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Abstract

Language comprehension relies on integrat-
ing information across both local words and
broader context. We propose a method to quan-
tify the information integration window of large
language models (LLMs) and examine how sen-
tence and clause boundaries constrain this win-
dow. Specifically, LLMs are required to predict
a target word based on either a local window
(local prediction) or the full context (global pre-
diction), and we use Jensen-Shannon (JS) di-
vergence to measure the information loss from
relying solely on the local window, termed the
local-prediction deficit. Results show that inte-
gration windows of both humans and LLMs
are strongly modulated by sentence bound-
aries, and predictions primarily rely on words
within the same sentence or clause: The local-
prediction deficit follows a power-law decay as
the window length increases and drops sharply
at the sentence boundary. This boundary effect
is primarily attributed to linguistic structural
markers, e.g., punctuation, rather than implicit
syntactic or semantic cues. Together, these re-
sults indicate that LLMs rely on explicit struc-
tural cues to guide their information integration
strategy.

1 Introduction

Information in human language is hierarchically
distributed across multiple scales, including words,
sentences, and discourse (Chomsky, 1957; Phillips,
2003; Berwick et al., 2013). Evidence from cog-
nitive science has demonstrated that information
integration in human language processing is con-
strained by the multi-scale structure of language,
which is thought to be central to hierarchical orga-
nization of the human brain (Hickok and Poeppel,
2007; Lerner et al., 2011; Friederici et al., 2017;
Regev et al., 2024). How to integrate informa-
tion across these time scales of language is also a
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central consideration when designing and evaluat-
ing large language models (LLMs). For instance,
transformer-based LLMs can more effectively in-
tegrate over words than recurrent neural networks
(Vaswani et al., 2017; Devlin et al., 2019; Raffel
et al., 2020; Touvron et al., 2023). However, it
remains unclear how LLMs integrate multi-scale
information despite having theoretical access to
all input tokens (Clark et al., 2019; Tenney et al.,
2019). One possibility is that, like humans, LLMs
may dynamically adjust their information integra-
tion according to language structures. Here, we
examine whether the information integration win-
dows of LLMs are modulated by a key structure of
language, i.e., sentence boundary.

The information integration window is a well-
established concept for studying human cognition,
including human language comprehension (Poep-
pel, 2003; Hasson et al., 2008; Ding et al., 2016;
Norman-Haignere et al., 2022), and is recently in-
troduced to characterize information integration be-
havior of LLMs (Keshishian et al., 2021; Skrill and
Norman-Haignere, 2023). For example, Skrill and
Norman-Haignere (2023) examine the information
integration window by analyzing how a perturba-
tion influences the internal representations within
an LLM and reveals a dynamically changing inte-
gration window across different layers. Here, we
propose a method to characterize the information
integration window purely based on model behav-
ior, so that (1) the method can be easily applied to
both humans and LLMs, and facilitate comparisons
between LLMs and between LLM and human; (2)
the method avoids analyzing a large number of in-
ternal nodes within an LLM, which may or may
not directly contribute to model behavior.

In human studies, the information integration
window is shown to be gated by structural bound-
aries in language. One example is the sentence
wrap-up effect, in which the reading time is much
longer for the final word of a sentence compared
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Figure 1: Demonstration of the windowed prediction test. Models are required to predict the next word based on
either a local window or the full context. Predictions based on the local window are compared with predictions
when the full context is available (normal condition).

with non-sentence-final words (Rayner et al., 1989;
Hirotani et al., 2006; Stowe et al., 2018). No-
tably, this effect diminishes when the sentence-final
period is removed (Warren et al., 2009). Simi-
larly, in the brain, a closure positive shift (CPS)
EEG response typically occurs at the end of an
intonation phrase in speech, and can be elicited
by a comma during text reading (Steinhauer and
Friederici, 2001). It has been hypothesized that
punctuation is a structural marker that guide in-
formation integration across words (Rayner et al.,
2000; Steinhauer, 2003; Moore, 2016). A main
goal of the current study is to investigate whether
structural boundaries modulate the information in-
tegration windows of LLMs, using a novel win-
dowed prediction test to characterize the informa-
tion integration window.

