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Abstract

Large language models show promising perfor-
mance on reasoning tasks, yet evaluation meth-
ods for low-resource languages remain lim-
ited, particularly for complex STEM problem-
solving. We introduce Trojsten Benchmark, a
Slovak-language dataset of 1,108 high-school
competition problems with reference solutions
across mathematics, physics, and programming,
and a rubric-based LLM grading framework.
Using GPT-4 to generate rubrics and grade so-
lutions, we observe 1.05 average absolute devi-
ation from human graders (5-point scale), while
benchmarking GPT-3.5-Turbo, GPT-4, GPT-4o,
and open-weight models (Llama 3, Phi-3). We
quantify multistep reasoning performance by
difficulty, show consistent underperformance
on harder items, and demonstrate language sen-
sitivity: accuracy drops on English translations
of Slovak statements, evidencing challenges
beyond translation. Trojsten Benchmark com-
plements English-centric math datasets (e.g.,
MATH, GSMS8K) by targeting open-response,
rubric-gradable reasoning under low-resource
linguistic framing. We release code and data
to enable reproducible evaluation and human-
aligned auto-grading for STEM in under-served
languages.

1 Introduction

The growing capabilities of Large Language Mod-
els (LLMs) have transformed the landscape of ed-
ucational assessment (Li et al., 2023; Wang et al.,
2024; Gan et al., 2023; Kasneci et al., 2023; Phung
et al., 2023). Although previous experiments re-
ported LLMs that have been pre-trained (Wu et al.,
2023) or fine-tuned to provide grading labels (Latif
and Zhai, 2024; Organisciak et al., 2023), LLMs
are increasingly applied in grading open-ended re-
sponses and providing feedback beyond traditional
methods that rely on exact answers (e.g., multiple-
choice or numerical questions) (Chang and Ginter,
2024; Divya et al., 2023; Fagbohun et al., 2024;
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Koutcheme et al., 2024). However, previous work
largely focuses on shorter, simpler answers, with-
out addressing the more demanding multistep rea-
soning often required in STEM subjects (Yan et al.,
2024).

Historically, human evaluators have set the
benchmark for grading complex, descriptive, and
problem-solving tasks. In this work, we introduce
the first dataset centered on Slovak high-school
competition problems in mathematics, physics, and
programming, a domain where datasets are scarce.
These problems present a unique challenge: while
publicly available in PDF form, their formatting
makes them difficult to process automatically, en-
suring that they are unlikely to have been included
in large-scale LLM training datasets. This allows
for a relatively unbiased evaluation, providing a
more accurate reflection of LLM performance com-
pared to datasets in widely represented languages.

To the best of our knowledge, this is the first
work that focuses on complex STEM problems re-
quiring multistep reasoning while involving human
experts to evaluate both generated rubrics and the
evaluations based on those rubrics. Previous stud-
ies, such as (Wu et al., 2024), (Sawada et al., 2023)
and (Chiang et al., 2024), rely on expert-provided
rubrics, model-generated rubrics or short-answer
assessments, respectively, without expert verifica-
tion or a focus on multistep problems. Moreover,
perhaps the closest work to ours (Xie et al., 2024),
explores LLM-based grading in an Operating Sys-
tems course using the Mohler dataset (Mohler and
Mihalcea, 2009; Mohler et al., 2011), but does not
employ human evaluators to the same extent nor
targets complex problem-solving tasks.

While the formal principles of mathematics,
physics, and programming are universal, their ex-
pression in natural language — particularly in com-
plex, multi-step word problems — is not. Datasets
from high-school competitions, such as the Tro-
jsten Benchmark, are developed within a specific
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educational tradition and cultural context. This re-
sults in unique linguistic framing, idiomatic phras-
ing, and problem narratives that may differ signifi-
cantly from the English-centric corpora on which
most large language models are trained. A central
goal of our work is therefore to investigate whether
this linguistic specificity provides a genuine chal-
lenge beyond simple translation effects. Indeed,
our experiments confirm this hypothesis, reveal-
ing that model performance is highly sensitive to
the source language. For instance, we found that
GPT-4’s performance on a subset of our problems
dropped from an average score of 3.30 in the orig-
inal Slovak to just 1.32 when manually translated
into English (Section 5.4), demonstrating that the
original low-resource formulation presents a dis-
tinct and non-trivial reasoning challenge.

