2023). Many of these benchmarks, such as those
for arithmetic or code execution (e.g., GSM-Hard,
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Figure 1: Arena-Lite directly compares LLM response
pairs over multiple single-elimination tournaments
rather than comparing responses to baseline outputs.
In terms of deciding whether a certain LLM is better
or worse compared to the other one, we suggest direct
head-to-head comparison is more intuitive and results
in better separability.

Total no.
matches (↓)

No. matches per
LLM participant (↑)

Current Practice nmodel · |X| |X|
Arena-Lite (ours) (nmodel − 1) · |X| [ |X|, |X| ∗ ⌈log2 nmodel⌉ ]

Table 1: Comparison between Current practice of bench-
marking (comparing to baseline outputs) and Arena-Lite.
|X| and nmodel represents size of benchmark dataset,
and number of candidate LLMs to rank respectively.
Arena-Lite, always save |X| number of comparisons for
benchmarking, while allows more matches per LLM
participant thanks to head-to-head comparison.

HumanEval (Gao et al., 2022; Chen et al., 2021)),
use automated scoring to evaluate problem-solving
skills. However, their focus is not on quality of
generated content or limited to the cases where the
generated contents are automatically evaluated (e.g.
programming), which are mostly not the case for
variety of generation tasks. The Chatbot Arena, a
leading platform for reliable human evaluation of
LLMs, has set a standard by collecting extensive
human annotations (Chiang et al., 2024). Yet, its
resource-intensive approach has prompted efforts
to replicate its rankings using LLM judges as a cost-
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effective alternative (Li et al., 2024, 2023). These
methods, however, rely on baseline-mediated com-
parisons—comparing LLM outputs to a leading
proprietary model’s outputs—which sacrifice relia-
bility.

Current benchmarks relying on baseline often
rank LLMs by their win rate against baseline re-
sponses from an leading proprietary models. This
approach has two advantages: it scales linearly
with the number of LLMs and provides a consistent
quality standard. However, we argue that compar-
ing LLMs directly against each other is inherently
more reliable than using baseline outputs, which
can introduce noise coming from weak transitiv-
ity (Xu et al., 2025) of human preferences on LLM
responses. To address this, we propose Arena-Lite,
a novel evaluation framework that uses direct, head-
to-head comparisons organized in a tournament
structure. By eliminating the need for baseline
outputs, Arena-Lite reduces the number of compar-
isons required while achieving stronger alignment
with human-established rankings, such as those
from Chatbot Arena.

Arena-Lite conducts single-elimination tour-
naments among participating LLMs for each
prompt. From the match results, we can compute
Bradley-Terry preference ratings for the final rank-
ing (Bradley and Terry, 1952). This results in a
single scalar per model that captures relative per-
formance between any model counterpart, enabling
accurate and efficient ranking. We validate Arena-
Lite through two experiments. The first experiment,
stochastic modeling of LLM competition (Sec-
tion 4.2) demonstrates that tournament-based direct
comparison method outperforms baseline-mediated
method under various conditions, including dif-
ferent numbers of LLM participants, dataset rows
used, and judge accuracies. Second, our empiri-
cal experiment (Section 4.3) shows that Arena-Lite
achieves higher correlation with Chatbot Arena’s
rankings than standard approaches using baseline
outputs (Table 1) attested toward number of LLM
as judges. These results collectively highlight
Arena-Lite’s ability to deliver reliable rankings
with fewer comparisons, even with smaller datasets
or weaker judges over various generation tasks.
Our contributions are threefold:

1. We introduce Arena-Lite, a tournament-based
framework for direct LLM comparisons, offer-
ing greater reliability than baseline-mediated
approaches.

2. We rigorously demonstrate, through both com-

prehensive modeling and empirical experi-
ments, that Arena-Lite achieves more accu-
rate LLM rankings while requiring fewer com-
parisons than prevalent practices, particularly
those relying on common baseline model out-
puts.

3. We open-source a functional demo
and the complete code for Arena-Lite
(https://huggingface.co/spaces/
NCSOFT/ArenaLite), enabling researchers
and industry practitioners to easily host and
utilize our framework for streamlined LLM
evaluation.

2 Preliminaries: Quantifying Generative
Performance

Quantifying the generative capabilities of LLMs
is an inherently challenging task. The evalua-
tion is complicated by the stochasticity of model
outputs and the subjectivity of human judgments.
To approximate real-world performance, a com-
mon methodology involves assessing model out-
puts across a diverse range of prompts. In this con-
text, two metrics are widely utilized: the win rate,
which measures the frequency of preference for a
model’s output over a baseline, and the Bradley-
Terry model, which is employed to infer a latent
skill rating for each model based on pairwise com-
parisons.

2.1 Measuring Win rate over baseline outputs

Benchmarks like AlpacaEval and Arena-Hard-
Auto assess LLM response quality by comparing it
to baseline responses from proprietary model (Li
et al., 2023, 2024). An LLM judge evaluates
whether the candidate LLM’s response outperforms
the baseline for a given prompt. The win rate—the
proportion of prompts where the LLM’s response
is preferred—serves as a measure of its generative
ability. While this approach is straightforward and
scalable, it introduces noise coming from mediated
comparisons.

2.2 Bradley-Terry Model Preference for LLM
Rating

The Bradley-Terry (BT) model (Bradley and Terry,
1952) is widely used to infer baseline-mediated
rankings of LLMs from pairwise comparisons.
Chatbot Arena adopts the BT model rather than
the classical Elo system (Elo and Sloan, 1978), but
both Elo and BT models are useful for expecting
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probability of match outcome based on a score
difference, though they differ in update rules and
statistical assumptions.

