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Abstract

Continuous instruction following closely mir-
rors real-world tasks by requiring models to
solve sequences of interdependent steps, yet
existing multi-step instruction datasets suffer
from three key limitations: (1) lack of logi-
cal coherence across turns, (2) narrow topical
breadth and depth, and (3) reliance on rigid
templates or heavy manual effort. We introduce
LoCt-Pipeline, a novel pipeline that leverages
modern LLMs’ reasoning capabilities to assem-
ble rich, topic-related single-instruction data
into multi-turn dialogues, producing chains that
are logically coherent, progressively deepen
in content, and span diverse domains without
fixed templates or extensive human annota-
tion. We employed this pipeline to construct
LoCt-Instruct for assessing models’ problem-
solving abilities. The generated chains serve as
a testbed for benchmarking a variety of mod-
els, including reasoning-oriented architectures,
instruction-tuned variants, and state-of-the-art
closed-source LLMs on their capacity to follow
and correctly respond to each step. Our results
reveal a substantial performance gap between
current LLMs and human solvers. These find-
ings highlight the need for more robust continu-
ous instruction following. We publicly release
the dataset1 and end-to-end pipeline2.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in language comprehen-
sion, generation, and a wide range of downstream
applications. However, despite their extensive lin-
guistic prowess, they inherently lack robust capa-
bilities to explicitly recognize and respond to user
intentions (Ouyang et al., 2022; Lou et al., 2024b;
Moon et al., 2025). To address this limitation,
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instruction-following tasks have been introduced,
aiming to bridge the gap between shallow linguis-
tic interpretation and the nuanced understanding
of user intent necessary for executing diverse in-
structions. For instance, FLAN (Wei et al., 2022)
constructed a diverse instruction-following dataset
encompassing various NLP tasks, enhancing the
zero-shot performance of LLMs (Chung et al.,
2024; Kim et al., 2025; Nayak et al., 2024). Wiz-
ardLM (Xu et al., 2024) and Self-Instruct (Wang
et al., 2023) have iteratively enriched instruction
complexity, progressively elevating task difficulty
through automated data generation methods.

However, real-world instructions often appear
sequentially, forming what we term “instructional
chains” ordered sequences of related instructions
that exhibit progressive depth and logical coher-
ence, as shown in part 3 of Figure 1. Such se-
quences pose higher demands on language com-
prehension and intent recognition capabilities of
LLMs. To date, comprehensive datasets captur-
ing logically coherent instruction chains suitable
for benchmarking LLM capabilities remain scarce.
Although prior efforts such as SIFo (Chen et al.,
2024) have attempted to generate instruction se-
quences based on predefined templates across mul-
tiple tasks, these datasets typically suffer from rigid
structures and limited topical diversity.

In response, we introduce LoCt-Instruct, a
novel dataset designed to reflect realistic, logically
coherent instruction chains. As shown in Figure 1,
LoCt-Instruct has the following characteristics:

1. Each instruction chain comprises multiple
thematically related subtasks.

2. Instructions within each chain maintain log-
ical continuity and progressively deepen in
content complexity.

3. Evaluation is structured through a multiple-
selection question answering (MSQA) for-
mat, enabling precise evaluation.

4. Extensive distractors of the options pool are

34199

https://huggingface.co/datasets/Dubdabada/LoCt-Instruct
https://huggingface.co/datasets/Dubdabada/LoCt-Instruct
https://github.com/Dearmer656/complex_task_dataset.git
https://github.com/Dearmer656/complex_task_dataset.git


Figure 1: Overview of LoCt-Instruct creation. The upper half illustrates our two-stage instruction-based dialogue
generation: (1) selecting topically and logically related instructions to construct deep, topic-centered conversations;
(2) filtering logically inconsistent or reference-violating samples through automatic evaluation. The lower half
depicts multi-selection QA construction; (3) for each question and its ground-truth answer, LLM generates three
plausible distractors; (4) all answer options are randomly shuffled and assigned labels.

introduced to increase prompt length and rig-
orously assess the positional robustness.

Furthermore, LoCt-Instruct is created by LoCt-
Pipeline, a fully automated, scalable construction
pipeline. We leverage the availability and reliabil-
ity of existing instruction-following task datasets.
We begin by sampling thematically coherent topics
and assembling multiple logically related instruc-
tions, then simulate realistic conversational dynam-
ics, sequentially stitching together these sampled
topics and instructions to ensure both logical con-
tinuity and progressive depth, as illustrated in Fig-
ure 1. Prior work (Chen et al., 2023; Ren et al.,
2023) proved that self-evaluation by the LLM it-
self can improve generation accuracy and quality.
Therefore, we deploy the self-evaluation to monitor
the quality of the generated dialogue. To mitigate
evaluation ambiguity, generated assistant responses
from these dialogues serve as ground truth and are
integrated with carefully constructed distractors,
forming closed MSQA items. Model performance
can thus be rigorously quantified through exact
match (EM) and F1 score. Additionally, the inten-
tional lengthening of instruction prompts through
added distractors provides a stringent test of mod-

els’ positional sensitivity, offering deeper insights
into their robustness. The pipeline utilizes a struc-
tured high-low LLM setup that has two advantages:
(1) limited cost and (2) mitigation of the potential
bias (Wataoka et al., 2025).

Our experimental result on LoCt-Instruct reveals
that both open-source models, e.g., Llama-3.1,
Qwen-2.5, Mistral-v0.3, QwQ-32B, and even a
proprietary model, i.e., GPT-4o, lag behind human
performance with EM 0.642 vs 0.740. However, in-
corporating Chain-of-Thought (CoT) (Kojima et al.,
2022) reasoning substantially improves EM and
F1 scores, demonstrating that our dataset provides
an objective benchmark for assessing LLMs’ rea-
soning abilities on logical continuous instruction
chains in MSQA format.