Our contributions are fourfold: (1) We present
the first comprehensive dataset of Slovak competi-
tion problems in mathematics, physics, and pro-
gramming, with reference solutions, tailored to
support educational research in low-resource lan-
guages; (2) We introduce an LLM-based grading
framework that leverages GPT-4 (OpenAl et al.,
2024) to generate detailed rubrics and evaluate stu-
dent solutions, aiming to address the complexities
of STEM problem-solving; (3) We systematically
compare GPT-4’s grading performance with hu-
man evaluations, emphasizing the gaps that still ex-
ist, particularly in nuanced or complex responses;
and (4) We introduce baseline benchmarks on our
dataset using various large language models and
prompting techniques, providing insight into their
reasoning abilities in Slovak language.

The benchmark code and data used for experi-
ments in this paper are published on GitHub'.

1.1 Related work

Large language models have already been eval-
uvated on mathematical reasoning tasks by re-
searchers using numerous datasets, most of which
were created by scraping problems from the inter-
net or standardized tests. We provide a comparison
of a selection of datasets related to our work.
MATH is a dataset consisting of challenging
competition mathematic problems with step-by-
step natural language solutions introduced by
Hendrycks et al. (2021). The problems were re-
trieved from United States’ mathematics compe-
titions. GSMS8K released by Cobbe et al. (2021)

1https://github.com/gardenerik/
trojsten-benchmark

consists of multistep elementary school word prob-
lems with natural language solutions. MGSM is a
multilingual dataset introduced by Shi et al. (2022)
containing 250 manually translated grade-school
problems from the GSM8K. Various other datasets
such as Omni-MATH (Gao et al., 2024), CHAMP
(Mao et al., 2024) and MathOdyssey (Fang et al.,
2024) explore similar types of problems in the high-
school competition space, or harder.

Despite these advancements, there remains a
scarcity of datasets and evaluation methods for
complex STEM problems in lower-resource lan-
guages. To the best of our knowledge, our work
introduces the first comprehensive dataset of Slo-
vak competition problems in mathematics, physics,
and programming designed to evaluate the reason-
ing capabilities of LLMs on authentic problem sets
in a low-resource language.

2 Problem dataset

The problem dataset used in this paper contains
various problems and their solutions from Slovak
high-school competitions. As they are competi-
tion problems, they are designed to be challenging
for high-school students. These problems are de-
signed so that an average student should be able
to solve about half of them. The dataset contains
problems from three categories: maths, physics and
programming. These problems usually require the
student to embrace innovative approaches, and to
document them thoughtfully in their solution.

2.1 Creating the dataset

The dataset was sourced from competition archives,
originally available as Markdown or LaTeX docu-
ments.

Each problem was manually reviewed by a hu-
man annotator for classification, to ensure overall
quality, and to filter out items that lacked sufficient
information in the problem statement itself (e.g.,
problems requiring videos or linking to external
websites).

The final dataset consists of 1,108 problems and
their solutions: 361 from mathematics, 479 from
physics, and 268 from programming competitions.
The materials span approximately eight years of
national-level STEM competitions.

This dataset is comparable in size and scope to
the one introduced in Sawada et al. (2023). How-
ever, unlike that dataset—which includes a sub-
stantial number of multiple-choice problems—all
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problems in our dataset are open-ended, without
any answer options provided.

2.2 Overview of the problems

The problems in our dataset are not only diverse in
terms of the primary target area (maths, physics and
algorithms), but in addition, there are also different
types of such problems.

2.2.1

The overwhelming majority (189 problems) of our
maths problems are based on the student having
to prove whether a given statement is true or not.
Other problems require the student to quantify
some equations or otherwise calculate a numerical
result (84 problems). There are some (42) problems
that want to enumerate all numbers, functions, etc.
that satisfy certain conditions. Furthermore, there
happens to be a tiny number (4) of problems that
require to carry out some geometric construction.
An example maths problem is provided in Figure
1.

Maths problems

Let f : RT™ — R be a function such that
the functions f(z) — 2 and f(x) — 3z are
increasing. Determine whether the function
f(x) — 2% — 2 must be monotone.

Figure 1: A sample problem from the “maths” part of
our dataset. The problem text was translated to English
for consistency.

2.2.2 Physics problems

We divide physics problems into two categories.
The first category of problems is problems that
only need theoretical knowledge to explain a rela-
tionship between physics variables or explain some
physical phenomena. They usually involve figuring
out some equations, explaining them, and using
them to obtain an answer to the question. This cat-
egory makes up 428 of the problems. The second
category requires the student to come up with an
experiment setup, execute and document the exper-
iment. There are 51 such problems. An example
problem is provided in Figure 2.