In the BT model, each LLM is assigned a latent
score representing its procificency. Given LLMs
i and j with scores Ri and Rj , respectively, the
probability that LLM i is preferred over LLM j is
modeled as:

P(i > j) =
1

1 + 10(Rj−Ri)/400
. (1)

This formulation closely resembles the Elo win-
probability function, reinforcing the intuitive con-
nection between the two.

Chatbot Arena uses this BT-based formulation
to rank LLMs by aggregating human preferences
collected through pairwise matchups (Chiang et al.,
2024). Users are shown responses from two
anonymized models to the same prompt and asked
to select which response they prefer. The accu-
mulated judgments are then used to fit BT scores,
producing a leaderboard that reflects relative model
performance.

While this approach requires a substantial num-
ber of human evaluations to ensure reliability, it
captures nuanced quality differences between mod-
els more effectively than purely automatic bench-
marks. Arena-Lite, introduced in the next sec-
tion, builds on the same BT modeling framework
but seeks to reduce the number of required com-
parisons by using tournament-structured match-
making.

3 Arena-Lite

To address the high annotation cost of Chatbot
Arena while preserving evaluation reliability, we
propose Arena-Lite. Arena-Lite introduces a
tournament-based approach for efficient and reli-
able LLM evaluation using a single-elimination
structure. Unlike baseline-mediated evaluations
that compare model outputs to a baseline, Arena-
Lite directly compares outputs from different mod-
els through head-to-head matchups for each prompt
in benchmark datasets. Repeated tournaments
across the dataset produce consistent leaderboards
reflecting models’ fundamental performance.

We first discuss limitations of baseline-mediated
evaluations (Section 3.1). Next, we describe how
Arena-Lite conducts tournaments to generate rat-
ings (Section 3.2, Algorithm 1). Finally, we high-
light similarities between the single-elimination

structure and merge sort, explaining why aggre-
gated tournaments yield reliable LLM rankings
(Section 3.3).

3.1 Comparing to Baseline outputs is not
Always Helpful

Although baseline outputs are a standard way to
evaluate and rank LLMs, they introduce potential
failure modes. Beyond the fact that a single base-
line output might not capture every dimension of
appropriate answers, relying solely on a baseline
output can lead to unreliable rankings of LLMs.

Consider an ideal scenario with a judge capable
of perfectly distinguishing the quality of any two
outputs. If we choose to compare LLM responses
directly to rank them using BT preference (Equa-
tion 1), all head-to-head comparisons are utilized.
In contrast, baseline-mediated evaluation for dif-
ferentiating LLMs can exhibit failure modes, as
shown in Equation 2.

M1(Xi)
vs. →

M2(Xi)





M1(Xi) > Yi > M2(Xi) (helpful)
M1(Xi) < Yi < M2(Xi) (helpful)
M1(Xi), M2(Xi) > Yi (unhelpful)
M1(Xi), M2(Xi) < Yi (unhelpful)

(2)
When the baseline output (Yi) for a prompt (Xi)

successfully disambiguates the pair of LLM re-
sponses M1(Xi) and M2(Xi) (as in the first and
second cases), comparison to the baseline is effec-
tive for benchmarking. Otherwise, these compar-
isons do not help differentiate LLM performance.
Consequently, the baseline-mediated approach pro-
vides less information for ranking when multiple
responses are either both correct or both incorrect
relative to the baseline.

3.2 Tournaments of LLMs over multiple
prompts to preference ratings

Figure 1 and Algorithm 1 illustrate how Arena-
Lite benchmarks LLMs via a tournament approach.
Here, |X| denotes the number of prompts in the
benchmark dataset. Running Arena-Lite hosts tour-
naments among participant LLMs for every prompt
in the dataset.

The use of tournament structures for LLM bench-
marking offers both benefits and challenges. A ma-
jor advantage of a single-elimination tournament
is efficiency. As shown in Table 1, the number of
matches scales linearly with the number of partici-
pants and even lower compared to using baseline
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Algorithm 1 Tournament-Based Model Evaluation

Require: Models M = {m1,m2, . . . ,mn},
Prompts X = {x1, x2, . . . , xk}

Ensure: Bradley-Terry preference ratings
1: Initialize R← ∅
2: for each xj ∈ X do
3: next_power← 2⌈log2(|M |)⌉

4: n_byes← next_power− |M |
5: M ′ ←M ∪ {None}n_byes
6: Randomly shuffle M ′

7: winner← SINGLEELIM(M ′, xj)
8: end for
9: return COMPUTEBTM(R) ▷ Eq. (1)

10: function SINGLEELIM(M ′, x)
11: if |M ′| = 2 then
12: result← MATCH(M ′[0], M ′[1], x)
13: if None /∈M ′ then
14: Add result to R
15: end if
16: if result = None then return [None]
17: elsereturn [result[0]]
18: end if
19: else
20: mid← ⌊|M ′|/2⌋
21: left← SINGLEELIM(M ′[: mid], x)
22: right← SINGLEELIM(M ′[mid :], x)

return SINGLEELIM(left ∪ right, x)
23: end if
24: end function

25: function MATCH(mi, mj , x)
26: if mi = None and mj = None then
27: return None
28: else if mi = None or mj = None then
29: return mi if mj = None else mj

30: else
31: Oi ← mi(x), Oj ← mj(x)
32: if Oj > Oi then return (mj ,mi)
33: elsereturn (mi,mj)
34: ▷ returns (winner, loser) tuple
35: end if
36: end if
37: end function

outputs. However, single elimination tournament
only identifies a champion, leaving the relative or-
dering of other participants unclear.