2 Related Work

Instruction-Following Datasets. Existing
instruction-following datasets, such as Multi-Turn-
Instruct (Sun et al., 2024) and UltraChat (Ding
et al., 2023), support contextually coherent
multi-turn interactions. Approaches like Logi-
CoT (Liu et al., 2023) evolve simple prompts into
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Figure 2: Pipeline overview: Two large-brain icons mark the high-capacity LLM used for reasoning—context
sampling (§3.1) and self-evaluation feedback (§3.3); two small-brain icons mark the lightweight LLM handling
retrieval & assembly—dialogue generation (§3.2) and QA conversion (§3.4). Light-bulb symbols above the large
brains indicate their guiding role, while gear symbols on the small brains show they operate under guidance.

multi-step reasoning tasks, while benchmarks
such as MuTual (Cui et al., 2020) focus on
logical consistency. Retrieval-augmented frame-
works, including Wizard-of-Wikipedia (Shuster
et al., 2021), Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020), and WebGPT (Nakano
et al., 2022), ground outputs in external knowledge
to reduce hallucinations. However, reliance
on template-driven paradigms, computationally
intensive retrieval mechanisms, and limited
domains restricts the diversity, explicit logical
control, and scalability of these datasets.

Multi-Selection Sequential QA. Text-based
multi-hop QA benchmarks, e.g., FanOutQA (Zhu
et al., 2024) and MEQA (Li et al., 2024b), intro-
duce multi-answer questions with explicit stepwise
reasoning chains; likewise, MQMA (Tang et al.,
2024) jointly predicts multiple answers for a se-
quence of linked questions over a single image,
and MusTQ (Zhang et al., 2024) generates large-
scale temporal KGQA (Huang et al., 2023) re-
quiring time-aware sequential inference. However,
these pipelines suffer from high annotation costs
(Li et al., 2024c), rigid template-based generation
(Welbl et al., 2018), and limited scale and open-
domain generalization (Dua et al., 2019; Reddy
et al., 2019; Choi et al., 2018; Yang et al., 2018).

MSQA Dataset Construction Pipelines. Exist-
ing MSQA efforts, e.g., MultiRC (Khashabi et al.,

2018), FrenchMedMCQA (Labrak et al., 2022),
KoBBQ (Jin et al., 2024), and AstroQA (Li et al.,
2025), combine the LLM question synthesis with
human or expert validation to ensure strict “select-
all-that-apply” formats across general, medical,
social-bias, and astrophysical domains; Condition-
alQA (Sun et al., 2022) likewise includes some
multi-selection items within its broader mix. Re-
search dedicated to MSQA remains sparse. In con-
trast, our fully automated MSQA creation pipeline
eliminates costly human intervention, provides fine-
grained control over question difficulty and logical
structure, and scales seamlessly to open-domain
settings without template bias.

3 LoCt-Pipeline

We introduce the LoCt-Pipeline illustrated in Fig-
ure 2, a fully automated framework for constructing
benchmarks composed of logically continuous in-
struction chains (LoCt-Instruct). Our goal is to
construct high-quality MSQA data with logically
continuous instruction chains by assembling con-
texts from an existing database. This requires sam-
pling logically coherent and contextually truthful
facets, leveraging the strong reasoning capabilities
of the LLM. In addition, we leverage the LLM’s
reasoning capabilities to generate dialogues that
progressively deepen the topic-related content. The
pipeline leverages logical reasoning and content
retrieval & assemble modules, and consists of a
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# of inputs 1,463
# of instructions per input (avg.) 46.48
# of (input, instruction, output) tuples 68,014

Avg. input length (words) 119.26
Avg. instruction length (words) 84.74
Avg. output length (words) 71.32

Table 1: Statistics of the MUFFIN reference dataset.

four-stage end-to-end workflow that: 1. Context
and Instruction Preparation, 2. Dialogue Gener-
ation, 3. Self-evaluation & feedback, 4. MSQA
Conversion.

3.1 Context and Instruction Preparation

Our pipeline expects a seed database from a
context-rich source, such as an instruction follow-
ing corpus, to suit our purpose. For LoCt-Instruct,
we selected the MUFFIN (Lou et al., 2024a), which
pairs each input topic with multiple coherent in-
structions and corresponding gold responses. Ta-
ble 1 shows the statistics of the MUFFIN dataset.
As shown in Figure 2, the seed dataset is processed
through the following four steps:

Step 1: We randomly select some pivot inputs
from the database as our central context reference.

Step 2: For each pivot input, we retrieve the near-
est neighbors based on embedding cosine similarity
using the E5 (Wang et al., 2024), ensuring thematic
and semantic relevance while avoiding context in-
puts that may disrupt logical continuity.

Step 3: Given a pivot input and its nearest neigh-
bors, we draw 12–16 instructions for each, produc-
ing an instruction set of 24–32 items. This range is
carefully chosen to balance cost, logical coherence,
and instruction diversity (See § 3.5).

Step 4: We then enumerate all plausible instruc-
tion sequences from this pool using LLMs such
as gpt-4o by prompt in Table 12 of Appendix D.
The model is instructed to rank the sequences pri-
marily based on logical coherence and continuity,
with an explicit emphasis that logical consistency
takes precedence over simply leveraging extensive
context information.

Finally, we select the top-ranked instruction se-
quence as the optimal logical plan for dialogue gen-
eration. This structured approach ensures logical
continuity and coherence while flexibly leveraging
abundant context, thus optimizing the quality of
the generated dialogue in subsequent stages.

3.2 Dialogue Generation

We generate logically coherent dialogues by follow-
ing the instruction sequences, which serve as the
foundation for heavy logical reasoning and instruc-
tion chain planning. Since the content has already
been defined by these sequences, the generation
phase requires less reasoning capability. There-
fore, we can employ lighter-weight LLMs such as
gpt-4o-mini, than those used in Section 3.1.
In the generation phase, as shown in Table 11 of Ap-
pendix D, we prompt gpt-4o-mini with a seman-
tically coherent context set consisting of the pivot
input, its nearest neighbors, and the top-ranked in-
struction chain with corresponding gold responses,
in order to produce a multi-turn dialogue.

3.3 Self-Evaluation & Feedback

To ensure the quality of the generated dialogues,
we apply an automatic evaluation to filter out those
that may compromise logical coherence or answer
completeness. Inspired by Li et al. (2024a), each
dialogue is evaluated from three perspectives: (1)
factual errors or inconsistencies; (2) breaks in log-
ical flow or reasoning; and (3) dialogue complete-
ness issues, such as misalignment with the provided
content, responses abruptly cut off mid-sentence,
and redundant or duplicated content across turns.
Based on these checks, we assign each dialogue
one of three ratings and apply the corresponding
processing steps:

Good: Dialogues without any detected issues
proceed directly to the MSQA generation stage.

