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Abstract

Large language models (LLMs) have improved
significantly in their reasoning through exten-
sive training on massive datasets. However, re-
lying solely on additional data for improvement
is becoming increasingly impractical, highlight-
ing the need for models to autonomously en-
hance their reasoning without external super-
vision. In this paper, we propose DEBATE,
TRAIN, EVOLVE (DTE), a novel ground truth-
free training framework that uses multi-agent
debate traces to evolve a single language model.
We also introduce a new prompting strategy
REFLECT-CRITIQUE-REFINE, to improve de-
bate quality by explicitly instructing agents
to critique and refine their reasoning. Exten-
sive evaluations on seven reasoning bench-
marks with six open-weight models show that
our DTE framework achieve substantial im-
provements, with an average accuracy gain of
8.92% on the GSM-PLUS dataset. Further-
more, we observe strong cross-domain general-
ization, with an average accuracy gain of 5.8%
on all other benchmarks, suggesting that our
method captures general reasoning capabilities.
Our framework code and trained models are
publicly available at https://github.com/ctrl-
gaurav/Debate-Train-Evolve. 1

1 Introduction

Over the past few years, the advancements in large
language models (LLMs) have largely depended on
training over massive datasets (Abdin et al., 2024,
2025). However, eventually, we will approach a
saturation point where feeding more data into these
models may not further improve their reasoning
capabilities (Costello et al., 2025). This motivates
a new research question: How can language models
continue to improve without relying on additional
external supervision?

Recent approaches attempt to overcome the data
bottleneck by enabling models to generate and
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learn from synthetic data, which is generated by au-
tomatically expanding a small set of seed tasks into
large synthetic instruction datasets (Wang et al.,
2023; Zeng et al., 2024). Other methods (Madaan
et al., 2023; Jiang et al., 2023; Gou et al., 2023;
Zelikman et al., 2024; Costello et al., 2025) re-
fine model-generated outputs through iterative self-
feedback or preference optimization. Despite their
effectiveness, these self-evolution strategies pre-
dominantly rely on judgments from a single model
or a teacher-student configuration, often leading to
confirmation bias and insufficient reasoning diver-
sity.

To address these limitations, one promising di-
rection emerged is multi-agent debate (MAD) (Du
et al., 2023). It involves multiple models inde-
pendently generating and critically analyzing each
other’s answers, helping to reveal subtle reason-
ing errors often overlooked by individual models
(Liang et al., 2024; Wang et al., 2024). Although
MAD shows improved reasoning accuracy, current
works predominantly use MAD as an inference-
time technique (Smit et al., 2023), requiring mul-
tiple models to be run simultaneously for each
query. This substantially increases computational
overhead and latency (Subramaniam et al., 2025),
making MAD impractical for large-scale deploy-
ments. This motivates our research question: Can
we evolve a single model reasoning by fine-tuning
on these debate traces?

Building upon this intuition, we propose DE-
BATE, TRAIN, EVOLVE (DTE), a novel framework
that combines the strengths of MAD with efficient
single-model inference. Specifically, we introduce
a ground-truth-free training approach in which a
model learns from its own debate traces generated
during MAD, thereby evolving autonomously over
iterative training cycles. Our framework addresses
key challenges of existing methods by extracting
high-quality reasoning insights from diverse multi-
agent interactions, thus avoiding single-model bi-
ases and computational inefficiencies.

First, we conduct a large-scale empirical analy-
sis of MAD using open-source models, where we
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Figure 1: Overview of the proposed DEBATE–TRAIN–EVOLVE framework. Left-Debate: Several agents debate
until they converge on a consensus (green ✓) or expose a wrong path (red ✗). Centre-Train: we remove pure debate
elements, keep the high-quality reasoning traces and consensus answer, and use them to fine-tune a single policy
with GRPO. Right-Evolve: the evolved agent replaces its earlier self, so future inference require just one forward
pass yet they outperform the committee on maths, science, and commonsense benchmarks.

identify limitations of the original MAD prompt-
ing approach, particularly in smaller models (Du
et al., 2023). To address this, we propose a
REFLECT-CRITIQUE-REFINE (RCR) prompting
strategy, which explicitly forces agents to iden-
tify, critique, and correct reasoning errors in both
their own and peers’ answers. Second, using this
prompting strategy, we build our DTE framework
(Figure 1). Finally, we find that models with < 3B
parameters suffer accuracy loss (Srivastava et al.,
2025a,b) after second evolution round; our con-
trolled study shows that the problem correlates with
large temperature-induced variance and high KL
divergence from the base policy. Lowering the
sampling temperature from 0.7 to 0.3 cuts the KL
drift by 1/3rd and recovers up to 76% of the lost
performance, preventing catastrophic forgetting in
smaller models without extra supervision.

Our experiments show significant gains in
reasoning performance across multiple datasets.
Specifically, our evolved models show an aver-
age accuracy improvement of 8.92% on GSM-
PLUS dataset compared to their original versions.
Moreover, our framework achieves notable cross-
domain generalization, enhancing model perfor-
mance across datasets not seen during training.
These results confirm that our method successfully
distills multi-agent debate’s insights into efficient
single-model inference, bridging the gap between
computational efficiency and improved reasoning.

2 Related Work

Multi-Agent Debate Approaches Du et al.
(2023) first showed that letting several large mod-
els debate improves accuracy on maths, strat-
egy, and factual QA without any new parameters.
Later, Liang et al. (2024) highlighted the risk of
degeneration-of-thought: a single agent quickly
converges on one path, whereas a two-debater
plus judge setup maintains diversity and outper-
forms GPT-4 on tricky arithmetic. RECON-
CILE (Chen et al., 2024) mixes agents from dif-
ferent model families, reaches consensus through
confidence-weighted votes, and adds up to eleven
points on seven reasoning benchmarks. Smit et al.
(2023) shows that MAD beats sampling ensem-
bles only after careful tuning. Finally, works like
PREDICT (Park et al., 2024) apply multi-agent
debate to tasks beyond QA, such as hate-speech
classification, where agents reason under different
guidelines. Recent advances further incorporate
explicit reinforcement learning into the debate pro-
cess. For example, the ACC-Collab framework
(Estornell et al., 2024) utilized an actor-critic ap-
proach to explicitly optimize agent collaboration,
yielding superior performance on reasoning tasks.

Self-Evolution in Language Models
SELF-INSTRUCT (Wang et al., 2023) prompts
GPT-3 to write 52000 novel instructions plus
answers and then fine-tunes on its own output,
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reducing the gap to InstructGPT by thirty-three
points on Super-Natural-Instructions without
extra human labels. STAR (Zelikman et al.,
2024) augments a few chain-of-thought exemplars
by letting the model explain wrong answers in
reverse, doubling CommonsenseQA accuracy
for a 350M model. SELF-REFINE (Madaan
et al., 2023) and the broader SELF framework (Lu
et al., 2023) turn one model into writer, critic and
re-writer, looping feedback at inference or during
fine-tuning to improve on GSM8K by around
seven points. Instruction-tuning variants refine
the idea: SELF-REFINE INSTRUCTION-TUNING

(Ranaldi and Freitas, 2024) pairs Llama-2 and
Mistral students with large teacher rationales
and then lets each student prefer its own better
reasoning, closing the size gap on commonsense
and math tasks. More recently, THINK, PRUNE,
TRAIN, IMPROVE (Costello et al., 2025) shows
that careful filtering of self-generated traces can
raise Gemma-2B to 58% on GSM8K and push
Llama-3-70B beyond GPT-4o. These studies
confirm that single-agent loops, with or without
ground truth, can expand a model’s ability.

Despite these works, two things remain unex-
plored: 1) Fully autonomous, ground-truth-free
self-evolution; 2) Integration of MAD into model
evolution. Our work addresses this by the DEBATE,
TRAIN, EVOLVE framework, which combines
MAD with self-supervised reinforcement learning
(GRPO) to enable models to autonomously evolve
their reasoning capabilities.

3 DEBATE, TRAIN, EVOLVE Framework

In this section, we first analyze limitations of ex-
isting multi-agent debate approaches (§3.1), intro-
duce our improved prompting strategy (§3.2), and
then detail the mathematical framework for training
models using debate-derived rewards (§3.3). Our
DTE framework uses multi-agent debate to gener-
ate high-quality reasoning traces, then distills these
traces into a single model through group-relative
policy optimization (Shao et al., 2024).

3.1 Preliminary Analysis of Multi-Agent
Debate

Let A = {a1, . . . , aN} denote a set of N language
model agents, and let q represent an input query. In
the standard multi-agent debate framework, each
agent ai independently generates an initial response
(y

(0)
i , r

(0)
i ) consisting of an answer y(0)i and ratio-

nale r
(0)
i . Agents then engage in T rounds of de-

bate, where in round t, each agent observes peer
responses {(y(t−1)

j , r
(t−1)
j )}j ̸=i and produces an

updated response (y
(t)
i , r

(t)
i ).

Our empirical analysis of this standard approach
revealed two critical failure modes. First, we ob-
served high rates of sycophancy, where agents
abandon correct answers in favor of incorrect but
confidently-stated peer solutions. Second, we iden-
tified a verbosity bias where agents preferentially
adopt longer rationales regardless of logical va-
lidity (Saito et al., 2023). These effects resulted
in degraded debate quality (substantial fraction of
[correct → incorrect] transitions during debate),
particularly for smaller models where sycophancy
rates exceeded 28% on average.

3.2 REFLECT-CRITIQUE-REFINE Prompting
Strategy

To address these limitations, we introduce the
RCR prompting strategy. Unlike standard de-
bate prompts that simply request answer revision
(Madaan et al., 2023; Gou et al., 2023; Peng et al.,
2023), RCR structures agent responses through
three explicit phases: 1) Reflect: Each agent ai
must identify potential errors in its current rea-
soning r

(t−1)
i by generating a self-critique cself

i .
2) Critique: The agent then evaluates exactly
two peer rationales, producing critiques {cji}j∈Pi

where |Pi| = 2 and Pi ⊂ A \ {ai}. 3) Refine:
Finally, the agent updates its response to (y

(t)
i , r

(t)
i )

subject to the constraint that if y(t)i ̸= y
(t−1)
i , then

r
(t)
i must contain at least one novel reasoning step

not present in
⋃

j,s<t r
(s)
j .

Phrases like “identify any errors” reliably trig-
ger negative tokens (“error”, “mistake”, “step
X is wrong”) which LLMs have learned during
supervised finetuning. By specifying valid next
moves (defend/correct/adopt), we implicitly shape
the log-probability mass toward useful trajecto-
ries, shrinking the space of rambling answers. The
single-step explanation requirement forces agents
to think before copying and reduces sycophancy
by requiring agents to justify answer changes with
novel reasoning, while the fixed critique quota pre-
vents unbounded verbosity. Algorithm 1 presents
the complete debate protocol, where the debate ter-
minates when either consensus is reached (all y(t)i

identical) or after T rounds, with the final answer
determined by majority vote.
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Algorithm 1: Multi-Agent Debate with
RCR Prompting

Input: query q, agents A = {a1, . . . , aN}, max
rounds T

Output: consensus answer y∗ and reasoning tracesR
1 Round 0: Each ai ∈ A generates

(y
(0)
i , r

(0)
i ) ∼ πai(·|q)

2 if all y(0)
i are identical then

3 return (y
(0)
i , {r(0)i }Ni=1)

4 end
5 for t = 1 to T do
6 foreach agent ai ∈ A do
7 Receive peer responses:

P(t−1)
i = {(y(t−1)

j , r
(t−1)
j )}j ̸=i

8 Reflect: Generate self-critique cself
i

identifying errors in r
(t−1)
i

9 Critique: Select two peers and generate
critiques {cji}j∈Si where |Si| = 2

10 Refine: Update response (y
(t)
i , r

(t)
i ) with

novel reasoning if y(t)
i ̸= y

(t−1)
i

11 end
12 if all y(t)

i are identical then
13 return (y

(t)
i ,

⋃
i,s≤t r

(s)
i )

14 end
15 end
16 return (majority_vote({y(T )

i }),
⋃

i,t r
(t)
i )

3.3 Training via Group Relative Policy
Optimization

We now formalize how debate traces are used to
train a single language model. Let πθ denote a
language model policy parameterized by θ, which
models the conditional distribution over token se-
quences: πθ(a|s) =

∏|a|
t=1 πθ(at|s, a<t), where s

is the input state (query) and a = (a1, . . . , a|a|) is
the generated token sequence.

Debate Trace Extraction and Reward Design
Given a query q, we run multi-agent debate using
Algorithm 1 to obtain a consensus answer y∗ and a
set of reasoning traces R = {r(t)i }i,t. From these
traces, we extract a consolidated rationale R by
identifying reasoning steps that either (i) appear in
multiple agents’ responses or (ii) introduce novel
symbolic manipulations. This yields a training
instance (q, y∗, R). For each generated response y
to query q, we define a shaped reward function:

r(q, y) = wans · ⊮[y = y∗] + wfmt · fformat(y)

+ wlen · exp(−|y|/τ)

where ⊮[y = y∗] indicates answer correct-
ness (verified via exact string match after nor-
malization), fformat checks adherence to the XML

template structure, |y| denotes token length, and
(wans, wfmt, wlen) = (2.0, 0.5, 0.5) with τ = 120.

Group Relative Advantage Estimation For
training, we use Group Relative Policy Optimiza-
tion (GRPO), which eliminates the need for a
separate value function by estimating advantages
through group-wise comparisons. For each query
q in our training batch, we sample G responses
{o1, . . . , oG} from the current policy πθold . Each
response oi receives a scalar reward ri = r(q, oi).

Instead of learning a value function V (s) to es-
timate expected returns, GRPO computes advan-
tages using the group statistics. The advantage for
response oi at token position t is:

Âi,t =
ri − r̄

σr + ϵ

where r̄ = 1
G

∑G
j=1 rj is the mean reward, σr =√

1
G

∑G
j=1(rj − r̄)2 is the standard deviation, and

ϵ = 10−8 prevents division by zero.
This formulation provides several key benefits.

First, responses with above-average rewards re-
ceive positive advantages, encouraging the model
to increase their likelihood. Second, normalization
by standard deviation ensures that advantages re-
main stable across different reward scales. Third,
using group statistics rather than a learned baseline
reduces memory requirements by eliminating the
value network.

Policy Optimization Objective Given the group-
relative advantages, we optimize the policy using a
clipped surrogate objective with KL regularization.
The GRPO loss for a single query is:

LGRPO(θ) =
1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

[
ℓclip(i, t)− β ·D(i,t)

KL

]

where the clipped policy gradient loss is:

ℓclip(i, t) = −min
(
ρi,t · Âi,t,

clip(ρi,t, 1− ϵ, 1 + ϵ) · Âi,t

)

Here, ρi,t =
πθ(ai,t|q,oi,<t)
πθold (ai,t|q,oi,<t)

is the importance
ratio between the new and old policies, and ϵ = 0.2
is the clipping threshold. The clipping mechanism
prevents destructively large policy updates: when
ρi,t exceeds 1 + ϵ or falls below 1− ϵ, the gradient
contribution is capped.
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The KL divergence term D
(i,t)
KL regularizes the

policy to prevent excessive deviation from a ref-
erence model πref (typically the initial supervised
fine-tuned model):

D
(i,t)
KL = log

πθ(ai,t|q, oi,<t)

πref(ai,t|q, oi,<t)

with regularization strength β = 0.02. This KL
penalty serves a different purpose than the clipping:
while clipping prevents large single-step updates,
the KL term anchors the policy to maintain linguis-
tic coherence and prevent catastrophic forgetting.

Gradient Estimation and Optimization Gradi-
ent of LGRPO with respect to θ is estimated using
the REINFORCE algorithm. For each token ai,t in
response oi, the gradient contribution is:

∇θLGRPO = −Eoi∼πθold




|oi|∑

t=1

∇θ log πθ(ai,t|q, oi,<t) · g(i, t)




where g(i, t) is the effective advantage after clip-
ping and KL regularization. This expectation is
approximated through Monte Carlo sampling us-
ing the G generated responses. We optimize using
AdamW with learning rate η = 2× 10−5, weight
decay λ = 0.01, and a 50-step linear warmup. To
enhance training efficiency, we use LoRA (Low-
Rank Adaptation) with rank r = 128 and dropout
probability p = 0.05, applying adaptations to atten-
tion and MLP projection matrices while keeping
embeddings and layer normalizations frozen.