The windowed prediction test requires LLMs to
predict the next word based on either a local win-
dow (local prediction) or the full context (global
prediction). By systematically varying the win-
dow length, we characterize the integration win-
dows of LLMs using the JS divergence between
the output distributions under local and global con-
ditions. Based on the windowed prediction test, we
conduct a series of experiments based on GPT-2
(Radford et al., 2019) and Qwen2.5 (Qwen et al.,

2025), and compare the results with human par-
ticipants. It is found that the integration windows
of both humans and LLMs are gated by sentence
boundaries. Furthermore, the boundary-gating ef-
fect is primarily driven by overt structural markers,
i.e., punctuation, rather than syntactic or seman-
tic cues. The contributions of our study include:
(1) introducing the windowed prediction test to
characterize the information integration windows
of both humans and LLMs, and (2) demonstrat-
ing that the windows are gated by linguistic struc-
tural markers. We release the code and data at
https://github.com/y1ny/IntegrationWindow.

2 Data construction

2.1 Tasks

In a windowed prediction test, LLMs are required
to predict the next word based on the model input,
which is divided into two parts: the local window
and the broader context (Fig. 1). The total length of
the local window and the broader context is always
100 words (see Appendix B for an extended length
setting), while the window length is systematically
varied. Words in the window remain unchanged
across conditions, whereas the context is either
intact (the normal condition) or transformed into
one of three manipulated conditions:
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1. window-only: The broader context is re-
moved and the model input only consists of
the window.

2. shuffled words: The order of words in the
broader context is randomly shuffled.

3. random words: Each word in the broader
context is replaced by a random word.

These conditions are designed to test the model’s
ability to utilize partial or degraded context, rang-
ing from relying solely on local input (window-
only), to integrating shuffled distal context
(shuffled words), to remaining undistracted by ir-
relevant distal context (random words). Model
predictions under each manipulated condition are
compared with predictions based on the full context
(normal).

2.2 Test Materials

For both Chinese and English, the test materials
are articles sourced from three distinct domains:
Wikipedia, news, and books (Koupaee and Wang,
2018; Cui et al., 2019; Kryściński et al., 2021). All
articles are publicly available and distributed under
the CC-BY-SA 3.0 license. We exclude articles that
contain characters from other languages (i.e., non-
Chinese or non-English), as well as those shorter
than 300 characters (for Chinese) or 300 words (for
English). Finally, for each language, we retain a
total of 7,500 articles, with 2,500 articles from each
domain.

2.3 Window Length and Distance to Sentence
Onset

We define two parameters, the window length and
the distance to sentence onset, to examine the in-
formation integration window at different positions
within a sentence. The distance to sentence onset
refers to the number of words between the target
word (i.e., the word to be predicted) and the first
word of the same sentence. The window length
refers to the number of words included in the win-
dow (Fig. 1). When the distance to sentence onset
exceeds the window length, the window contains a
sentence fragment. In contrast, when the distance
to sentence onset is less than or equal to the window
length, the window contains a complete sentence.

3 Experiment 1: Modulation by Sentence
Boundary

3.1 Experimental setup
In Experiment 1, we examined whether sentence
boundaries modulate the information integration
windows in both humans and LLMs. For LLMs,
we tested the base version of GPT-2 and Qwen2.5-
1.5B on Chinese and English articles. For GPT-2,
we used separate Chinese and English model vari-
ants for testing. In contrast, since Qwen2.5-1.5B
was a multilingual model (Qwen et al., 2025), we
used the same model variant for both languages.
Both models were only pretrained without any task-
specific fine-tuning, and were required to predict
the next word based on the input. We varied the
distance to sentence onset from 1 to 20 words. For
each distance to sentence onset, we sampled 1,000
articles and truncated the articles to meet the cri-
teria. For each article, the window length was in-
creased from 1 to 20 words, starting from the final
word in the article. No linguistic structural mark-
ers (e.g., dots and commas) occurred between the
target word and the sentence onset. The context
outside the window was transformed into one of the
four different conditions described previously. In
total, we constructed 20 × 1,000 × 20 × 4 tests for
each model and language. All experiments were
repeated across 10 different random seeds.