2.2.3 Algorithmic problems

All of our algorithmic problems focus on figuring
an effective way to solve some problem. This usu-
ally means using different algorithms in unusual
ways or coming up with new algorithms to solve

I’m sitting in a bubble bath and bubbles are
flowing up my back. They seem very cold,
perhaps even colder than the surrounding air.
Why is that?

Figure 2: A sample problem from the “’physics” part of
our dataset. The problem text was translated to English
for consistency.

the problem. Algorithmic problems are also among
the longest in our dataset. This is because they
contain plenty of details about the input and output
format, input size constraints, along with a fictional
story to provide some practical background to the
problem. An excerpt from one such problem is
provided in Figure 3.

You have been given points on a plane. Find
out how non-random they are, that is, the ver-
tices of how many triangles they form.

Figure 3: A sample problem (shortened into an excerpt)
from the ”algorithmic” part of our dataset. The problem
text was translated to English for consistency.

2.3 Difficulty

The problems in our dataset have varying degrees
of difficulty. In the real competitions they were
taken from, they tend to be sorted by estimated dif-
ficulty. The few first problems should be solvable
by all high school students, whereas the last prob-
lems are usually solved only by students engaging
in national or international competitions. The rela-
tive difficulty data is used to assign every problem
a difficulty score on a scale of 1 to 10, with 10
being the most difficult. The difficulty distribution
is shown in Figure 4. This score will later be used
to quantify the abilities of large language models in
solving these problems. Some of our competitions
did have less than 10 problems in one round, in
which case we distributed their difficulty evenly
across the 1-10 scale.

2.4 Length

An average problem in our dataset has 195 words.
However, most of our problems are less than 200
words long, as shown on Figure 5. This is be-
cause mathematical and physical problems are typ-
ically brief, whereas algorithmic problems tend to
be more extensive. This anomaly was discussed in
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Figure 4: Problem difficulty distribution across the
whole dataset.

Section 2.2.3, and is mostly due to a longer problem
story and details about handling input and output
data.

2.5 Overview of the solutions

As stated previously, our dataset contains solutions
in natural language for every problem. That means
that the solutions contain explanations, proofs and
other details. An example of such a natural lan-
guage solution is provided in Figure 6.

Our reference solutions vary greatly in their
word count. An average reference solution is 652
words long, with the longest reference solution con-
sisting of 3,682 words. In our maths problems, the
average length is 487 words. For our physics prob-
lems, the typical length increases to 660 words.
Meanwhile, our algorithmic problems tend to have
more detailed solutions, with an average length of
850 words. The distribution of the word count is
shown in Figure 7.

3 Grading method

The most straightforward way to grade a solution
using LLM is to provide the model with the refer-
ence solution and the answer that should be evalu-
ated. It is then asked to grade the provided answer.
Prior research indicates that such an approach is
possible, but the evaluations are not reliable enough
to be used alone (Kortemeyer, 2023b; Schneider
et al., 2023). Some researchers went so far as to
avoid providing the model with the reference so-
lution. We have experimented zero-shot prompt-
ing the model with the reference solution and the
student’s solution. Our results during preliminary
experiments were unreliable and inconsistent, simi-
lar to those observed by Kortemeyer (2023a) in a
similar experiment. This has motivated us to focus

on other methods.

An improved approach was introduced by ask-
ing the model to generate evaluation rubrics, and
then using those rubrics to evaluate the solutions
(Sawada et al., 2023). The model is provided with
the reference solution and generates rubrics and
allocates points to them. It was shown by Sawada
et al. (2023) that GPT-4 designs rubrics that cover
most of the solution steps correctly, but sometimes
fail to properly allocate points based on their im-
portance. The authors further discovered that the
model is quite reliable on assigning the correct
number of points to solutions based on the gen-
erated rubrics. However, the model cannot score
solutions that do not follow the generated rubrics,
but are otherwise correct. Another issue with this
approach is that the model attempts to assign points
to attempted solutions that are outside the gener-
ated rubrics. A human evaluator would score these
solutions with zero points.

Aware of its limitations, our approach to evaluat-
ing the answers is inspired by the work of Sawada
et al. (2023). We zero-shot GPT-4 with the refer-
ence solution and prompted it to generate a grad-
ing rubric. The used prompts are outlined in Ap-
pendix D.