Needs Post-processing: Dialogues exhibiting
only abrupt cut-offs or redundancy undergo au-
tomated removal of duplicate turns.

Poor: Dialogues with factual errors, logical
breaks, major incompleteness (aside from abrupt
cut-offs), or irrelevance are discarded.

Table 13 in Appendix D presents detailed prompts
and settings. This feedback mechanism ensures
our final dataset remains reliable and coherent. In
addition to this evaluation, we conducted multiple
human assessments of dialogue quality across vary-
ing sample sizes, and the issue-reporting procedure
in the final MSQA tests provided a further check
on data integrity.

3.4 MSQA Conversion

Given the synthesized multi-turn dialogue, we
treat each user turn as an instruction and its corre-
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Figure 3: Instruction chains of maximum depth 3 constructed from the three most prevalent depth-1 instructions.
Colors distinguish the different depths within each chain.

sponding assistant reply as the gold response. We
then prompt a large language model to generate
three distractor responses, yielding four candidate
answers per instruction. This process produces
MSQA dataset; however, during evaluation, we
reframe the task as multiple-choice, requiring the
model to select the optimal response from the candi-
dates for each instruction. Figure 6 in Appendix D
shows an example of the final output. This trans-
formation serves multiple important purposes:

1. Objective Evaluation: Closed-form MSQA
instances with clearly defined gold answers
and distractors allow for accurate and consis-
tent assessment of model performance.

2. Context Length and Complexity: Introduc-
ing distractor choices increases context length
and complexity, enabling evaluation of model
performance under more challenging.

3. Robustness to Positional Bias: The pres-
ence of distractors helps test the robustness
of LLMs against positional biases, ensuring
that models genuinely understand the context
rather than relying on superficial or positional.

Using the dialogue as context, we create ques-
tion–answer pairs where the gold answer corre-
sponds to the pivot input. The distractor choices
are generated through the following two sub-steps:

Attribute Extraction: We extract key textual
attributes, e.g., entities, relations, and numerical
values, from each distilled answer using an LLM
such as gpt-4o-mini, forming the structured
basis for distractor generation.

Distractor Generation: We use gpt-4o-mini
to generate distractors by making minimal vari-
ations to the extracted attributes, following the

Quality w.r.t. Instruction Count

Instruction # 4–8 8–12 12–16 16–20
Proportion 0.25 0.375 0.125 0.25

Table 2: Distribution of poor-quality Dialogue Outputs
by instruction count. Instruction count refers to the
number of instructions sampled from the instruction
pool corresponding to one input.

protocol of Sakai et al. (2024). To ensure a bal-
ance between diversity and quality: (1) distrac-
tors must read naturally and be grammatically
correct; and (2) three distractors are generated
for each sub-question. We described the detailed
prompts, settings, and examples in Appendix D.

Next, to block shortcut answering, we pool all op-
tions for the entire question into one candidate set.
For instance, a four-subquestion instance yields
sixteen total options (one correct answer + three
distractors per subquestion).

3.5 Statistics and Qualities of LoCt-Instruct

Dialogue Quality. Through the LoCt-Pipeline,
we obtained 271 multiple-choice MSQA items with
context dialogue. We conducted a human evalua-
tion to systematically assess the quality of the gen-
erated dialogue data across the different sampling
number settings, which also served as an indirect
assessment of the overall pipeline. We evaluated
based on the following two criteria: user content,
focusing on logical continuity and coherence, and
assistant response, focusing on context-matching
accuracy, completeness, and alignment with the
provided context. The evaluation consisted of two
parts. First, we measured inter-annotator agree-
ment on a small, shared subset: 10 examples sam-
pled from the generated dialogues were indepen-
dently annotated, yielding substantial agreement
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Figure 4: Distribution of instruction chain lengths con-
structed with varying numbers of sampled instructions.
Different colors indicate different initial sampled num-
bers of instructions w.r.t each input.

Cohen’s κ = 0.615 (Cohen, 1960). Second, we
conducted a larger human evaluation on a non-
overlapping set: we sampled 25 test instances for
each of four length segments (four groups of 25,
100 in total), split them into two sets, and randomly
assigned the sets to the evaluators. Dialogues from
different length groups were presented in random
order. Table 16 in Appendix E provides detailed
evaluation guidelines. Table 2 presents the evalu-
ation results, showing the proportion of cases that
exhibit at least one issue. The evaluation results
aggregated feedback from two evaluators reveal a
clear trade-off between informational richness and
the logical complexity of chain assembly. When
only 4–8 instructions are provided, there is insuf-
ficient material to construct coherent, multi-turn
dialogues, leading to a high “Poor” proportion
(25 %). Conversely, supplying 16–20 instructions
imposes a combinatorial burden on the LLM’s as-
sembly process, again yielding a 25 % “Poor” rate.
Intermediate instruction counts (8–12) get worse
(37.5 %), but the 12–16 bin achieves the best bal-
ance with the lowest “Poor” rate (12.5 %) and
sufficient context for logical continuity. Therefore,
to optimize dialogue quality while controlling com-
putational cost, we adopt 12–16 instructions per
instance for our pipeline.

Effect of The Dialogue Turns. We calculated the
average length or number of instructions of the gen-
erated instruction chains for each group in Figure 4.
The results indicate that the average instruction
length does not correlate with the initial sampling
number. However, increasing the number of input
instructions considerably raises the associated com-
putational cost and evaluation workload without a

corresponding increase in dialogue quality. To bal-
ance cost-efficiency, the average instruction chain
length, and dialogue quality, we determined that
sampling 12 to 16 instructions is optimal for our
dataset construction pipeline.
In Section 3.4, we visualize the instruction chain of
the most frequent initial instructions, where each
node connects to the next three most frequent in-
structions: summarize (27.8%), explain (21.1%),
and identify (7.0%). This pattern matches our ex-
pectation that question exploration typically begins
with a general overview.

Diversity. We examine the distribution of instruc-
tion categories across different positions within
each chain. That is, we not only analyze the overall
frequency of each instruction type, but also their
relative positions (e.g., whether logical reasoning
typically appears at the beginning, middle, or end).
This analysis reveals three key observations:

1. Instruction diversity across positions. As
shown in Figure 3, all instruction types are dis-
tributed throughout the chain, with no category
strictly confined to a specific position. This indi-
cates that the generated chains support flexible
combinations of tasks, such as beginning with
summarization, followed by reasoning, and end-
ing with extraction or transformation.