We used Jensen-Shannon (JS) divergence to mea-
sure the information loss from relying solely on a
local window instead of the full context, referred
to as the local-prediction deficit:

Deficit(w, d) = JS(Nw,d,Mw,d)

where w denotes the window length and d denotes
the distance to sentence onset. Nw,d and Mw,d rep-
resent the output probability distributions under the
normal and manipulated conditions, respectively,
for an input constructed based on a given w and d.
We utilized the local-prediction deficits to construct
a two-dimensional deficit matrix (Fig. 2a), where
each element in the matrix represented the average
local-prediction deficit for a specific window length
and distance to sentence onset. We hypothesized
that words outside sentence boundaries would have
less impact on model predictions than words within
the boundary. Therefore, the diagonal of the deficit
matrix was expected to be salient since the window
exceeded the sentence boundary on the diagonal.
To quantify this boundary effect, we first performed
a regression analysis to control the confounding
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Figure 2: Divergence between predictions based on the full context and predictions based on a local window in
Experiment 1. a. Example of the deficit matrices. In tests above the diagonal, the local window does not cover
the current sentence. In tests below the diagonal, the local window exceeds the current sentence. The sentence
boundary is highlighted. b. Deficit matrices for GPT-2 across conditions and languages. See the results of Qwen2.5
in Appendix Fig. 1.

effects of the window length and distance to sen-
tence onset (see Appendix A for more details). The
strength of boundary effect was then quantified as
the difference in residual deficits between adjacent
positions on either side of the diagonal, averaged
across all distances to sentence onset.

We conducted the human experiment using the
Chinese version of Experiment 1. To control the
experiment time, we fixed the distance to sentence
onset at 10 words, and varied the window length
from 8 to 12 words. Fifty articles that met the crite-
ria were sampled. The boarder context of each arti-
cle was either unchanged (normal) or replaced by
randomly selected words (random words). A total
of 100 participants were recruited, with each partic-
ipant receiving 50 tests. In each test, the participant

was shown an article and instructed to continue the
article by writing 1 to 6 Chinese character(s). Test
assignments were counter-balanced, with each par-
ticipant receiving 10 tests per window length and
25 tests per condition. All participants provided
written consent and were paid. Human responses
were pooled to compute the output distribution of
the first continued character. JS divergence was
then calculated between the output distributions
under the normal and random words conditions.

3.2 Result

The results of GPT-2 are shown in Fig. 2b, with the
results of Qwen2.5 presented in Appendix Fig. 1.
For both Chinese and English, the local-prediction
deficits decreased as the window length increased,
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Figure 3: The boundary effect in the local-prediction deficits. a. Local-prediction deficits in the English version of
Experiment 1, under the shuffled words condition. The sentence boundary is marked with a star. b. The strength
of boundary effect for each model, i.e., GPT-2, Qwen2.5, and GPT-2 with randomly initialized weights. Each
dot represents data from a single model run under a different random seed. Error bars represent 95% confidence
intervals (CIs) of the mean across runs, estimated using bootstrap. c. Comparison between humans and models in
the Chinese version of Experiment 1, under the random words condition.

showing a sharp drop when the window crossed the
sentence boundary and then stabilized. This pattern
resulted in a salient diagonal in the deficit matrices
for GPT-2, indicating that the model predictions
relied more on words within the sentence bound-
aries than on words outside the boundaries across
all conditions. Additionally, the local-prediction
deficits exhibited a non-linear decay as the window
length increased (Fig. 3a). We fitted multiple lin-
ear and nonlinear functions to the deficit matrices
for each model, and found that a power-law func-
tion provided the best fit (see Appendix Fig. 2).
Based on the residuals obtained after fitting, we
quantified the strength of boundary effect to assess
how sentence boundaries modulated the windows.
As shown in Fig. 3b, GPT-2 and Qwen2.5 exhib-
ited a significant boundary effect in both languages,
whereas no boundary effect was observed in the
model without language training (i.e., GPT-2 with
randomly initialized weights). For both GPT-2 and
Qwen2.5, the shuffled words and random words
conditions consistently elicited stronger boundary
effects compared to the window-only condition.
The results indicated that sentence boundaries sig-

nificantly gated the contribution of distal context
beyond the current sentence, and this boundary-
gating effect strengthened when degraded context
was provided.