Then, those generated rubrics are used to pro-
duce a grading score on a scale of 0 to 10. This is
achieved by zero-shot prompting the model with
the rubric and the student’s solution. We also asked
the model to provide a comment for every point in
the rubric, as this improved its consistency. The
model concluded its output with the final score.
Our method is also visualized in Figure 8.

After some experiments, we have established the
GPT-4 model as our grader and rubric generator. At
first, we tried using GPT-3.5-Turbo, but were dis-
satisfied with its capabilities. The model was often
referencing to non-existent claims in the solution
or the grading rubric itself. It sometimes made en-
tirely new and incorrect claims about the concepts
involved in the problem. The model also failed to
keep attention to details, which was most noticed
in maths expressions. For example, the model did
not notice a difference between 3 and wTH We
also found that the model failed to follow the math-
ematical reasoning of a solution properly, probably
due to the aforementioned issues. We then experi-
mented with the larger GPT-4 model, with which
we did not experience most of those problems. We
also noticed that the quality of produced comments
was greatly improved.
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Figure 5: Number of words in the problem statements that can be found in the dataset.

When we put our finger below the surface, the
water level rises a little. This will increase the
hydrostatic pressure at the bottom of the right
bowl. Since the pressure at the bottom of the
left bowl has not increased, the scales will tip
to the right.

Figure 6: A sample solution that can be found in the
dataset. The solution text was translated to English for
consistency.

All grading experiments were run against GPT-4
using the Azure OpenAl endpoints % using the API
version 2023-12-@1-preview with the tempera-
ture set to O to aid reproducibility. An extended
discussion on the resource requirements in terms
of utilized tokens as well as the full cost of the
experiments can be found in Appendix C. GPT-4
was used because it had the best performance at the
time of design.

We later also experimented with Llama3 as a
grader. The obtained results indicate that, despite
lower absolute scores, Llama preserves the rela-
tive rankings while also reporting robust Pearson
and Spearman correlations. Detailed results are at-
tached in Appendix B. Taken together, we believe
this suggests that it can serve as a GPT-4 replace-
ment when access to a proprietary model may be
problematic.

4 Evaluation

We have executed various experiments to evalu-
ate the quality of rubrics and grading produced by
LLMs and compare them with those provided by
five volunteer human evaluators. Each of them had
prior experience with evaluation of the respective

2https ://learn.microsoft.com/en-us/azure/
ai-services/openai/reference

competition problems, and each problem was eval-
uated by at least two evaluators. All five human
evaluators were Slovak university students.

This was done on various problems from our
local maths, physics and computer science com-
petitions for high school students. We have tried
our best to select problems with various difficulty
levels and to keep their selection balanced.

4.1 Consistency with reference solutions

As a sanity check, our method was tested by pro-
viding GPT-4 with the reference solutions of 112
problems to grade them. On average, GPT-4 graded
the reference solution with 9.6 points out of 10,
with most of the scores being 10/10, as shown in
Figure 9.

4.2 Quality of the generated rubrics

We randomly picked a subset of the generated
rubrics (20 rubrics per subset, 60 in total) and asked
the competition organizers whether they agreed
with them by using a 5-point Likert scale’. By
doing this, we gained insight into the quality of
the rubrics themselves. On average, our organiz-
ers reached an agreement Likert score of 3.98 with
a median of 4, a standard deviation of 0.93 and
Cohen’s kappa inter-annotator agreement score of
0.24, which suggests fair agreement as outlined by
Landis and Koch (1977).

4.3 Ability to correctly assign points

We asked the organizers to verify GPT-4’s scoring
against the rubric by manually grading two ran-
domly selected generated solutions for each evalu-
ated rubric (around 120 solutions in total). This was
done to assess GPT-4’s ability to follow the rubric

3The Likert items used were: 1 Strongly disagree / 2 Dis-
agree / 3 Neither agree nor disagree / 4 Agree / 5 Strongly
agree
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Figure 7: Number of words in the reference solutions that can be found in the dataset.
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Figure 8: A visualization of our grading method in the
form of a diagram.
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Figure 9: Scores awarded by GPT-4 to the sample refer-
ence solutions.

and accurately assign and tally points. The aver-
age absolute difference between GPT-4’s grading
and that of a human evaluator, when both followed
the rubric, was 1.05 points. On average, GPT-4
assigned 0.9 points more than it should have, indi-
cating a consistent overestimation. The comparison
between the points awarded by GPT-4 and the hu-
man evaluators is shown in Figure 10.