To retain tournament’s efficiency while obtain-
ing a fine-grained ranking, we propose aggregat-
ing tournament results over multiple prompts with
randomized initial match-ups for each prompt. Per-
forming multiple tournaments with random initial-
ization offers several benefits:

1. It resolves ties among non-champion partici-
pants from previous tournaments.

2. It mitigates the impact of unfavorable match-
ups in any single tournament.

3. Aggregating match results allows for precise
win rate estimation via BT preference, result-
ing in a well-aligned overall ranking.

4. More matches are allocated to high-
performing participants while ensuring every
participant is evaluated at least once per
prompt (Table 1).

In Section 3.3, we further explain how aggregating
multiple tournaments could yield reliable ranking
of LLMs. We also provide further analysis on num-
ber of comparisons performed over tournaments
of Arena-Lite comparing to merge sort, offering a
comprehensive view of the method’s efficiency and
effectiveness.

3.3 Why Aggregating Multiple Tournaments
Yields Reliable Rankings

A key challenge in LLM evaluation is to de-
rive a reliable ranking from a feasible number of
pairwise comparisons. Our tournament-based ap-
proach, Arena-Lite, is designed to efficiently sam-
ple these comparisons. In a single tournament with
n models, each model participates in a minimum
of one match and a maximum of ⌈log2 nmodel⌉
matches. When conducted over a benchmark with
|X| distinct prompts, the total number of evalu-
ations per model is bounded within the interval
[|X|, |X| ∗ ⌈log2 nmodel⌉] as presented in Table 1.
However, the efficiency of this tournament struc-
ture raises a critical question: how does this lim-
ited sampling produce a statistically reliable global
ranking?

To achieve reliable rankings of LLMs, our ap-
proach aggregates match outcomes from multiple
tournaments, lesser than a full grid comparisons,
but effectively approximating the complete set of
pairwise comparisons required for merge sort. We
outline the rationale in four key points:
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Merge Sort Baseline A single-elimination tour-
nament mirrors the merging steps of merge sort,
which requires O(n log n) comparisons with no
duplicate match-ups to rank n models. However, a
single tournament omits many comparisons, cov-
ering only the minimal match-ups needed to deter-
mine a winner.
Recovering Comparisons via Aggregation By
aggregating tournaments over diverse prompts,
we can recover missed pairwise match-ups that
should have occurred. Assuming match outcomes
are prompt-independent (as BT model assumes),
matches across prompts are considered equiva-
lent. With |X| prompts (typically hundreds to thou-
sands) and nmodel models (tens), only random ini-
tial match-ups totaling |X| · ⌊nmodel

2 ⌋. This exceeds
the

(
nmodel

2

)
possible combination, ensuring broad

coverage.
Sufficiency of Comparisons The aggregated
match-ups not only cover the necessary compar-
isons but also surpass the O(n log n) requirement
of merge sort. Moreover, each unique model
pair competes in average |X|/(nmodel − 1) to
|X| log2 nmodel

nmodel−1 matches1 across the benchmark, a fre-
quency mostly sufficient for accurate win rate esti-
mation.
Refinement for Reliability The remaining
matches, totaling |X| · (nmodel − 1), further refine
the ranking by enhancing win rate estimates, es-
pecially among top-performing models, reducing
noise and ensuring robustness akin to Arena-Lite’s
sampling strategy.

In summary, aggregating multiple tournaments
reconstructs the full set of comparisons needed for
a merge sort-like ranking while providing enough
repeated match-ups to ensure accurate win rate
estimations. This dual mechanism yields reliable
and robust LLM rankings across the benchmark.

4 Experiments

We conducted two experiments to evaluate Arena-
Lite against baseline-mediated benchmarking. The
first experiment (Section 4.2) utilized a stochastic
model to simulate LLM competitions, comparing
Arena-Lite’s tournament-based direct comparison
with baseline-mediated evaluation. This controlled
setup allowed us to test Arena-Lite’s design prin-
ciples, such as the effectiveness of direct versus

1These estimates are computed by number of matches a
model undergoes which is [ |X|, |X|∗⌈log2 nmodel⌉ ], devided
by number of possible opponents for a model, nmodel − 1

mediated comparison (Section 3.1) and tournament-
based sampling (3.3), while isolating variables and
minimizing noise, such as LLM judge biases (Park
et al., 2024). The second experiment (Section
4.3) validates Arena-Lite empirically using vari-
ous LLMs as judges and public benchmark data.
We tested models including gpt-4o, gpt-4o-mini,
Claude3.5, Qwen2.5, Llama3.1, and Gemma2 to
assess Arena-Lite’s effectiveness against standard
benchmarking practices. Together, these experi-
ments demonstrate the superior reliability and effi-
ciency of Arena-Lite’s tournament approach. Sec-
tion 4.1 outlines shared experimental settings, fol-
lowed by detailed descriptions of each experiment
in subsequent subsections.

4.1 Chatbot Arena Leaderboard as
Ground-Truth Rankings

We benchmark Arena-Lite and baseline-mediated
evaluation against rankings from the Chatbot Arena
leaderboard, widely recognized for its reliabil-
ity due to extensive human preference annota-
tions. With a large volume of votes across diverse
prompts, these rankings provide a robust ground
truth for model comparisons.

4.2 Experiment 1: Controlled Stochastic
Modeling of LLM Competitions

We suggest a simple stochastic model based on the
Bradley-Terry (BT) framework to compare Arena-
Lite’s approach with baseline-mediated evalua-
tion. This experiments simulates prompt-agnostic
LLM competitions which follows the Bradley-
Terry model’s presumption, with outcomes de-
termined by a judge following Equation 3. The
judge’s decision is based on the BT preference
difference (∆ij) between models i and j, and the
judge’s accuracy (Pjudge):

Ppredict(i > j) = Pjudge × Pgt(i > j)

= Pjudge ×
1

1 + 10∆ij/400

(3)

With the model of judge above (Equation 3), we
simulate both Arena-Lite’s tournament-based
approach and baseline-mediated approaches
according to the following initial conditions and
procedures.