3.4 Evolution through Iterative Training
The complete DTE framework operates as an it-
erative process, formalized in Algorithm 2. Start-
ing with a base policy πθ0 , we perform evolution
rounds where each round k consists of: 1) Debate
Generation: Sample a batch of queries Qk and
generate debate traces using RCR-prompted multi-
agent debate (Algorithm 1), producing dataset
Dk = {(q, y∗, R)}. 2) Policy Update: Fine-tune
πθk−1

on Dk using GRPO to obtain πθk . 3) Agent
Replacement: Replace the previous version in the
debate ensemble with the evolved policy.

The process continues until validation perfor-
mance plateaus or a maximum number of iterations
is reached. For smaller models (< 3B parame-
ters), we implement temperature annealing from
T = 0.7 to T = 0.3 across rounds to mitigate KL
divergence growth and prevent catastrophic forget-
ting, as high-temperature sampling in later rounds
can cause excessive policy drift.

Algorithm 2: DEBATE, TRAIN, EVOLVE

Input: base policy πθ0 , agent pool A0 = {πθ0} ∪ B,
query datasetQ, max iterations K

Output: evolved policy πθK

1 Initialize: θ ← θ0
2 for k = 1 to K do
3 Sample batchQk ⊂ Q of size B
4 Dk ← ∅
5 foreach query q ∈ Qk do
6 (y∗,R)← Algorithm 1 with agents Ak−1

on query q
7 R← ExtractRationale(R) ▷ Extract

consolidated reasoning
8 Dk ← Dk ∪ {(q, y∗, R)}
9 end

10 for epoch e = 1 to E do
11 foreach (q, y∗, R) ∈ Dk do
12 Sample G responses:

{oi}Gi=1 ∼ πθ(·|q)
13 Compute rewards: ri = r(q, oi) for

each oi

14 Compute advantages: Âi =
ri−r̄
σr+ϵ

15 Update θ via gradient step on LGRPO(θ)
16 end
17 end
18 Update agent pool:

Ak ← (Ak−1 \ {πθk−1}) ∪ {πθ}
19 if validation improvement < δ then
20 break
21 end
22 end
23 return πθ

This framework achieves autonomous reasoning
improvement by combining the exploration ben-
efits of multi-agent debate with the efficiency of
single-model deployment, while GRPO’s group-
relative formulation provides stable training with-
out requiring auxiliary value networks.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on seven pub-
lic reasoning benchmarks: 1) GSM8K (Cobbe
et al., 2021), 2) GSM-Plus (Li et al., 2024) (adver-
sarial math problems), 3) MATH (Hendrycks et al.,
2021) (competition-level mathematics), 4) ARC-
Easy, 5) ARC-Challenge (Clark et al., 2018) (sci-
ence reasoning), 6) GPQA Main (Rein et al., 2024)
(graduate-level STEM questions), and 7) Common-
senseQA (Talmor et al., 2019).

Baselines and models. We conduct of RCR
prompting study on ten open-weight models, Qwen
(0.5-32B), Llama-3/8B, Mistral-7B, Phi-mini, and
two proprietary models, GPT-4o and GPT-4o-mini.
We study our DTE framework with 6 models
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Model
GSM8K GSM-Plus MATH ARC-Challenge GPQA Main

Original 3 Agent Evolved Single Original 3 Agent Evolved Single Original 3 Agent Evolved Single Original 3 Agent Evolved Single Original 3 Agent Evolved Single
Model MAD Model (DTE) Model MAD Model (DTE) Model MAD Model (DTE) Model MAD Model (DTE) Model MAD Model (DTE)

Qwen-2.5-1.5B 62.77 72.33 73.09 (+10.32 ↑) 42.00 53.33 55.92 (+13.92 ↑) 45.08 50.68 52.20 (+7.12 ↑) 69.21 68.52 68.36 (-0.85 ↓) 19.42 18.75 20.10 (+0.68 ↑)
Qwen-2.5-3B 84.08 85.14 86.05 (+1.97 ↑) 61.75 68.00 69.50 (+7.75 ↑) 61.36 65.72 67.10 (+5.74 ↑) 83.53 84.64 83.95 (-0.42 ↓) 28.12 29.24 30.50 (+2.38 ↑)
Qwen-2.5-7B 90.67 91.21 88.32 (-2.35 ↓) 68.62 74.17 74.71 (+6.09 ↑) 73.08 75.58 77.20 (+4.12 ↑) 87.22 91.64 90.89 (+3.67 ↑) 32.81 33.71 35.20 (+2.39 ↑)
Qwen-2.5-14B 92.80 93.33 93.74 (+0.94 ↑) 71.79 77.25 78.88 (+7.09 ↑) 76.18 78.62 80.10 (+3.92 ↑) 90.27 93.77 93.13 (+2.86 ↑) 41.29 42.19 43.60 (+2.31 ↑)
Llama-3.2-3B 72.55 73.84 75.06 (+2.51 ↑) 45.67 51.12 53.79 (+8.12 ↑) 39.76 41.90 43.80 (+4.04 ↑) 73.12 76.19 77.23 (+4.11 ↑) 26.12 29.24 30.80 (+4.68 ↑)
Llama-3.1-8B 81.73 82.18 86.81 (+5.08 ↑) 55.62 60.79 66.17 (+10.55 ↑) 46.66 47.90 49.40 (+2.74 ↑) 77.65 85.07 86.53 (+8.88 ↑) 27.46 32.37 34.10 (+6.64 ↑)

Table 1: Performance of one DEBATE–TRAIN–EVOLVE round. For six open-weight models we report test
accuracy on five reasoning benchmarks in three settings: the single base model (“Original”), a 3-agent debate using
our RCR prompt (“MAD”), and the evolved single student obtained after one DTE round. Green numbers denote
the absolute gain of the evolved model over its Original Model, red numbers a decrease in performance.

(Qwen 1.5B-14B, Llama-3B and Llama-8B). Base-
lines are: (i) the single original model; (ii) vanilla
MAD with the original MAD prompt.

Parameter settings. During debate we sample
each agent once per query at temperature T =1.0
(exploratory) or 0.0 (deterministic); mixed-teams
use one exploratory and two deterministic agents.
For GRPO training, we adopt LoRA fine-tuning
(rank 128, dropout 0.05) on attention and MLP
projections, freezing embeddings and layer norms.
GRPO is optimized with AdamW (learning rate
η = 5 × 10−6, weight decay λ = 0.1, and mo-
mentum coefficients β1 = 0.9, β2 = 0.99). We
set the GRPO-specific hyperparameters as: clip-
ping threshold ϵ = 0.2, KL coefficient β = 0.02,
and group size G = 8 responses per query. Each
evolution epoch processes 8k debate traces (∼2 M
tokens) and runs on A100-80 GB GPUs for a 7B
model; larger models scale near-linearly.

Evaluation metrics. Task performance is ex-
act match for GSM-style datasets and accuracy
for MC-QA. For RCR evaluation, we also track
Sycophancy-Rate and [incorrect → correct] in-
stances.

4.2 Main Results
Our main results are organized into three main
parts: (1) First, we evaluate the effectiveness of
DTE framework, (2) Next, we test its generaliza-
tion across different reasoning tasks, and (3) Fi-
nally, we analyze the extent of model self-evolution
through iterative rounds.

1) OVERALL DTE PERFORMANCE. Evolved
model using DTE shows an average gain of
8.92% ACCURACY on GSM-PLUS compared
to its vanilla performance. Table 1 contrasts
three settings: the single base model (“Original”), a
three-agent debate with our RCR prompt (“MAD”),
and the evolved single model produced by one DE-
BATE–TRAIN–EVOLVE pass. On GSM-Plus-the

hard math dataset-DTE improves every model, with
an average gain of +2.38 points over three-agent
MAD. Qwen-1.5B shows the largest jump (+13.92
pts), confirming that evolution is most helpful
when the base model has head-room and the de-
bate provides diverse traces. On GSM8K the av-
erage gain is smaller ( +0.84 pts) because several
models were already near their ceiling after debate.
ARC-Challenge sees a mixed results: large mod-
els benefit (+3.67 pts for Qwen-7B, +8.88 pts for
Llama-8B) while small models drift by < 1 pt.
Overall, DTE shows a mean improvement of 3.06
pts over single model and +1.09 pts over MAD
while restoring single-pass inference.

2) CROSS-DOMAIN GENERALIZATION. Our
results suggests that DTE improves reasoning
that travels beyond the source data, with larger
models showing the most stable improvements.
Table 2 reports how well the evolved models gen-
eralize on other datasets. We test two scenarios:
evolve using (i) GSM8K; (ii) GSM-Plus and test
on four unseen datasets. When trained on GSM8K,
every model gains on GSM-Plus (average +5.8
pts) and on ARC-Challenge (+2.5 pts on average).
ARC-Easy also sees small but consistent gains
except for the 1.5B model, which drops 1.6 pts.
CommonsenseQA improves for 5/6 models, indi-
cating that the reward shaped from mathematical
traces still helps improve on commonsense reason-
ing. Negative deltas are confined to the smallest
model (Qwen-1.5B) and to a lesser degree Qwen-
3B, suggesting that small models struggles to rec-
oncile new skills with prior knowledge. In contrast,
models ≥ 7B never lose more than 0.2 pts on any
transfer task. Training on GSM-Plus and testing
on GSM8K yields similar behaviour: large gains
on the GSM8K (+3.7 pts on average) and moder-
ate gains on others. The symmetry suggests that
DTE learns general reasoning heuristics (e.g. nu-
meric decomposition, unit tracking) rather than
memorising dataset-specific patterns.
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Model
Fine-tuned on GSM8K Fine-tuned on GSM-Plus

GSM-Plus ARC-Easy ARC-Challenge CommonsenseQA GSM8K ARC-Easy ARC-Challenge CommonsenseQA
(∆) (∆) (∆) (∆) (∆) (∆) (∆) (∆)

Qwen-2.5-1.5B +9.21 ↑ -1.60 ↓ +0.67 ↑ -2.23 ↓ +10.32 ↑ -1.52 ↓ +0.24 ↑ -2.31 ↓
Qwen-2.5-3B +3.79 ↑ +1.27 ↑ +0.83 ↑ +3.26 ↑ +1.36 ↑ +1.09 ↑ +0.60 ↑ +3.26 ↑
Qwen-2.5-7B +1.01 ↑ +1.73 ↑ +4.50 ↑ +3.40 ↑ +1.14 ↑ +1.69 ↑ +3.65 ↑ +3.32 ↑
Qwen-2.5-14B +1.67 ↑ +2.53 ↑ +3.42 ↑ +1.33 ↑ +0.53 ↑ +2.32 ↑ +4.01 ↑ -0.14 ↓
Llama-3.2-3B +6.71 ↑ +2.48 ↑ -1.11 ↓ +3.10 ↑ +3.80 ↑ +1.93 ↑ -3.92 ↓ +3.51 ↑
Llama-3.1-8B +8.13 ↑ +3.91 ↑ +6.74 ↑ +1.10 ↑ +5.15 ↑ +4.88 ↑ +7.84 ↑ +0.85 ↑

Table 2: Cross-domain generalisation of evolved models. Each cell shows the change in test accuracy (∆, in
points) after one DTE pass, relative to the same model before evolution. The table is split by the dataset used
for fine-tuning-GSM8K (left block) or GSM-Plus (right block)-and reports transfer to four unseen targets. Green
numbers signal gains, red numbers losses.
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Figure 2: Accuracy vs. evolution round.

3) HOW FAR CAN A MODEL EVOLVE? Results
show that one evolution round captures nearly
all of the available gains. Figure 2 reports ac-
curacy over two evolution rounds for five models
on GSM8K and GSM-Plus. Round 1 almost al-
ways helps: the smallest model (Qwen-1.5B) jumps
from 42.0 → 55.9 on GSM-Plus and 62.8 → 73.1
on GSM8K, while Llama-8B gains 10.6 and 5.1
points on the same datasets. The only counter-
example is Qwen-7B, which drops 2.4 points on
GSM8K despite improving 6.1 on GSM-Plus; upon
manual inspection we see that its Round-1 traces
over-emphasise shortcut heuristics that hurt eas-
ier questions. In Round 2, we observe little im-
provement and sometimes the performance even
drops. Large models (≥ 7 B) add at most +0.8
points, for Qwen-3B on GSM8K, and more often
lose 0.4–1.4 points. The 1.5B model gives back 0.9
points on GSM8K and 2.8 on GSM-Plus, but still
ends well above its starting point. Across all runs
the mean forgetting Fgt2 = maxt<2(Acct − Acc2)
is 0.92 pts for models ≥ 7 B and 1.6 pts for smaller
ones, confirming that smaller models suffers from
catastrophic forgetting.

4.3 Ablation Studies

1) EFFECTIVENESS OF THE RCR PROMPT
IN MAD. RCR prompting substantially boost

performance over original MAD prompting (Du
et al., 2023). Figure 3 compares single-model in-
ference, the original debate prompt (MAD@3),
and our REFLECT–CRITIQUE–REFINE (RCR-
MAD@3) prompt. Across eight diverse models
the RCR prompting raises three-agent accuracy by
an average of +1.9 pts on GSM8K, +3.7 pts on
GSM-Plus, and +0.7 pts on ARC-Challenge. The
gain scales with task difficulty: GSM-Plus, which
contains harder adversarial questions, benefits the
most (up to +7.9 pts for Qwen-1.5B and +6.1 pts
for Qwen-7B). On ARC-Challenge improvements
are smaller but still positive for 6/8 models. RCR
prompting also significantly reduces sycophancy.
It halves the mean sycophancy rate (from 0.28 to
0.13 on GSM-Plus) and narrows the verbosity gap
by 43 %, indicating that agents now switch answers
only when they can articulate a new reasoning step.
These observations confirm that RCR is a neces-
sary pre-step for producing high-quality traces
later utilized by the DTE training loop.

2) HOW MANY AGENTS ARE ENOUGH? Re-
sults shows that three agents MAD captures 85-
95 % of the maximum gains. Figure 4 sweeps
the agents size from 1 − 7 and reports trends on
four benchmark. We observe three clear patterns
here: 1) Beyond 3-agent the curve plateaus and
even oscillates, suggesting the marginal informa-
tion added by the 4th or 5th agent. 2) Small models
benefit most from extra agents. Already strong
single-agent (Qwen-14B) adds minimal improve-
ment upon scaling up after three. 3) Harder tasks
need (slightly) more agents. On GSM-Plus the
optimum often shifts to four or five agents: Qwen-
7B reaches its peak accuracy (76.0%) at 7 agents,
1.04 pts above the three-agent setting. ARC-Easy, a
much easier dataset, saturates at 2 agents for every
model; extra debaters add noise rather than insight.
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Figure 3: Results (%) on: GSM8K, GSM-PLUS, and ARC-Challenge datasets. Performance is compared across
three evaluation settings: single model inference, the Original Multi-Agent Debate (MAD@3) prompt, and our
proposed RCR (RCR-MAD (Ours)@3) prompting.
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Figure 4: Scaling up agents Accuracy of four Qwen
model sizes as the number of agents grows from 1-7.

3) DOES AGENT DIVERSITY MATTER? We ob-
serve two consistent trends here: First, when the
individual agents have comparable standalone ac-
curacy, cross-family mixtures beat homogeneous
agents team, supporting the idea that architectural
diversity yields complementary reasoning paths.
Second, when the pool mixes a strong and a
weaker model, the debate result gravitates toward
the stronger member-adding the weaker agent nei-
ther helps nor seriously harms, suggesting that di-
versity only helps when all agents can contribute
novel insights. Complete results for every dataset
and roster is available in Appendix B.