4.4 Comparing to human evaluators

We also asked our organizers to grade the solu-
tions that we provided them in the section 4.3 as if
they were grading the problem themselves, with-
out using the rubric. This provides an additional
insight into the quality of both rubrics and grad-
ing by the model. The average absolute difference

10 4

Points according to GPT-4

0 2 4 6 8 10
Points according to the rubric

Figure 10: Relationship between GPT-4 and human eval-
uator scores when following the rubric (R? = 0.5948)

between points awarded by GPT-4 and the orga-
nizers was 1.87. Additionally, GPT-4 awarded on
average 1.11 more points than the human evaluator.
The relationship between these scores is shown in
Figure 11a. Cohen’s kappa agreement score be-
tween human evaluators was 0.35, suggesting fair
agreement as per Landis and Koch (1977).

Additionally, we analyzed 50 graded students’
solutions from the competition (i.e. solutions that
were submitted irrespective of our experiments) for
comparison with GPT-4’s grading. These solutions
were graded by a human evaluator during the com-
petition, so they are graded more consistently than
the previous experiment. GPT-4 did provide a score
1.1 points higher than the organizer, with an aver-
age absolute difference of 2.2 points. Figure 11b
shows the relation between points scored during
the competition and points scored according to the
GPT-4 model.

4.5 Rubrics error analysis

We also discussed the challenges human evalua-
tors encounter when working with LLM-generated
rubrics and grading. One issue they identified was
that when a reference solution contained multi-
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Figure 11: Comparison of points awarded by GPT-4 and human evaluators

ple correct approaches (e.g., different methods or
efficiencies), the generated rubric often expected
the student to include all of them in their answer
(in 9.7% of rubrics). This could be addressed by
improving the prompts or refining the reference
solutions beforehand. Another problem was that
GPT-4 occasionally confused mathematical expres-
sions. In one case, GPT-4 refused to recognize that
L = R and R = L are equivalent. Minor issues
were present in 45.2% of rubrics, where the model
incorrectly copied equations from the solution or
introduced minor errors. This could potentially be
mitigated by allowing the LLM to use external tools
to verify symbolic relationships. Evaluators also
noted that GPT-4 sometimes overlooked important
details in the student’s reasoning that they would
have flagged and deducted points for. In 6.5% of
the rubrics, GPT-4 failed to award points for alter-
native correct solutions. Another 6.5% of rubrics
were too broad, allowing incomplete or incorrect
solutions to receive high scores.

5 Benchmarking existing models

We then continued to benchmark existing large
language models on our dataset using the rubric-
based evaluation described in Section 3.

We have run the benchmark against GPT-3.5-
Turbo, GPT-4, GPT-40 and also open-weight mod-
els Llama 3 (70B), Phi 3 (mini) and Phi 3 (medium).
In all tests, grading was done by GPT-4.

We have also tested different prompting tech-
niques to compare their influence on the reasoning
in the Slovak language. Our tests include zero-
shot prompting, few-shot prompting (Brown et al.,
2020), zero-shot chain-of-thought (Kojima et al.,
2023), generated knowledge and dual-prompt gen-

erated knowledge (Liu et al., 2022).

Overall, we were able to achieve best scores of
2.89 (GPT-3.5-Turbo), 4.70 (GPT-4), 6.07 (GPT-
40), 3.83 (Llama 3 70B), 1.30 (Phi 3 Mini) and
2.72 (Phi 3 Medium). Models achieved the worst
scores in our maths subset and best in our algo-
rithms subset.

5.1 Prompting techniques

We have used various prompting techniques to mea-
sure the LLM’s capabilities. In large commercial
models, the greatest increase in points scored can
be achieved by using one of the generated knowl-
edge approaches. By using GK, we have measured
an increase from the zero-shot average score of
6.14 to 8.51 points in our algorithms subset for
GPT-40. It should be noted, however, that on our
maths problems, using the generated knowledge
approach results in worse scores for both GPT-3.5-
Turbo and GPT-4.

In smaller, open-weight models, the pattern is
similar, with Phi 3 Medium improving from 2.78
points zero-shot average to 4.78 on our algorithms
subset. Llama 3 70B was also able to improve its
score by employing generated knowledge in our
maths subset, going from 2.95 points on average to
5.51. For complete results, see Appendix A.

