
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 4972–4992
November 4-9, 2025 ©2025 Association for Computational Linguistics

Through the Valley: Path to Effective Long CoT Training for
Small Language Models

Renjie Luo1 Jiaxi Li1 Chen Huang1 Wei Lu2

1Singapore University of Technology and Design, 2Nanyang Technological University
renjie.luo@outlook.com, wei.lu@ntu.edu.sg

Abstract

Long chain-of-thought (CoT) supervision has
become a common strategy to enhance reason-
ing in language models. While effective for
large models, we identify a phenomenon we
call Long CoT Degradation, in which small lan-
guage models (SLMs; ≤3B parameters) trained
on limited long CoT data experience significant
performance deterioration. Through extensive
experiments on the Qwen2.5, LLaMA3 and
Gemma3 families, we demonstrate that this
degradation is widespread across SLMs. In
some settings, models trained on only 8k long
CoT examples lose up to 75% of their original
performance before fine-tuning. Strikingly, we
further observe that for some particularly small
models, even training on 220k long CoT exam-
ples fails to recover or surpass their original
performance prior to fine-tuning. Our analy-
sis attributes this effect to error accumulation:
while longer responses increase the capacity
for multi-step reasoning, they also amplify the
risk of compounding mistakes. Furthermore,
we find that Long CoT Degradation may nega-
tively impacts downstream reinforcement learn-
ing (RL), although this can be alleviated by suf-
ficiently scaled supervised fine-tuning (SFT).
Our findings challenge common assumptions
about the benefits of long CoT training for
SLMs and offer practical guidance for building
more effective small-scale reasoning models.

1 Introduction

Large reasoning models, such as OpenAI-o3 (Ope-
nAI, 2025), Kimi-k1.5 (Team et al., 2025b), and
DeepSeek-R1 (Guo et al., 2025) have recently
demonstrated impressive capabilities in complex
reasoning tasks. A key strength of these models
is their ability to generate long chain-of-thought
(CoT) responses, which usually demonstrate ad-
vanced, reflective reasoning behaviors. These de-
tailed reasoning responses, referred to as long CoT,

0 8k 16k 32k 64k 128k 220k
Long CoT Data Amount

7

8

9

10

11

12

13

14

Ac
cu

ra
cy

 (
%

)
Accuracy
Response Length

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

Qwen2.5-0.5B-Instruct

Figure 1: Accuracy and response length for Qwen2.5-
0.5B across varying amounts of long CoT SFT data.
Performance drops markedly at smaller data scales (8k-
16k), even as response length increases significantly,
indicating a critical failure mode in which the model
generates longer but less accurate reasoning traces. We
term this phenomenon Long CoT Degradation.

constitute valuable resources for enhancing the rea-
soning ability of large language models (LLMs).

Despite the growing use of long CoT data in
LLM training, there remains no consistent strategy
for its integration. Current practices vary widely
across models and objectives. For instance, some
studies show that even supervised fine-tuning (SFT)
with a relatively small amount of long CoT data
(e.g., ≤10k examples) can effectively enhance rea-
soning capabilities in LLMs (Muennighoff et al.;
Xu et al., 2025; Ye et al., 2025). Others combine
either limited or extensive long CoT SFT with sub-
sequent RL training (Face, 2025; Chen et al., 2025;
Bercovich et al., 2025; Wen et al., 2025; Guo et al.,
2025). However, in almost all these cases, the
choice of data scale tends to be heuristic, and cur-
rently, there is limited empirical understanding of
how the scale of long CoT data influences model
performance across different training paradigms
and different model sizes.

The call for a closer examination of this un-
derexplored topic is especially pertinent given the
growing interest in developing and deploying small
language models (SLMs), where strong reasoning

4972

capabilities are crucial due to their rising popu-
larity and prevalence (Li et al., 2023; Hui et al.,
2024; Lee et al., 2024; Agarwal et al., 2024). Com-
pared to larger models, SLMs typically have lim-
ited capacity, which may affect their ability to
generalize from verbose supervision, such as long
CoT data (Feng et al., 2024). Although effective
for large models, long CoT’s verbosity may over-
whelm smaller models, making it unclear to what
extent SLMs can benefit from such training. Recent
work even suggests that short CoT may be more
effective for SLMs (Li et al., 2025a). However,
these findings are based on relatively small-scale
datasets (e.g., 8k examples), leaving it uncertain
whether they hold at larger data scales.

In this paper, we conduct a systematic investi-
gation into how the scale of long CoT data affects
the performance of SLMs. Our results show that
SLMs trained with small amounts of long CoT
supervision (e.g., 8k to 16k examples) frequently
suffer from substantial performance degradation
(e.g., Fig. 1), a phenomenon we refer to as Long
CoT Degradation. Building on this observation, we
explore three central research questions: 1) How
prevalent is Long CoT Degradation, and can SLMs
recover from it? 2) What underlying mechanisms
drive this degradation of SLMs? 3) Does long CoT
degradation carry over to subsequent reinforcement
learning (RL) stages, and can integrating long CoT
SFT with RL mitigate its effects and improve over-
all training efficacy for SLMs?

To this end, we conduct extensive experiments
across diverse model scales and families, ranging
from 0.5B to 14B, confirming the prevalence of
Long CoT Degradation. We next formulate hy-
potheses regarding its underlying causes and vali-
date them through comprehensive experiments. Fi-
nally, we investigate the impact of long CoT SFT
on the RL stage by analyzing the performance of
three representative SLMs after RL.

Our contributions are threefold:

• Empirical discovery of Long CoT Degrada-
tion: To the best of our knowledge, we are
the first to identify and systematically charac-
terize the phenomenon of Long CoT Degrada-
tion, which arises when SLMs are trained with
limited long CoT supervision. Our findings
demonstrate that this degradation consistently
occurs across a variety of model families and
a wide range of SLM sizes, revealing a critical
limitation in existing training practices. (§2)

• Analysis of underlying mechanisms: We at-
tribute long CoT Degradation to error accumu-
lation driven by length inflation in reasoning
outputs. Our experiments reveal how insuffi-
cient long CoT supervision leads to dispropor-
tionately verbose and error-prone responses, ul-
timately harming performance. (§3)

• Towards better training pipelines: We exam-
ine how SFT with long CoT affects subsequent
RL for SLMs. Our results show that while lim-
ited long CoT exposure may hinder RL perfor-
mance, sufficiently scaled supervision during
SFT can significantly boost both the efficiency
and final performance of RL, even after the
model is degraded. (§4)

2 Long CoT Degradation

This section presents a comprehensive empirical
study on how models of varying sizes and fami-
lies respond to long CoT SFT. We uncover a con-
sistent degradation phenomenon caused by long
CoT supervision and analyze the conditions under
which models recover. In addition, we examine
how continued exposure to long CoT affects the
token efficiency of model outputs across sizes.

2.1 Terminology

In this work, we define long CoT as a reasoning
process involving substantially longer sequences1

that explicitly incorporate steps such as reflection,
verification, and subproblem decomposition. Such
chains are typically produced by large-scale rea-
soning models.

2.2 Experimental Setup

Datasets. We utilize the OpenR1-Math-220k
dataset2, comprising approximately 225,000 En-
glish math problems from NuminaMath 1.5 (LI
et al., 2024), each paired with two to four verified
reasoning traces generated by DeepSeek-R1. For
training, we sample one correct trace per problem
and exclude outliers exceeding 16,384 tokens (<1%
of data). To analyze performance scaling, we con-
struct six dataset subsets of increasing size: 8k,
16k, 32k, 64k, 128k, and 220k samples.

1For instance, the average length of long CoT responses in
DeepSeek-R1-Zero approaches 10k tokens, whereas its base
model averages fewer than 1k tokens (Guo et al., 2025).

2https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k, licensed under Apache 2.0.