4) WHY GRPO OVER OTHER FINE-TUNING
METHODS? GRPO consistently outperforms
the alternatives, indicating that its relative-
advantage reward balances exploration and pol-

Model
Original

(GSM-Plus) SFT DPO GRPO

Qwen-2.5-1.5B 42.00 47.31 51.34 55.92
Qwen-2.5-3B 61.75 58.33 64.32 69.50
Qwen-2.5-7B 68.62 67.89 69.88 74.71

Table 3: Accuracy on GSM-Plus after 10K training
steps using three optimization objectives.

icy stability better than plain maximum-likelihood
(SFT) or preference-only (DPO/PPO) updates. Ta-
ble 3 compare three update rules under a fixed com-
pute budget: (1) classical supervised fine-tuning on
debate answers (SFT); (2) Direct Preference Opti-
misation using the majority vote as the preferred
sample; (3) Group Relative Policy Optimisation
(GRPO). GRPO delivers the largest accuracy jump
on GSM-Plus for every model size. Both SFT and
DPO give smaller gains and even slight regressions
on the 3 B model, highlighting the risk of over-
fitting when the reward ignores policy shift. We
also observe that GRPO keeps KL < 0.24 across
sizes, whereas DPO averages 0.43. The relative-
advantage term in GRPO therefore not only boosts
reward but also constrains drift, reducing catas-
trophic forgetting.

5) DATA SELECTION STRATEGY. We test three
data sampling schemes on GSM-Plus: Random-
2K selects 2000 examples uniformly from the full
pool (10552); Debate-Only keeps only data points
where agents entered at least one critique round
(t ≥ 1); All-Traces trains on the entire cleaned set.
Table 4 shows that accuracy rises monotonically
with coverage: the full corpus beats Debate-Only
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Model Random-2K Debate-Only All-Traces

Qwen-1.5B 44.82 51.61 55.92
Qwen-3B 58.10 62.70 69.50
Qwen-7B 69.71 72.53 74.71

Table 4: Effect of training-set size and composition.
GSM-Plus accuracy after one evolution round using
three trace-selection schemes.
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Figure 5: Diminishing returns in GRPO updates after
8K steps. GSM-Plus accuracy for five models as a
function of the number of training steps during GRPO.

by 4.43 pts (avg) and Random-2K by 9.17 pts
(avg). The gap is largest for Qwen-1.5B, suggesting
that smaller models benefit from easier “round-0”
examples that Random-2K may miss and Debate-
Only discards. We therefore use the full trace set
in all other experiments.

6) HOW LONG DO WE TRAIN? Figure 5 plots
GSM-Plus accuracy as we grow the number of
GRPO training steps from 2K to 10K. All models
share the similiar trend: rapid gains up to about
8K steps followed by saturation. Small and mid-
size models profit the most from the early updates-
Qwen-1.5B climbs 8.0 pts between 2K and 6K
samples-whereas larger models such as Qwen-14B
rise more slowly but steady. Beyond 8K the curve
flattens: the average improvement from 8K ß 10 k
is only +0.32 pts while wall-clock time grows by
25%.

7) DOES ITERATIVE FINE-TUNING HURT?
Figure 6 plots GSM8K and GSM-Plus accuracy
for Qwen-1.5B after the first and second evolution
rounds under four sampling temperatures. When
we keep the original exploratory setting (T = 1.0)
the model loses 2.0 pts on GSM8K and gains only
13.5 pts on GSM-Plus-well below the +33.5 pts
it achieved in Round 1-confirming a clear case of
catastrophic forgetting. Lowering the temperature
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Figure 6: Iterative fine-tuning and forgetting. Accu-
racy of Qwen-1.5 B after the first and second evolution
rounds at four sampling temperatures.

stabilises training: at T = 0.4 Round-2 accuracy is
within 0.9 pts of Round 1 on GSM-Plus and almost
fully recovers on GSM8K; a deterministic sched-
ule (T = 0.0) even adds +3.3 pts on GSM8K but
plateaus on GSM-Plus.

The mechanism is visible in the KL divergence
between successive students. At T = 1.0 we mea-
sure KLevo=0.37 for Qwen-1.5B, whereas T = 0.4
cuts this to 0.19 and T = 0.0 to 0.11, matching the
reduction in forgetting. We therefore adopt a linear
decay from 0.7 in Round 1 to 0.3 in later rounds
for all models up to 3B parameters; larger models
did not require temperature adjustment.

5 Conclusion

In this paper, we introduced the DEBATE, TRAIN,
EVOLVE (DTE) framework, a novel approach en-
abling language models to autonomously enhance
their reasoning capabilities by leveraging multi-
agent debate traces. Our REFLECT-CRITIQUE-
REFINE prompting strategy significantly improved
debate quality, reducing sycophancy and reason-
ing errors. Experiments demonstrated substan-
tial accuracy gains, notably an average improve-
ment of 8.92% accuracy on the challenging GSM-
PLUS dataset. Additionally, we showed strong
cross-domain generalization, confirming that our
approach captures general reasoning skills rather
than dataset-specific patterns. Importantly, DTE
effectively combines the benefits of multi-agent
debate with the computational efficiency of single-
model inference.
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Limitations

Despite its effectiveness, our approach has certain
limitations. Firstly, iterative fine-tuning within
the DTE framework can cause catastrophic forget-
ting, particularly evident in smaller language mod-
els (<3B parameters), leading to potential model
collapse. Although we explored several mitiga-
tion strategies, completely eliminating this issue
remains challenging. Secondly, our framework as-
sumes the availability of high-quality initial debate
traces; thus, its efficacy may degrade if debates
are of poor quality or if initial agent performance
is weak. Third, our study primarily focused on
structured reasoning tasks like mathematical and
commonsense reasoning. The applicability and ef-
fectiveness of DTE on less structured or more open-
ended tasks, such as natural language generation
or dialogue systems, require further investigation.
Lastly, although computationally efficient com-
pared to traditional MAD setups, DTE still incurs
higher training costs than standard single-model
fine-tuning. Future work should aim to optimize
the framework further, enhancing its practicality
and accessibility.
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vate data.
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parts of the Appendix, such as generating LaTeX
code for tables and refining text written by the
authors. All AI-generated content was carefully
reviewed and revised by the authors to ensure ac-
curacy and clarity.

References
Marah Abdin, Sahaj Agarwal, Ahmed Awadallah,

Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mo-
jan Javaheripi, Neel Joshi, and 1 others. 2025.
Phi-4-reasoning technical report. arXiv preprint
arXiv:2504.21318.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero
Kauffmann, and 1 others. 2024. Phi-4 technical re-
port. arXiv preprint arXiv:2412.08905.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. 2024.
Reconcile: Round-table conference improves reason-
ing via consensus among diverse llms. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7066–7085.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Caia Costello, Simon Guo, Anna Goldie, and Azalia
Mirhoseini. 2025. Think, prune, train, improve: Scal-
ing reasoning without scaling models. arXiv preprint
arXiv:2504.18116.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. In Forty-first International Conference
on Machine Learning.

Andrew Estornell, Jean-Francois Ton, Yuanshun Yao,
and Yang Liu. 2024. Acc-debate: An actor-critic
approach to multi-agent debate. arXiv preprint
arXiv:2411.00053.

32773

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314


Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Nan Duan, Weizhu Chen, and 1 others. 2023. Critic:
Large language models can self-correct with tool-
interactive critiquing. In The Twelfth International
Conference on Learning Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self-
evolve: A code evolution framework via large lan-
guage models. ArXiv, abs/2306.02907.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. GSM-plus: A compre-
hensive benchmark for evaluating the robustness of
LLMs as mathematical problem solvers. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2961–2984, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2024. Encouraging divergent thinking
in large language models through multi-agent debate.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
17889–17904.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Qi Zhu, Fei Mi, Baojun Wang, Weichao Wang,
Xingshan Zeng, Lifeng Shang, and 1 others. 2023.
Self: Self-evolution with language feedback. arXiv
preprint arXiv:2310.00533.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Someen Park, Jaehoon Kim, Seungwan Jin, Sohyun
Park, and Kyungsik Han. 2024. Predict: Multi-agent-
based debate simulation for generalized hate speech
detection. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 20963–20987.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Lidén, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back. ArXiv, abs/2302.12813.

Leonardo Ranaldi and Andrè Freitas. 2024. Self-refine
instruction-tuning for aligning reasoning in language
models. arXiv preprint arXiv:2405.00402.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Keita Saito, Akifumi Wachi, Koki Wataoka, and Youhei
Akimoto. 2023. Verbosity bias in preference la-
beling by large language models. arXiv preprint
arXiv:2310.10076.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Andries Petrus Smit, Nathan Grinsztajn, Paul Duck-
worth, Thomas D Barrett, and Arnu Pretorius. 2023.
Should we be going mad? a look at multi-agent de-
bate strategies for llms. In Forty-first International
Conference on Machine Learning.

Gaurav Srivastava, Shuxiang Cao, and Xuan Wang.
2025a. Towards reasoning ability of small language
models. arXiv preprint arXiv:2502.11569.

Gaurav Srivastava, Aafiya Hussain, Sriram Srinivasan,
and Xuan Wang. 2025b. Llmthinkbench: Towards
basic math reasoning and overthinking in large lan-
guage models. Preprint, arXiv:2507.04023.

Vighnesh Subramaniam, Yilun Du, Joshua B Tenen-
baum, Antonio Torralba, Shuang Li, and Igor Mor-
datch. 2025. Multiagent finetuning: Self improve-
ment with diverse reasoning chains. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024. Rethinking the bounds of
llm reasoning: Are multi-agent discussions the key?
In Annual Meeting of the Association for Computa-
tional Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508.

32774

https://api.semanticscholar.org/CorpusID:259076266
https://api.semanticscholar.org/CorpusID:259076266
https://api.semanticscholar.org/CorpusID:259076266
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163
https://api.semanticscholar.org/CorpusID:257205781
https://api.semanticscholar.org/CorpusID:257205781
https://api.semanticscholar.org/CorpusID:257205781
https://api.semanticscholar.org/CorpusID:257205781
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2507.04023
https://arxiv.org/abs/2507.04023
https://arxiv.org/abs/2507.04023
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://api.semanticscholar.org/CorpusID:268041461
https://api.semanticscholar.org/CorpusID:268041461


Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D
Goodman. 2024. Star: Self-taught reasoner boot-
strapping reasoning with reasoning. In Proc. the 36th
International Conference on Neural Information Pro-
cessing Systems, volume 1126.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang
Lou, and Weizhu Chen. 2024. Automatic instruc-
tion evolving for large language models. Preprint,
arXiv:2406.00770.

32775

https://arxiv.org/abs/2406.00770
https://arxiv.org/abs/2406.00770


Contents of the Appendix

A Datasets Details 14

B Implementation Details 14

C REFLECT–CRITIQUE–REFINE Prompt Design 15

D Additional Self-Evolution Results 17
D.1 Complete GRPO results (all steps, temperature) . . . . . . . . . . . . . . . . . . . . . . 17
D.2 Complete Round 2 MAD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.3 GRPO round 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.4 Complete Round 3 MAD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D.5 Complete Cross Domain Task Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E Complete Results of Large-scale Empirical Study on MAD using RCR Prompting 22
E.1 Evaluation Metrics and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
E.2 Overview of Results Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
E.3 Key Findings and Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.3.1 Impact of Agent Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
E.3.2 Cross-Model Debate Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 23
E.3.3 Three-Agent Debate Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . 23
E.3.4 Dataset-Specific Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F Additional Results 45
F.1 Original MAD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
F.2 Majority Vote@3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
F.3 Scaling Results for Multiple Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

32776



A Datasets Details

We evaluate our approach on seven diverse reasoning benchmarks that test different aspects of model
capabilities. Each dataset was chosen to provide complementary challenges in reasoning tasks. Table 5
summarizes the dataset statistics.

Dataset Train Validation Test

GSM8K 7,473 – 1,319
GSM-Plus – 10,552 2,400
MATH 7,500 – 5,000
ARC-Easy 2,251 570 2,376
ARC-Challenge 1,119 299 1,172
GPQA Main – – 448
CommonsenseQA 9,741 1,221 1,140

Table 5: Dataset statistics. GSM8K and MATH provide only train and test splits, while GPQA Main contains only
test questions.

GSM8K (Cobbe et al., 2021) contains 8,790 grade school math word problems requiring multi-step
reasoning. We use 7,473 training examples and evaluate on 1,319 test problems. Each problem needs 2-8
reasoning steps to solve.

GSM-Plus (Li et al., 2024) provides 2,400 adversarial variations of GSM8K problems designed to
test robustness. These problems include more complex numerical values and additional reasoning steps
compared to the original dataset.

MATH (Hendrycks et al., 2021) consists of 12,500 competition mathematics problems from AMC 10,
AMC 12, AIME, and other competitions. Problems span topics from algebra to calculus with difficulty
levels from 1 to 5. We use the standard splits of 7,500 training and 5,000 test problems.

ARC (Clark et al., 2018) includes science questions at two difficulty levels. ARC-Easy has 2,251
training, 570 validation, and 2,376 test questions answerable by middle school students. ARC-Challenge
contains 1,119 training, 299 validation, and 1,172 test questions that are challenging for retrieval-based
methods.

GPQA Main (Rein et al., 2024) presents 448 graduate-level multiple-choice questions in biology,
physics, and chemistry. These expert-written questions are designed to be “Google-proof”- skilled
non-experts achieve only 34% accuracy despite unrestricted web access. We use this as a test-only
benchmark.

CommonsenseQA (Talmor et al., 2019) requires commonsense reasoning with 9,741 training, 1,221
validation, and 1,140 test questions. Questions test knowledge that goes beyond factual recall.

B Implementation Details

Training Setup. We implement GRPO training using the Unsloth2 and TRL3 libraries for efficient
parameter-efficient fine-tuning. We apply QLoRA (Dettmers et al., 2023) with rank 128 to attention and
feed-forward modules (query, key, value, output, gate, up, down projections). Training uses 8-bit AdamW
optimization with β1=0.9, β2=0.99, weight decay 0.1, and learning rate 5× 10−6 with cosine decay and
10% warmup. We train for 10,000 steps with batch size 8.

Reward Function. We design a multi-component reward to encourage both correct answers and proper
formatting: (1) answer correctness reward with weight 2.0, (2) XML format adherence reward with weight
0.5, (3) numeric response reward with weight 0.5, and (4) tag-counting reward with weight 0.5. Models
output structured responses using <reasoning> and <answer> XML tags for consistent evaluation.

2https://github.com/unslothai/unsloth
3https://github.com/huggingface/trl
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Computational Resources. Training runs on NVIDIA H100 (80GB), A100 (80GB), L40 (48GB), and
A40 (48GB) GPUs. A single evolution round for a 7B model takes approximately 68 hours on one A100
GPU, consuming about 9600 GPU-hours total. Larger models scale near-linearly with parameter count.

Inference Setup. We use vLLM (Kwon et al., 2023)4 for efficient inference with dynamic GPU
allocation. Multi-GPU setups use Hugging Face Accelerate5 for model sharding and optimization. During
debate, we sample at temperature 1.0 for exploration or 0.0 for deterministic responses.

Software and Licenses. All experiments use open-source software. Unsloth and TRL are released
under Apache 2.0 license. vLLM uses Apache 2.0 license. All datasets are publicly available with
appropriate licenses for research use: GSM8K (MIT), ARC (CC BY-SA 4.0), CommonsenseQA (MIT),
MATH (MIT), GSM-Plus (Apache 2.0), and GPQA (available for research with usage restrictions to
prevent leakage). Our code and model checkpoints will be released under Apache 2.0 license.

Hyperparameter Selection. We selected hyperparameters through preliminary experiments on valida-
tion sets. Key GRPO parameters include clipping threshold ϵ=0.2, KL coefficient β=0.02, and group size
G=8. These values balance exploration with training stability across model sizes.

C REFLECT–CRITIQUE–REFINE Prompt Design

Prompt 1: RCR Prompting for Math Reasoning Datasets (GSM8K, GSM-Plus)

Prompt Template
You are Agent {self.agent_id} in a multi-agent debate to solve the following math problem:
Problem: {question}
{own_previous}
Here are the solutions from other agents: {context}
This is debate round {round_num}. Please carefully analyze all solutions—including your
own—identify any errors in reasoning, and provide your revised solution.

• If you believe your previous answer is correct, explain why and defend it.