2. Compositional flexibility. The variability in
instruction types across positions suggests that
the generated chains mirror the structure of real-
world complex tasks, which often require dy-
namically switching between task types rather
than following a rigid sequence. Moreover,
across our dataset, no two instruction chains are
identical, highlighting the structural uniqueness
and diversity of each generated chain.

3. Evaluator feedback and reasoning time. We
recruited two graduate-level evaluators. Be-
fore the main evaluation, we measured inter-
annotator agreement on 10 shared examples, and
Cohen’s κ (Cohen, 1960) was 0.737. We then
asked them to answer our constructed MSQA
items and assign a topic label to each item.
Their feedback was as follows: the 50 ques-
tions spanned 28 unique topics. Commonsense
reasoning was the predominant category (19/50;
38.8%), followed by history (2/50; 4.0%), chem-
istry (2/50; 4.0%), and single instances in do-
mains such as physics, medicine, geography,
and market analysis, etc. The evaluators re-
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quired an average of 3.2 minutes to complete
each item, demonstrating that our questions ne-
cessitate substantial reasoning time to arrive at
the correct answers.

These results underscore the richness of our dataset
not only in task diversity but also in compositional
structure. Such flexibility makes the dataset more
representative of multi-step reasoning and planning
tasks in real-world applications.

4 Experimental Settings

LLMs. We evaluated seven representative LLMs,
encompassing both open-source and propri-
etary models, including reasoning-oriented vari-
ants: QwQ-32B (Team, 2025), and instructing-
oriented variants: LLaMA3.1-8B-Instruct, Qwen-
2.5-7B-Instruct (Yang et al., 2025a), Qwen-2.5-
14B-Instruct (Yang et al., 2025b), Mistral-7B-
Instruct (Jiang et al., 2023), GPT-4o-mini3, GPT-
4o (OpenAI et al., 2024). The used devices are in-
troduced in Appendix A.2. Experiments were con-
ducted across several prompting scenarios: zero-
shot prompting, one-shot prompting with and with-
out Chain-of-Thought (CoT) reasoning. For one-
shot in-context learning, we enforce strict non-
overlap between prompt examples and test in-
stances: any candidate sharing input data with the
test item is discarded and replaced. Because our
generation process ties instructions and outputs di-
rectly to inputs, distinct inputs inherently produce
distinct chains, thus preventing data leakage.

Human Evaluation. We also included human
baselines by recruiting two graduate-level partici-
pants who independently answered the same ques-
tions without access to external tools. Their perfor-
mances were averaged to establish a human refer-
ence. We randomly sampled 25 examples from our
evaluation dataset for each evaluator. In addition,
evaluators were instructed to report any issues that
prevented them from responding. Appendix E pro-
vides detailed instructions for human evaluation.

Evaluation Metrics. In our evaluation of MSQA
chains, we employ two complementary metrics:
sequence-level Exact Match (EM) and micro-
averaged F1. EM requires the model’s entire an-
swer string (e.g., “ABD...”) to exactly match the ref-
erence, enforcing correct order and content across
the chain, and is averaged over all chains (perfect

3https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/

Model
EM avg. F1

w/o CoT w/ CoT w/o CoT w/ CoT

Llama-3.1-8B 0.060 0.258 0.256 0.603
Llama-3.1-8B 1-shot 0.089 0.21 0.591 0.607

Qwen2.5-7B 0.052 0.129 0.553 0.632
Qwen2.5-7B 1-shot 0.114 0.202 0.636 0.660

Qwen2.5-14B 0.148 0.262 0.512 0.690
Qwen2.5-14B 1-shot 0.148 0.390 0.343 0.741

Mistral-7B-v0.3 0.074 0.052 0.438 0.4574
Mistral-7B-v0.3 1-shot 0.107 0.133 0.496 0.642

QwQ-32B 1-shot – 0.524 – 0.753

GPT-4o-mini 0.369 0.439 0.742 0.760
GPT-4o-mini 1-shot 0.292 0.494 0.738 0.779
GPT-4o 0.531 0.579 0.824 0.853
GPT-4o 1-shot 0.561 0.653 0.851 0.882

Human evaluation – 0.74 – 0.866

Table 3: Performance comparison on the LoCt-Instruct
benchmark across three model categories: instruction,
reasoning oriented, and closed-source LLMs.

matches total chains). F1 treats each question-
option pair as an independent instance, counting
true positives, false positives, and false negatives to
compute precision, recall, and F1, allowing partial
credit, and is averaged over all options.

5 Experimental Results and Discussions

Overall. Table 3 summarizes evaluation results.
The EM–F1 gap arises because smaller LLMs of-
ten generate extra answer options, which artificially
inflate the partial overlap (and hence the F1 score).
Our results indicate a clear hierarchy in perfor-
mance among the evaluated models. Closed LLMs,
benefiting from extensive training resources, con-
sistently outperformed their open-source counter-
parts, underscoring superior text comprehension
and instruction-following capabilities. This per-
formance gap highlights current LLM limitations
in maintaining context, transferring information
across multiple instruction turns, and coherently
structuring responses in complex reasoning tasks.

Comparison to Human Evaluation. Human
evaluators excelled in sequential instruction tasks,
showing superior context retention, coherence, and
logical structuring. In quantitative terms, they
achieved an exact-match score (EM) of 0.74 and
an average F1 of 0.866, compared to 0.653 EM
and 0.882 F1 for GPT-4o, one of the strongest
closed-source LLMs, we analysis this result in Ap-
pendix B. We also examined the evaluators’ feed-
back: of the 13 questions they answered incor-
rectly, 1 was due to incomplete context, 3 were
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originated from commonsense topic(answer se-
ries of questions about one story), and the re-
maining 9 originated from domain-specific topics
(physics, medicine, chemistry (2), geography, bi-
ography, web development, biology, and cyberse-
curity). These findings confirm that our dataset is
comprehensive and of high quality. We aggregated
feedback from two evaluators and summarized sta-
tistical information on accuracy, issues, and topics.
The 9 out of 13 errors made by human evaluators
were confined to out-of-domain questions, an en-
tirely expected and reasonable outcome, further val-
idating the dataset’s robustness for benchmarking
multi-turn instruction comprehension and reason-
ing in LLMs.