4973

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

0k 8k 16k 32k 64k 128k 220k
18

21

24

27

30

33

36 Qwen2.5-1.5B-Instruct

0k 8k 16k 32k 64k 128k 220k
28

32

36

40

44

48
Qwen2.5-3B-Instruct

0k 8k 16k 32k 64k 128k 220k
32

40

48

56

64

72 Qwen2.5-7B-Instruct

0k 8k 16k 32k 64k 128k 220k
40

48

56

64

72

80 Qwen2.5-14B-Instruct

0k 8k 16k 32k 64k 128k 220k
6

8

10

12

14

16 Llama-3.2-1B-Instruct

0k 8k 16k 32k 64k 128k 220k
18

24

30

36

42

48 Llama-3.2-3B-Instruct

0k 8k 16k 32k 64k 128k 220k
10

20

30

40

50

60 Llama-3.1-8B-Instruct

0k 8k 16k 32k 64k 128k 220k
5

10

15

20

25 Gemma-3-1B-it

0

2

4

6

8

10

0

2

4

6

8

0

2

4

6

8

0

1

2

3

4

5

6

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

Ac
cu

ra
cy

 (
%

)

Re
sp

on
se

 L
en

gt
h

(K
)

Accuracy Response Length

Figure 2: Comprehensive evaluation of multiple models trained with varying amounts of long CoT data. Accuracy
is averaged across AIME24, AMC23, and MATH500, while response length is measured as the mean token count
from 4,000 responses to MATH500. Per-benchmark results are provided in Appendix B.1.

Models. Our study considers nine instruct-tuned
models from the Qwen, LLaMA, and Gemma
model families, including Qwen-2.5 (0.5B, 1.5B,
3B, 7B, 14B) (Yang et al., 2024), LLaMA (3.2-
1B, 3.2-3B, 3.1-8B) (Grattafiori et al., 2024), and
Gemma-3-1B-it (Team et al., 2025a).

Training Setup. Each model is fine-tuned us-
ing full-parameter SFT on each subset with consis-
tent hyperparameters detailed in Appendix A. We
use the LLaMA-Factory framework (Zheng et al.,
2024) for training.

Evaluation Setup. We evaluate on three
prevalent mathematical reasoning benchmarks:
AIME243, AMC234, and MATH500 (Hendrycks
et al., 2021). Generation length is capped at 16,384
tokens. Following the evaluation protocol of Guo
et al. (2025), we use sampling with temperature
0.6 and top-p 0.95 to generate k responses per
question (k = 8 for AIME24 and AMC23, k = 4
for MATH500)5. For each benchmark, we report
the average accuracy computed over k responses
(avg@k). In addition, consistent with prior
works (Guo et al., 2025; Chen et al., 2024), we
track the average response length, which measures

3https://huggingface.co/datasets/AI-MO/aimo-
validation-aime

4https://huggingface.co/datasets/AI-MO/aimo-
validation-amc

5Greedy decoding is avoided due to its high repetition rate
and instability across checkpoints when evaluating long-output
reasoning models (Guo et al., 2025).

whether models make efficient use of tokens
rather than producing unnecessarily verbose traces.
Based on this, we further analyze token efficiency,
defined as accuracy divided by response length,
to jointly capture reasoning quality and output
conciseness in later sections.

2.3 Results

Degradation under long CoT supervision is
prevalent, even in moderately sized models.
Across all model families and sizes, we observe
a notable drop in accuracy following exposure to
long CoT SFT (Figures 1 and 2). Notably, the
accuracy of Gemma3-1B-it falls to approximately
25% of its baseline after training on just 8k long
CoT examples. Even the largest model in our study,
Qwen2.5-14B-Instruct, suffers a drop from 50%
to 45% accuracy. Moreover, this degradation is
consistently accompanied by a sharp increase in
response length. This suggests a deeper underlying
issue in how models handle long CoT supervision,
which we analyze further in Section 3.

All models exhibit recovery on more long CoT
data, while larger models recover faster and
more fully. Given the consistent performance
degradation observed after training on 8k long
CoT examples, we investigate whether models
can recover as the number of training samples
increases, and how recovery dynamics vary with
model size. Figure 2 shows that larger models, such

4974

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc

as Qwen2.5-7B and 14B, recover more quickly,
requiring fewer additional examples before even-
tually surpassing their baseline performance. For
instance, Qwen2.5-14B recovers and significantly
exceeds its baseline after training on just 16k ex-
amples, while Qwen2.5-1.5B slightly surpasses its
baseline with 32k examples. In contrast, as can
be seen in Figure 1 and 2, smaller models strug-
gle to fully recover. Despite full exposure to 220k
training examples, Qwen2.5-0.5B and Gemma-3-
1B fail to reach their original baselines, with final
accuracies dropping from 14% to 11% and from
24% to 15%, respectively. This aligns with prior
observations that small models face a significant
learnability gap compared to large models when
learning from long CoT and large teachers (Li et al.,
2025a).

Token efficiency improves with increased long
CoT data and larger models. Figure 2 also re-
veals another interesting observation that increas-
ing the number of long CoT training examples
leads to improvements in both accuracy and re-
duced response length across all models, indicating
a general gain in token efficiency. We suspect this is
because models initially mimic superficial patterns
in long CoT traces, resulting in verbose outputs.
With more training, they gradually shift towards
capturing the underlying reasoning structure, lead-
ing to shorter and more accurate responses. This
effect is more evident in larger models. For in-
stance, with training on 32k instances of long CoT
data, Qwen2.5-14B-Instruct achieves an accuracy
of 66% with an average response length of only
4k tokens, whereas its smaller counterpart, the 7B
model, reaches only 53% accuracy despite produc-
ing longer responses averaging 5k tokens. This
contrast suggests that larger models are more capa-
ble of leveraging long CoT to generate concise yet
accurate answers. These findings motivate further
investigation into the underlying mechanisms driv-
ing degradation and recovery, which we explore in
the following section.

3 The Mechanism Behind Degradation

To better understand the phenomenon of Long CoT
Degradation, we propose two hypotheses and de-
sign targeted experiments to empirically validate
them.

3.1 Hypotheses

Our hypotheses are grounded in two lines of prior
research. First, recent studies have examined
system-2 reasoning in large language models, re-
vealing phenomena such as multi-step reasoning
and reflection (Xiang et al., 2025; Yu et al.; Li
et al., 2025b). While these behaviors are preva-
lent in long CoT data, their precise impact on the
length and structure of reasoning chains remains
unclear. Second, prior work on CoT has shown that
as reasoning chains grow longer, the accumulation
of intermediate mistakes increasingly undermines
final output accuracy (Wu et al., 2025). However,
analyses of error accumulation have thus far been
largely limited to short CoT sequences and rela-
tively small-scale models (e.g., variants of GPT-2
with fewer than 10 layers) (Wu et al., 2025), leav-
ing open the question of whether similar mecha-
nisms persist in longer, more real-world reasoning
settings with modern LLMs.

Building on these insights, we aim to explain
the degradation and recovery behaviors observed
in our empirical study. To this end, we propose the
following two hypotheses:

• Hypothesis 1: Early adoption of surface-level
reasoning patterns contributes to verbose
outputs. When exposed to a limited amount
of long CoT supervision, SLMs rapidly adopt
surface features of system-2 reasoning, such as
reflection and multi-step structure. This early
emergence of stylistic patterns is highly corre-
lated with increased response length and may
contribute to initial performance degradation,
even before deeper reasoning skills are fully
acquired.

• Hypothesis 2: Longer outputs exacerbate er-
ror accumulation, reducing answer accuracy.
As output length increases, the reasoning pro-
cess involves a greater number of steps, each
of which introduces the potential for errors to
propagate. Consequently, longer responses tend
to accumulate more noise and irrelevant content,
ultimately resulting in a noticeable decline in
overall accuracy.

These two hypotheses are closely linked: the
first aims to explain why models tend to generate
long responses under long CoT supervision, while
the second aims to account for the resulting drop in
accuracy. Using these hypotheses as guidance, we
further conduct empirical analyses in the following
subsections.

4975

0 8k 16k 32k 64k 128k 220k
Long CoT Data Amount

0%

20%

40%

60%

80%

100%
Re

fle
ct

io
n

Ra
ti

o

Qwen2.5-0.5B-Instruct
Qwen2.5-1.5B-Instruct
Qwen2.5-3B-Instruct
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct

Figure 3: Reflection ratios of Qwen models of differ-
ent sizes trained on varying amounts of long CoT data.
The reflection ratio refers to the proportion of model
responses (out of 4,000 on the MATH500 benchmark)
that exhibit reflective behavior, as identified through
cross-validation.

3.2 Reflection Behavior Analysis

To validate Hypothesis 1, we examine whether
models rapidly acquire surface-level features of
system-2 reasoning, particularly reflective behav-
ior, during early stages of fine-tuning on long CoT
data. Our goal is to determine whether the emer-
gence of such patterns coincides with the increase
in response length observed in Section 2.3.