• If you believe you made an error, explain the error and provide a corrected solution.

• If you believe another agent’s answer is correct, explain why you agree with it.

Your final answer must be in the format {answer} at the end.

4https://docs.vllm.ai/en/latest/
5https://github.com/huggingface/accelerate
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Prompt 2: RCR Prompting for Science Reasoning Datasets (ARC-E, ARC-C)

Prompt Template You are Agent {self.agent_id} in a multi-agent debate to solve the following
scientific problem:
Problem: {question}
{own_previous}
Here are the solutions from other agents:
{context}
This is debate round {round_num}. Please carefully analyze all solutions—including your
own—identify any misconceptions or flawed scientific reasoning, and provide your revised solution.

• If you believe your previous answer is correct, explain the scientific principles supporting
your answer.

• If you believe you made an error, explain the scientific misconception and provide a corrected
solution.

• If you believe another agent’s answer is correct, explain why their scientific reasoning is
sound.

Your final answer must be in the format {answer} at the end.

Prompt 3: RCR Prompting for Commonsense Reasoning Datasets (CSQA)

Prompt Template You are Agent {self.agent_id} in a multi-agent debate to solve the following
commonsense reasoning problem:
Problem: {question}
{own_previous}
Here are the solutions from other agents:
{context}
This is debate round {round_num}. Please carefully analyze all solutions—including your
own—identify any flawed assumptions or logical inconsistencies, and provide your revised solution.

• If you believe your previous answer is correct, explain the logical reasoning and real-world
knowledge supporting it.

• If you believe you made an error, explain the flawed assumption or inconsistency and provide
a corrected solution.

• If you believe another agent’s answer is correct, explain why their reasoning aligns with
commonsense knowledge.

Your final answer must be in the format {answer} at the end.

32779



D Additional Self-Evolution Results

In this section, we present a comprehensive analysis of our DEBATE, TRAIN, EVOLVE framework
across multiple experimental settings. We first examine the impact of various GRPO configurations,
followed by analyses of multi-round training effects, and finally cross-domain generalization results. Our
experiments utilize a diverse set of models ranging from 1.5B to 14B parameters and evaluate performance
on challenging reasoning benchmarks including GSM8K, GSM-Plus, ARC-Challenge, ARC-Easy, and
CommonsenseQA.

D.1 Complete GRPO results (all steps, temperature)

We begin by investigating how different GRPO hyperparameters affect model performance. Tables 6, 7,
and 8 present results across three datasets (GSM8K, GSM-Plus, and ARC-Challenge) for six different
model configurations, varying training steps (2000, 5000, and 10000) and sampling temperatures (0.8 and
0.2).

Several key patterns emerge from these results. First, we observe that larger models (7B+) generally
maintain or improve their performance through GRPO fine-tuning, while smaller models (particularly
Llama-3B) occasionally exhibit catastrophic forgetting at higher step counts. Second, lower temperature
(0.2) typically yields more stable optimization trajectories for most model configurations, especially at
higher step counts. This supports our hypothesis that constraining policy drift during fine-tuning is crucial
for successful reasoning evolution.

Notably, the Qwen-2.5-3B model demonstrates remarkable stability across configurations, with con-
sistent performance gains on GSM-Plus (from 61.75% to 69.50%) and robust maintenance of GSM8K
performance. In contrast, the Llama-3B model shows significant performance degradation at higher step
counts with 0.8 temperature, dropping to near-random performance (2.73%) after 10000 steps on GSM8K,
while maintaining better stability at 0.2 temperature.

For ARC-Challenge, we observe that all models benefit from MAD evolution, with particularly strong
gains for Qwen-2.5-7B (from 87.22% to 91.64%) and Llama-8B (from 77.65% to 85.07%). These results
suggest that our framework effectively generalizes across both mathematical reasoning and scientific
question-answering domains.

D.2 Complete Round 2 MAD Results

After the first round of GRPO fine-tuning, we evaluated the performance of models in a multi-agent
debate setting to assess how evolution affects collaborative reasoning. Table 10 presents these results
across different debate configurations: exponential temperature scaling (Exp), default settings (Default),
temperature-4 settings (temp4), and deterministic setting (Det).

The MAD Round 2 results demonstrate that evolved models generally maintain their collaborative
reasoning capabilities after GRPO fine-tuning. For most models, MAD performance after evolution
either improves or remains comparable to the original MAD results. The Qwen-2.5-7B model, for
instance, achieves 77.75% accuracy on GSM-Plus under the temp4 configuration, which represents a
3.58% improvement over its original MAD performance.

Interestingly, we observe that different debate configurations yield varying results across model sizes.
Smaller models like Qwen-2.5-1.5B show significant performance variation across configurations, with
deterministic settings yielding the best results (69.07% on GSM8K and 56.62% on GSM-Plus). In contrast,
larger models like Qwen-2.5-7B demonstrate more consistent performance across configurations.

The exponential temperature scaling configuration generally underperforms other settings, particularly
for smaller models. This suggests that controlled diversity in debate is beneficial, but excessive exploration
may hinder collaborative reasoning effectiveness.

D.3 GRPO round 2 results

To investigate the effects of iterative evolution, we conducted a second round of GRPO fine-tuning on
models that had already undergone one round of evolution. Table 9 presents these results for four model
configurations across two datasets (GSM8K and GSM-Plus).
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The second round of GRPO training reveals interesting dynamics in model evolution. For the Qwen
family of models, we observe continued performance improvements or stability across most configurations.
The Qwen-2.5-7B model, for instance, achieves further gains on GSM-Plus, reaching 73.75% accuracy (a
5.13% improvement over its first round GRPO performance).

However, the Llama-3B model exhibits significant performance degradation in certain configurations,
particularly at higher step counts with 0.8 temperature (dropping to 35.63% on GSM8K and 23.02% on
GSM-Plus). This reinforces our finding that smaller models are more sensitive to optimization instability
during iterative fine-tuning. Importantly, using a lower temperature of 0.2 substantially mitigates this
issue, allowing the Llama-3B model to maintain competitive performance (73.62% on GSM8K) even
after two rounds of evolution.

These results highlight the importance of careful hyperparameter selection during iterative self-evolution,
particularly for smaller models that may be more susceptible to catastrophic forgetting or excessive policy
drift.

D.4 Complete Round 3 MAD Results
To investigate the long-term stability of collaborative reasoning capabilities through multiple evolution
iterations, we conducted a third round of multi-agent debate after the second round of GRPO fine-tuning.
Table 11 presents these results for three Qwen models across the same four debate configurations.

The Round 3 MAD results reveal interesting trends in iterative evolution. For the Qwen-2.5-3B and
Qwen-2.5-7B models, performance remains relatively stable across debate configurations, indicating
robust retention of reasoning capabilities through multiple fine-tuning iterations. However, the Qwen-
2.5-1.5B model shows more variable performance, particularly under the exponential temperature scaling
configuration where it drops to 44.28% on GSM8K.

Notably, the deterministic debate setting (Det) consistently produces the best or near-best performance
across all models and datasets, suggesting that reduced randomness in collaborative reasoning becomes
increasingly important after multiple evolution rounds. This aligns with our hypothesis that controlling
policy drift is crucial for successful iterative evolution.

The stability of larger models (3B+) across multiple evolution rounds indicates that our DEBATE,
TRAIN, EVOLVE framework can support continuous improvement without substantial performance
degradation when applied to sufficiently capable base models.

D.5 Complete Cross Domain Task Results
A key question for self-evolution frameworks is whether improvements generalize beyond the training
domain. Table 12 presents results for models fine-tuned on either GSM8K or GSM-Plus and evaluated on
multiple out-of-domain tasks including ARC-Easy, ARC-Challenge, and CommonsenseQA.

The cross-domain results reveal impressive generalization capabilities. Models fine-tuned on mathemat-
ical reasoning tasks (GSM8K and GSM-Plus) show substantial performance improvements not only on
the alternative math dataset but also on science and commonsense reasoning benchmarks. For instance,
the Qwen-2.5-14B model fine-tuned on GSM8K achieves 98.19% accuracy on ARC-Easy, 93.69% on
ARC-Challenge, and 83.70% on CommonsenseQA.

Interestingly, models fine-tuned on GSM-Plus generally perform better on GSM8K than vice versa. For
example, the Qwen-2.5-1.5B model achieves 73.09% on GSM8K when fine-tuned on GSM-Plus, but only
51.21% on GSM-Plus when fine-tuned on GSM8K. This asymmetry suggests that GSM-Plus may require
more diverse reasoning strategies that transfer well to simpler tasks.

The strong cross-domain performance demonstrates that our DEBATE, TRAIN, EVOLVE framework
does not simply optimize for specific datasets but instead enhances fundamental reasoning capabilities
that generalize across tasks. This is a critical advantage over traditional supervised fine-tuning approaches
that often exhibit limited transferability.
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Model Base Performance MAD GRPO (Temperature 0.8) GRPO (Temperature 0.2)

Train Test 2k steps 5k steps 10k steps 2k steps 5k steps 10k steps

Qwen-2.5-1.5B 81.55 62.77 72.33 67.78 71.42 71.04 73.09 66.49 53.98
Qwen-2.5-3B 91.28 84.08 85.14 85.06 85.14 86.13 84.00 86.05 84.38
Qwen-2.5-7B 94.29 90.67 91.21 88.32 86.73 84.00 86.96 86.35 88.02
Llama-3B 83.90 72.55 73.84 69.22 21.53 2.73 72.40 75.06 3.26
Llama-8B 89.08 81.73 82.18 84.61 85.29 85.22 86.81 84.91 0.15
Qwen-2.5-14B 94.89 92.80 93.33 87.72 89.84 91.81 86.58 89.34 93.74

Table 6: Complete GRPO Results on GSM8K Dataset. Results show accuracy (%) for different models under
various GRPO configurations. Training hyperparameters include learning rate of 5e-6 and context length of 256
tokens. MAD refers to Multi-Agent Debate baseline performance.

Model Base Performance MAD GRPO (Temperature 0.8) GRPO (Temperature 0.2)

Train Test 2k steps 5k steps 10k steps 2k steps 5k steps 10k steps

Qwen-2.5-1.5B 42.40 42.00 51.62 47.49 54.46 19.00 52.33 53.04 55.92
Qwen-2.5-3B 61.14 61.75 67.79 66.21 66.71 69.13 64.04 67.25 68.25
Qwen-2.5-7B 68.27 68.62 74.17 64.71 73.38 74.71 67.75 72.54 74.50
Llama-3B 47.68 45.67 51.12 52.38 53.29 52.33 51.79 49.54 53.79
Llama-8B 58.56 55.62 60.79 64.96 61.58 66.17 65.08 63.46 60.46
Qwen-2.5-14B 71.11 71.79 77.25 70.79 73.54 75.88 73.00 73.42 75.62

Table 7: Complete GRPO Results on GSM-Plus Dataset. Results show accuracy (%) for different models
under various GRPO configurations on the more challenging GSM-Plus dataset. Training hyperparameters include
learning rate of 5e-6.

Model Base Performance MAD GRPO (Temperature 0.8) GRPO (Temperature 0.2)

Train Test 2k steps 5k steps 10k steps 2k steps 5k steps 10k steps

Qwen-2.5-1.5B — 69.21 68.52 30.03 62.63 68.36 47.27 51.88 67.51
Qwen-2.5-3B — 83.53 84.64 81.66 80.29 83.63 81.91 79.78 83.95
Qwen-2.5-7B — 87.22 91.64 88.57 88.48 90.63 88.43 88.57 90.89
Llama-3B — 73.12 76.19 75.51 74.32 76.87 76.79 74.57 77.23
Llama-8B — 77.65 85.07 83.70 84.45 86.03 84.98 85.53 86.53
Qwen-2.5-14B — 90.27 93.77 91.81 92.49 93.13 91.47 91.47 92.67

Table 8: Complete GRPO Results on ARC-Challenge Dataset. Results show accuracy (%) for different models
under various GRPO configurations on the ARC-Challenge dataset. Training hyperparameters include learning rate
of 5e-6 and context length of 128 tokens. Base train performance was not evaluated for this dataset.
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Model Dataset GRPO Round 2 (Temp 0.8) GRPO Round 2 (Temp 0.2)

2k steps 5k steps 2k steps 5k steps

Qwen-2.5-1.5B
GSM8K 65.73 68.54 69.98 72.18

GSM-Plus 47.38 50.12 46.37 48.04

Qwen-2.5-3B
GSM8K 84.84 86.05 84.46 84.08

GSM-Plus 65.71 67.96 65.67 67.00

Qwen-2.5-7B
GSM8K 86.28 87.19 88.17 87.34

GSM-Plus 69.42 73.75 70.54 73.12

Llama-3B
GSM8K 55.88 35.63 73.62 64.29

GSM-Plus 48.75 23.02 52.42 25.08

Table 9: Complete GRPO Round 2 Results. Results show accuracy (%) after second round of GRPO training
across different step counts and temperature settings. All models were trained with learning rate of 5e-6 and context
length of 128 tokens.

Model Dataset MAD Configuration

Exp Default temp4 Det

Qwen-2.5-1.5B
GSM8K 46.32 66.34 68.61 69.07

GSM-Plus 22.09 53.18 55.62 56.62

Qwen-2.5-3B
GSM8K 84.08 86.66 86.35 86.50

GSM-Plus 69.62 70.25 69.67 70.29

Qwen-2.5-7B
GSM8K 91.36 90.75 91.05 89.99

GSM-Plus 76.42 77.00 77.75 77.62

Llama-3B
GSM8K 66.26 75.97 75.51 75.36

GSM-Plus 53.62 54.58 55.96 56.04

Llama-8B
GSM8K 84.69 85.90 86.96 85.60

GSM-Plus 65.00 65.92 66.46 66.50

Table 10: Complete MAD Round 2 Results. Results show accuracy (%) for different models in multi-agent debate
after first round of GRPO fine-tuning. Exp = exponential temperature scaling, Default = standard configuration,
temp4 = temperature-4 settings, Det = deterministic configuration.

Model Dataset MAD Configuration

Exp Default temp4 Det

Qwen-2.5-1.5B
GSM8K 44.28 60.65 67.70 72.40

GSM-Plus 35.54 48.62 51.67 51.75

Qwen-2.5-3B
GSM8K 83.78 85.60 85.75 86.13

GSM-Plus 63.67 63.42 64.16 64.47

Qwen-2.5-7B
GSM8K 89.76 91.05 90.90 91.13

GSM-Plus 69.67 69.85 70.50 69.88

Table 11: Complete MAD Round 3 Results. Results show accuracy (%) for different models in multi-agent debate
after second round of GRPO fine-tuning. Exp = exponential temperature scaling, Default = standard configuration,
temp4 = temperature-4 settings, Det = deterministic configuration.
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Model Fine-tuned on Evaluation Dataset

GSM8K GSM-Plus ARC-Easy ARC-Challenge CommonsenseQA

Qwen-2.5-1.5B
GSM8K — 51.21 85.02 69.88 64.29

GSM-Plus 73.09 — 85.10 69.45 64.21

Qwen-2.5-3B
GSM8K — 65.54 93.94 84.30 75.92

GSM-Plus 86.50 — 94.15 84.13 75.92

Qwen-2.5-7B
GSM8K — 69.63 96.42 91.72 82.96

GSM-Plus 91.81 — 96.38 90.87 82.88

Llama-3B
GSM8K — 52.38 87.12 72.01 68.14

GSM-Plus 76.35 — 86.57 69.20 68.55

Llama-8B
GSM8K — 63.75 93.01 84.39 74.12

GSM-Plus 86.88 — 93.98 85.49 73.87

Qwen-2.5-14B
GSM8K — 73.46 98.19 93.69 83.70

GSM-Plus 93.33 — 97.98 94.28 82.23

Table 12: Complete Cross Domain Task Results. Results show accuracy (%) on various datasets after fine-tuning
on either GSM8K or GSM-Plus. Dashes (—) indicate that evaluation was not performed on the same dataset used
for fine-tuning.
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E Complete Results of Large-scale Empirical Study on MAD using RCR Prompting

This section presents a comprehensive analysis of our large-scale empirical investigation into Multi-Agent
Debate (MAD) using Recursive Critical Reflection (RCR) prompting across five diverse benchmarks:
GSM8K, GSM-Plus, ARC-Easy, ARC-Challenge, and CommonsenseQA. Through extensive experi-
mentation involving various model combinations and parameter settings, we evaluate how collaborative
reasoning among multiple language model agents affects problem-solving performance.