The results of the human experiment are shown
in Fig. 3c. A boundary effect was also observed in
human responses, though the strength was weaker
than that in GPT-2 and Qwen2.5. This discrepancy
might reflect that humans could implicitly infer
sentence boundaries from the context – The local-
prediction deficits of humans decreased sharply
before the sentence boundary (i.e., at a window
length of 9 words; see Appendix Fig. 3). In con-
trast, language models might rely more heavily
on explicit cues (e.g., punctuation) to identify the
boundary. Altogether, these results demonstrated
that the information integration windows of both
humans and LLMs were gated by sentence bound-
aries, and such boundary-gating effect might arise
from language training. Experiment 1 was also
conducted on larger language models and with a
longer context to examine the generalizability of
our results. The results remained consistent (see
Appendix B and Appendix Fig. 4).
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Figure 4: Results of models in Experiment 2. a. Experimental setup of Experiment 2. We separately construct the
sentences without punctuation and meaningless sentences for testing. b. The strength of boundary effect for each
model when structural markers are removed. c. The strength of boundary effect for each model when semantic cues
are disrupted.

4 Experiment 2: Dependence on Different
Boundary Cues

4.1 Experimental setup

As suggested in Experiment 1, LLMs used sentence
boundaries to modulate the integration windows.
However, sentence boundaries can manifest based
on various cues, including implicit syntactic bound-
aries, semantic coherence, and linguistic structural
markers such as punctuation. Experiment 2 aimed
to disentangle the contributions of different bound-
ary cues by selectively removing structural markers
and semantic cues from the model input. We tested
GPT-2 and Qwen2.5-1.5B on inputs where either
structural markers or semantic cues were removed.
To remove structural markers, we eliminated the
last punctuation from the model input (Fig. 4a).
To disrupt semantic cues, we constructed meaning-
less sentences by randomly substituting nouns and

verbs with other words of the same part of speech.
All other experimental setups were consistent with
those of Experiment 1.

4.2 Result

The strength of boundary effect in Experiment 2
is shown in Figs. 4b and 4c. When structural
markers were removed, the boundary effect nearly
disappeared (Fig. 4b), indicating that GPT-2 and
Qwen2.5 failed to utilize implicit syntactic cues to
modulate the integration window. For the meaning-
less sentences, where semantic cues were disrupted,
the boundary effect diminished compared to Exper-
iment 1 but was still retained (Fig. 4c). These
results suggested that both GPT-2 and Qwen2.5
primarily relied on linguistic structural markers,
rather than implicit syntactic and semantic cues, to
gate the information integration.
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Figure 5: Results of models in Experiment 3. a. Experimental setup of Experiment 3. We focus on comma-
conjunction pairs as structural markers. b. The strength of boundary effect for each model when both commas and
conjunctions are retained. c. The strength of boundary effect for each model when only conjunctions are retained.

5 Experiment 3: Modulation by Different
Structural Makers

5.1 Experimental setup

Experiments 1 and 2 demonstrated that the integra-
tion windows of LLMs were primarily modulated
by linguistic structural markers. In Experiment
3, we investigated how different types of markers
modulated the integration windows. Specifically,
we focused on comma-conjunction pairs (e.g., “,
and”, “, or”, “, but”) as structural markers (Fig. 5a),
and calculated a revised distance to sentence onset
based on these markers (i.e., the number of words
between the target word and the comma). The re-
vised distance was used to select the articles for
testing. The comma was either retained or removed
to isolate the effect of commas and conjunctions.
We tested GPT-2 and Qwen2.5 in Experiment 3,
and all other experimental setups were consistent
with those in Experiment 1.