Setup. We identify reflective behavior in model
outputs using a cross-validation approach follow-
ing Liu et al. (2025). To robustly detect self-
reflection in generated responses, we use two in-
dependent methods: 1) a keyword-based approach
that labels a response as reflective if it contains any
curated indicative keywords or phrases, and 2) an
LLM-based approach, where GPT-4o-mini (Hurst
et al., 2024) is prompted to determine whether the
response exhibits reflective behavior. This dual-
criteria strategy helps reduce false positives and en-
hances reliability. Full implementation details and
prompt templates are provided in Appendix A.4.

Result. Figure 3 shows a significant increase in
the proportion of reflective responses across Qwen
models, even with only 8k long CoT training ex-
amples. Specifically, the reflection ratio increases
sharply from below 5% to approximately 75%, in-
dicating that reflective behaviors are quickly picked
up and internalized. Additionally, Figure 4 under-
scores that reflective responses are substantially
longer than non-reflective ones. Notably, for both
the 1.5B and 3B models, reflective responses con-
sistently exceed non-reflective ones by approxi-

8k 16k 32k 64k 128k 220k
Long CoT Data Amount

3

4

5

6

7

8

9

10

Re
sp

on
se

 L
en

gt
h

(K
)

1.5B
3B
w/ reflection
w/o reflection

Figure 4: Average response lengths of Qwen2.5-{1.5B,
3B}-Instruct models trained with varying amounts of
long CoT data. Solid lines represent responses exhibit-
ing reflection behavior; dashed lines denote responses
without reflection. Results for more models are pro-
vided in Appendix B.2.

mately 2,000 tokens, a trend that holds across all
training data scales. These findings suggest that
the acquisition of reflective behavior is closely tied
to the growth in response length. These findings
support Hypothesis 1: with limited long CoT su-
pervision, models quickly adopt surface features
of system-2 reasoning, especially reflection which
contributes to longer responses.

3.3 Cumulative Error Analysis

While the previous analysis focused on the emer-
gence of surface-level reasoning patterns, it did not
directly assess how output length impacts answer
accuracy. Hypothesis 2 posits that longer responses
increase the risk of cumulative errors, thereby re-
ducing overall accuracy. In this subsection, we test
this hypothesis in a controlled setting.

Standard mathematical benchmarks introduce
confounding factors such as domain knowledge,
problem interpretation, and strategy selection.
These complexities make it difficult to isolate the ef-
fect of response length on performance. To address
this, we design a synthetic arithmetic benchmark
that controls for external variables while preserving
step-by-step reasoning structure. This allows us to
directly examine how output length correlates with
error accumulation.

Benchmark Design. Each instance in our syn-
thetic dataset is a randomly generated arithmetic
expression composed of 5 to 15 operations. To
ensure controlled difficulty and interpretability:

• Operands are uniformly sampled from the range
[1, 100].

4976

0 8k 16k 32k 64k 128k 220k0

3

6

9

12

15 Qwen2.5-0.5B-Instruct

0 8k 16k 32k 64k 128k 220k21

28

35

42

49

56
Qwen2.5-1.5B-Instruct

0 8k 16k 32k 64k 128k 220k30

40

50

60

70

80
Qwen2.5-3B-Instruct

0 8k 16k 32k 64k 128k 220k45

54

63

72

81

90

99 Qwen2.5-7B-Instruct

0 8k 16k 32k 64k 128k 220k
64

72

80

88

96

104 Qwen2.5-14B-Instruct

0 8k 16k 32k 64k 128k 220k0

3

6

9

12

15 Llama-3.2-1B-Instruct

0 8k 16k 32k 64k 128k 220k10

20

30

40

50

60 Llama-3.2-3B-Instruct

0 8k 16k 32k 64k 128k 220k10

30

50

70

Llama-3.1-8B-Instruct

0

3

6

9

12

0

2

4

6

8

0

1

2

3

4

5

6

0

1

2

3

4

5

0

1

2

3

4

0

2

4

6

8

10

0

2

4

6

8

0

1

2

3

4

5

6

Ac
cu

ra
cy

 (
%

)

Re
sp

on
se

 L
en

gt
h

(K
)

Accuracy Response Length

Figure 5: Arithmetic accuracy and response length on our synthetic benchmark for models trained with increasing
amounts of long CoT data. Most models exhibit a sharp drop in arithmetic accuracy and a corresponding increase in
response length after training on the 8k subset, with the exception of Llama-3.2-{1B,3B}-Instruct, whose initial
performance is already low (<20% accuracy).

• Operators include addition, subtraction, multi-
plication, and division.

• All intermediate results are constrained to be
integers.

• Each problem requires a fixed number of simple,
sequential reasoning steps.

This setup enables a rigorous empirical evalua-
tion of Hypothesis 2 by explicitly correlating re-
sponse length (number of arithmetic steps) with
accuracy under consistent and controlled condi-
tions. An example problem from the benchmark is
shown in Figure 6.

Setup. We evaluate the models described in Sec-
tion 2.2 on 400 synthetic arithmetic problems. Fol-
lowing the same evaluation protocol as in Sec-
tion 2.2, we use sampling with temperature 0.6
and top-p 0.95 to generate k = 4 responses per
problem. We report the average accuracy across
the k responses (avg@k).

Result. As shown in Figure 5, most models ex-
perience a significant drop in arithmetic accuracy
after training on the 8k long CoT subset, accompa-
nied by a substantial increase in response length.
For instance, Qwen2.5-7B-Instruct exhibits a 30%
drop in accuracy, while its average output length
grows from approximately 600 to 3,600 tokens.
With more long CoT data, performance gradually
recovers. These trends closely mirrors the degrada-
tion and recovery patterns observed on real-world
math benchmarks (Fig. 1 and 2). Qualitative analy-

sis further supports these findings. As shown in Ap-
pendix A.5, the model trained on 8k CoT data fre-
quently generates verbose responses with repetitive
phrasing (e.g., “wait”) and restates equations mul-
tiple times, yet still makes similar arithmetic mis-
takes that compound across steps despite proposing
alternative solutions. In contrast, the model trained
on 64k CoT data demonstrates more disciplined
reasoning behavior. It verifies steps more effec-
tively and proposes alternatives with clearer intent.

Overall, these results offer strong empirical sup-
port for Hypotheses 2: although longer responses
may enable more elaborate reasoning, they also
increase the likelihood of compounding errors, re-
sulting in Long CoT Degradation.

4 Impact of Long CoT Supervision on RL

As we continue exploring the impact of different
methods for using long CoT data to train SLMs,
the next natural research question for us to investi-
gate is how the performance of these SLMs, after
training with long CoTs under different settings,
might affect the subsequent RL stage.

Existing approaches generally fall into two cat-
egories: 1) using a limited number of long CoT
examples (≤10k) during SFT as a cold start for sub-
sequent RL (Guo et al., 2025; Ren et al., 2025), and
2) applying RL to models heavily distilled with sub-
stantial amounts of long CoT data (>100k) (Luo
et al., 2025b,a; Liu et al., 2024). However, a system-
atic understanding of how varying levels of long

4977

Question:
Compute the answer to this arithmetic expression: 93/3+77+(12-
32)-11+61*78+44*39+55

Ground_Truth: 6606

Model’s Answer (Before Training):
To compute the arithmetic expression, we will follow the order of
operations (PEMDAS/BODMAS):
1. Parentheses/Brackets: Solve the expression inside the
parentheses first. 12 - 32 = -20

......
So, the final answer is: 6606

Number of Calculation: 10 Response Length: 502

Model’s Answer (After Training):
Okay, let's see. I need to compute this arithmetic expression:

......
Let me compute the subtraction and addition from left to right.
Starting with 108 - 20. That's 88. Then, 88 - 11 is 77. Then, 77 +
4758. Wait, 77 plus 4758. Let me add those. 70 plus 4750 is 4820,
and 7 plus 58 is 65, so 4820 + 65 is 4885. So after the subtraction
and addition so far, we have 4885.

......
So the final answer is 6601. Let me double-check my steps to make
sure I didn't make a mistake.
First, 93 divided by 3 is 31. Then, 31 + 77 is 108. Then, 12 - 32 is -
20. So the expression becomes 108 -20 -11 + 4758 +1716 +55.
Then, 108 -20 is 88, 88 -11 is 77. Then, 77 +4758 is 4885, 4885
+1716 is 6601. Yeah, that seems right. Let me verify each
multiplication again.

......
Therefore, the answer is 6601

Number of Calculation: 40 Response Length: 1405

Figure 6: A sample problem from our synthetic arith-
metic benchmark, with answers from Qwen2.5-1.5B-
Instruct before and after training on 8k long CoT ex-
amples. “Number of Calculation” indicates the total
number of arithmetic operations performed in the re-
sponse. Errors in the model’s intermediate reasoning
are highlighted in red.