Prompting. Notable gains of up to +0.198 EM
were observed, with Llama-3.1-8B showing the
largest improvement. Reasoning-oriented mod-
els such as QwQ-32B deliver additional boosts
of 0.524 (EM) and 0.753 (F1), underscoring the
essential role of effective reasoning on our dataset.

In-Context Learning. Only GPT-4o, Qwen-2.5-
7B, LLaMA-3.1-8B, and Mistral-7B-v0.3 show
EM improvements from one-shot prompting, sug-
gesting that in the absence of explicit reasoning,
models struggle to extract task knowledge from a
single example. Manual inspection of Qwen-2.5-
7B, LLaMA-3.1-8B, and Mistral-7B-v0.3 outputs
reveals that, when given a one-shot exemplar, they
rigidly follow the prescribed format, whereas with-
out an example, they produce intermediate analyses
before answering. Moreover, their baseline per-
formance under prompting is extremely low (EM:
0.06, 0.052 and 0.074 respectively), indicating lim-
ited understanding of our questions. We therefore
attribute these modest gains to learning fixed an-
swer templates rather than genuine comprehension.

In-Context Learning with CoT. Combining
one-shot in-context learning with Chain-of-
Thought prompting yields consistent gains. For ex-
ample, Qwen2.5-7B achieves an additional +0.088
EM over one-shot alone, Qwen2.5-14B jumps to
0.390 from 0.148 with only one-shot, and models
that degraded under isolated one-shot prompting
recover or improve when CoT is applied. This sug-
gests that CoT scaffolding enhances the model’s
ability to internalize and apply exemplar patterns,
delivering performance improvements beyond the
sum of each method.

Figure 5: Distribution of missed correct answers by
normalized position for each model. Positions are com-
puted by dividing the option’s index by the total number.

Category Avg. length Min. length Max. length

Question 57.35 7 299
Options 681.85 39 1,715
Context 1,356.22 79 8,091

Table 4: Length statistics of LoCt-Instruct.

Positional Bias. We analyzed model sensitivity
to the positional bias (Liu et al., 2024) of correct an-
swers. Figure 5 illustrates the percentage of missed
correct options relative to their positions. Errors
predominantly occurred at earlier option positions
(e.g., options A and B), even for closed-source mod-
els. This demonstrates that our dataset effectively
reveals LLMs’ positional biases due to its exten-
sive coverage of instruction lengths. We analyzed
each model’s sensitivity to answer position. Figure
5 shows the percentage of missed correct options
at each position. To analyze positional bias, we
exclude any model with F1 < 0.7, since its errors
stem from misunderstanding the options rather than
genuine positional effects. Our results indicate that
errors are predominantly concentrated in the earli-
est answer positions, a trend especially pronounced
in open-source models. In contrast, closed-source
models exhibit a substantially milder position bias
on our dataset. These findings confirm that the
broad range of sequence lengths in our dataset ef-
fectively exposes the positional biases inherent to
open-source LLMs.

6 Conclusion

We introduced LoCt-Pipeline, a fully automated,
scalable dataset construction framework that syn-
thesizes LoCt-Instruct, a logically continuous
MSQA corpus. We apply LoCt-Pipeline to gen-
erate a diverse set of evaluation instances, bench-
marking them on reasoning-oriented, instruction-
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oriented, and closed LLMs. A human evaluation by
graduate-level annotators further validates both the
quality of our generated data and the reproducibil-
ity of our protocol. Analysis of the annotated cases
confirms high data quality, no duplicate instruction
chains, and broad topical coverage, while reveal-
ing a notable gap between human and machine
performance. As for Scalability and Future Direc-
tions, although our current evaluation is based on a
moderate dataset, LoCt-Pipeline readily extends to
large-scale instruction-following corpora (Xu et al.,
2024). In future work, we will scale our method
to construct massive, logically continuous MSQA
datasets and train models on this expanded data to
further enhance multi-step reasoning capabilities.

7 Limitations

Scale and Topical Diversity. Despite demon-
strating the promise of LoCt-Pipeline, our eval-
uation is subject to two key limitations. First, since
the Muffin dataset provides only 1,460 unique in-
puts, we generated just 271 logically continuous,
non-overlapping evaluation instances. This limited
dataset scale may underrepresent rarer reasoning
phenomena and constrain the topical diversity of
our benchmarks, potentially affecting the robust-
ness and generalizability of our findings.

Scalability and Hyperparameter Optimization.
Although LoCt-Pipeline can theoretically be ap-
plied to arbitrarily large instruction-following cor-
pora, scaling up to significantly larger datasets will
necessitate careful redesign of sampling strategies
and hyperparameter schedules (e.g., sampling ra-
tios, chain-length distributions). Such optimiza-
tions are crucial to maintaining logical coherence
and computational efficiency at larger scales.

Reasoning Ability Evaluation. We just make
MSQA format to test the LLMs, so it is limited.
For reasoning evaluation, we need a sentence-by-
sentence evaluation method.

8 Ethical Considerations

Mitigating Bias in Data Generation. This study
introduces a novel instruction-following dataset
created by enhancing publicly available corpora
with outputs generated by state-of-the-art large lan-
guage models (LLMs). Although this methodology
facilitates scalability and enriches dataset diversity,
it inherently risks propagating biases and inaccu-
racies from the original datasets or biases present

in the pretraining of the utilized LLMs. To address
these risks, we implement systematic bias detection
and filtering mechanisms, rigorously select source
materials to ensure comprehensive topical and de-
mographic representation, and perform manual au-
dits on randomly sampled subsets of the generated
data.

Transparency and Responsible Dataset Release.
Upon releasing the dataset, comprehensive docu-
mentation will accompany it, detailing the prove-
nance of source materials, model configurations,
filtering strategies, and acknowledged limitations.
Such transparency is crucial for ensuring re-
producibility and encouraging responsible usage
within both academic and industrial contexts. Ad-
ditionally, this documentation serves as a guideline
for ethical considerations, assisting third parties in
understanding and responsibly reusing the dataset.