5.2 Result

The strength of boundary effect in Experiment 3 is
shown in Figs. 5b and 5c. When both commas and
conjunctions were retained, a significant bound-
ary effect was observed in GPT-2 and Qwen2.5
in Chinese (Fig. 5b). However, in English, the
boundary effect was relatively weak for Qwen2.5

and absent for GPT-2. One possible explanation
for this cross-linguistic pattern was that Chinese
generally contained fewer complex relative clauses
than English (Li and Thompson, 1989; Lin, 2011).
In Chinese, a comma was typically followed by a
complete sentence rather than a dependent clause,
which might lead to stronger sentence boundary
cues being associated with the comma. Language
models might capture the cross-linguistic differ-
ence, and therefore rely more heavily on commas
to modulate the integration window in Chinese than
in English.

When commas were removed (Fig. 5c), the
strength of boundary effect declined across all mod-
els and languages. However, a residual effect re-
mained for Qwen2.5 in Chinese. The results sug-
gested that more extensive language training might
allow the model to utilize more structural markers
to modulate the integration window, and therefore
Qwen2.5 appeared to rely not only on commas,
but also on conjunctions to guide its information
integration.

6 Related work

Recent advancements in LLMs have increasingly
focused on enabling language comprehension over
extremely long context. While it is crucial for
LLMs to extract relevant information from such
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extended sequences, there is growing evidence
that LLMs prioritize information within a lim-
ited span of preceding context (Keshishian et al.,
2021; Skrill and Norman-Haignere, 2023). This
phenomenon parallels findings from cognitive sci-
ence, which suggest that humans integrate informa-
tion within constrained temporal windows during
language comprehension (Poeppel, 2003; Hasson
et al., 2008; Norman-Haignere et al., 2022). In-
spired by these findings, recent studies have at-
tempted to characterize information integration
windows of LLMs by analyzing internal represen-
tations such as activations of hidden states. For
instance, Keshishian et al. (2021) have explored
the integration windows of deep speech models
using the temporal context invariance paradigm,
while Skrill and Norman-Haignere (2023) have
developed a word-swap procedure that reveals a
dynamically changing integration window across
different layers in LLMs. However, prior work
has predominantly focused on a large number of
internal nodes within LLMs, which cannot intu-
itively inform how these integration windows may
contribute to model behavior. Our study aims to
directly analyze information integration in terms of
model behavior and compare it with that of humans
under the same experimental paradigm. Further-
more, we focus on whether the integration windows
are gated by sentence boundaries, examining the
effects of different boundary cues in a multilingual
setting.

The structure of language can manifest based on
various cues, including implicit syntactic bound-
aries and semantic coherence. Researchers have
explored the encoding of structured sentence repre-
sentations (e.g., dependency and constituency) in
LLMs. Such representations can be reconstructed
from internal activations (Hewitt and Manning,
2019; Arps et al., 2022) or model behavior (Cao
et al., 2020; Liu et al., 2024), and can influence
the processing dynamics of LLMs (Kovaleva et al.,
2019; Wu et al., 2020). Our study contributes to
this body of literature, and further demonstrates
that explicit linguistic structural markers can also
gate the information integration in LLMs. One
of the interesting findings of our study is that the
boundary-gating effect disappears when the linguis-
tic structural markers are removed, which echoes
the sentence wrap-up effect observed in human
reading. The sentence wrap-up effect refers to in-
creased reading times at sentence-final words, and
this effect diminishes when the sentence-final mark-

ers are removed (Warren et al., 2009; Stowe et al.,
2018). It has been argued that the wrap-up effect
reflects the low-level reaction to visual cues (Hill
and Murray, 2000). Our results show that a simi-
lar effect of markers arises in LLMs, even though
these models lack any visual modality. This sug-
gests that the wrap-up effect may not merely reflect
a hesitation response to visual stimuli, but instead
emerges as a general information integration strat-
egy—One that facilitates structural integration near
sentence boundaries across both biological and ar-
tificial systems.