CoT supervision influence subsequent RL perfor-
mance remains underexplored – particularly in the
context of SLMs.

To address this limitation, we systematically an-
alyze how different amounts of long CoT supervi-
sion during SFT impact RL outcomes, particularly
focusing on performance degradation, token effi-
ciency, and overall learning dynamics.

4.1 Training Setup

We conduct RL training on three models, Qwen2.5-
{0.5B, 1B, 3B}-Instruct, which represent small lan-
guage models with distinct degradation patterns
observed in prior SFT experiments (§2).

For training, we adopt the dataset configura-
tion introduced by Zeng et al. (2025), where the
datasets used for each model have been empiri-
cally shown to be of moderate difficulty and effec-
tive for their respective scales. The 0.5B model is
trained on the Medium difficulty subset, composed
of MATH level 1-4 problems (Hendrycks et al.,

2021), while the 1B and 3B models are trained on
the Hard subset, which includes MATH level 3-5
problems (Hendrycks et al., 2021). Both subsets
contain approximately 8,000 examples.

We perform RL training using the verl (Sheng
et al., 2025) framework. We employ the
GRPO (Shao et al., 2024) algorithm with a rule-
based binary reward function: the model receives
a reward of 1 if the final answer is correct, and 0
otherwise. The training uses a prompt batch size
of 1,024, generates 8 rollouts per prompt, and sets
the maximum rollout length to 8,192 tokens. Op-
timization is performed using a mini-batch size of
256. All models are trained with the same set of
hyperparameters and the evaluation settings remain
consistent with those outlined in Section 2.2.

4.2 Results

Long CoT degradation negatively impacts sub-
sequent RL training. Figure 7 shows that start-
ing RL training from a checkpoint fine-tuned with
8k long CoT data consistently yields lower accu-
racy and longer responses throughout training, as
compared to the baseline approach without any
SFT. Moreover, the performance gap relative to the
baseline persists. These results suggest that the
degradation induced by long CoT can hardly be
mitigated by RL and continues to adversely affect
RL-based optimization.

RL further improves token efficiency in long
CoT distilled SLMs. As shown in Figure 7,
SLMs fine-tuned with long CoT data (at 0.5B,
1.5B, and 3B scales) exhibit a rapid reduction in
response length during the early stages of RL train-
ing, accompanied by a steady increase in accu-
racy. This observation aligns with previous find-
ings (Luo et al., 2025b; Liu et al., 2024). In con-
trast, instruction-tuned baseline models without
long CoT SFT show only slight increases in re-
sponse length and minor accuracy gains under
RL, highlighting their limited potential for further
improvement (Zeng et al., 2025). These results
demonstrate that RL can further enhance the token
efficiency of SLMs distilled with long CoT data.
Notably, as observed in Section 2, increasing the
scale of long CoT SFT data alone also led to con-
tinuous improvements in token efficiency, and this
trend is further amplified by RL. This finding un-
derscores the synergistic roles of long CoT SFT
and RL in maximizing the efficiency of SLMs.

4978

0 50 100
6

8

10

12

14

16

18

20

Ac
cu

ra
cy

 (%
)

Qwen2.5-0.5B-Instruct

0 50 100

20

25

30

35

40

Qwen2.5-1.5B-Instruct

0 50 100
30

35

40

45

50

55 Qwen2.5-3B-Instruct

0 50 100

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

0 50 100

2

4

6

8

0 50 100

1

2

3

4

5

6

7

Base 8k 128k

Figure 7: Impact of long CoT SFT data on downstream RL training across Qwen2.5 models. Top: Accuracy of
RL-trained models over training steps. Bottom: Average response length during training. Each column corresponds
to a different model scale (0.5B, 1.5B, 3B). Each curve represents an SFT data setting: Base (no SFT, serving as a
baseline), 8k, and 128k (denoting the number of long CoT examples used during SFT). The horizontal axis in all
plots indicates the RL training steps.

Extensive long CoT SFT training substantially
enhances both the efficiency and performance
ceiling of subsequent RL. As illustrated in Fig-
ure 7, models without prior long CoT SFT show
marginal improvement during RL at scales of 0.5B,
1.5B, and 3B. In contrast, initializing RL from
a checkpoint trained on 128k long CoT exam-
ples results in faster accuracy improvements and a
markedly higher final performance. In particular,
it is interesting to observe that for the 0.5B model,
although long CoT SFT initially results in lower
performance compared to the baseline, RL training
rapidly closes this gap and further enhances model
capabilities. Notably, after RL, the model achieves
a 13% improvement over the baseline, and over a
60% gain relative to its pre-RL state. These results
indicate that for SLMs, even when long CoT SFT
temporarily degrades post-SFT performance, large-
scale exposure to long CoT data yields substantial
benefits during RL training.

Collectively, the results suggest that special care
is needed when using long CoT data to improve the
reasoning capabilities of small language models.
Effective use of such data first requires sufficient
exposure during the SFT stage. While the SFT-
trained model alone may not achieve strong perfor-
mance, the subsequent RL stage can substantially
enhance its capabilities.

5 Related Work

5.1 Long Chain-of-Thought

The paradigm of long CoT reasoning is first pop-
ularized by OpenAI-o1 (Jaech et al., 2024), and
becomes widely accessible with the open-sourcing
of DeepSeek-R1 (Guo et al., 2025). Outputs from
these LRMs are characterized by extended and re-
flective CoT sequences, which not only exhibit be-
haviors of system-2 cognition (Xiang et al., 2025;
Yu et al.; Li et al., 2025b), but also provide richer
intermediate supervision signals for knowledge
distillation (Hinton et al., 2015). As a result,
downstream model performance is substantially
improved (Huang et al., 2024).

Subsequent research focus on improving the ef-
ficiency of long CoT distillation. Notably, recent
studies (Muennighoff et al.; Ye et al., 2025) have
identified compact yet highly effective prompt sub-
sets, demonstrating that strong performance can be
achieved with as few as 1,000 training examples.
However, these efforts have predominantly concen-
trated on large-scale models (e.g., those with 32
billion parameters), and the impact of long chain-
of-thought reasoning on smaller models remains
largely unexplored.

Preliminary investigations into small language
models (8B parameters and below) include (Yeo
et al., 2025; Li et al., 2025a). While these stud-

4979

ies provide valuable insights into long CoT SFT
for small language models, they are based on rel-
atively limited datasets generated by the QwQ-
Preview model, which was developed before the
widespread adoption of zero-RL training (Team,
2024). This limitation raises concerns about the
generalizability of their findings to contemporary
training paradigms.

5.2 Theoretical Grounding of Long CoT
Degradation

Catastrophic forgetting refers to performance de-
cline on previously learned but unseen tasks af-
ter continued training (Nguyen et al., 2019; Kirk-
patrick et al., 2017). By contrast, long CoT degra-
dation emerges within the same task distribution
once long-form reasoning supervision is intro-
duced, underscoring its distinction from conven-
tional catastrophic forgetting.

Beyond forgetting, other learning dynamics also
display non-monotonic behaviors. For example,
research on domain adaptation and modality shifts
shows that adding more data can initially reduce
performance before eventual recovery (Gururan-
gan et al., 2020; Bansal et al., 2019). Similarly,
the deep double descent phenomenon (Nakkiran
et al., 2021) exhibits deterioration–recovery pat-
terns. Long chain-of-thought degradation follows
a related dynamic but along a distinct trajectory:
performance initially drops sharply when only lim-
ited long-form reasoning data is introduced, then
recovers steadily and monotonically as more such
data is added (Wu et al., 2025).

5.3 RL for Reasoning
The release of DeepSeek-R1 (Guo et al., 2025)
has sparked broad interest in the RL for reasoning
training paradigm, which involves applying rein-
forcement learning directly to base models using
rule-based rewards in conjunction with established
online RL algorithms (Schulman et al., 2017; Shao
et al., 2024; Liu et al., 2025).

RL has proven highly effective on reasoning
tasks with easily verifiable reward signals, partic-
ularly in math and coding (Xie et al., 2025; Hu
et al., 2025; Bercovich et al., 2025). Notably, re-
cent findings suggest that RL remains effective
even for small-scale language models, underscor-
ing its broad applicability (Zeng et al., 2025).