Initial conditions:

• Ground-Truth BT Preference: We extracted
BT preferences from the English category of
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Chatbot Arena (as of June 23), derived from
approximately 60% of user-submitted judg-
ments. These preferences serve as both the
initial model parameters and the ground-truth
rankings for evaluation.

• Judge Accuracy (Pjudge): We varied judge
accuracy from 0.6 to 0.9.

• Number of LLMs (nmodel) and Dataset Size
(|X|): We adjusted the number of participat-
ing LLMs and benchmark dataset sizes to as-
sess the robustness of both approaches in data-
poor and data-rich settings.

Simulation Procedure:
1. Select participant LLMs and their BT prefer-

ences.
2. Compute expected win rates (Pgt) using Equa-

tion 3.
3. Sample match outcomes based on Ppredict

(Equation 3), determined by the BT pref-
erence rating gap (∆ij) and judge accuracy
(Pjudge).

4. Repeat for the specified number of test
prompts (|X|).

5. Compute scores:
• Baseline-mediated: Win rate against a

reference model (gpt-4-1106-preview,
rating 1233).

• Arena-Lite: BT preference from all tour-
nament match outcomes.

6. Rank models based on scores.
7. Calculate Spearman correlation between sim-

ulated and ground-truth rankings.
We conducted 50 trials per configuration to ac-

count for stochasticity in initial tournament brack-
ets and judging process.

4.3 Experiment 2: Empirical Validation of
Arena-Lite with real LLM Judge

To empirically validate our proposal, we evalu-
ated the reliability of both Arena-Lite and baseline-
mediated approach over the top 19 models from
the Chatbot Arena leaderboards. This experiment
employs actual prompt inputs and LLM outputs,
distinguishing it from the earlier simulation study.

4.3.1 Dataset: Test Prompts and LLM
Responses Used

Testing the benchmarking approaches requires: (1)
test prompts and (2) the corresponding responses

from LLMs. For the benchmark dataset, we se-
lected Arena-Hard-Auto (Li et al., 2024). The
prompts in Arena-Hard-Auto were carefully cu-
rated from Chatbot Arena user queries. This
dataset consists of 500 prompts—two instances
for each of 250 subtopics. Although AlpacaE-
val (Li et al., 2023), which comprises 800 prompt-
reference pairs, could serve as a viable testbed,
we opted for Arena-Hard-Auto because its design
aligns more closely with Chatbot Arena. Arena-
Hard-Auto uses responses from gpt-4-0314 as the
baseline outputs. For ranking, we utilized the re-
served outputs of the top 20 (=19 + baseline) mod-
els from the Arena-Hard-Auto Browser.2

4.3.2 Participant LLMs
For ranking, we selected 19 LLMs from the top of
the ChatBot Arena leaderboard in the hard prompts
category, as these models most closely align with
Arena-Hard-Auto.

4.3.3 LLM Judges
We used several aligned LLMs as judges for
testing both benchmarking approaches. LLMs of
our choice are gpt-4o family of models (OpenAI
et al., 2024), Claude3.5, and a selection of
open-weight models: Qwen2.5 (Qwen et al.,
2025), Llama3.1 (Grattafiori et al., 2024),
and Gemma2 (Team et al., 2024). For pairwise
comparisons of responses, we employed the
judging prompt suggested in LLMBar (Zeng et al.,
2024) (See Appendix A.8.2). The same judge
prompt was applied consistently across both the
tournament and baseline-mediated approaches. To
mitigate position bias (Wu and Aji, 2023), the
order of model responses was alternated during
evaluation. Further details on the LLM-as-a-judge
configuration are provided in Appendix A.8.

The two experimental settings are summa-
rized as follows:

Experiment 1 (Modeling Experiment): This
experiment uses the ground truth BT preference
of the models to initialize the simulation. We
vary control parameters for the benchmarking ap-
proaches—including the judge’s accuracy (Pjudge),
the number of test prompts used (|X|), and the
number of participant LLMs (nmodel)—to deter-
mine which benchmarking approach more accu-
rately reproduces the participants’ ranking. For

2Extracted from the 2024 Jul 6 commit (fd42026).
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each configuration, we conduct 50 trials of experi-
ments.
Experiment 2 (Empirical Validation): This
experiment assesses the two benchmarking ap-
proaches using empirical runs with various LLM
judges. We select the top 19 LLMs from Chatbot
Arena and used their reserved outputs on Arena-
Hard-Auto test prompts. For both the tournament
and baseline-mediated approaches, we employ the
Spearman correlation coefficient to measure how
well the results align with the ground truth leader-
board rankings. In our empirical study, we conduct
500 trials for each experimental setting.

5 Results and Discussion

We assess the reliability and robustness of Arena-
Lite as a means for LLM benchmarking, comparing
it against the current baseline-mediated approach.
Our results from both simulation study and empiri-
cal runs indicate that the tournament approach of
Arena-Lite yields rankings that align more closely
with the ground-truth Chatbot Arena leaderboards.
We present our findings using whisker plots and
tables in the following sections.

5.1 Experiment 1: Modeling Experiment
Results

Figure 2 illustrates noticeable differences in Spear-
man correlation, indicating that the tournament ap-
proach is more reliable than the baseline-mediated
method. The consistent performance gap across
various conditions—namely, the number of partic-
ipants, the number of test prompts, and judge ac-
curacy (nmodel, |X|, and Pjudge)—demonstrates the
robustness of the tournament approach. Although
the simulation simplifies real-world complexity, a
similar performance gap was observed in the em-
pirical findings (Experiment 2, Figure 3). This
consistency suggests that the robust performance
of Arena-Lite is not coincidental or limited to a
specific empirical setting of ours.