5.2 Effect of problem difficulty

A pattern similar to our real competition data
appears when measuring scores achieved by the
LLMs relative to the problem’s difficulty. The lan-
guage models struggle to score points as the prob-
lem difficulty increases, as shown in Figure 12.
Even when the model scores a high number of
points on average, it still scores fewer points the
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Figure 13: GPT-4’s achieved scores vs. problem diffi-
culty on algorithms subset

more difficult the problem gets, which is indicated
in Figure 13. This is consistent with score vs. dif-
ficulty distribution observed on real competition
participants.

The models do not get better consistently on
the whole difficulty range, however. The highest
increase in points scored can be seen in the least
difficult problems, whereas the most difficult prob-
lems exhibit the smallest improvement.

5.3 Problem solution language

Figure 14 shows the difference between scores ob-
tained when the model generated its solution in
English and Slovak. In zero-shot experiments, the
models decided to output English solutions even
though the problems were in Slovak in 71.3% of
cases, with GPT-3.5-Turbo preferring English out-
put more (89.2% of cases), GPT-4 preferring Slo-
vak (only 39% of solutions were in English) and
GPT-40 preferring English (98.8% of solutions).
The models achieved mean score of 3.53 when out-
putting Slovak and 4.14 when outputting English.
When we look at the results per model, we see

GPT-3.5-Turbo
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5 200
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Figure 14: Models’ performance when outputting text
in Slovak and English

that GPT-3.5-Turbo scores on average 1.47 in Slo-
vak and 2.69 in English. GPT-4 also excels in En-
glish solutions by scoring 4.27 on average, while
scoring an average of 3.95 in Slovak. GPT-4o
achieved similar results in both languages, scoring
5.96 in Slovak and 5.33 in English. These results
are shown in Figure 14. The tested open weight
models always produced output in English, so we
will not compare theirs scores.

We also checked that the difficulty of prob-
lems was distributed almost evenly across both
languages.

5.4 Problem statement language

We have also experimented with translating the
problem statements into English. A small subset of
our maths problems (n = 36) was hand-translated
into English and prompted to the models.

In GPT-3.5-Turbo, there almost was no measur-
able difference between the scores received from
English and Slovak statements. On Slovak state-
ments, GPT-3.5-Turbo scored on average 0.60,
while it scored 0.58 on English statements.

When tested with GPT-4, the average score for
Slovak statement was 3.30 and 1.32 for English.
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6 Conclusion

This paper introduced the Trojsten Benchmark, a
novel dataset comprising 1,108 high-school STEM
competition problems and their solutions in Slo-
vak, a lower-resource language. We developed and
validated an LLM-powered, rubric-based grading
methodology using GPT-4 for both rubric gener-
ation and solution evaluation. Our experiments
demonstrated that GPT-4 can generate evaluation
rubrics with which human competition organizers
achieved a mean agreement Likert score of 3.98 out
of 5. When these generated rubrics were employed
for grading, GPT-4’s scores exhibited an average
absolute difference of only 1.05 points compared
to human evaluators, although GPT-4 tended to
overscore by an average of 0.9 points.

Utilizing this dataset and our grading framework,
we conducted extensive benchmarking of several
large language models, including GPT-3.5-Turbo,
GPT-4, GPT-40, Llama 3 70B, Phi 3 Mini, and Phi
3 Medium, across various prompting techniques.
Our findings reveal that contemporary LLMs pos-
sess promising, albeit still developing, reasoning
capabilities in Slovak for complex STEM prob-
lems, with GPT-40 achieving the highest average
score of 6.07 out of 10. We observed a consistent
trend where model performance decreased with
increasing problem difficulty, mirroring patterns
seen in human participants. Notably, translating
problem statements from Slovak to English did
not uniformly enhance performance; for instance,
GPT-4 performed better on problems presented in
Slovak.

7 Limitations

Our work introduced here has several constraints
that require future investigation:

The rubric generation process exhibits GPT-4’s
hallucinations of mathematical relationships. The
rubric grading process shows similar problems, po-
tentially penalizes different, but valid approaches
that were not explicitly stated in the reference solu-
tion.

Our benchmarking method and its evaluation,
while sufficient for preliminary benchmarking,
does not fully account for error propagation across
the various stages (rubric generation, grading, ...).

Our benchmarking method does not fully ac-
count for error propagation across stages. Further-
more, biases in LLM training data may affect per-
formance on Slovak-specific nuances. Our trans-

lation experiments confirm these nuances are im-
pactful, as model performance was not consistently
robust across languages and, in the case of GPT-
4, was significantly higher on the original Slovak
problems.