While prior work has shown that initial train-
ing with short-CoT SFT can constrain the benefits
of subsequent RL (Zeng et al., 2025) in reason-

ing tasks, recent studies combining extensive Long
CoT SFT with RL report superior performance,
sometimes exceeding that of larger models trained
via alternative pipelines (Luo et al., 2025b; Liu
et al., 2024; Luo et al., 2025a). However, system-
atic evaluations of long CoT SFT followed by RL,
particularly in the context of small language mod-
els, remain limited. This gap motivates the present
study’s comprehensive investigation.

6 Conclusion

In this work, we conduct a systematic study of
how the scale of long CoT data impacts small lan-
guage models (SLMs). Our findings reveal a consis-
tent phenomenon, Long CoT Degradation, where
limited long CoT supervision significantly impairs
model performance across diverse model families
and sizes. Through comprehensive experiments,
we further analyze the mechanisms behind this
degradation, attributing it to error accumulation
induced by excessively verbose outputs – an issue
to which SLMs are particularly vulnerable. Finally,
we show that while long CoT SFT can hinder sub-
sequent RL when data is insufficient, scaling up
long CoT supervision enables RL to achieve both
greater efficiency and higher final performance.

Our work highlights the pitfalls and misconcep-
tions in current long CoT usage for SLM training,
identifies key limitations, and offers practical guid-
ance for addressing them. We also hope this work
sheds light on future research aimed at designing
optimal pipelines for building effective reasoning
models.

Acknowledgments

This research/project is supported by the National
Research Foundation, Singapore under its National
Large Language Models Funding Initiative, (AISG
Award No: AISG-NMLP-2024-005), and Ministry
of Education, Singapore, under its Academic Re-
search Fund (AcRF) Tier 2 Programme (MOE
AcRF Tier 2 Award No. : MOE-T2EP20122-0011).
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the authors and do not reflect the views of the Na-
tional Research Foundation, Singapore, or Ministry
of Education, Singapore.

Limitations

While our work offers new insights into the ef-
fects of long CoT for SLMs, we acknowledge sev-

4980

eral limitations. First, our analysis focuses on
mathematical reasoning, which provides a well-
structured setting and reliable evaluation metrics
for studying long CoT supervision. While the find-
ings may offer insights applicable to domains such
as logical reasoning or code generation, we do not
directly study these areas.

Second, although we study multiple model fami-
lies and sizes and observe consistent patterns across
them, we do not explicitly isolate the impact of pre-
training data composition. Prior work suggests that
pre-training plays an important role in shaping long
CoT reasoning capabilities.

Third, our study is restricted to auto-regressive
models, and it remains unclear whether the ob-
served degradation–recovery dynamics generalize
to other architectures.

Ethical Statement

This study investigates the effects of long chain-
of-thought supervision on small language models
using publicly available models and datasets. The
research does not involve human subjects or any
sensitive or proprietary data. This work does not
propose or support any applications with foresee-
able potential for harm or misuse. In experiments,
we comply with all licenses for models, data and
code.

References
Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Pi-

otr Stanczyk, Sabela Ramos Garea, Matthieu Geist,
and Olivier Bachem. 2024. On-policy distillation
of language models: Learning from self-generated
mistakes. In Proceedings of ICLR.

Sameer Bansal, Herman Kamper, Karen Livescu, Adam
Lopez, and Sharon Goldwater. 2019. Pre-training
on high-resource speech recognition improves low-
resource speech-to-text translation. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 58–68.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad
Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach
Moshe, Tomer Ronen, Najeeb Nabwani, and 1 others.
2025. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024. Do not think that much for 2+ 3=? on

the overthinking of o1-like llms. arXiv preprint
arXiv:2412.21187.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen,
Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, and 1 others. 2025.
An empirical study on eliciting and improving r1-like
reasoning models. arXiv preprint arXiv:2503.04548.

Hugging Face. 2025. Open r1: A fully open reproduc-
tion of deepseek-r1.

Tao Feng, Yicheng Li, Li Chenglin, Hao Chen, Fei
Yu, and Yin Zhang. 2024. Teaching small language
models reasoning through counterfactual distillation.
In Proceedings of EMNLP.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Chaoqun He, Renjie Luo, Shengding Hu, Ranchi Zhao,
Jie Zhou, Hanghao Wu, Jiajie Zhang, Xu Han,
Zhiyuan Liu, and Maosong Sun. 2024. Ultraeval:
A lightweight platform for flexible and comprehen-
sive evaluation for llms. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 3: System Demonstra-
tions), pages 247–257.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Proceed-
ings of NeurIPS Datasets and Benchmarks Track.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xi-
angyu Zhang, and Heung-Yeung Shum. 2025. Open-
reasoner-zero: An open source approach to scaling
up reinforcement learning on the base model. arXiv
preprint arXiv:2503.24290.

Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu,
Yuxiang Zheng, Ethan Chern, Shijie Xia, Yiwei Qin,
Weizhe Yuan, and Pengfei Liu. 2024. O1 replication

4981

https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW
https://arxiv.org/pdf/2505.00949
https://arxiv.org/pdf/2503.04548
https://arxiv.org/pdf/2503.04548
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://aclanthology.org/2024.emnlp-main.333/
https://aclanthology.org/2024.emnlp-main.333/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2411.16489

journey–part 2: Surpassing o1-preview through sim-
ple distillation, big progress or bitter lesson? arXiv
preprint arXiv:2411.16489.

Tingfeng Hui, Lulu Zhao, Guanting Dong, Yaqi Zhang,
Hua Zhou, and Sen Su. 2024. Smaller language
models are better instruction evolvers. arXiv preprint
arXiv:2412.11231.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, and 1 others. 2017.
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
symposium on operating systems principles, pages
611–626.

Hojae Lee, Junho Kim, and SangKeun Lee. 2024.
Mentor-kd: Making small language models better
multi-step reasoners. In Proceedings of EMNLP.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif Ra-
sul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin,
Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lam-
ple, and Stanislas Polu. 2024. Numinamath.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang
Ren, Kai-Wei Chang, and Yejin Choi. 2023. Sym-
bolic chain-of-thought distillation: Small models can
also “think” step-by-step. In Proceedings of ACL.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang,
Luyao Niu, Bill Yuchen Lin, Bhaskar Ramasubrama-
nian, and Radha Poovendran. 2025a. Small models
struggle to learn from strong reasoners. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2025, pages 25366–25394, Vienna, Austria.
Association for Computational Linguistics.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, and 1 oth-
ers. 2025b. From system 1 to system 2: A survey
of reasoning large language models. arXiv preprint
arXiv:2502.17419.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding r1-zero-like training: A critical
perspective. arXiv preprint arXiv:2503.20783.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. 2024. Acemath: Advanc-
ing frontier math reasoning with post-training and
reward modeling. arXiv preprint arXiv:2412.15084.

Michael Luo, Sijun Tan, Roy Huang, Ameen Pa-
tel, Alpay Ariyak, Qingyang Wu, Xiaoxiang
Shi, Rachel Xin, Colin Cai, Maurice Weber,
Ce Zhang, Li Erran Li, Raluca Ada Popa, and
Ion Stoica. 2025a. Deepcoder: A fully open-
source 14b coder at o3-mini level. https:
//pretty-radio-b75.notion.site/DeepCoder-
A-Fully-Open-Source-14B-Coder-at-O3-mini-
Level-1cf81902c14680b3bee5eb349a512a51.
Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Y. Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
2025b. Deepscaler: Surpassing o1-preview with a
1.5b model by scaling rl. Notion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. s1: Simple test-time scaling.
In Workshop on Reasoning and Planning for Large
Language Models.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2021. Deep
double descent: Where bigger models and more data
hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003.

Cuong V Nguyen, Alessandro Achille, Michael Lam,
Tal Hassner, Vijay Mahadevan, and Stefano Soatto.
2019. Toward understanding catastrophic for-
getting in continual learning. arXiv preprint
arXiv:1908.01091.