5.2 Experiment 2: Empirical Validation
Results

As hinted in the previous section, the empirical re-
sults in Figure 3 show that Arena-Lite consistently
outperforms the baseline-mediated approach. Al-
though the performance gaps are less pronounced
than in the simulation, the same trend persists. In
Table 2, we report the median values for Arena-
Lite and the baseline-mediated approach using the

gpt-4o family of judges while varying the num-
ber of test prompts (|X|). These results consis-
tently demonstrate that Arena-Lite outperforms the
baseline-mediated method. Note that Arena-Lite
shows similar or superior reliability even in ex-
treme data-poor benchmark condition (|X| = 50).

Table 3 presents the outcomes when using other
LLMs as judges, with a fixed number of prompts
(|X| = 500). The results for Claude3.5-sonnet,
Llama3.1-8b, and Qwen2.5-7b follow a simi-
lar trend. However, smaller models (Gemma2-2b
and Qwen2.5-0.5b) appears to be less reliable
as an LLM judge. Hence, we recommend us-
ing evaluation-specialized judge LLMs or, at least,
generative judge models with around 7B parame-
ters regardless of using Arena-Lite or considering
baseline-mediated approach.

Spearman corr. (↑) |X| = 50 100 250 475 500
baseline-mediated (4o) 0.895 0.935 0.963 0.966 0.964
Arena-Lite (4o) 0.905 0.940 0.960 0.970 0.970
baseline-mediated (4o-mini) 0.895 0.908 0.917 0.916 0.912
Arena-Lite (4o-mini) 0.901 0.919 0.931 0.933 0.933

Table 2: Robustness of ranking methods to benchmark
set size, |X| (Experiment 2, Sec. 4.3). The table shows
the median Spearman correlation (↑) from 500 trials.
Arena-Lite consistently achieves higher correlation than
the baseline-mediated approach across all dataset sizes
(|X|), demonstrating its superior reliability and robust-
ness for ranking LLMs.

|X| = 500
claude3.5

sonnet
llama3.1

8b-it
qwen2.5

7b-it
qwen2.5
0.5b-it

gemma2
2b-it

baseline-mediated 0.924 0.820 0.756 0.089 0.592
Arena-Lite 0.930 0.850 0.811 -0.124 0.552

Table 3: Robustness of ranking methods to the choice
of judge LLM (Experiment 2, Sec. 4.3). The table
shows the Spearman correlation (↑) between ground-
truth LLM rankings and the results from each method.
The values are medians from 500 trials. The results sug-
gest that around 7B parameters-large LLMs is a viable
minimum threshold for a reliable judge. Full results
for other benchmark sizes are available in Appendix,
Table ??.

5.3 Incorporating a New LLM into an
Existing Leaderboard

While our main focus has been on ranking multi-
ple LLMs at once, it is also useful to consider the
common scenario of adding a single new model to
an existing leaderboard, which is also frequent use-
case. We explored two approaches: (1) a binary
search-like placement method, and (2) using the
top-performing model response as a baseline. Our
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Figure 2: Comparison of LLM ranking reliability between Arena-Lite and a baseline method in a stochastic
simulation (Experiment 1, Sec. 4.2). Ranking reliability is measured by the Spearman correlation (↑) between the
competition-derived ranking and the ground-truth ranking. Each box plot summarizes the results from 50 trials. The
subplots analyze the effect of varying (from left to right) the number of competing models (nmodels), the number of
prompts (nprompts), and the accuracy of the judge (Pjudge). The single-elimination structure of Arena-Lite results in
consistently higher correlation scores.

Figure 3: Ranking reliability of Arena-Lite vs. utilizing
baseline outputs. Arena-Lite consistently demonstrates
higher Spearman’s rank correlation across numbers of
benchmark prompts (|X|), indicating more reliable rank-
ing. The evaluation was performed using gpt-4o (left)
and gpt-4o-mini (right) as judge models, with a fixed
number of models (nmodels=19). Each box plot summa-
rizes the results of 50 runs. (Experiment 2, Sec. 4.3).

findings indicate that the later approach is more
reliable (Table 5, Appendix). Further details and
discussions are provided in Appendix A.6.

6 Related Works

6.1 LLM-as-a-Judge for Systems Ranking
Utilizing LLM-as-a-Judge as a building block for
systems ranking has become a common practice in
the LLM benchmarking community. Several stud-
ies have investigated how LLM judges compare
to human evaluators, examining their similarities
and differences (Park et al., 2024), as well as how
these differences impact system rankings (e.g., JuS-
tRank (Gera et al., 2024), (Gao et al., 2025)). Our
research extends these approaches by proposing a
method that orchestrates LLM-as-a-Judge through
a well-established tournament structure to derive
rankings among systems.

6.2 Efficient and Reliable Evaluation

There is a growing body of research focused on
optimizing the number of evaluations while main-
taining reliability when using LLM-as-a-Judge for
system ranking. Perlitz et al. proposed a metric
called DIoR to quantify the relationship between
computational costs and system ranking reliability.
UniCBE (Yuan et al., 2025) introduced a method
to analyze the relationship between reliability and
the number of judge evaluations based on uncer-
tainty. BenchBench (Perlitz et al., 2024b) system-
atically analyzed consistency across benchmarks
and provided a package to facilitate this analysis.
tinyBenchmarks (Maia Polo et al., 2024) explored
strategies to minimize the number of evaluations
across various established benchmarks. Arena-Lite
relates to these studies in that it leverages the prop-
erties of tournament structures and direct compar-
isons to achieve more reliable results with fewer
judge evaluations.