Even though our work shows promising results
in solution grading by LLMs, such systems should
only be used as a hint for human evaluators, due to
their unreliability and various problems discussed.
Exclusive use of LLMs in grading applications
poses serious risks and should be discouraged.
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A Benchmark results for various LLMs

Subset Approach GPT-3.5-Turbo | GPT-4 | GPT-40
Zero-Shot 1.24 2.26 3.36
One-Shot 1.36 2.67 -

Maths Zero-Shot CoT 1.00 2.08 3.37
Gen. Knowledge 1.15 2.31 3.24
Dual-Prompt GK 1.16 2.25 3.39

Zero-Shot 2.46 4.15 6.06
One-Shot 2.30 4.38 -
Physics Zero-Shot CoT 2.49 4.51 6.12
Gen. Knowledge 2.36 4.18 6.20
Dual-Prompt GK 2.66 4.43 6.31
Zero-Shot 4.35 6.38 6.14
One-Shot 4.15 3.19 -
Algorithms | Zero-Shot CoT 4.64 6.44 7.92
Gen. Knowledge 4.57 5.36 8.51
Dual-Prompt GK 4.66 691 8.24
Subset Approach Llama 3 70B | Phi 3 Mini | Phi 3 Medium

Zero-Shot 1.86 0.46 0.81
One-Shot - - -

Maths Zero-Shot CoT 1.82 0.57 0.99
Gen. Knowledge 1.83 0.43 1.03
Dual-Prompt GK 1.94 0.29 0.62

Zero-Shot 2.25 0.57 1.54
One-Shot - - -

Physics Zero-Shot CoT 3.71 0.94 2.29
Gen. Knowledge 3.80 0.96 2.34
Dual-Prompt GK 4.05 0.71 1.79

Zero-Shot 2.95 2.04 2.78
One-Shot - - -
Algorithms | Zero-Shot CoT 4.66 2.38 4.05
Gen. Knowledge 5.51 2.34 4.29
Dual-Prompt GK 3.60 2.02 4.78
Figure 15: Models’ results in our benchmarks
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B Comparison of grader models

Subset Approach & Model GPT-4 | Llama | Pearson (p-value) | Spearman (p-value)
GPT-4 Dual-Prompt GK 2.25 2.09 0.7377 (5.034e-56) 0.6696 (7.642e-43)
Maths GPT-40 Dual-Prompt GK | 3.39 3.16 0.6805 (1.013e-44) 0.6466 (3.741e-39)
GPT-40 Gen. Knowledge | 3.24 2.61 0.7902 (2.213e-69) 0.7514 (3.452e-59)
GPT-4 Dual-Prompt GK 4.43 3.58 0.7180 (1.726¢e-84) 0.7043 (5.132e-80)
Physics GPT-40 Dual-Prompt GK | 6.31 5.17 0.7025 (1.955e-79) 0.7069 (7.969¢-81)
GPT-40 Gen. Knowledge | 6.20 492 | 0.7816 (1.714e-109) | 0.7789 (3.084e-108)
GPT-4 Dual Prompt GK 6.91 5.37 0.6763 (8.536¢e-43) 0.6635 (1.05e-40)
Algorithms | GPT-40 Dual Prompt GK | 8.24 6.90 0.5789 (5.925¢-29) 0.5489 (1.235e-25)
GPT-40 Gen. Knowledge | 8.51 6.98 0.5128 (4.029e-22) 0.5267 (1.86e-23)

Figure 16: Comparison of GPT-4 and Llama3 as

graders.
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C Estimated cost of experiments

To put the experiments into perspective and to pro-
vide insight and transparency into its resource re-
quirements, we outline the number of tokens, as
well as their final cost when using the Azure Ope-
nAl Endpoints.

In terms of tokens, the rubrics themselves con-
tain 1.32 million tokens in total whereas the final
grading contains 0.97 million tokens.

Assuming the cost of GPT-4 as per the pricing
of Azure OpenAl Endpoints* to be 30 USD per 1M
input tokens and 60 USD per 1M output tokens,
the full cost of the running the grading experiments
described in this paper is on the order of 200 USD.

For our benchmarks, all problem statements
contain around 300k tokens, which will produce
around 350k tokens of solutions. These solutions
must later be graded. Such grading contains an-
other 280k tokens. Assuming the cost of GPT-4,
running one experiment on the whole dataset is in
the order of 60 USD.

D Prompts and example outputs

We attach prompts used during our grading experi-
ments below.