OpenAI. 2025. Openai o3 and o4-mini system card.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, and 1 others. 2025.
Deepseek-prover-v2: Advancing formal mathemati-
cal reasoning via reinforcement learning for subgoal
decomposition. arXiv preprint arXiv:2504.21801.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

4982

https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2411.16489
https://arxiv.org/abs/2412.11231
https://arxiv.org/abs/2412.11231
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.16720
https://doi.org/10.18653/v1/2024.emnlp-main.977
https://doi.org/10.18653/v1/2024.emnlp-main.977
[https://huggingface.co/AI-MO/NuminaMath-1.5]
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2025.findings-acl.1301
https://doi.org/10.18653/v1/2025.findings-acl.1301
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2412.15084
https://arxiv.org/abs/2412.15084
https://arxiv.org/abs/2412.15084
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2502.03300
https://arxiv.org/abs/2502.03300
https://arxiv.org/abs/2502.03300

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2025. Hybridflow: A flexible
and efficient rlhf framework. In Proceedings of the
Twentieth European Conference on Computer Sys-
tems, pages 1279–1297.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, and 1 others. 2025a. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025b. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An,
Zhenyu Duan, Yimin Du, Junchen Liu, Lifu Tang, Xi-
aowei Lv, and 1 others. 2025. Light-r1: Curriculum
sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Un-
derstanding chain-of-thought length in llms. arXiv
preprint arXiv:2502.07266.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, and 1
others. 2025. Towards system 2 reasoning in llms:
Learning how to think with meta chain-of-though.
arXiv preprint arXiv:2501.04682.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025. Logic-rl: Un-
leashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi
Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang,
Jiaming Ji, Yingying Zhang, and 1 others. 2025.
Redstar: Does scaling long-cot data unlock bet-
ter slow-reasoning systems? arXiv preprint
arXiv:2501.11284.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint
arXiv:2502.03373.

Ping Yu, Jing Xu, Jason E Weston, and Ilia Kulikov.
Distilling system 2 into system 1. In The First Work-
shop on System-2 Reasoning at Scale, NeurIPS’24.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified
efficient fine-tuning of 100+ language models. In
Proceedings of ACL.

A Detailed Experimental Setups

A.1 Models

Category Models

Qwen Family Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct,
Qwen2.5-3B-Instruct,
Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct

Llama Family Llama3.2-1B-Instruct,
Llama3.2-3B-Instruct,
Llama3.1-8B-Instruct

Gemma Family Gemma3-1B-IT

Table 1: Overview of models investigated in this work.

Table 1 summarizes all models evaluated in this
study.

A.2 Supervised Fine-Tuning

Supervised Fine-Tuning (SFT) is conducted on a
dataset D = {(x(i), y(i))}Ni=1, where each prompt
x(i) is paired with an output y(i), which may in-
clude a long CoT. The objective is to maximize
the conditional log-likelihood log pθ(y

(i) | x(i)),
encouraging the model to reproduce high-quality
responses with structured reasoning.

Hyper-parameter Long CoT Data Amount

8k 16k 32k 64k 128k 220k

Number of Epochs 4 4 4 3 3 2
Batch Size 8 16 32 64 128 128
Learning Rate 5× 10−5

Optimizer Adamw
Learning Rate Scheduler cosine
Max Sequence Length 16384
Warmup ratio 0.05
Training Precision bfloat16

Table 2: Hyperparameters used for full-parameter super-
vised fine-tuning.

4983

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2502.07226
https://arxiv.org/abs/2502.07226
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38

Training Setup. Our SFT training is conducted
using LLaMA-Factory (Zheng et al., 2024) on a
server equipped with 8 H100 (80GB) GPUs. The
SFT experiments consumed approximately 2,500
GPU hours in total. We adopt full-parameter fine-
tuning for all SFT experiments. The detailed hyper-
parameters we used are presented in Table 2, which
are determined through a preliminary hyperparam-
eter search.

Evaluation Setup. We conduct evaluation using
the official Qwen2.5-Math repository6 and Ultra-
Eval (He et al., 2024). Notably, we leverage Ul-
traEval’s vLLM-based multi-GPU, data parallel
deployment to accelerate inference (Kwon et al.,
2023).

A.3 Reinforcement Learning

DeepSeek-R1 (Guo et al., 2025) conducts large-
scale RL using long CoT supervised fine-tuning
as a cold start, establishing a widely adopted train-
ing pipeline for reasoning-oriented models. In this
work, we adopt the same setup to study how long
CoT supervision during SFT influences model be-
havior in the subsequent RL stage.

For the RL algorithm, we use GRPO (Shao
et al., 2024), a computationally efficient variant
of PPO (Schulman et al., 2017) that eliminates the
need for a separate value model by estimating ad-
vantages using group-normalized rewards.

In line with DeepSeek-R1 and similar works, we
employ a rule-based binary reward function: the
model receives a reward of 1 if the final answer is
correct, and 0 otherwise. This simple yet effective
setup allows us to isolate the effect of long CoT
SFT on the optimization behavior during RL.

Hyper-parameter Value

Training Algorithm GRPO
Prompt Batch Size 1024
Rollout Per Prompt 8
Maximum Rollout Length 8192
Mini-Batch Size 256
Sampling Temperature 1.0
KL Loss Coefficient 1× 10−4

Learning Rate 5× 10−7

Table 3: Hyperparameters used for RL training.

Training Setup. Our RL training is conducted
using verl (Sheng et al., 2025) framework, on a

6https://github.com/QwenLM/Qwen2.5-Math

server equipped with eight H100 GPUs (each with
80GB of memory). The RL experiments consumed
approximately 5,000 GPU hours in total. The de-
tailed hyperparameters used in our experiments are
shown in Table 3.

A.4 Reflection Behavior Analysis Setup

We adopt a cross-validation approach, following
the methodology proposed in (Liu et al., 2025),
combining both keyword detection and LLM-based
identification to detect the self-reflective behaviors
in model outputs. In particular, the keyword pool
used in this work is limited to: recheck, rethink,
reassess, reevaluate, re-evaluate, reevaluation, re-
examine, reexamine, reconsider, reanalyze, double-
check, check again, think again, verify again, and
go over the steps.

Figure 9 presents the prompt employed to deter-
mine whether a response contains self-reflection
behaviors with an LLM-based approach.

A.5 Arithmetic Benchmark

Qualitative Examples. To complement our quan-
titative analysis, we present three representative ex-
amples in Figures 13, 14, and 15. These responses
are generated by Qwen2.5-3B-Instruct models un-
der different training settings: the baseline model,
the model finetuned on 8k-length CoT data, and
the model finetuned on 64k-length CoT data, re-
spectively. The baseline model solves the problem
correctly with a clear and concise reasoning pro-
cess. In contrast, the 8k-finetuned model produces
a much longer and more verbose response. Despite
proposing multiple alternative solutions, it repeat-
edly makes the same arithmetic mistakes, which
propagate across steps and compound the final er-
ror. The response also exhibits disfluency, includ-
ing repetitive phrases like “wait” and redundant
equation restatements. The 64k-finetuned model
shows significant improvement: it maintains more
coherent structure, reflects on its steps more ef-
fectively, and proposes alternatives in a way that
leads to the correct solution. These examples re-
inforce our hypothesis that longer responses intro-
duce more room for error and noise—unless offset
by sufficient training on long-form reasoning pat-
terns.

4984

https://github.com/QwenLM/Qwen2.5-Math

B Detailed Evaluation Results

B.1 Long CoT Degradation
Figure 11 and 12 show more detailed evaluation
results for the experiments in Section 2.

0 8k 16k 32k 64k 128k 220k
Long CoT Data Amount

0

20

40

60

80

100

Re
fle

ct
io

n
Ra

tio
 (%

)

Llama-3.2-1B
Llama-3.2-3B
Llama-3.1-8B
Gemma-3-1B

Figure 8: Reflection ratios of LLaMA and Gemma mod-
els of different sizes trained on varying amounts of long
CoT data. The reflection ratio refers to the proportion
of model responses (out of 4,000 on the MATH500
benchmark) that exhibit reflective behavior, as identi-
fied through cross-validation.

B.2 Reflection Behavior Analysis
Figure 8 and 10 are the detailed evaluation results
for the experiments in Section 3.2.

4985

I will send you a mathematical question along with a detailed response. Your task is to determine whether the
response is attempting to answer the question. If the response is off-topic, hallucinated, random talk, or
otherwise irrelevant, mark it as 0. Otherwise, assess whether the response exhibits self-reflection.
Categorization Rules:

1. Category 0: The response is off-topic, nonsensical, incoherent, overly repetitive, or lacks logical
reasoning.

• Example cases:
– The response does not relate to the question.
– It contains meaningless or hallucinated content.
– It consists of excessive repetition without coherence.

2. Category 1: The response attempts to answer the question but does not exhibit self-reflection.
• Example cases:

– The response directly solves the problem without revisiting steps.
– No attempt is made to verify the correctness of the answer or explore alternative

solutions.
3. Category 2: The response demonstrates self-reflection at any level.