7 Conclusion

We introduced Arena-Lite, an efficient and reliable
framework for evaluating Large Language Models
(LLMs) through tournament-based direct compar-
isons. By eliminating the need for baseline outputs
and adopting head-to-head comparison, Arena-Lite
achieves higher reliability in system rankings with
reduced number of comparisons. Our experiments,
encompassing controlled stochastic modeling and
empirical validation with various LLM judges, con-
firm that Arena-Lite consistently outperforms stan-
dard baseline-mediated evaluation methods, even
with smaller datasets or weaker judges. The re-
lease of an accessible web demonstration and code
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supports the adoption of Arena-Lite to help stream-
lining model development cycle across research
and industry. Future work will extend Arena-Lite’s
application to diverse domains, including multi-
modal LLM evaluation involving visual or audio
inputs and outputs.

Limitations

While we conducted extensive testing to assess the
robustness of Arena-Lite tournaments—including
50 and 500 trials for Experiment 1 and Experiment
2, respectively—some inherent sources of random-
ness remain, such as variation due to initial match
bracket assignments. The randomness in bracket
assignment is added for adopting tournament struc-
ture of Arena-Lite and may influence outcome sta-
bility. Future work could explore more informative
or adaptive matchmaking strategies that improve
ranking fidelity beyond what is achievable with
single-elimination formats, potentially within the
same or even fewer number of matches.
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Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Elty-
shev, Francesco Visin, Gabriel Rasskin, Gary Wei,
Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
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A Appendix

A.1 Arena-Lite Web Demo
We provide screenshots of Arena-Lite web demo
here (link to Huggingface Space). You could try or
locally host Arena-Lite according to its documenta-
tion. It is quite easy to use and do not require much
of resources to host.

Arena-Lite provides the benchmark result (Fig-
ure 4) with helpful visualization interface that en-
ables walking through the matches and tourna-
ments one by one (Figure 5) and match statistics
between LLMs (Figure 6). We also provide visual-
ization that helps examining potential bias of LLM
Judge being used (Figure 7).

A.1.1 Starter Prompt Set
We provide several judge prompts that we have
used for specific target tasks. Some of those are
for quite specialized tasks, and some might work
for evaluating general instruction following. You
could customize your own judge prompt based on

Figure 4: Arena-Lite web screenshot 1: At the top of
the result page, one can see the leaderboard of LLMs
with their BT preference. If the benchmark dataset has
subcategories, radar chart (right) is also visible.

Figure 5: Arena-Lite web screenshot 2: User can walk
through the matches and tournaments one by one. Match
brackets is visualized briefly with text UI and user can
select any specific match to see the details (e.g. match
result, prompt, and model outputs).

your evaluation needs according to the documenta-
tion. The list of the judge prompts we provide is as
follows, and one could see the detailed prompts at
yaml files here.

1. llmbar prompt (Figure A.8.2) and conciser
version of the prompt, llmbar_brief. Those
are for evaluating instruction following.

2. translation_pair prompt for selecting
translation models trained on game-
specialized parallel corpora,

3. rag_pair_kr prompt for evaluating knowl-
edge groundedness of korean RAG models
over chatting scenario,

4. translation_fortunecookie prompt
which was crafted for evaluating trans-
lation models specialized for translating
fortune-tellings, and

5. post_edit prompt for evaluating conversa-
tion revision based on given persona of a
speakers given in a instruction, which is quite
specialized use case.
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Figure 6: Arena-Lite web screenshot 3: User can see the
match statistics between LLMs (i.e. win rate between
model pairs, number of matches per pair and per model).

Figure 7: Arena-Lite web screenshot 4: User can see
the LLM Judge’s examine how biased the LLM judge
being used. The demo provides clues for potential bias
toward response length and position.

A.2 Full table for Experiment 2
Here is the extended results of Experiment 2 (Sec-
tion 4.3) presented in Table 3. Aligned LLMs
smaller than 7B parameters struggles to work as a
proper Judge. Otherwise, Arena-Lite method ex-
cels over common practice of using outputs from
proprietary as baselines.
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Dataset size method claude 3.5 llama3.1 qwen2.5 qwen2.5 gemma2
sonnet 8b-it 7b-it 0.5b-it 2b-it

50 baseline-mediated .896 .656 .492 .010 .064
Arena-Lite (ours) .897 .715 .544 -0.051 -0.088

100 baseline-mediated .912 .732 .596 .002 .079
Arena-Lite (ours) .918 .780 .656 -0.068 -0.090

250 baseline-mediated .924 .801 .700 .045 .560
Arena-Lite (ours) .929 .830 .760 -0.131 .551

475 baseline-mediated .924 .819 .708 .083 .112
Arena-Lite (ours) .930 .845 .810 -0.131 -0.009

500 baseline-mediated .924 .820 .756 .089 .592
Arena-Lite (ours) .930 .850 .811 -0.124 .551

Table 4: Extended results for comparing Arena-Lite to baseline-mediated method of using outputs from proprietary
models as an baseline. We tested other LLMs as judge over various size of benchmark datasets.
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A.3 Machine Requirements for Experiments

Except the part we inferenced open-weight mod-
els such as Llama, Qwen and Gemma, our ex-
periments are mostly do not require GPU usage.
Inference are done on one A100 GPU, but T4
would be enough for reproducing our experiments.
Otherwise, our experiments require querying API
and post-processing those with CPU. Experiments
could be run on personal desktops. The lowest spec-
ification of the machine we deployed had i5-8400
CPU, 16 GiB RAM.