1113

(solution)

1113

From the provided sample solution, cre-
ate a rubric to evaluate solutions. A maximum
of 10 points can be awarded for the solution.
Make sure your rubric contains all details
that are needed to determine correctness of
a student’s solution, including all relevant
equations or numeric results.

Figure 17: Prompt template used for rubric generation

4https ://azure.microsoft.com/en-us/pricing/
details/cognitive-services/openai-service/

# Grading rubric:

3313

(rubric)

1333

# Student’s solution:

1313

(solution)

1313

Based on the above grading rubric, score this
solution with a maximum of 10 points. Feel
free to assign partial points. Briefly justify
your decision, indicating for each point in the
rubric whether or not the student has met it.
End your answer with the text POINTS: and
the number of points awarded, even if zero.

Figure 18: Prompt template used for grading

1. 1 point: For correctly defining the variables
M, F', and P to represent the number of KMS,
FKS, and KSP t-shirts respectively.

2. 1 point: For correctly defining the vari-
ables M;, F;, and P; to represent the number
of KMS, FKS, and KSP t-shirts in the i-th box
respectively.

3. 1 point: For correctly stating that F; =
P — P; for any 1.

4. 1 point: For correctly summing the equa-
tions f; = P— P, fort =1, ..., 6to get
F=5P.

5. 1 point: For correctly stating that M; =
F' — F; for any 1.

6. 1 point: For correctly summing the equa-
tions M; = F — F;fort =1, ..., 6 to get
M = 5F.

7. 1 point: For correctly substituting ' = 5P
into M = 5F to get M = 25P.

8. 1 point: For correctly stating that the total
number of t-shirts is M + F' + P.

9. 1 point: For correctly substituting M =
25P, F =5P,and P = Pinto M + '+ P
to get 31P.

10. 1 point: For correctly concluding that the
total number of t-shirts is a multiple of 31.

Figure 19: Example grading rubric generated by GPT-4
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The student’s solution is correct and well
explained. They correctly identify the goal

of the problem and the approach to be taken.

They correctly use the properties of the circle
to determine the lengths of the sides. They
correctly set up and solve the system of
equations to find the angles. They correctly
conclude that the triangle is equilateral. The
solution is clear and correct. However, they
do not draw the triangle LOD and divide
the sides into thirds, nor do they identify the
similar triangles in the problem. They also do
not apply the power of a point theorem in the
advanced solution.

1. Correctly identifies the goal of the problem
and the approach to be taken (1 point)

2. Correctly draws the triangle LOD and
divides the sides into thirds (0 point)

3. Correctly identifies the similar triangles in
the problem (0 point)

4. Correctly uses the properties of similar
triangles to determine the angles and sides (1
point)

5. Correctly uses the properties of the circle to
determine the lengths of the sides (1 point)

6. Correctly sets up and solves the system of
equations to find the angles (1 point)

7. Correctly concludes that the triangle is
equilateral (1 point)

8. Correctly applies the power of a point
theorem in the advanced solution (0 points)

9. Correctly concludes that all sides of the
triangle are equal in the advanced solution (1
point)

10. Overall clarity and correctness of the
solution (1 point)

POINTS: 7

1313

(problem statement)

1313

Solve the given problem. It should be clear
from your answer how you arrived at your re-
sult. If the problem has a numerical solution,
end your answer with ANS: and the numerical
value without any units. If the problem does
not have a numerical solution, do not output
ANS: at all.

Figure 21: Prompt template used for zero-shot exper-
iments. Zero-shot CoT extends this by adding "Let’s
think step by step.” at the end.

Figure 20: Example solution grading generated by GPT-

4

Problem:

13313

(one-shot example problem statement)

333

Solution:

1313

(one-shot example problem solution)

1313

Problem:

1313

(problem statement)

1313

Solution:

Figure 22: Prompt template used for one-shot experi-
ments
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1113

(problem statement)

1113

Start by describing all concepts and ideas re-
lated to the problem. Then, solve the given
problem. It should be clear from your answer
how you arrived at your result. If the prob-
lem has a numerical solution, end your answer
with ANS: and the numerical value without any
units. If the problem does not have a numerical
solution, do not output ANS: at all.

Figure 23: Prompt template used for generated knowl-
edge experiments

1313

(problem statement)

1313

Describe all concepts and ideas required to
solve this problem.

— (next prompt) —
Solve the given problem. It should be

clear from your answer how you arrived at
your result.

Figure 24: Prompt template used for dual-prompt gen-
erated knowledge experiments
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