E.1 Evaluation Metrics and Methodology

To facilitate systematic comparison and analysis of debate outcomes, we track the following key metrics
across all debate configurations:

• Accuracy: The primary performance measure, representing the percentage of problems correctly
solved after the debate process concludes.

• ∆ (Performance Delta): Measures the performance change relative to appropriate baselines. We
report several variants including:

– ∆ (vs Base): Change compared to the single agent’s performance

– ∆ (vs Lower Agent): Change compared to the lower-performing agent in cross-agent debates

– ∆ (vs Upper Agent): Change compared to the better-performing agent in cross-agent debates

– ∆ (vs Lowest): Change compared to the lowest-performing agent in three-agent settings

• Debate Rounds: The average number of interaction rounds required to reach consensus or the
maximum allowed limit, indicating debate efficiency.

• Sycophancy: A normalized measure (per data points) quantifying the tendency of agents to abandon
their answers in favor of matching another agent’s previous response, providing insights into social
influence dynamics.

• State Transitions: Tracked as C→I (correct to incorrect) and I→C (incorrect to correct) counts,
these reveal the qualitative nature of answer changes during debate.

• Debate Helped: The overall count of instances where the debate process improved the final outcome
compared to initial responses.

Our evaluation spans multiple dimensions of agent configuration:

• Agent Settings: We systematically vary temperature parameter across four settings:

– Default: Balanced temperature

– Deterministic (Det.): Lower temperature for more consistent outputs

– Exploratory (Exp.): Higher temperature for more diverse responses

– Mixed: Combinations of the above settings across different agents

• Debate Structures: We investigate four primary debate configurations:

– Single-Model Debate: Multiple instances of the same model with varied parameter settings

– Cross-Agent Debate: Two different models debating with various parameter settings

– Three Identical Agents: Three instances of the same model with potentially different settings

– Three Varied Agents: Three different models engaging in debate
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E.2 Overview of Results Organization
Our extensive experimental results are organized in Tables 13-32, systematically covering all five datasets
with the four debate configurations described above. For each dataset, we present:

• Table set 1 (Tables 13-16): Performance on GSM8K

• Table set 2 (Tables 17-20): Performance on GSM-Plus

• Table set 3 (Tables 21-24): Performance on ARC-Easy

• Table set 4 (Tables 25-28): Performance on ARC-Challenge

• Table set 5 (Tables 29-32): Performance on CommonsenseQA

E.3 Key Findings and Patterns
E.3.1 Impact of Agent Settings
Our analysis reveals that agent parameter settings significantly influence debate outcomes across all
datasets. We observe that while the Default setting provides reliable performance, Exploratory settings
often lead to higher variance in outcomes, sometimes yielding exceptional improvements but also risking
performance degradation. The Deterministic setting generally produces more consistent but potentially
conservative results.

The sycophancy metric proves particularly informative, showing higher values in debates between
models with substantial performance gaps. This suggests that lower-performing models tend to defer
to higher-performing ones, which can be either beneficial or detrimental depending on the initial state
distribution.

E.3.2 Cross-Model Debate Dynamics
In cross-agent debates (Tables 10-14), we find that pairing models with complementary strengths often
produces synergistic effects. The ∆ metrics relative to both upper and lower agents reveal important
patterns: when a high-performing model debates with a weaker one, the debate outcome typically falls
between their individual performances but closer to the stronger model’s baseline.

State transitions (C→I and I→C) provide valuable insights into debate quality. A high I→C rate
coupled with a low C→I rate indicates constructive debate where correct reasoning prevails, while the
opposite pattern signals problematic dynamics where convincing but incorrect reasoning dominates.

E.3.3 Three-Agent Debate Effectiveness
The introduction of a third agent creates more complex interaction patterns. Three-agent debates con-
sistently show lower sycophancy rates compared to two-agent settings, suggesting that the presence of
multiple perspectives reduces blind conformity. When all three agents are identical, we observe that
diversity in parameter settings typically outperforms homogeneous settings.

In three varied agent debates, we find particularly interesting results when combining models of different
sizes and architectures. As shown in Table 16, certain combinations like "Qwen-2.5-3B + Phi-mini-3.8B
+ Llama-3.1-3B" achieve accuracy improvements even compared to the highest-performing individual
agent, suggesting effective complementarity between these models’ reasoning approaches.

E.3.4 Dataset-Specific Patterns
Our results indicate substantial variation in debate effectiveness across different datasets:

• GSM8K and GSM+: Harder Mathematical reasoning tasks (GSM-Plus) show the most consistent
benefits from debate, with average debate rounds typically higher than other datasets, suggesting that
step-by-step verification is particularly valuable for these problems.

• ARC-Easy and ARC-Challenge: Multiple-choice science questions reveal interesting patterns
where sycophancy is generally lower, but debate can still improve performance when appropriately
configured.
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• CommonsenseQA: This dataset exhibits unique characteristics where debates tend to conclude
more quickly, suggesting that commonsense reasoning may be less amenable to explicit verification
through debate.

E.4 Conclusion
Tables 13-32 collectively present a comprehensive empirical foundation for understanding the effects of
Multi-Agent Debate using RCR prompting across diverse reasoning tasks. The metrics reveal nuanced
patterns in how debate influences performance, with clear evidence that appropriate configuration of
debate participants and settings can yield substantial improvements over single-agent performance.

The consistent tracking of accuracy, deltas, debate rounds, sycophancy, and state transitions provides a
multi-dimensional view of debate quality beyond simple performance measures. These results demonstrate
that MAD is not universally beneficial but rather depends critically on the specific combination of models,
parameter settings, and problem domains. Our findings establish an important baseline for future research
on collaborative reasoning between language models, highlighting both the potential and the challenges
of multi-agent approaches to complex problem-solving.
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Agent 1 Agent 2 Agent Settings MAD Accuracy ∆ Debate Sycophancy C→I I→C Debate
(RCR Prompting) Rounds (Avg / 1319) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Default 47.38 5.38 ↑ 1.60 1.17 156.00 251 220
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Deterministic 47.31 5.31 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Exploratory 39.20 2.8 ↓ 2.19 1.25 185.00 274 234
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Det. & Exp. 43.14 1.14 ↑ 1.89 1.09 185.00 262 226

Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Default 70.89 8.12 ↑ 0.86 0.70 101.00 352 317
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Deterministic 63.46 0.69 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Exploratory 71.57 8.8 ↑ 1.05 0.84 94.00 449 399
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Det. & Exp. 72.33 9.56 ↑ 0.98 0.71 99.00 423 377

Qwen-2.5-3B Qwen-2.5-3B Both: Default 86.05 0.91 ↑ 0.31 0.21 55.00 115 104
Qwen-2.5-3B Qwen-2.5-3B Both: Deterministic 84.99 0.15 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Both: Exploratory 85.52 0.38 ↑ 0.35 0.26 62.00 116 103
Qwen-2.5-3B Qwen-2.5-3B Both: Det. & Exp. 86.28 1.14 ↑ 0.34 0.19 50.00 106 101

Qwen-2.5-7B Qwen-2.5-7B Both: Default 91.74 1.07 ↑ 0.16 0.13 28.00 53 49
Qwen-2.5-7B Qwen-2.5-7B Both: Deterministic 90.60 0.07 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Both: Exploratory 91.21 0.54 ↑ 0.18 0.15 27.00 59 57
Qwen-2.5-7B Qwen-2.5-7B Both: Det. & Exp. 91.51 0.84 ↑ 0.18 0.15 33.00 57 55

Qwen-2.5-14B Qwen-2.5-14B Both: Default 93.48 0.68 ↑ 0.11 0.13 22.00 46 43
Qwen-2.5-14B Qwen-2.5-14B Both: Deterministic 93.18 0.38 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Both: Exploratory 93.33 0.53 ↑ 0.11 0.12 20.00 48 48
Qwen-2.5-14B Qwen-2.5-14B Both: Det. & Exp. 93.63 0.83 ↑ 0.13 0.15 24.00 44 39

Qwen-2.5-32B Qwen-2.5-32B Both: Default 95.00 0.08 ↑ 0.05 0.06 11.00 21 20
Qwen-2.5-32B Qwen-2.5-32B Both: Deterministic 94.77 0.15 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Both: Exploratory 95.38 0.46 ↑ 0.07 0.08 9.00 32 31
Qwen-2.5-32B Qwen-2.5-32B Both: Det. & Exp. 95.30 0.38 0.04 0.05 12.00 23 21

Llama-3.1-3B Llama-3.1-3B Both: Default 74.91 2.36 ↑ 0.73 0.49 106.00 208 183
Llama-3.1-3B Llama-3.1-3B Both: Deterministic 74.37 1.82 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Both: Exploratory 72.40 0.15 ↓ 0.94 0.57 138.00 225 202
Llama-3.1-3B Llama-3.1-3B Both: Det. & Exp. 73.84 1.29 ↑ 0.80 0.48 133.00 193 175

Llama-3.1-8B Llama-3.1-8B Both: Default 82.56 0.83 ↑ 0.48 0.38 86.00 116 105
Llama-3.1-8B Llama-3.1-8B Both: Deterministic 81.50 0.23 ↓ 0.00 0.00 0.00 0 0
Llama-3.1-8B Llama-3.1-8B Both: Exploratory 80.67 1.06 ↓ 0.60 0.40 98.00 162 149
Llama-3.1-8B Llama-3.1-8B Both: Det. & Exp. 82.18 0.45 ↑ 0.56 0.39 97.00 142 126

Phi-mini-3.8B Phi-mini-3.8B Both: Default 87.72 0.84 ↑ 0.29 0.27 51.00 101 95
Phi-mini-3.8B Phi-mini-3.8B Both: Deterministic 86.73 0.15 ↓ 0.02 0.00 0.00 2 1
Phi-mini-3.8B Phi-mini-3.8B Both: Exploratory 87.95 1.07 ↑ 0.30 0.26 48.00 112 99
Phi-mini-3.8B Phi-mini-3.8B Both: Det. & Exp. 87.34 0.46 ↑ 0.33 0.26 62.00 103 95

Mistral-7B Mistral-7B Both: Default 33.74 12.36 ↑ 1.65 0.73 101.00 454 340
Mistral-7B Mistral-7B Both: Deterministic 20.02 1.36 0.04 0.00 0.00 0 0
Mistral-7B Mistral-7B Both: Exploratory 35.71 14.33 ↑ 1.85 0.80 110.00 509 381
Mistral-7B Mistral-7B Both: Det. & Exp. 33.51 12.13 1.53 0.68 97.00 433 334

Table 13: Performance in Multi-Agent Debate Settings on the GSM8K Dataset. This table showcases the impact of
different Agent Settings (controlling temperature and top_p parameters like Default, Deterministic, Exploratory, and
a combination) on the MAD Accuracy (RCR Prompting) of various language models. The ∆ column quantifies
the improvement (or decline) over the single base model performance. Further metrics include average Debate
Rounds, normalized Sycophancy (per 1319 data points), and transitions between correct (C) and incorrect (I) states
(C→I, I→C), highlighting the nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent Settings Accuracy ∆ (Lower Agent) ∆ (Upper Agent) Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1319) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B 1: Default & 2: Default 62.40 20.4 ↑ 0.37 ↓ 1.52 0.96 168.00 434 387
Qwen-2.5-0.5B Qwen-2.5-1.5B 1: Det. & 2: Det. 62.32 20.32 ↑ 0.45 ↓ 1.27 0.72 155.00 357 323
Qwen-2.5-0.5B Qwen-2.5-1.5B 1: Exp. & 2: Exp. 58.91 16.91 ↑ 3.86 ↓ 1.95 1.03 175.00 531 448
Qwen-2.5-0.5B Qwen-2.5-1.5B 1: Det. & 2: Exp. 60.88 18.88 ↑ 1.89 ↓ 1.54 0.83 147.00 416 344
Qwen-2.5-0.5B Qwen-2.5-1.5B 1: Exp. & 2: Det. 61.18 19.18 ↑ 1.59 ↓ 1.67 0.87 164.00 474 425

Qwen-2.5-1.5B Llama-3.1-3B 1: Default & 2: Default 76.42 13.65 ↑ 3.87 ↑ 1.09 0.56 107.00 388 342
Qwen-2.5-1.5B Llama-3.1-3B 1: Det. & 2: Det. 75.59 12.82 ↑ 3.04 ↑ 1.14 0.36 93.00 285 258
Qwen-2.5-1.5B Llama-3.1-3B 1: Exp. & 2: Exp. 76.57 13.8 ↑ 4.02 ↑ 1.17 0.65 96.00 416 355
Qwen-2.5-1.5B Llama-3.1-3B 1: Det. & 2: Exp. 75.06 12.29 ↑ 2.51 ↑ 1.22 0.48 111.00 362 326
Qwen-2.5-1.5B Llama-3.1-3B 1: Exp. & 2: Det. 76.04 13.27 ↑ 3.49 ↑ 1.12 0.59 129.00 383 331

Qwen-2.5-3B Phi-mini-3.8B 1: Default & 2: Default 87.41 2.27 ↑ 0.53 ↑ 0.39 0.22 53.00 128 114
Qwen-2.5-3B Phi-mini-3.8B 1: Det. & 2: Det. 85.97 0.83 ↑ 0.91 ↓ 0.43 0.17 74.00 82 72
Qwen-2.5-3B Phi-mini-3.8B 1: Exp. & 2: Exp. 88.63 3.49 ↑ 1.75 ↑ 0.44 0.27 46.00 155 142
Qwen-2.5-3B Phi-mini-3.8B 1: Det. & 2: Exp. 86.73 1.59 ↑ 0.15 ↓ 0.40 0.20 63.00 105 99
Qwen-2.5-3B Phi-mini-3.8B 1: Exp. & 2: Det. 88.10 2.96 ↑ 1.22 ↑ 0.41 0.23 57.00 135 126

Qwen-2.5-1.5B Qwen-2.5-3B 1: Default & 2: Default 82.71 19.94 ↑ 2.43 ↓ 0.71 0.51 67.00 370 359
Qwen-2.5-1.5B Qwen-2.5-3B 1: Det. & 2: Det. 81.27 18.5 ↑ 3.87 ↓ 0.62 0.48 94.00 284 275
Qwen-2.5-1.5B Qwen-2.5-3B 1: Exp. & 2: Exp. 83.17 20.4 ↑ 1.97 ↓ 0.80 0.56 68.00 414 392
Qwen-2.5-1.5B Qwen-2.5-3B 1: Det. & 2: Exp. 82.87 20.1 ↑ 2.27 ↓ 0.76 0.48 74.00 328 310
Qwen-2.5-1.5B Qwen-2.5-3B 1: Exp. & 2: Det. 82.26 19.49 ↑ 2.88 ↓ 0.75 0.52 82.00 384 372

Llama-3.1-3B Llama-3.1-8B 1: Default & 2: Default 78.54 5.99 ↑ 3.19 ↓ 0.77 0.51 122.00 213 195
Llama-3.1-3B Llama-3.1-8B 1: Det. & 2: Det. 79.23 6.68 ↑ 2.5 ↓ 0.68 0.48 130.00 159 143
Llama-3.1-3B Llama-3.1-8B 1: Exp. & 2: Exp. 77.10 4.55 ↑ 4.63 ↓ 0.93 0.58 127.00 238 224
Llama-3.1-3B Llama-3.1-8B 1: Det. & 2: Exp. 79.83 7.28 ↑ 1.9 ↓ 0.81 0.45 123.00 211 183
Llama-3.1-3B Llama-3.1-8B 1: Exp. & 2: Det. 77.18 4.63 ↑ 4.55 ↓ 0.87 0.56 141.00 183 173