Use of AI Assistance. We employed GPT-4o
only as a writing aid in the preparation of specific
manuscript components, particularly for enhancing
linguistic clarity and refining prompt templates. All
other aspects, such as the research proposal, core
technical decisions, dataset construction method-
ologies, analytical interpretations, and manuscript
writing, were exclusively developed and executed
by the research team. The scope of AI tool uti-
lization was strictly limited, ensuring it did not af-
fect the integrity of human-driven decision-making
processes. We confirm that this work contains no
harmful content and fully complies with all aspects
of the ACL Ethics Policy.
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A Additional Information

A.1 Detailed Model Settings
Table 5 provides detailed model settings which we
used for our experiments.

LLMs Hugging Face ID /API NAME

Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct
Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct Qwen/Qwen2.5-14B-Instruct
Mistral-7B-Instruct-v0.3 mistralai/Mistral-7B-Instruct-v0.3
QwQ-32B Qwen/QwQ-32B

Table 5: Lists of the LLMs we used in this study and
their corresponding Hugging Face IDs.

A.2 Used Device for Evaluation
All evaluated models were uniformly quantized to
8 bits to ensure consistency across experiments.
Inference for 14 B-parameter models was executed
on a single NVIDIA RTX A6000 GPU (48 GB),
while inference for 7B and 8B parameter models
was conducted on a single NVIDIA GeForce RTX
3090 GPU.

A.3 API Usage and Cost
We provide the LoCt-Instruct cost in Table 6.

B Analysis of Model Performance on
LoCt-Instruct

Our dataset consists of multi-step, logically
chained questions, each requiring the selection of
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Step Model Cost (USD)

Context sampling gpt-4o-0806 $0.1215
Candidates generation gpt-4o-mini-0718 $0.1970
Attribute extract gpt-4o-mini-0718 $0.0494
QA conversion gpt-4o-mini-0718 $0.0704
Dialogue generation gpt-4o-mini-0718 $0.1205
Evaluation gpt-4o-0806 $0.0718

Total (271 datasets) $0.6307

Table 6: API costs for each step in constructing LoCt-
Instruct and the total cost.

multiple correct answers while excluding distrac-
tors in a coherent context. As shown in Table 3,
the large model achieves a higher F1 score (0.882
vs. 0.866 for humans) but a substantially lower EM
(0.653 vs. 0.740). This gap reveals several key
limitations:

• Global Consistency. In a multi-step logical
chain, each answer depends on the previous
step. The model often omits or adds distrac-
tors at individual steps, causing its final an-
swer set to diverge from the ground truth and
lowering EM.

• Precision and Recall Trade-off. Although
the model attains higher precision (0.878 vs.
0.866 for humans) and higher recall (0.898
vs. 0.866), indicating strong per-option accu-
racy and coverage, any single extra or missing
selection still yields an EM score of zero.

• Error Propagation in Chained Reasoning.
Because each step’s output feeds into the next,
a minor mistake can be amplified downstream,
misaligning the ultimate answer set.

• Human Logical Deduction vs. Pattern
Matching. Comparing with LLMs, human
evaluators rely on deductive reasoning across
sub-questions. If a human fails to correctly
answer one sub-question in the chain, sub-
sequent sub-questions become inaccessible,
causing the entire answer chain to collapse.
This highlights the fundamental difference:
humans perform step-wise logical inference,
whereas LLMs tend to match and aggregate
independent signals.

• Long Range Dependency and Context
Tracking. For deep, multi-step reasoning
or cross-question links (e.g., coreference res-
olution, conditional constraints), the model
struggles to maintain all prior information as

flexibly as humans, undermining overall com-
pleteness.

Implementing these improvements will help
LLMs deliver both high coverage and exact-match
accuracy in logically continuous, multi-answer sce-
narios.

C Prompt for Evaluation

Table 7 illustrates the combined prompt used for
MSQA with both one-shot learning and CoT. Ta-
ble 8 shows the prompt used for answering MSQA
directly, without additional context or guidance. Ta-
ble 9 shows the prompt used for MSQA with chain-
of-thought (CoT) prompting. Table 10 presents the
prompt for MSQA under one-shot learning with
CoT.

D Prompt for LoCt-Pipeline

Figure 6 shows an instance of generated MSQA.
Table 11 presents topic and instruction sampling
strategies, while Table 12 illustrates representative
instruction samples used during dialogue genera-
tion. The self-evaluation and feedback mechanism
is outlined in Table 13. Additionally, Table 14 and
Table 15 detail the procedures for extracting tex-
tual attributes and generating distractor candidates,
respectively.

E Human Evaluation Metrics

We employed in-house, graduate-level annotators.
Human evaluation was carried out in two distinct
stages. The guidelines for assessing dialogue qual-
ity in the first stage are detailed in Table 16, while
those for evaluating final MSQA answers in the
second stage are provided in Table 17.
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Please answer the following multiple-selection questions.
###### Example:
{example}
######

Now considering the question below:
{context}
<questions>
{question}
</questions>
For each question:
1. Write your step-by-step thought process under a section titled ### Reasoning:.
2. Then state your chosen options letter for each question.

After you’ve reasoned through all questions, output exactly this block (no extra text): ### final answers:
<LETTER_SEQUENCE>{eos}

Table 7: Prompt for answering MSQA with CoT and one shot learning.

You will get: {context}
<questions>
{question}
</questions>
Please answer each question by selecting one option. Do NOT output any reasoning, analysis, or chain-of-thought. Then
output exactly: ### final answers:
<YOUR_LETTER_SEQUENCE>{eos}

Table 8: Prompt for answering MSQA.

You will get:
{context}
<questions>
{question}
</questions>
For each question:
1. Write your step-by-step thought process under a section titled ### Reasoning:
2. Then state your chosen option letter for each question.
After you’ve reasoned through all questions, output only the sequence of selected letters in this
exact format (without any extra text):
### final answers:
<LETTER_SEQUENCE>{eos}

Table 9: Prompt for answering MSQA with CoT.

You will get:
{context}
<questions>
{question}
</questions>
For each question:
1. Write your step-by-step thought process under a section titled ### Reasoning:.
2. Then state your chosen option letter for each question.

After you’ve reasoned through all questions, output only the sequence of selected letters
in this exact format (without any extra text):

### final answers:
<LETTER_SEQUENCE>{eos}

Table 10: Prompt for answering MSQA with one-shot learning.
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You are given three tagged sections:
<inputs>. . . </inputs>,
<instructions>. . . </instructions>
<outputs>. . . </outputs>.
{input, instruction and output pair} Step-by-step Reasoning:

1. Which <inputX> or <instructionY> does the next User turn need to reference?

2. How does this question build on the previous dialogue to probe deeper?

3. What exact information from the context must be used—no more, no less?

Generation Rules:

• Generate a multi-turn dialogue (User–Assistant) that gradually deepens the topic.