• This may include:
– Explicit self-reflection keywords, such as: *recheck, rethink, reassess, reevaluate,
re-evaluate, reevaluation, re-examine, reexamine, reconsider, reanalyze, double-
check, check again, think again, verify again, go over the steps*, etc.
– Implicit self-reflection behaviors, such as revisiting the solution, questioning
assumptions, or considering alternative approaches without explicit keywords.

• If any form of self-reflection is present, always categorize it as 2, regardless of correctness
or answer quality.

4. Category 3: The response consists solely of Python code for calculations without exhibiting self-r
 eflection.
• Example cases:

– The response only provides a Python script to compute the solution without any
verification, re-evaluation, or alternative considerations.

Output Format:
Your response should first provide a very brief explanation of your analysis, followed by a single category
number (0, 1, 2, or 3) at the end. You must include the category number at the end of your response.
Example outputs:

• ‘The response is off-topic and does not attempt to answer the question. 0.’
• ‘The response provides a direct solution without self-reflection. 1.’
• ‘The response demonstrates self-reflection. 2.’
• ‘The response consists solely of Python code without any self-reflection. 3.’

Question: {question}
Response: {response}

Figure 9: Prompt template used by GPT-4o-mini for reflection behavior identification.

4986

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h

(K
)

Qwen2.5-0.5B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
Qwen2.5-1.5B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
Qwen2.5-3B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h

(K
)

Qwen2.5-7B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
Qwen2.5-14B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
Llama-3.2-1B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h

(K
)

Llama-3.2-3B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
Llama-3.1-8B-Instruct

8k 16k 32k 64k 128k 220k
0

2

4

6

8

10
gemma-3-1b-it

w/ reflection w/o reflection

Figure 10: Average response lengths of multiple models trained with varying amounts of long CoT data. Solid lines
represent responses exhibiting reflection behavior; dashed lines denote responses without reflection.

4987

0 8k 16k 32k 64k 128k 220k

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k
6

8

10

12

Qwen2.5-0.5B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

15

20

25

30

MATH500

0 8k 16k 32k 64k 128k 220k
0

1

2

3

4

5

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

20

25

30

35

40

Qwen2.5-1.5B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k
40

44

48

52

56

MATH500

0 8k 16k 32k 64k 128k 220k
3

6

9

12

15

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

35

40

45

50

Qwen2.5-3B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

54

60

66

72

78
MATH500

0 8k 16k 32k 64k 128k 220k

8

16

24

32

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

40

50

60

70

Qwen2.5-7B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

64

72

80

88

MATH500

0 8k 16k 32k 64k 128k 220k
10

20

30

40

50

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

50

60

70

80

90

Qwen2.5-14B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

75

80

85

90

MATH500

3

6

9

12

3

6

9

12

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h

(K
)

3

6

9

12

15

2

4

6

8

10

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

3

6

9

12

15

0

3

6

9

1
2
3
4
5
6
7

Re
sp

on
se

 L
en

gt
h

(K
)

0

4

8

12

0

3

6

9

0

2

4

6

Re
sp

on
se

 L
en

gt
h

(K
)

3

6

9

12

2

4

6

8

10

1

2

3

4

5

6

Re
sp

on
se

 L
en

gt
h

(K
)

Accuracy Response Length

Figure 11: Comprehensive evaluation of Qwen models trained with varying amounts of long CoT data.

4988

0 8k 16k 32k 64k 128k 220k

0.0

0.3

0.6

0.9

1.2

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

6

9

12

15

Llama-3.2-1B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

15

20

25

30

MATH500

0 8k 16k 32k 64k 128k 220k

0

3

6

9

12

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k
16

24

32

40

48

Llama-3.2-3B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

40

48

56

64

MATH500

0 8k 16k 32k 64k 128k 220k
0

6

12

18

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

15

30

45

60

Llama-3.1-8B-Instruct
AMC23

0 8k 16k 32k 64k 128k 220k

40

50

60

70

80

MATH500

0 8k 16k 32k 64k 128k 220k

0.0

0.6

1.2

1.8

Ac
cu

ra
cy

 (
%

)

AIME24

0 8k 16k 32k 64k 128k 220k

6

12

18

24

Gemma-3-1B-it
AMC23

0 8k 16k 32k 64k 128k 220k

16

24

32

40

MATH500

3

6

9

12

3

6

9

12

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

4

8

12

16

3

6

9

12

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

3

6

9

12

15

3

6

9

12

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

3

6

9

12

15

3

6

9

12

2

4

6

8

Re
sp

on
se

 L
en

gt
h

(K
)

Accuracy Response Length

Figure 12: Comprehensive evaluation of LLaMA and Gemma models trained with varying amounts of long CoT
data.

4989

Example 1 Qwen2.5-3B-Instruct

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
To solve the arithmetic expression (14× 21× 38+ 32+ 23+ 31+ 3)− 11+ 59+ 71+ 60, we need to follow the
order of operations, which means we should perform the multiplication before the addition and subtraction.
First, calculate the product 14× 21× 38:

14× 21 = 294

294× 38 = 11172

Now substitute this back into the expression:

11172 + 32 + 23 + 31 + 3− 11 + 59 + 71 + 60

Next, add the numbers inside the parentheses:

11172 + 32 + 23 + 31 + 3 = 11261

Now, substitute this back into the expression:

11261− 11 + 59 + 71 + 60

Perform the subtraction and addition from left to right:

11261− 11 = 11250

11250 + 59 = 11309

11309 + 71 = 11380

11380 + 60 = 11440

Thus, the final answer is:

11440

Figure 13: Example from our synthetic arithmetic benchmark. The response is generated by the Qwen2.5-3B-
Instruct model. The model follows a step-by-step approach, applying the order of operations to solve the arithmetic
expression.

4990

Example 2 Qwen2.5-3B-Instruct 8k

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
Okay, let’s see. I need to compute this arithmetic expression: (14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60.
Hmm, that looks a bit complicated, but let’s break it down step by step.
First, I should handle the operations inside the parentheses before dealing with the numbers outside. The expression
starts with 14 multiplied by 21 multiplied by 38. Let me calculate that first. Multiplying those numbers might take
some time, so maybe I can do them step by step. Let’s see, 14 times 21. Hmm, 14*20 is 280, and 14*1 is 14, so
280+14=294. Then, multiplying that result by 38. Okay, 294*38. Let me break that down too. Maybe 294*30 is
8820, and 294*8 is 2352. Adding those together, 8820+2352. Let me add them step by step: 8820 + 2000 is 10820,
then +352 more is 11172. So, 14*21*38 equals 11172.
Next, the problem adds 32 to that result. So, 11172 + 32. That’s straightforward, 11172 + 30 is 11202, plus 2 more is
11204. Then, it adds 23: 11204 +23. Let’s see, 11204 +20 is 11224, plus 3 is 11227. Next, adding 31: 11227 +31.
11227 +30 is 11257, plus 1 more is 11258. Then, adding 3: 11258 +3. That’s just 11261. So, inside the parentheses
simplifies to 11261.
Now, the expression continues with minus 11: 11261 -11. That’s easy, 11261 -10 is 11251, minus 1 more is 11250.
Then, adding 59: 11250 +59. Let me check that. 11250 +50 is 11290, plus 9 is 11299. Next, adding 71: 11299 +70 is
11369, plus 1 is 11370. Then, adding 60: 11370 +60. That’s 11370 +60. Let me verify. 11370 +60: 11370 +50 is
11320, plus 10 is 11330, plus 10 is 11340. Wait, no, hold on. Wait, 11370 +60: 11370 +60. Let me do this differently.
11370 + 60 is the same as 11370 + 6*10. So, 11370 +60 = 11370 + 6*10. 11370 +60 is 11370 + 60. Alternatively,
11370 + 60 = 11370 + 60. Let me add 11370 + 60. 11370 + 60: 11370 + 50 is 11320, then +10 is 11330. Wait, that
doesn’t seem right. Wait, 11370 +60: 11370 + 60. Let’s think of 11370 as 1137*10. Then 1137*10 +6*10 = 11370
+60. Alternatively, 11370 +60: 11370 + 60. Let’s do 11370 + 60. 11370 + 50 = 11320, then +10 = 11330. Wait, but
11370 +60 is actually 11370 + 6*10. So, 11370 +60 = 11370 + 60. Let me verify with another approach. 11370 +60:
11370 + 60. If I break down 60 into 50 +10, then 11370 +50 = 11320, then +10 = 11330. Alternatively, 11370 +60:
11370 + 60. Let me do 11370 + 60. Let’s count from 11370: adding 10 is 11380, adding another 10 is 11390. Wait,
no. Wait, 11370 +60: 11370 + 60. Let me use column addition.
......
Wait, that’s correct. So, 11370 +60 = 11430. So, in that case, 11370 +60 = 11430. So, 11430 is the sum of 11370 and
60. Okay, so that’s correct. Therefore, 11261 -11 +59 +71 +60 equals 11261 -11 + (59+71+60). Let me compute
59+71 first. 59+71: 50+70 is 120, 9+1 is 10, so 120+10=130. Then, 130+60 is 190. So, 59+71+60=190. Then, 11261
-11 is 11250, plus 190 is 11250 +190. Let me add those. 11250 +190: 11250 +100 is 11350, then +90 is 11350
+90=11340. So, the total is 11340.
Wait, let me check that again. 11261 -11 is 11261 -10=11251, minus 1=11250. Then, 11250 +59=11250+59. Let’s
do 11250 +50=11290, then +9=11299. Then, 11299 +71=11299+70=11369, +1=11370. Then, 11370 +60=11430.
So, total is 11430.
Alternatively, maybe there’s a different way to compute the total without breaking it down so many times. Let me see.
The original expression is (14*21*38 +32+23+31+3) -11+59+71+60. So, the first part is 14*21*38 + (32+23+31+3).
......
So, that’s 11261. Then, 11261 -11=11250, +59=11250+59=11250+50+9=11290+9=11299. Then,
+71=11299+70=11369+1=11370. Then, +60=11370+60=11430. So, total is 11430.
......
Wait, maybe the error is in the initial step of adding the numbers inside the parentheses. Let me check that again. The
first part is (14*21*38 +32 +23 +31 +3). Let’s compute each term:
14*21*38: 14*21=294, 294*38=11172. Correct.
......
So, inside the parentheses is 11261. Then, subtract 11: 11261 -11=11250. Correct.
Then, add 59: 11250 +59=11250 +50 +9=11290 +9=11299. Correct.
Add 71: 11299 +71=11299 +70 +1=11369 +1=11370. Correct.
Add 60: 11370 +60=11370 +60=11430. Correct.
So, the total is 11430. Therefore, the first method is correct. Then, why does the second method give a different
result? Because in the second method, the user added the constants first.
Therefore, the total is 11430. Therefore, the second method is incorrect because it misapplies the order of operations.
The user added the constants first, which is not the case in the original expression. The original expression requires
the constants to be added after the product is computed and before the subtraction and additions. Therefore, the
correct total is 11430.
Therefore, the final answer is 11430 .