Qwen-2.5-7B Qwen-2.5-14B 1: Default & 2: Default 92.19 1.52 ↑ 0.61 ↓ 0.16 0.13 39.00 63 61
Qwen-2.5-7B Qwen-2.5-14B 1: Det. & 2: Det. 92.04 1.37 ↑ 0.76 ↓ 0.17 0.13 47.00 53 50
Qwen-2.5-7B Qwen-2.5-14B 1: Exp. & 2: Exp. 93.10 2.43 ↑ 0.3 ↑ 0.16 0.15 33.00 72 68
Qwen-2.5-7B Qwen-2.5-14B 1: Det. & 2: Exp. 92.19 1.52 ↑ 0.61 ↓ 0.15 0.11 37.00 58 58
Qwen-2.5-7B Qwen-2.5-14B 1: Exp. & 2: Det. 92.80 2.13 ↑ 0.00 0.17 0.16 39.00 64 60

Table 14: Performance Analysis of Cross-Agent Debates on the GSM8K Dataset. This table details the outcomes
of debates between different language models (Agent 1 and Agent 2). Agent Settings specify the configuration
(e.g., Default, Deterministic (Det.), Exploratory (Exp.)) applied to Agent 1 and Agent 2 respectively, influencing
temperature and top_p parameters. The table presents overall Accuracy, along with ∆ (Lower Agent) and ∆
(Upper Agent) indicating the performance change for each agent relative to a baseline. Additional metrics include
average Debate Rounds, normalized Sycophancy (per 1319 data points), and transitions between correct (C) and
incorrect (I) states (C→I, I→C) to show debate impact.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ (Improvement) Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1319) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B All: Default 41.70 0.3 ↓ 2.77 3.17 414.00 393.00 236.00
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B All: Deterministic 47.31 5.31 ↑ 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B All: Exploratory 36.09 5.91 ↓ 3.47 3.33 438.00 450.00 282.00
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 1 Det, 2 Exp 38.36 3.64 ↓ 3.13 2.90 412.00 370.00 246.00
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 2 Det, 1 Exp 43.06 1.06 ↑ 1.97 1.42 306.00 300.00 211.00

Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B All: Default 72.48 9.71 ↑ 1.35 1.64 193.00 652.00 469.00
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B All: Deterministic 63.99 1.22 ↑ 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B All: Exploratory 75.13 12.36 ↑ 1.57 1.82 181.00 796.00 547.00
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 1 Det, 2 Exp 74.83 12.06 ↑ 1.51 1.71 170.00 741.00 534.00
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 2 Det, 1 Exp 72.25 9.48 ↑ 0.97 1.03 131.00 510.00 329.00

Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B All: Default 86.96 1.82 ↑ 0.49 0.52 85.00 191.00 147.00
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B All: Deterministic 84.99 0.15 ↓ 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B All: Exploratory 87.64 2.5 ↑ 0.60 0.65 85.00 256.00 200.00
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 1 Det, 2 Exp 86.73 1.59 ↑ 0.63 0.56 110.00 236.00 179.00
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 2 Det, 1 Exp 86.05 0.91 ↑ 0.40 0.32 75.00 130.00 99.00

Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B All: Default 93.03 2.36 ↑ 0.22 0.22 33.00 110.00 88.00
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B All: Deterministic 90.60 0.07 ↓ 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B All: Exploratory 92.42 1.75 ↑ 0.24 0.24 52.00 110.00 87.00
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 1 Det, 2 Exp 92.12 1.45 ↑ 0.24 0.24 44.00 106.00 86.00
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 2 Det, 1 Exp 91.96 1.29 ↑ 0.17 0.17 28.00 76.00 52.00

Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B All: Default 94.09 1.29 0.11 0.13 18.00 67.00 59.00
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B All: Deterministic 92.95 0.15 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B All: Exploratory 94.24 1.44 0.14 0.16 26.00 88.00 78.00
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 1 Det, 2 Exp 94.31 1.51 0.13 0.16 17.00 81.00 68.00
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 2 Det, 1 Exp 92.87 0.07 0.09 0.08 30.00 33.00 29.00

Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B All: Default 95.30 0.38 0.07 0.07 18.00 44.00 39.00
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B All: Deterministic 94.77 0.15 0.00 0.00 0.00 0.00 0.00
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B All: Exploratory 94.84 0.08 0.08 0.09 21.00 51.00 47.00
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 1 Det, 2 Exp 95.30 0.38 0.07 0.07 16.00 49.00 41.00
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 2 Det, 1 Exp 95.22 0.30 0.05 0.05 11.00 34.00 24.00

Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B All: Default 88.40 1.52 ↑ 0.42 0.55 86.00 168.00 129.00
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B All: Deterministic 86.66 0.22 ↓ 0.01 0.01 0.00 0.00 0.00
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B All: Exploratory 88.10 1.22 ↑ 0.48 0.59 99.00 197.00 145.00
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 1 Det, 2 Exp 87.87 0.99 ↑ 0.46 0.53 95.00 178.00 132.00
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 2 Det, 1 Exp 87.72 0.84 ↑ 0.32 0.41 64.00 121.00 80.00

Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B All: Default 72.63 0.08 ↑ 1.29 1.29 265.00 317.00 238.00
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B All: Deterministic 73.16 0.61 ↑ 0.00 0.00 0.00 0.00 0.00
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B All: Exploratory 72.78 0.23 ↑ 1.49 1.39 246.00 414.00 312.00
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 1 Det, 2 Exp 73.69 1.14 ↑ 1.39 1.28 251.00 407.00 283.00
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 2 Det, 1 Exp 72.93 0.38 ↑ 1.08 0.87 203.00 229.00 147.00

Mistral-7B Mistral-7B Mistral-7B All: Default 37.83 16.45 ↑ 2.37 1.97 203.00 894.00 454.00
Mistral-7B Mistral-7B Mistral-7B All: Deterministic 20.02 1.36 ↓ 0.04 0.00 0.00 0.00 0.00
Mistral-7B Mistral-7B Mistral-7B All: Exploratory 39.27 17.89 ↑ 2.81 2.30 189.00 904.00 480.00
Mistral-7B Mistral-7B Mistral-7B 1 Det, 2 Exp 38.89 17.51 ↑ 2.61 2.13 222.00 940.00 476.00
Mistral-7B Mistral-7B Mistral-7B 2 Det, 1 Exp 35.33 13.95 ↑ 1.82 1.39 135.00 694.00 360.00

Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B All: Default 84.23 2.5 ↑ 0.72 0.82 135.00 429.00 192.00
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B All: Deterministic 81.50 0.23 ↓ 0.00 0.00 0.00 0.00 0.00
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B All: Exploratory 83.70 1.97 ↑ 0.88 0.89 162.00 310.00 230.00
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 1 Det, 2 Exp 83.32 1.59 ↑ 0.86 0.86 160.00 284.00 211.00
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 2 Det, 1 Exp 82.26 0.53 ↑ 0.67 0.63 129.00 199.00 132.00

Table 15: Performance Analysis of Three Identical Agents Debating on GSM8K. This table shows results when
three instances of the same model (Agent 1, Agent 2, Agent 3 being identical) engage in a debate. Agent Settings
describe the configuration mix across these three agents (e.g., All Default, or a mix like 1 Deterministic (Det), 2
Exploratory (Exp)). Accuracy is the debate outcome, and ∆ (Improvement) is the change from the single agent’s
baseline. Standard metrics like Debate Rounds, normalized Sycophancy (per 1319 data points), and error transition
rates (C→I, I→C) are also included.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ (vs Lowest) Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1319) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-3B All: Default 80.82 4.32 ↓ 1.81 1.58 154.00 859.00 639.00
Qwen-2.5-0.5B Qwen-2.5-1.5B Llama-3.1-3B All: Default 69.52 3.03 ↓ 2.43 1.76 271.00 718.00 508.00
Qwen-2.5-0.5B Qwen-2.5-1.5B Phi-mini-3.8B All: Default 76.04 10.84 ↓ 2.20 1.47 267.00 727.00 532.00
Qwen-2.5-0.5B Qwen-2.5-3B Llama-3.1-3B All: Default 79.15 5.99 ↓ 2.10 1.36 184.00 696.00 536.00
Qwen-2.5-0.5B Qwen-2.5-3B Phi-mini-3.8B All: Default 83.62 3.24 ↓ 1.82 1.08 150.00 618.00 534.00
Qwen-2.5-0.5B Llama-3.1-3B Phi-mini-3.8B All: Default 76.57 10.31 ↓ 2.39 1.16 255.00 515.00 402.00
Qwen-2.5-1.5B Qwen-2.5-3B Llama-3.1-3B All: Default 82.71 2.43 ↓ 1.24 1.06 156.00 544.00 436.00
Qwen-2.5-1.5B Qwen-2.5-3B Phi-mini-3.8B All: Default 85.22 1.66 ↓ 1.08 0.85 139.00 460.00 388.00
Qwen-2.5-1.5B Llama-3.1-3B Phi-mini-3.8B All: Default 81.20 5.68 ↓ 1.33 1.05 196.00 560.00 446.00
Qwen-2.5-3B Phi-mini-3.8B Llama-3.1-3B All: Default 86.96 0.08 ↑ 0.89 0.71 127.00 372.00 297.00
Qwen-2.5-3B Qwen-2.5-3B Phi-mini-3.8B All: Default 87.64 0.76 ↑ 0.60 0.55 97.00 227.00 175.00
Qwen-2.5-3B Phi-mini-3.8B Phi-mini-3.8B All: Default 87.79 0.91 ↑ 0.58 0.53 111.00 209.00 167.00
Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-1.5B All: Default 68.46 5.69 ↑ 2.10 2.09 221.00 795.00 570.00
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-1.5B All: Default 55.12 7.65 ↓ 2.60 2.52 364.00 628.00 407.00

Table 16: Performance Analysis of Three-Agent Debates (Varied Models) on GSM8K. This table presents outcomes
from debates involving three potentially different language models (Agent 1, Agent 2, Agent 3). All debates
use default agent settings. The ∆ (vs Lowest) column indicates the performance change of the debate outcome
(Accuracy) compared to the baseline performance of the lowest-performing agent among the three in that specific
debate. Standard metrics like Debate Rounds, normalized Sycophancy (per 1319 data points), and error transition
rates (C→I, I→C) are also included.
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Agent 1 Agent 2 Agent Settings MAD Accuracy ∆ Debate Sycophancy C→I I→C Debate
(RCR Prompting) Rounds (Avg / 2400) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Default 27.33 2.54 ↑ 2.00 1.51 248.00 348 295
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Deterministic 29.25 4.46 ↑ 0.02 0.00 0.00 2 1
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Exploratory 23.12 1.67 ↓ 2.56 1.43 284.00 351 289
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Det. & Exp. 27.33 2.54 ↑ 2.26 1.33 267.00 396 336

Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Default 53.12 11.12 ↑ 1.14 0.91 210.00 555 502
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Deterministic 47.29 5.29 ↑ 0.03 0.00 0.00 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Exploratory 51.62 9.62 ↑ 1.40 1.08 218.00 647 551
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Det. & Exp. 52.29 10.29 ↑ 1.17 0.85 181.00 528 477

Qwen-2.5-3B Qwen-2.5-3B Both: Default 67.42 5.67 ↑ 0.62 0.39 133.00 225 213
Qwen-2.5-3B Qwen-2.5-3B Both: Deterministic 67.38 5.63 ↑ 0.05 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Both: Exploratory 67.79 6.04 ↑ 0.69 0.46 132.00 296 265
Qwen-2.5-3B Qwen-2.5-3B Both: Det. & Exp. 66.46 4.71 ↑ 0.67 0.36 163.00 223 208

Qwen-2.5-7B Qwen-2.5-7B Both: Default 74.17 5.55 ↑ 0.35 0.26 62.00 135 127
Qwen-2.5-7B Qwen-2.5-7B Both: Deterministic 73.62 5.00 ↑ 0.04 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Both: Exploratory 74.17 5.55 ↑ 0.39 0.30 88.00 158 150
Qwen-2.5-7B Qwen-2.5-7B Both: Det. & Exp. 74.46 5.84 ↑ 0.33 0.25 78.00 126 118

Qwen-2.5-14B Qwen-2.5-14B Both: Default 77.21 5.42 ↑ 0.32 0.32 47.00 102 100
Qwen-2.5-14B Qwen-2.5-14B Both: Deterministic 76.25 4.46 ↑ 0.06 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Both: Exploratory 77.25 5.46 ↑ 0.33 0.32 45.00 128 123
Qwen-2.5-14B Qwen-2.5-14B Both: Det. & Exp. 76.96 5.17 ↑ 0.31 0.29 48.00 99 93

Qwen-2.5-32B Qwen-2.5-32B Both: Default 73.33 0.87 ↑ 0.24 0.19 29.00 62 59
Qwen-2.5-32B Qwen-2.5-32B Both: Deterministic 72.79 0.33 ↑ 0.08 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Both: Exploratory 73.42 0.96 ↑ 0.27 0.23 32.00 91 88
Qwen-2.5-32B Qwen-2.5-32B Both: Det. & Exp. 73.46 1.00 ↑ 0.26 0.19 26.00 70 68

Phi-mini-3.8B Phi-mini-3.8B Both: Default 69.62 6.20 ↑ 0.60 0.47 113.00 204 191
Phi-mini-3.8B Phi-mini-3.8B Both: Deterministic 69.21 5.79 ↑ 0.13 0.02 0.00 6 3
Phi-mini-3.8B Phi-mini-3.8B Both: Exploratory 70.38 6.96 ↑ 0.67 0.50 117.00 267 242
Phi-mini-3.8B Phi-mini-3.8B Both: Det. & Exp. 69.42 6.00 ↑ 0.62 0.45 114.00 203 188

Mistral-7B Mistral-7B Both: Default 23.42 8.38 ↑ 1.91 0.77 159.00 576 434
Mistral-7B Mistral-7B Both: Deterministic 14.33 0.71 ↓ 0.15 0.01 0.00 4 2
Mistral-7B Mistral-7B Both: Exploratory 23.29 8.25 ↑ 2.13 0.85 149.00 586 437
Mistral-7B Mistral-7B Both: Det. & Exp. 22.75 7.71 ↑ 1.93 0.77 147.00 556 414

Llama-3.1-3B Llama-3.1-3B Both: Default 51.58 5.91 ↑ 1.20 0.82 232.00 439 378
Llama-3.1-3B Llama-3.1-3B Both: Deterministic 50.50 4.83 ↑ 0.01 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Both: Exploratory 51.12 5.45 ↑ 1.47 0.87 233.00 482 406
Llama-3.1-3B Llama-3.1-3B Both: Det. & Exp. 50.75 5.08 ↑ 1.28 0.74 218.00 381 333

Llama-3.1-8B Llama-3.1-8B Both: Default 62.04 6.42 ↑ 0.95 0.72 202.00 313 274
Llama-3.1-8B Llama-3.1-8B Both: Deterministic 61.04 5.42 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-8B Llama-3.1-8B Both: Exploratory 60.79 5.17 ↑ 1.12 0.77 197.00 340 303
Llama-3.1-8B Llama-3.1-8B Both: Det. & Exp. 60.96 5.34 ↑ 1.01 0.72 214.00 304 273

Table 17: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the GSM-
Plus Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p
parameters like Default, Deterministic, Exploratory, and a combination) on the MAD Accuracy (RCR Prompting)
of various language models. The ∆ column quantifies the improvement (or decline) over the single base model
performance. Further metrics include average Debate Rounds, normalized Sycophancy (per 2400 data points),
and transitions between correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate
dynamics.
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Agent 1 Agent 2 Agent Settings MAD ∆ Lower ∆ Upper Debate Sycophancy C→I I→C Debate
Accuracy Rounds (Avg / 2400) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Default 41.38 16.59 ↑ 0.62 ↓ 1.85 1.12 314 628 548
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Deterministic 42.67 17.88 ↑ 0.67 ↑ 1.58 0.89 292 565 505
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exploratory 39.54 14.75 ↑ 2.46 ↓ 2.30 1.20 320 722 604
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Det. & Exp. 40.04 15.25 ↑ 1.96 ↓ 1.97 1.04 301 588 492
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exp. & Det. 44.25 19.46 ↑ 2.25 ↑ 2.00 1.04 278 750 664