A.4 Assuring Statistical Significance of the
Results within Budget for proprietary
models

To ensure a statistically significant number of trials
for each experiment while staying within budget,
we utilize OpenAI’s Batch API to prepare full-grid
match outcomes (i.e., all-play-all matches for every
prompt) in a cache file, allowing us to reuse these
outcomes. Each empirical experiment consists of
500 trials per setting, with results represented us-
ing whisker plots or summary statistics such as me-
dian values. When experimenting with a subset of
the Arena-Hard-Auto benchmark (|X| < 500), we
sample a stratified subset of the benchmark dataset
for each new trial.

A.5 BT preference from Arena-Lite compared
to Human Annotations

Figure 8 shows the BT preference computed out of
Arena-Lite. For judge, we used gpt-4o. As men-
tioned in the caption, the BT preference are boot-
strapped median value from 500 trials. 95% confi-
dence intervals also plotted as an error bar, which
look negligible in scale compared to observed val-
ues. Matches are performed over Arena-Hard-Auto
benchmark dataset (500 prompts).

A.6 Binary search vs. Win rate over baseline

A.6.1 Binary Search
We tried binary search placement of a newly added
LLM to the leaderboard without baseline output
in Table 6. Details of how we implemented binary
search are attached in Algorithm 2, Appendix. It
turns out that binary search based on already built
leaderboard ranks is not as reliable compared to uti-
lizing the best model’s outputs as a baseline. There-
fore, when adding a newcomer LLM to pre-existent
leaderboard, we could utilize the already submitted
responses as a baseline from the 1st placed LLM.

Algorithm 2 Binary Search for Enlisting new LLM
to a leaderboard
Require: Leaderboard L, new model mnew, test

prompts X , outputs Oij , assumes |X| > |L| >
ncomparisons

Ensure: Updated leaderboard L′ with mnew
placed

1: ncomparisons ← ⌊log2(|L|)⌋
2: nmatches ← ⌊|X|/ncomparisons⌋
3: function BINARYSEARCHPLACE-

MENT(L,mnew)
4: X← Shuffle(X)
5: X← concat(X;X)
6: low← 0
7: high← |L| − 1
8: while low ≤ high do
9: mid← ⌊(low + high)/2⌋

10: wins← 0
11: for i← 1 to nmatches do
12: x← X .pop()
13: if Match(mnew, L[mid], x) =

mnew then
14: wins← wins +1
15: end if
16: end for
17: if wins > nmatches/2 then
18: high← mid −1
19: else if wins < nmatches/2 then
20: low← mid +1
21: else if |X| >0 then
22: continue ▷ Ensure tie
23: else
24: return mid, tie ▷ Tie
25: end if
26: end while
27: return low, non-tie ▷ Position found
28: end function
29: function UPDATELEADERBOARD(L,mnew)
30: position, istie ←

BinarySearchPlacement(L,mnew)
31: L′ ← L.insert(position, mnew, istie)
32: return L′

33: end function
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Figure 8: BT preference of the model with gpt-4o judge on the full set of Arena-Hard-Auto (Li et al., 2024) prompts.
Arena-Lite result (bootstrapped median over 1000 samples of 500 trials) is in blue, plotted alongside the ratings
from the ground truth leaderboard in red (Chatbot Arena, Hard prompts category). Error bars are 95% confidence
intervals.

¯|∆rank| (↓) gt=1-6 7-13 14-19 (20) total avg.
binary search (4o) 0.92 1.84 2.13 1.72
comp. to 1st (4o) 1.98 1.55 1.57 1.39
binary search (4o-mini) 1.27 1.82 1.21 1.5
comp. to 1st (4o-mini) 1.00 1.43 1.43 1.37

Table 5: Comparison of the binary search method versus
using the top-performing model’s response as a baseline
(comp. to 1st) for inserting a new LLM into the leader-
board. We report the mean rank deviation ( ¯|∆rank|) from
the ground-truth leaderboard as an additional error met-
ric. For further details, see Algorithm 2 in Appendix.

A.6.2 Comparing to the most Performant
Model so far: Converting Ratings Table
back to Win Rates

Assuming we preserved a set of match results
and model outputs from the last benchmarking,
we could benefit from those to perform insertion.
One could pick an appropriate anchor LLM as a
baseline in a leaderboard to estimate the skill of
a newcomer. Using previous matches from the
tournaments that built the leaderboard could be
used for estimating win rates over the baseline.
This is the same as converting the preference rat-
ings table into a win rate leaderboard. Since the
leaderboard is not built with full-grid matches but
with tournaments, there would be some missing
matches against the baseline regardless we have
picked. There are two ways to estimate the win
rate over the baseline model. We could just count
the matches given are enough in amount, or we
could also convert BT preference back to P (i > a)
to use it directly for scoring for the model ranks in
the leaderboard. Reminding that BT preference rat-
ing is for expecting a likely outcome of the match,
this should work. After this win rate of the new-
comer model P ∗(n > a) = count(n wins)

|X| could be
directly compared for enlisting.

|∆rank| (↓) gt=1 2 3 4 5 6 avg.
binary search 0.09 1.24 1.75 1.55 1.26 1.10 0.92
(4o) (.04/-.03) (.14/-.14) (.09/-.09) (.07/-.06) (.08/-.08) (.10/-.09)

anchored 0.00 1.01 1.95 2.00 0.96 0.30 1.98
(4o) (0.00/0.00) (0.01/-0.01) (0.02/-0.02) (0.00/0.00) (0.02/-0.02) (0.04/-0.04)

binary search 0.52 0.85 0.59 2.03 1.20 2.45 1.27
(4o-mini) (.09/-.07) (.12/-.11) (.10/-.09) (.02/-.02) (.05/-.05) (.07/-.06)

anchored 0.00 0.00 1.00 2.00 2.00 1.00 1.00
(4o-mini) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00)