Figure 14: Example from our synthetic arithmetic benchmark. The response is generated by Qwen2.5-3B-Instruct
finetuned on 8k long CoT data. Despite proposing multiple alternative solutions, the model makes similar calculation
errors, which propagate through subsequent steps and result in compounding mistakes. Incorrect steps are highlighted
in red. The response is truncated as it exceeds 5,000 tokens.

4991

Example 3 Qwen2.5-3B-Instruct 64k

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
Okay, so I need to compute this arithmetic expression: (14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60. Hmm, let
me break this down step by step. First, I should handle the operations inside the parentheses, which is the product of
14, 21, and 38, then add the other numbers. Let me start with that.
Calculating 14 multiplied by 21. Let me do 14*20 first, which is 280, and then add 14*1, which is 14. So 280 + 14
= 294. Okay, so 14*21 is 294. Now, I need to multiply that result by 38. Hmm, 294*38. Let me break that down.
Maybe 294*40 would be easier, but subtract 294*2. Wait, 294*40 is 11,760 and 294*2 is 588. So 11,760 - 588 =
11,172. So 14*21*38 is 11,172. Let me check that again to be sure. 294*38: 294*30 is 8,820 and 294*8 is 2,352.
Adding those together: 8,820 + 2,352. Let’s see, 8,000 + 2,000 is 10,000, 820 + 352 is 1,172. So 10,000 + 1,172 is
11,172. Yep, that matches. So that part is correct.
Now, add the numbers 32, 23, 31, and 3. Let’s do that step by step. 32 + 23 is 55. Then 55 + 31 is 86. Then 86 + 3 is
89. So the sum inside the parentheses is 11,172 + 89. Let me compute that. 11,172 + 80 is 11,252, then +9 is 11,261.
So the parentheses part equals 11,261.
Now the entire expression is 11,261 - 11 + 59 + 71 + 60. Let me handle the subtraction and addition from left to right.
So first, 11,261 - 11. That’s straightforward: 11,261 - 10 is 11,251, then subtract 1 more is 11,250. So now we have
11,250 + 59 + 71 + 60.
Let me add those numbers. 59 + 71. 50 + 70 is 120, 9 + 1 is 10, so total 130. Then 130 + 60 is 190. So adding 190 to
11,250 gives 11,250 + 190 = 11,440. Let me verify each step again to make sure I didn’t make a mistake.
First, 14*21*38: 14*21 is 294, 294*38 is 11,172. Then adding 32+23+31+3: 32+23=55, 55+31=86, 86+3=89. So
11,172 + 89 = 11,261. Then 11,261 - 11 = 11,250. Then adding 59+71+60: 59+71=130, 130+60=190. 11,250 + 190
= 11,440. Seems correct.
Wait, let me check the addition again. 59 + 71: 59 + 70 is 129, plus 1 is 130. Then 130 + 60 is 190. Correct. Then
11,250 + 190: 11,250 + 100 is 11,350, plus 90 is 11,440. Yes. So the final answer should be 11,440.
But just to be thorough, let me compute the entire expression step by step again, maybe using a different order or
verify the multiplication another way.
Alternatively, maybe I can compute 14*21*38 again. Let’s see, 14*21 is 294, then 294*38. Let’s compute 294*38 as
(300 - 6)*38. So 300*38 = 11,400, 6*38=228. So 11,400 - 228 = 11,172. Same result. Then adding 32+23+31+3:
32+23=55, 55+31=86, 86+3=89. So 11,172 + 89 = 11,261. Then subtract 11: 11,261 - 11 = 11,250. Then add
59,71,60. Let’s do 59 + 71 first: 59 + 71. 59 + 70 is 129, plus 1 is 130. Then 130 + 60 is 190. So 11,250 + 190 is
11,440. All steps check out.
Alternatively, maybe compute the entire expression as written:
(14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60
Let me compute all the additions first before subtracting:
First, compute the sum inside the parentheses: 14*21*38 + 32 + 23 + 31 + 3.
But we already did that. Then subtract 11, then add 59, 71, 60.
Alternatively, maybe compute each term step by step:
Start with 14*21*38. Let’s compute that again. 14*21 is 294. Then 294*38. Let me compute 294*38 as 294*(30 + 8)
= 294*30 + 294*8. 294*30 is 8,820. 294*8 is 2,352. Adding those gives 8,820 + 2,352 = 11,172. Correct.
Then 32 + 23 + 31 + 3. Let’s add them in pairs: 32 + 31 = 63, 23 + 3 = 26. Then 63 + 26 = 89. Correct. So the
parentheses total 11,172 + 89 = 11,261.
Now subtract 11: 11,261 - 11 = 11,250. Then add 59, 71, 60. Let’s add 59 + 71 first. 59 + 70 is 129, plus 1 is 130.
Then 130 + 60 = 190. Then 11,250 + 190 = 11,440. All steps confirm the same result.
Alternatively, maybe compute the entire expression as written:
14*21*38 + 32 + 23 + 31 + 3 - 11 + 59 + 71 + 60
But that’s the same as before. Alternatively, compute each term in order:
14*21*38 = 11,172
......
+60 = 11,440
Yes, same result. So regardless of the order, the answer is 11,440.
I think that’s solid. Let me just check if I made any arithmetic errors in the final addition. 11,250 + 190. 11,250 +
100 = 11,350. Then +90 is 11,440. Correct.
Alternatively, 190 is 100 + 90. 11,250 + 100 is 11,350. 11,350 + 90 is 11,440. Yep.
So I think that’s the correct answer. 11,440. So the final answer is 11440 .

Final Answer 11440

Figure 15: Example from our synthetic arithmetic benchmark. Response is generated by Qwen2.5-3B-Instruct
finetuned on 64k long CoT data. The model frequently engages in verification steps and occasionally proposes
alternative solutions. Verification steps and alternative solution paths are highlighted in blue.

4992