Qwen-2.5-1.5B Llama-3.1-3B Both: Default 54.42 12.42 ↑ 8.75 ↑ 1.56 0.75 232 612 532
Qwen-2.5-1.5B Llama-3.1-3B Both: Deterministic 54.37 12.37 ↑ 8.70 ↑ 1.56 0.50 224 489 435
Qwen-2.5-1.5B Llama-3.1-3B Both: Exploratory 54.21 12.21 ↑ 8.54 ↑ 1.77 0.89 255 696 602
Qwen-2.5-1.5B Llama-3.1-3B Both: Det. & Exp. 53.29 11.29 ↑ 7.62 ↑ 1.65 0.62 249 555 488
Qwen-2.5-1.5B Llama-3.1-3B Both: Exp. & Det. 54.58 12.58 ↑ 8.91 ↑ 1.51 0.77 249 603 533

Qwen-2.5-3B Phi-mini-3.8B Both: Default 70.21 8.46 ↑ 6.79 ↑ 0.79 0.41 132 304 275
Qwen-2.5-3B Phi-mini-3.8B Both: Deterministic 69.83 8.08 ↑ 6.41 ↑ 0.78 0.29 128 224 200
Qwen-2.5-3B Phi-mini-3.8B Both: Exploratory 69.71 7.96 ↑ 6.29 ↑ 0.83 0.47 136 339 303
Qwen-2.5-3B Phi-mini-3.8B Both: Det. & Exp. 69.88 8.13 ↑ 6.46 ↑ 0.79 0.31 133 241 216
Qwen-2.5-3B Phi-mini-3.8B Both: Exp. & Det. 70.58 8.83 ↑ 7.16 ↑ 0.81 0.38 134 307 276

Qwen-2.5-1.5B Qwen-2.5-3B Both: Default 63.79 21.79 ↑ 2.04 ↑ 1.05 0.67 154 573 537
Qwen-2.5-1.5B Qwen-2.5-3B Both: Deterministic 63.92 21.92 ↑ 2.17 ↑ 0.85 0.60 180 500 471
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exploratory 63.79 21.79 ↑ 2.04 ↑ 1.12 0.76 165 680 639
Qwen-2.5-1.5B Qwen-2.5-3B Both: Det. & Exp. 62.58 20.58 ↑ 0.83 ↑ 1.09 0.61 174 525 483
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exp. & Det. 64.25 22.25 ↑ 2.50 ↑ 1.08 0.68 189 640 608

Llama-3.1-3B Llama-3.1-8B Both: Default 56.75 11.08 ↑ 1.13 ↑ 1.29 0.88 264 422 381
Llama-3.1-3B Llama-3.1-8B Both: Deterministic 57.08 11.41 ↑ 1.46 ↑ 1.13 0.74 278 348 316
Llama-3.1-3B Llama-3.1-8B Both: Exploratory 57.17 11.50 ↑ 1.55 ↑ 1.43 0.89 241 490 424
Llama-3.1-3B Llama-3.1-8B Both: Det. & Exp. 57.21 11.54 ↑ 1.59 ↑ 1.27 0.72 259 420 362
Llama-3.1-3B Llama-3.1-8B Both: Exp. & Det. 56.67 11.00 ↑ 1.05 ↑ 1.27 0.80 298 411 364

Qwen-2.5-7B Qwen-2.5-14B Both: Default 75.88 7.26 ↑ 4.09 ↑ 0.38 0.28 88 165 159
Qwen-2.5-7B Qwen-2.5-14B Both: Deterministic 75.54 6.92 ↑ 3.75 ↑ 0.32 0.24 83 119 112
Qwen-2.5-7B Qwen-2.5-14B Both: Exploratory 75.08 6.46 ↑ 3.29 ↑ 0.39 0.30 111 168 153
Qwen-2.5-7B Qwen-2.5-14B Both: Det. & Exp. 76.12 7.50 ↑ 4.33 ↑ 0.36 0.25 92 155 148
Qwen-2.5-7B Qwen-2.5-14B Both: Exp. & Det. 76.33 7.71 ↑ 4.54 ↑ 0.35 0.31 78 143 133

Table 18: Comparative Analysis of Mixed-Model Performance in Multi-Agent Debate Settings on the GSM-Plus
Dataset. This table showcases the impact of different Agent Settings on the MAD Accuracy when pairing different
language models together. The ∆ Lower and ∆ Upper columns quantify the improvement (or decline) over each
individual model’s base performance. Further metrics include average Debate Rounds, normalized Sycophancy
(per 2400 data points), and transitions between correct (C) and incorrect (I) states (C→I, I→C), highlighting the
dynamics when models of different capabilities debate together.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 2400) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Default 25.00 0.21 ↑ 3.21 3.75 583 473 299
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Deterministic 29.21 4.42 ↑ 0.02 0.00 0 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Exploratory 20.75 4.04 ↓ 3.88 3.78 645 578 344
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 1 Det. & 2 Exp. 22.67 2.12 ↓ 3.66 3.40 667 467 296
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 2 Det. & 1 Exp. 25.42 0.63 ↑ 2.45 1.96 454 394 279

Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Default 53.04 11.04 ↑ 1.87 2.28 446 995 676
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Deterministic 47.29 5.29 ↑ 0.03 0.00 0 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Exploratory 53.33 11.33 ↑ 2.24 2.74 357 1159 774
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 1 Det. & 2 Exp. 53.67 11.67 ↑ 2.03 2.35 394 1116 756
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 2 Det. & 1 Exp. 53.17 11.17 ↑ 1.31 1.41 265 793 514

Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Default 67.38 5.63 ↑ 0.97 1.01 273 423 326
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Deterministic 67.38 5.63 ↑ 0.05 0.00 0 0 0
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Exploratory 68.00 6.25 ↑ 1.09 1.12 223 537 404
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 1 Det. & 2 Exp. 68.54 6.79 ↑ 1.08 0.94 235 428 343
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 2 Det. & 1 Exp. 67.12 5.37 ↑ 0.78 0.61 202 274 208

Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Default 75.79 7.17 ↑ 0.51 0.52 84 272 209
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Deterministic 73.62 5.00 ↑ 0.04 0.00 0 0 0
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Exploratory 74.96 6.34 ↑ 0.55 0.54 117 270 220
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 1 Det. & 2 Exp. 75.25 6.63 ↑ 0.50 0.50 120 267 214
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 2 Det. & 1 Exp. 74.42 5.80 ↑ 0.39 0.39 97 181 135

Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Default 77.92 6.13 ↑ 0.35 0.35 55 166 140
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Deterministic 76.54 4.75 ↑ 0.05 0.00 0 3 1
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Exploratory 77.29 5.50 ↑ 0.38 0.40 69 188 159
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 1 Det. & 2 Exp. 77.21 5.42 ↑ 0.38 0.37 72 172 143
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 2 Det. & 1 Exp. 77.21 5.42 ↑ 0.28 0.25 48 105 81

Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Default 73.46 1.00 ↑ 0.29 0.23 48 112 96
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Deterministic 72.79 0.33 ↑ 0.08 0.00 0 0 0
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Exploratory 73.46 1.00 ↑ 0.33 0.31 46 123 109
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 1 Det. & 2 Exp. 73.88 1.42 ↑ 0.29 0.23 42 131 106
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 2 Det. & 1 Exp. 73.12 0.66 ↑ 0.24 0.17 40 75 60

Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Default 70.21 6.79 ↑ 0.90 1.12 226 389 284
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Deterministic 69.17 5.75 ↑ 0.12 0.04 0 3 1
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Exploratory 70.25 6.83 ↑ 0.95 1.11 219 423 327
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 1 Det. & 2 Exp. 69.83 6.41 ↑ 0.93 1.02 232 390 293
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 2 Det. & 1 Exp. 69.54 6.12 ↑ 0.73 0.81 191 292 202

Mistral-7B Mistral-7B Mistral-7B Default 24.04 8.99 ↑ 2.75 2.12 312 979 525
Mistral-7B Mistral-7B Mistral-7B Deterministic 14.37 0.67 ↓ 0.15 0.02 0 8 3
Mistral-7B Mistral-7B Mistral-7B Exploratory 27.04 12.00 ↑ 3.03 2.49 325 1234 628
Mistral-7B Mistral-7B Mistral-7B 1 Det. & 2 Exp. 23.92 8.88 ↑ 2.90 2.25 349 1046 544
Mistral-7B Mistral-7B Mistral-7B 2 Det. & 1 Exp. 23.00 7.96 ↑ 2.16 1.55 232 855 458

Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Default 51.54 5.87 ↑ 1.89 1.93 454 733 476
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Deterministic 50.67 5.00 ↑ 0.01 0.00 0 0 0
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Exploratory 50.71 5.04 ↑ 2.26 2.12 520 857 544
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 1 Det. & 2 Exp. 50.17 4.50 ↑ 2.12 1.96 515 744 493
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 2 Det. & 1 Exp. 51.33 5.66 ↑ 1.50 1.23 309 493 322

Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Default 62.67 7.05 ↑ 1.43 1.60 345 572 407
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Deterministic 61.04 5.42 ↑ 0.00 0.00 0 0 0
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Exploratory 61.08 5.46 ↑ 1.69 1.85 385 624 446
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 1 Det. & 2 Exp. 62.12 6.50 ↑ 1.51 1.64 374 588 413
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 2 Det. & 1 Exp. 61.12 5.50 ↑ 1.20 1.20 335 414 269

Table 19: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the GSM-
Plus Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p
parameters like Default, Deterministic, Exploratory, and combinations) on the Accuracy of various language models
in three-agent configurations. The ∆ column quantifies the improvement (or decline) over the single base model
performance. Further metrics include average Debate Rounds, normalized Sycophancy (per 2400 data points),
and transitions between correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate
dynamics.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 2400) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-3B Default 60.00 1.75 ↓ 2.35 2.05 338 1356 951
Qwen-2.5-0.5B Qwen-2.5-1.5B Llama-3.1-3B Default 47.46 1.79 ↑ 3.11 2.23 596 1086 718
Qwen-2.5-0.5B Qwen-2.5-1.5B Phi-mini-3.8B Default 56.62 6.80 ↓ 2.83 1.93 503 1168 857
Qwen-2.5-0.5B Qwen-2.5-3B Llama-3.1-3B Default 59.62 2.13 ↓ 2.83 1.90 364 1202 895
Qwen-2.5-0.5B Qwen-2.5-3B Phi-mini-3.8B Default 65.25 1.83 ↑ 2.42 1.48 353 1190 946
Qwen-2.5-0.5B Llama-3.1-3B Phi-mini-3.8B Default 56.92 6.50 ↓ 3.13 1.64 536 980 724
Qwen-2.5-1.5B Qwen-2.5-3B Llama-3.1-3B Default 64.00 2.25 ↑ 1.91 1.59 321 1048 773
Qwen-2.5-1.5B Qwen-2.5-3B Phi-mini-3.8B Default 67.25 3.83 ↑ 1.61 1.25 299 857 692
Qwen-2.5-1.5B Llama-3.1-3B Phi-mini-3.8B Default 63.50 0.08 ↑ 2.02 1.57 405 1079 766
Qwen-2.5-3B Phi-mini-3.8B Llama-3.1-3B Default 69.08 5.66 ↑ 1.58 1.20 255 825 653

Qwen-2.5-3B Qwen-2.5-3B Phi-mini-3.8B Default 68.79 7.04 ↑ 1.13 0.90 291 461 340
Qwen-2.5-3B Phi-mini-3.8B Phi-mini-3.8B Default 69.21 5.79 ↑ 1.10 0.92 279 424 317

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Default 49.88 7.88 ↑ 2.44 2.50 456 1197 794
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-1.5B Default 37.21 4.79 ↓ 3.07 3.24 589 969 607

Table 20: Comparative Analysis of Mixed Multi-Agent Debate Settings on the GSM-Plus Dataset. This table
examines performance when combining different language models in three-agent debate configurations. The
first section shows combinations of three different models, while the second section explores configurations
with duplicate models. The ∆ column indicates performance changes relative to the best single model in each
combination, with improvements in green and declines in red. Metrics include Debate Rounds, normalized
Sycophancy (per 2400 data points), and transitions between states (C→I, I→C).
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Agent 1 Agent 2 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 2376) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Default 52.90 1.73 ↓ 1.15 0.99 460.00 550 482
Qwen-2.5-0.5B Qwen-2.5-0.5B Deterministic 53.24 1.39 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Exploratory 49.07 5.56 ↓ 1.46 1.09 558.00 628 530
Qwen-2.5-0.5B Qwen-2.5-0.5B Det. & Exp. 52.99 1.64 ↓ 1.15 0.97 426.00 572 516

Qwen-2.5-1.5B Qwen-2.5-1.5B Default 86.15 0.47 ↓ 0.38 0.38 130.00 415 403
Qwen-2.5-1.5B Qwen-2.5-1.5B Deterministic 84.60 2.02 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Exploratory 83.42 3.20 ↓ 0.55 0.55 160.00 574 547
Qwen-2.5-1.5B Qwen-2.5-1.5B Det. & Exp. 86.62 0.00 0.41 0.42 135.00 449 434

Qwen-2.5-3B Qwen-2.5-3B Default 94.02 0.96 ↑ 0.14 0.13 56.00 117 114
Qwen-2.5-3B Qwen-2.5-3B Deterministic 93.35 0.29 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Exploratory 94.15 1.09 ↑ 0.16 0.15 49.00 158 157
Qwen-2.5-3B Qwen-2.5-3B Det. & Exp. 94.07 1.01 ↑ 0.15 0.13 70.00 126 124

Qwen-2.5-7B Qwen-2.5-7B Default 96.17 1.48 ↑ 0.05 0.05 31.00 39 37
Qwen-2.5-7B Qwen-2.5-7B Deterministic 96.55 1.86 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Exploratory 96.93 2.24 ↑ 0.05 0.05 21.00 57 53
Qwen-2.5-7B Qwen-2.5-7B Det. & Exp. 96.46 1.77 ↑ 0.05 0.04 30.00 35 34

Qwen-2.5-14B Qwen-2.5-14B Default 98.19 2.53 ↑ 0.03 0.02 15.00 21 21
Qwen-2.5-14B Qwen-2.5-14B Deterministic 97.77 2.11 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Exploratory 98.15 2.49 ↑ 0.02 0.02 8.00 20 20
Qwen-2.5-14B Qwen-2.5-14B Det. & Exp. 97.94 2.28 ↑ 0.03 0.02 16.00 24 24

Qwen-2.5-32B Qwen-2.5-32B Default 98.53 0.21 ↑ 0.02 0.03 10.00 14 13
Qwen-2.5-32B Qwen-2.5-32B Deterministic 98.36 0.04 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Exploratory 98.53 0.21 ↑ 0.02 0.03 8.00 14 14
Qwen-2.5-32B Qwen-2.5-32B Det. & Exp. 98.36 0.04 ↑ 0.02 0.02 9.00 10 8

Phi-mini-3.8B Phi-mini-3.8B Default 95.88 3.92 ↑ 0.11 0.16 40.00 71 60
Phi-mini-3.8B Phi-mini-3.8B Deterministic 95.37 3.41 ↑ 0.00 0.00 0.00 0 0
Phi-mini-3.8B Phi-mini-3.8B Exploratory 94.74 2.78 ↑ 0.16 0.21 59.00 126 116
Phi-mini-3.8B Phi-mini-3.8B Det. & Exp. 94.95 2.99 ↑ 0.14 0.19 56.00 89 78

Mistral-7B Mistral-7B Default 81.06 0.04 ↑ 0.35 0.28 158.00 227 219
Mistral-7B Mistral-7B Deterministic 80.43 0.59 ↓ 0.00 0.00 0.00 0 0
Mistral-7B Mistral-7B Exploratory 80.18 0.84 ↓ 0.43 0.32 203.00 261 251
Mistral-7B Mistral-7B Det. & Exp. 82.41 1.39 ↑ 0.37 0.27 129.00 240 235

Llama-3.1-3B Llama-3.1-3B Default 87.71 3.07 ↑ 0.26 0.21 128.00 163 153
Llama-3.1-3B Llama-3.1-3B Deterministic 86.66 2.02 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Exploratory 88.09 3.45 ↑ 0.28 0.26 118.00 216 208
Llama-3.1-3B Llama-3.1-3B Det. & Exp. 86.91 2.27 ↑ 0.28 0.22 127.00 181 172