In addition, processing long context imposes sig-
nificant computational and memory costs due to the
quadratic complexity of attention in transformer-
based architectures (Vaswani et al., 2017; Du-
man Keles et al., 2023). To address this, some
researchers have proposed hybrid architectures that
combine sliding window mechanisms with retrieval
modules (Beltagy et al., 2020; Xiao et al., 2024;
Yuan et al., 2025). Our findings suggest that LLMs
may already implicitly adopt a sliding-window-like
mechanism during prediction, independent of ex-
plicit architectural designs. We provide behavioral
evidence that LLMs prioritize information within
sentence boundaries, informing the development
of more efficient architectures, such as by dynami-
cally adjusting sliding windows based on language
structures. Overall, our study not only offers in-
sights into the information integration strategies
of current LLMs, but also suggests pathways for
improving long-context processing in a more lin-
guistically grounded manner.

7 Conclusion

In summary, our study examines whether infor-
mation integration in LLMs is gated by sentence
boundaries. Using the windowed prediction test,
we show that, for both humans and LLMs, next
word prediction relies more on words within the
same sentence or clause than on words beyond
the sentence or clause boundary. This boundary-
gating phenomenon is not observed in a randomly
initialized model. Furthermore, the effect of sen-
tence/clause boundaries is primarily attributed to
linguistic structural markers, similar to the sen-
tence wrap-up effect reported in psycholingusitic
and neurolingusitic studies. These results indicate
LLMs rely on structural markers to guide their in-
formation integration strategies.
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Limitations

Although our study systematically examined the
information integration windows in LLMs, we did
not investigate how such windows emerge. The
differences between initialized and pretrained mod-
els suggested that structured integration window
might arise from language training, but the specific
linguistic features responsible for these windows
remained unclear. Future work could explore inte-
gration windows across different amounts of train-
ing data, or analyze how the windows evolve over
the course of pretraining. Additionally, future work
could investigate how behavior-based integration
windows correlate with internal representations,
such as attention matrices.

Our study focused on sentence boundaries as a
key structure of language, since sentence bound-
aries represented a relatively well-defined language
structure. However, natural language is hierarchi-
cally structured at many scales. Future research
could explore whether information integration in
LLMs exhibits hierarchical organization across lin-
guistic scales, from phrases to discourse.
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A Regression Analysis

We fitted the deficit matrices from humans and
language models using the window length and dis-
tance to sentence onset, and then calculated the
strength of boundary effect based on the residuals
after fitting. All matrices were normalized by the
maximum value before regression. We used three
functions to fit the deficit matrices:

1. linear: D(w, d) = −x1 · w − x2 · d+ x3

2. exponential: D(w, d) = e−x1·w+e−x2·d+x3

3. power-law: D(w, d) = w−x1 + d−x2 + x3

where w denotes the window length, and d denotes
the distance to sentence onset. x1, x2, and x3 are
fitting parameters. Since the power-law function
yielded the best fit in most cases (Appendix Fig.
2), it was selected for subsequent analyses. The
strength of boundary effect was calculated based
on the residuals of the fitted power-law function.

B Generalizability to Longer Context and
Larger Model

We extended Experiment 1 with longer context and
larger language models to assess the generalizabil-
ity of our results. Long-context articles were ob-
tained from Loogle (Li et al., 2024), retaining only
those exceeding 10,000 words. For the context-
length extension, we replicated the English version
of Experiment 1 using Qwen2.5-1.5B, with the to-
tal length of the context and window set to 1,000
words. For the model-size extension, we conducted
the English version of Experiment 1 using Qwen2.5
series models of different sizes, sampling only 100
articles for each distance to sentence onset to re-
duce computational cost. The results indicated that
neither context length nor model size significantly
affected the strength of boundary effect (see Ap-
pendix Figure 4).
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Appendix Figure 1. Deficit matrices for Qwen2.5 across conditions and languages in Experiment 1.

Appendix Figure 2. The regression performance when fitting the deficit matrices. Each dot represents a deficit
matrix under a random seed for GPT-2 or Qwen2.5 in Experiment 1.

Appendix Figure 3. Local-prediction deficits for humans and LLMs in the Chinese version of Experiment 1, under
the random words condition.
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Appendix Figure 4. The strength of boundary effect for Qwen2.5 in the English version of Experiment 1, tested
across two combined context and window lengths (100 vs. 1000 words) and six model sizes (from 1.5B to 72B).
The boundary effect remains generally consistent across different context lengths or model sizes.
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