• User turns should explicitly reference prior content if multiple inputs exist.

• Assistant responses must only use information from <inputs>, <instructions>, and <outputs>, with no halluci-
nations or marker abbreviations.

• It is allowed to interpolate logically coherent connective content (e.g., clarification questions), but without contradic-
tion.

Summary Annotation:

• After dialogue generation, summarize the user-side actions using: <tasks> 1.task1; 2.task2; ... </tasks>

Final Output Format:
User: ...
Assistant: ...
...
<tasks> ... </tasks>
<topic domain> ... </topic domain>

{input, instruction and output pair}
<inputs> <input0> An essay isn’t disagreeing with themselves. </input0><input1> qutting may be a flawed film , but it
is nothing if not sincere . </input1> </inputs>
<instructions> <instruction1> Given an essay, check if it contains any logical inconsistencies. The output should
be either True if there are no contradictions, or False if there are any. </instruction1> <instruction3> Identify if the
essay contains any contradictory arguments or statements. Output True if there are no contradictions, otherwise output
"False.’13134’: True.’1664’: False. Your answer must be a single letter chosen from ’1664, 13134’. </instruction3>
<instruction4> Identify the sentiment of the input. Your task is to generate either positive, negative or neutral as
output, depending on whether the text expresses a positive, negative or neutral sentiment respectively. </instruction4>
<instruction11> Categorize the following sentence into one of the five different emotions: anger, confusion, joy, sadness
and neutral. </instruction11> </instructions>
<outputs> <output1> True </output1> <output3> 13134 </output3> <output4> positive </output4> <output11> neutral
</output11> </outputs>

Table 11: Prompt template for generating dialogue with progressive deepen content.
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You are given a series of input blocks, each wrapped in <inputs></inputs>, with numbered
<instructions></instructions> and corresponding <outputs></outputs>. Instructions are numbered sequentially from
1 to M across all blocks. Your task is to extract instruction subsets that can be ordered into coherent, logically
continuous chains.
Requirements:
- Identify subsets of instructions where each step directly builds on or depends upon the context established by the
previous one.
- For each chain, include a <contextX> tag listing the input-block index(es) (e.g. [0,2]) from which those
instructions were drawn.
- Reasoning which instructions can connect logically step by step, then output the final chain within
<contextX></contextX> and <chainX></chainX> tags.
- Only include chains of four or more instructions. Prefer chains that cover the maximum number of distinct input
blocks and include as many instructions as possible.
- Instructions may come from the same block or from different blocks; combining instructions from multiple inputs
is encouraged.
- Exclude any instruction whose <outputs> does not provide a definitive answer (e.g., “cannot answer,” “no clear
answer,” etc.).
- If no valid chains exist, output only: "None"
{Sampled input, instruction and output}
### Output in the following format:
<context1>[0, 1]</context1><chain1>[5, 2, 1]</chain1>
<context2>[1]</context2><chain2>[3, 1, 11]</chain2>
...
or
"None"
If there are multiple choices, list all chains in descending order of logical coherence (the most continuous chain
first).

Table 12: Prompt for sampling logical-related instruction.

Figure 6: An example of a generated instruction chain with coherent and logically continuous content, presented in
the closed multi-choice QA format.
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You are an evaluation assistant.
{Instruction and output pair}
{Dialogue to be evaluated}
Given a dialogue and its associated <instructions>, and <outputs>, assess the dialogue according to the following criteria:
Instruction and Output pair
1. Global: Detect any factual errors or inconsistencies.
2. User (Logical): Identify breaks in logical flow or reasoning.
3. Assistant (QA Completeness):
a. Misalignment with <instructions>, or <outputs>.
b. Abrupt cut-offs (e.g., stopping mid-sentence or immediately after a colon).
c. Redundant or duplicated content across turns.
Please consider the quality of the dialogue step by step.
Finally, assign an overall rating: Poor, Needs Post-processing, or Good. If it ranked as Needs Post-processing you should
give the repeated turn within <repeated turn></repeated turn> if not don’t give this tag.
Please put only rank follow "request=[N]: [rank]" at the end of response.
Strictly obey the format: "<repeated turn>[index of the later repeated turn]</repeated turn> request-[N]: [evaluation]", N
is provided at beginning of the dialogue.

{Instruction and Output pair}
<instructions><instruction1> In this task, you are given information about the user’s inspiration for their art. Your task is
to identify the source of the sea glass used in the user’s jewelry. The output should be the location where the sea glass
was found. </instruction1> <instruction2> The task is to write a blog post about the benefits of using genuine sea glass
in jewelry-making. The output should discuss the history and properties of sea glass, why it makes a unique material
for jewelry, and how the user incorporates it into their designs. </instruction2>...</instructions><outputs><output1>
A beach in the Caribbean </output1> <output2> Sea glass, also known as beach glass, is a type of glass that has been
weathered by the ocean waves and sand over time. It is a unique material that is highly sought after by jewelry makers
for its beauty and history. The history of sea glass dates back to ancient times when glass was first invented. In the past,
people would dispose of their glass waste by throwing it into the ocean. Over the years, the glass would be tumbled and
polished by the waves, resulting in the smooth and frosted appearance that we see today. One of the main benefits of using
genuine sea glass in jewelry-making is its uniqueness. Each piece of sea glass is one-of-a-kind, with its own shape, color,
and texture. This makes it perfect for creating one-of-a-kind jewelry pieces that stand out from the crowd. Incorporating
sea glass into jewelry designs can be a creative and rewarding process. As mentioned in the input, the user’s wire work is
Art Nouveau in style... </output2> ...</outputs>
{Dialogue to be evaluated}
User: Can you tell me where you found the sea glass that you use in your jewelry? Assistant: A beach in the
Caribbean.User: That’s interesting! Can you explain why using genuine sea glass in jewelry-making is benefi-
cial?Assistant: Sea glass, also known as beach glass, is a type of glass that has been weathered by the ocean waves and
sand over time. It is a unique material that is highly sought after by jewelry makers for its beauty and history ...
User: Can you describe your design process in more detail?Assistant: My design process starts with a rough idea and a
long piece of 20 gauge wire. From there, the piece grows as I work on it. My wire work is Art Nouveau in style and is
inspired by nature and the sea...