7 8 9 10 11 12 13 avg.
1.31 1.27 2.22 1.74 2.27 2.23 1.86 1.84

(.10/-.10) (.11/-.11) (.14/-.12) (.09/-.09) (.12/-.11) (.12/-.12) (.07/-.07)

0.30 3.68 1.09 1.03 2.97 0.78 1.00 1.55
(0.04/-0.04) (0.04/-0.04) (0.03/-0.03) (0.02/-0.01) (0.02/-0.02) (0.05/-0.05) (0.00/0.00)

0.69 0.85 3.89 1.95 2.10 2.37 0.88 1.82
(.07/-.06) (.09/-.09) (.12/-.11) (.06/-.05) (.03/-.03) (.10/-.11) (.12/-.11)

0.51 0.52 3.50 1.00 1.00 3.00 0.50 1.43
(0.49/-0.51) (0.48/-0.52) (0.49/-0.51) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.50/-0.50)

14 15 16 17 18 19 20 avg.
1.40 3.07 0.80 1.47 5.00 0.96 - 2.13

(.04/-.05) (.11/-.11) (.08/-.09) (.05/-.04) (.11/-.11) (.08/-.09)

2.00 2.00 1.00 1.21 3.00 0.21 - 1.57
(0.00/0.00) (0.00/0.00) (0.00/0.00) (0.03/-0.04) (0.00/0.00) (0.04/-0.03)

1.45 4.20 0.19 0.08 1.09 1.08 0.40 1.21
(.07/-.08) (.17/-.17) (.07/-.06) (.03/-.02) (.05/-.05) (.05/-.05) (.07/-.07)

1.00 2.00 2.00 1.00 1.00 3.00 0.00 1.43
(0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00)

Table 6: Binary search vs. Anchored comparison: Mean
rank deviation (|∆rank|) from ground-truth leaderboard.
Result of binary search placement and anchored compar-
ison insert by gpt-4o[-mini] judge are provided with
bootstrapped 95% confidence interval (500 trials, 1000
samples, |X|=500, Arena-Hard-Auto (Li et al., 2024)).
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Figure 9: gpt-4o result of anchored comparison and
tournament approach. 1000 bootstrapped median from
500 observations used for confidence interval estima-
tion.

A.7 Separability In terms of Confidence
Interval

To see how well the two benchmarking approach
(anchored comparison and tournament approach)
separates LLMs in adjacent ranks, we provide scat-
ter plot of Elo rating and win rate paired with
error bar (95% confidence interval). We present
the both results of using gpt-4o (Figure 9) and
gpt-4o-mini (Figure 9) as a judge. Inside the
each plot, inseparables indicates the cases where
any pair of datapoint co-includes each other within
their range of error bars, and overlap means a cer-
tain datapoint is within some other’s range of error,
when it is one-sided.

A.8 Judge configuration

A.8.1 Evaluation Prompt
We use the prompt from LLMBar. The prompt
depicted in Figure A.8.2. We added 4 questions
for criteria of our own to Metrics.txt prompt of
(Zeng et al., 2024). You can refer to the original
prompt in LLMBar github.

A.8.2 Decoding Parameters
We did not configure decoding parameters of judge
LLMs (gpt-4o[-mini]), which its temperature de-

Figure 10: gpt-4o result of anchored comparison and
tournament approach. 1000 bootstrapped median from
500 observations used for confidence interval estima-
tion.

faults to 1. The only parameter we have adjusted is
maximum number of tokens to be generated, which
for our prompt is less than 6 (i.e. The output of
our prompt is (a) or (b)). To avoid position bias,
we alternated the position of the responses from a
certain model across the benchmark prompt.
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PROMPTS = [ # metrics.txt from LLMBar
{
"role": "system", "content": "You are a helpful assistant in evaluating the quality of the outputs for a given
instruction. Your goal is to select the best output for the given instruction.",
},
{
"role": "user", "content": """Select the Output (a) or Output (b) that is better for the given instruction.
The two outputs are generated by two different AI chatbots respectively.

Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the output honestly/precisely/closely executes the instruction,
then consider its helpfulness, accuracy, level of detail, harmlessness, etc.
(2) Outputs should NOT contain more/less than what the instruction asks for, as such outputs do NOT
precisely execute the instruction.
(3) You should avoid any potential bias and your judgment should be as objective as possible. For
example, the order in which the outputs were presented should NOT affect your judgment, as Output (a)
and Output (b) are **equally likely** to be the better.

Do NOT provide any explanation for your choice.
Do NOT say both / neither are good.
You should answer using ONLY "Output (a)" or "Output (b)". Do NOT output any other words.

# Instruction:
instruction

# Output (a):
response_a

# Output (b):
response_b

# Questions about Outputs:
Here are at most three questions about the outputs, which are presented from most important to least
important. You can do the evaluation based on thinking about all the questions.
- Does the output well satisfy the intent of the user request?
- If applicable, is the output well-grounded in the given context information?
- Does the output itself satisfy the requirements of good writing in terms of:
1) Coherence
2) Logicality
3) Plausibility
4) Interestingness

# Which is better, Output (a) or Output (b)? Your response should be either "Output (a)" or
"Output (b)":""",
},
] # prompt ends here

LLMBar prompt of our use. We used metric variant suggested in original LLMBar paper. More
preset prompts are in our Arena-Lite Demo and source (https://huggingface.co/spaces/NCSOFT/
ArenaLite)
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