Table 13: Evaluation prompt.
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### questions answers pairs: {QA pair}
### Instruction: Given the above pairs of questions and answers, what kind of textual attributes do answers have?
### Requirements:
1. Please brainstorm as many textual attributes as possible. If you think there are no more suitable attributes, end up
with ’None’.
2. Be creative. Any interesting perspectives are welcome!
3. Each attribute must concisely summarize one specific aspect of this input, such as language, length, intent, etc.
4. Feel free to ignore the tedious and specific content. Just focus on some general textual attributes!
5. Please prioritize your most confident predictions. Generate attribute for each question answer pair separately in
the format:
<answer1>1: ; 2: . . . </answer1>
. . .

{QA pair}
<questions>((1)). Can you tell me where you found the sea glass that you use in your jewelry?((2)). That’s
interesting! Can you explain why using genuine sea glass in jewelry-making is beneficial?((3)). How do you
incorporate sea glass into your designs?((4)). Can you describe your design process in more detail?</questions>

<answers>((1)). A beach in the Caribbean.((2)). Sea glass, also known as beach glass, is a type of glass that has
been weathered by the ocean waves and sand over time. It is a unique material that is highly sought after by jewelry
makers for its beauty and history. The history of sea glass dates back to ancient times when glass was first invented.
In the past, people would dispose of their glass waste by throwing it into the ocean. Over the years, the glass would
be tumbled and polished by the waves, resulting in the smooth and frosted appearance that we see today. One of the
main benefits of using genuine sea glass in jewelry-making is its uniqueness. Each piece of sea glass is
one-of-a-kind, with its own shape, color, and texture. This makes it perfect for creating one-of-a-kind jewelry pieces
that stand out from the crowd.((3)). Incorporating sea glass into jewelry designs can be a creative and rewarding
process. As mentioned, my wire work is Art Nouveau in style. Sea glass can complement this style beautifully, as
its organic shapes and natural colors align with the nature-inspired motifs of Art Nouveau. I start with a rough idea
and a long piece of 20 gauge wire, just like I do with my other designs. I then wrap the wire around the sea glass,
creating a unique and intricate wire-wrapped pendant or charm.((4)). My design process starts with a rough idea
and a long piece of 20 gauge wire. From there, the piece grows as I work on it. My wire work is Art Nouveau in
style and is inspired by nature and the sea. I primarily work with wire and glass. I began making jewelry in 2008,
starting with simple stringing techniques. Over time, I taught myself how to repair and recreate Victorian beaded
purses, which captivated me with their beauty. I am entirely self-taught and have always had the ability to visualize
and bring my visions to life. Jewelry making is a significant part of my life, providing me with peace and serving as
my therapy.
</answers>

Table 14: The prompt for attributes extracting of answers.
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{QA pair}
You are given a composite text that contains several sub-questions within <questions></questions> and their cor-
responding answers within <answers></answers>. Your task is to generate four candidate answer options for each
sub-question individually, following these instructions:

• For each sub-question, create four options labeled A., B., C., and D.

• Exactly one option must be fully correct, using the provided answer verbatim.

• The other three must be plausible distractors that:

– Appear semantically reasonable;
– Reflect a common misconception or subtle logical flaw;
– Read naturally and remain grammatically correct.

• Only generate distractors. Do not include any explanations or reasoning.

• Format your output as follows:

<Q1>[question1]</Q1>
A. ...
B. ...
C. ...
D. ...
Answer: [A/B/C/D]

The corresponding textual attributes of the answers are provided within <attributes></attributes>.
{Attributes}
These include language style, tone, level of detail, and structure. You may use them as cues to generate distractors.

QA pair consistent with the prompt for attributes extracting. {Attributes}
<answer1> Language: Informal and conversational; Length: Short and concise; Intent: To provide a specific location;
Clarity: Clear and straightforward. </answer1>
<answer2> Language: Informative and descriptive; Length: Medium; Intent: To explain the benefits of using sea glass;
Clarity: Detailed and thorough; Tone: Educational. </answer2>
<answer3> Language: Creative and artistic; Length: Medium; Intent: To describe incorporation of sea glass into designs;
Clarity: Focused on technique; Tone: Inspirational. </answer3>
<answer4> Language: Reflective and personal; Length: Long; Intent: Detail design process; Clarity: Comprehensive;
Tone: Passionate; Structure: Sequential explanation. </answer4>
</attributes>

Table 15: Prompt template and attribute annotations used for distractor generation.

Your task is to evaluate the quality of the generated dialogues and classify each dialogue as either Poor or OK.
A dialogue should be rated as Poor if it exhibits any of the following issues:

1. Factual errors – The assistant response contains information that is factually incorrect.
2. Contradiction with the reference – The response contradicts the provided <inputs>, <instructions>, or <outputs>.
3. Discontinuity in user queries – The user’s turns are not logically connected; later queries do not build upon
earlier one.
4. Mismatch between query and response – The assistant’s reply does not address or answer the user’s question or
instruction.
5. Incomplete responses – The assistant’s output is clearly truncated or unfinished (e.g., “The answer is:” without
follow-up content).

Otherwise, label it as OK.

Table 16: Prompt for human evaluation of multi-turn dialogue.
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Human Evaluator Instructions
For each test item, evaluators are presented with a context and a single multiple-choice question composed of
several logically connected sub-questions; each sub-question has exactly one correct answer. Evaluators must:
Select Answers for each sub-question.
Record the total time taken to complete the question (e.g., in seconds).
Annotate the high-level topic domain (e.g., “Physics,” “Commonsense,” etc.).
Report any issues encountered, choosing one if any of the following apply:
Necessary information is missing from the context.
The quality-label criteria do not apply or are ambiguous.
The set of options is clearly truncated or unfinished.
Output format (exactly these fields):
Answers:
Time (mins:secs):
Topic domain:
Issue:

Leave Issue: blank if there were no problems; otherwise name the one issue you encountered (you may assign
randomly if you must).
Note: Do not use any external tools to answer the question.

Table 17: Instructions for human evaluation of the MSQA task.
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