Llama-3.1-8B Llama-3.1-8B Default 94.44 5.34 ↑ 0.11 0.11 54.00 79 75
Llama-3.1-8B Llama-3.1-8B Deterministic 93.64 4.54 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-8B Llama-3.1-8B Exploratory 93.60 4.50 ↑ 0.15 0.17 60.00 118 109
Llama-3.1-8B Llama-3.1-8B Det. & Exp. 94.53 5.43 ↑ 0.12 0.13 54.00 95 93

Table 21: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the ARC-Easy
Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p parameters
like Default, Deterministic, Exploratory, and a combination) on the Accuracy of various language models. The
∆ column quantifies the improvement (or decline) over the single base model performance. Further metrics
include average Debate Rounds, normalized Sycophancy (per 2376 data points), and transitions between correct
(C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent Settings Accuracy ∆ Lower ∆ Upper Debate Sycophancy C→I I→C Debate
Rounds (Avg / 2376) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Default 76.98 22.35 ↑ 9.64 ↓ 0.95 0.75 262.00 804 760
Qwen-2.5-0.5B Qwen-2.5-1.5B Deterministic 79.38 24.75 ↑ 7.24 ↓ 0.81 0.62 200.00 734 711
Qwen-2.5-0.5B Qwen-2.5-1.5B Exploratory 73.19 18.56 ↑ 13.43 ↓ 1.16 0.85 300.00 899 828
Qwen-2.5-0.5B Qwen-2.5-1.5B Det. & Exp. 75.21 20.58 ↑ 11.41 ↓ 0.95 0.78 260.00 846 790
Qwen-2.5-0.5B Qwen-2.5-1.5B Exp. & Det. 77.65 23.02 ↑ 8.97 ↓ 1.07 0.75 275.00 829 794

Qwen-2.5-1.5B Llama-3.1-3B Default 88.55 1.93 ↑ 3.91 ↑ 0.40 0.39 146.00 376 357
Qwen-2.5-1.5B Llama-3.1-3B Deterministic 88.13 1.51 ↑ 3.49 ↑ 0.29 0.24 150.00 242 239
Qwen-2.5-1.5B Llama-3.1-3B Exploratory 88.05 1.43 ↑ 3.41 ↑ 0.49 0.48 161.00 483 457
Qwen-2.5-1.5B Llama-3.1-3B Det. & Exp. 86.99 0.37 ↑ 1.35 ↑ 0.37 0.39 172.00 290 277
Qwen-2.5-1.5B Llama-3.1-3B Exp. & Det. 87.71 1.09 ↑ 2.07 ↑ 0.45 0.40 165.00 447 433

Qwen-2.5-3B Phi-mini-3.8B Default 95.24 2.18 ↑ 3.28 ↑ 0.15 0.14 61.00 135 132
Qwen-2.5-3B Phi-mini-3.8B Deterministic 94.91 1.85 ↑ 2.95 ↑ 0.14 0.12 72.00 106 102
Qwen-2.5-3B Phi-mini-3.8B Exploratory 95.24 2.18 ↑ 3.28 ↑ 0.17 0.16 57.00 184 178
Qwen-2.5-3B Phi-mini-3.8B Det. & Exp. 94.91 1.85 ↑ 2.95 ↑ 0.17 0.15 68.00 148 148
Qwen-2.5-3B Phi-mini-3.8B Exp. & Det. 95.75 2.69 ↑ 3.79 ↑ 0.15 0.14 58.00 146 139

Qwen-2.5-1.5B Qwen-2.5-3B Default 91.88 5.26 ↑ 1.18 ↓ 0.33 0.29 112.00 363 359
Qwen-2.5-1.5B Qwen-2.5-3B Deterministic 92.59 5.97 ↑ 0.47 ↓ 0.24 0.23 94.00 263 254
Qwen-2.5-1.5B Qwen-2.5-3B Exploratory 91.79 5.17 ↑ 1.27 ↓ 0.42 0.38 95.00 498 487
Qwen-2.5-1.5B Qwen-2.5-3B Det. & Exp. 92.76 6.14 ↑ 0.20 ↓ 0.27 0.27 81.00 294 286
Qwen-2.5-1.5B Qwen-2.5-3B Exp. & Det. 92.51 5.89 ↑ 0.45 ↓ 0.39 0.32 96.00 469 466

Llama-3.1-3B Llama-3.1-8B Default 91.79 7.15 ↑ 2.69 ↑ 0.24 0.22 110.00 184 179
Llama-3.1-3B Llama-3.1-8B Deterministic 91.12 6.48 ↑ 2.02 ↑ 0.22 0.16 113.00 138 133
Llama-3.1-3B Llama-3.1-8B Exploratory 90.61 5.97 ↑ 1.51 ↑ 0.28 0.27 115.00 202 192
Llama-3.1-3B Llama-3.1-8B Det. & Exp. 90.99 6.35 ↑ 1.89 ↑ 0.24 0.18 108.00 152 149
Llama-3.1-3B Llama-3.1-8B Exp. & Det. 91.96 7.32 ↑ 2.86 ↑ 0.28 0.26 99.00 229 222

Qwen-2.5-7B Qwen-2.5-14B Default 97.94 3.25 ↑ 2.28 ↑ 0.05 0.05 21.00 55 55
Qwen-2.5-7B Qwen-2.5-14B Deterministic 97.64 2.95 ↑ 1.98 ↑ 0.07 0.04 20.00 48 47
Qwen-2.5-7B Qwen-2.5-14B Exploratory 97.39 2.70 ↑ 1.73 ↑ 0.08 0.07 32.00 67 66
Qwen-2.5-7B Qwen-2.5-14B Det. & Exp. 97.43 2.74 ↑ 1.77 ↑ 0.06 0.05 33.00 49 48
Qwen-2.5-7B Qwen-2.5-14B Exp. & Det. 97.47 2.78 ↑ 1.81 ↑ 0.07 0.04 27.00 49 48

Table 22: Comparative Analysis of Different Language Model Pairs in Multi-Agent Debate Settings on the
ARC-Easy Dataset. This table showcases the impact of different Agent Settings (controlling temperature and
top_p parameters) on the Accuracy of various model pairs. The ∆ Lower and ∆ Upper columns quantify the
improvement (or decline) over each individual model’s single-agent performance. Further metrics include average
Debate Rounds, normalized Sycophancy (per 2376 data points), and transitions between correct (C) and incorrect
(I) states (C→I, I→C), highlighting the nuanced effects of debate dynamics between different model pairings.
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Agent 1 Agent 2 Agent Settings MAD Accuracy ∆ Debate Sycophancy C→I I→C Debate
(RCR Prompting) Rounds (Avg / 2376) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Default 51.30 3.33 ↓ 2.18 2.67 1046.00 990 642
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Deterministic 53.24 1.39 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Exploratory 46.80 7.83 ↓ 2.78 3.22 1228.00 1099 655
Qwen-2.5-0.5B Qwen-2.5-0.5B 1 Det. & 2 Exp. 48.99 5.64 ↓ 2.47 2.82 1136.00 1053 658
Qwen-2.5-0.5B Qwen-2.5-0.5B 2 Det. & 1 Exp. 50.80 3.83 ↓ 1.34 1.60 794.00 793 495

Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Default 87.37 0.75 ↑ 0.63 0.84 232.00 717 573
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Deterministic 84.60 2.02 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Exploratory 85.61 1.01 ↓ 0.90 1.17 279.00 1011 795
Qwen-2.5-1.5B Qwen-2.5-1.5B 1 Det. & 2 Exp. 86.32 0.30 ↓ 0.76 0.98 275.00 834 672
Qwen-2.5-1.5B Qwen-2.5-1.5B 2 Det. & 1 Exp. 86.53 0.09 ↓ 0.43 0.62 198.00 587 451

Qwen-2.5-3B Qwen-2.5-3B Both: Default 94.87 1.81 ↑ 0.19 0.19 80.00 196 165
Qwen-2.5-3B Qwen-2.5-3B Both: Deterministic 93.35 0.29 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Both: Exploratory 94.28 1.22 ↑ 0.25 0.28 102.00 252 206
Qwen-2.5-3B Qwen-2.5-3B 1 Det. & 2 Exp. 94.70 1.64 ↑ 0.25 0.23 90.00 238 195
Qwen-2.5-3B Qwen-2.5-3B 2 Det. & 1 Exp. 93.94 0.88 ↑ 0.20 0.18 94.00 162 117

Qwen-2.5-7B Qwen-2.5-7B Both: Default 96.21 1.52 ↑ 0.08 0.08 53.00 69 58
Qwen-2.5-7B Qwen-2.5-7B Both: Deterministic 96.17 1.48 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Both: Exploratory 96.55 1.86 ↑ 0.10 0.11 57.00 86 71
Qwen-2.5-7B Qwen-2.5-7B 1 Det. & 2 Exp. 96.55 1.86 ↑ 0.10 0.11 56.00 78 65
Qwen-2.5-7B Qwen-2.5-7B 2 Det. & 1 Exp. 96.34 1.65 ↑ 0.07 0.07 39.00 56 40

Qwen-2.5-14B Qwen-2.5-14B Both: Default 98.15 2.49 ↑ 0.04 0.04 23.00 29 26
Qwen-2.5-14B Qwen-2.5-14B Both: Deterministic 97.77 2.11 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Both: Exploratory 98.19 2.53 ↑ 0.04 0.05 18.00 40 36
Qwen-2.5-14B Qwen-2.5-14B 1 Det. & 2 Exp. 98.02 2.36 ↑ 0.03 0.04 28.00 40 31
Qwen-2.5-14B Qwen-2.5-14B 2 Det. & 1 Exp. 97.81 2.15 ↑ 0.03 0.03 23.00 28 25

Qwen-2.5-32B Qwen-2.5-32B Both: Default 98.57 0.25 ↑ 0.02 0.03 16.00 15 13
Qwen-2.5-32B Qwen-2.5-32B Both: Deterministic 98.36 0.04 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Both: Exploratory 98.48 0.16 ↑ 0.02 0.02 15.00 14 14
Qwen-2.5-32B Qwen-2.5-32B 1 Det. & 2 Exp. 98.48 0.16 ↑ 0.02 0.03 16.00 15 12
Qwen-2.5-32B Qwen-2.5-32B 2 Det. & 1 Exp. 98.32 0.00 0.01 0.02 12.00 9 6

Phi-mini-3.8B Phi-mini-3.8B Both: Default 95.79 3.83 ↑ 0.16 0.28 79.00 138 105
Phi-mini-3.8B Phi-mini-3.8B Both: Deterministic 95.37 3.41 ↑ 0.00 0.00 0.00 0 0
Phi-mini-3.8B Phi-mini-3.8B Both: Exploratory 94.91 2.95 ↑ 0.28 0.43 110.00 234 185
Phi-mini-3.8B Phi-mini-3.8B 1 Det. & 2 Exp. 96.34 4.38 ↑ 0.18 0.27 70.00 189 149
Phi-mini-3.8B Phi-mini-3.8B 2 Det. & 1 Exp. 95.92 3.96 ↑ 0.13 0.24 53.00 115 83

Llama-3.1-3B Llama-3.1-3B Both: Default 87.33 2.69 ↑ 0.46 0.44 252.00 292 227
Llama-3.1-3B Llama-3.1-3B Both: Deterministic 87.63 2.99 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Both: Exploratory 87.71 3.07 ↑ 0.58 0.61 255.00 415 323
Llama-3.1-3B Llama-3.1-3B 1 Det. & 2 Exp. 87.58 2.94 ↑ 0.53 0.48 241.00 328 259
Llama-3.1-3B Llama-3.1-3B 2 Det. & 1 Exp. 88.47 3.83 ↑ 0.32 0.27 148.00 236 169

Llama-3.1-8B Llama-3.1-8B Both: Default 93.86 4.76 ↑ 0.20 0.26 114.00 139 102
Llama-3.1-8B Llama-3.1-8B Both: Deterministic 93.64 4.54 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-8B Llama-3.1-8B Both: Exploratory 94.19 5.09 ↑ 0.25 0.36 130.00 190 141
Llama-3.1-8B Llama-3.1-8B 1 Det. & 2 Exp. 94.11 5.01 ↑ 0.23 0.33 119.00 185 143
Llama-3.1-8B Llama-3.1-8B 2 Det. & 1 Exp. 94.49 5.39 ↑ 0.14 0.20 69.00 139 89

Mistral-7B Mistral-7B Both: Default 82.20 1.18 ↑ 0.69 0.71 318.00 469 342
Mistral-7B Mistral-7B Both: Deterministic 80.43 0.59 ↓ 0.00 0.00 0.00 0 0
Mistral-7B Mistral-7B Both: Exploratory 82.66 1.64 ↑ 0.83 0.88 325.00 566 429
Mistral-7B Mistral-7B 1 Det. & 2 Exp. 82.37 1.35 ↑ 0.78 0.81 324.00 506 376
Mistral-7B Mistral-7B 2 Det. & 1 Exp. 81.69 0.67 ↑ 0.47 0.51 230.00 346 230

Table 23: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the ARC-
Easy Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p
parameters like Default, Deterministic, Exploratory, and combinations) on the MAD Accuracy (RCR Prompting)
of various language models. The ∆ column quantifies the improvement (or decline) over the single base model
performance. Further metrics include average Debate Rounds, normalized Sycophancy (per 2376 data points),
and transitions between correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate
dynamics.
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Agent 1 Agent 2 Agent 3 MAD Accuracy ∆ Debate Sycophancy C→I I→C Debate
(RCR Prompting) Rounds (Avg / 2376) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-3B 92.72 0.34 ↓ 1.00 0.95 145 1377 1153
Qwen-2.5-0.5B Qwen-2.5-1.5B Llama-3.1-3B 84.64 0.00 1.18 1.27 387 1223 1006
Qwen-2.5-0.5B Qwen-2.5-1.5B Phi-mini-3.8B 92.93 0.97 ↑ 1.03 1.04 184 1379 1156
Qwen-2.5-0.5B Qwen-2.5-3B Llama-3.1-3B 91.20 1.86 ↓ 1.13 0.99 213 1221 1070
Qwen-2.5-0.5B Qwen-2.5-3B Phi-mini-3.8B 89.48 3.58 ↓ 1.09 1.12 299 1157 1024
Qwen-2.5-0.5B Llama-3.1-3B Phi-mini-3.8B 91.79 0.17 ↓ 0.58 0.72 238 559 479

Qwen-2.5-1.5B Qwen-2.5-3B Llama-3.1-3B 91.84 1.22 ↓ 0.56 0.60 189 560 479
Qwen-2.5-1.5B Qwen-2.5-3B Phi-mini-3.8B 95.54 2.48 ↑ 0.39 0.45 103 509 449
Qwen-2.5-1.5B Llama-3.1-3B Phi-mini-3.8B 91.79 0.17 ↓ 0.58 0.72 238 559 479
Qwen-2.5-3B Phi-mini-3.8B Llama-3.1-3B 94.07 1.01 ↑ 0.41 0.43 162 332 283

Qwen-2.5-3B Qwen-2.5-3B Phi-mini-3.8B 95.88 2.82 ↑ 0.26 0.26 86 253 214
Qwen-2.5-3B Phi-mini-3.8B Phi-mini-3.8B 96.34 3.28 ↑ 0.26 0.31 71 227 180

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 84.64 2.00 ↓ 1.22 1.22 300 1229 1012
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-1.5B 72.43 14.19 ↓ 1.86 2.11 616 1400 982

Table 24: Comparative Analysis of Multi-Model Combinations in Agent Debate Settings on the ARC-Easy Dataset.
This table showcases the performance of heterogeneous agent teams consisting of different language models. The
MAD Accuracy (RCR Prompting) reflects the team performance, while the ∆ column quantifies the improvement
(or decline) relative to the best single model in each combination. Additional metrics include average Debate
Rounds, normalized Sycophancy (per 2376 data points), and transitions between correct (C) and incorrect (I) states
(C→I, I→C), revealing how diverse model combinations affect debate dynamics and overall helpfulness.
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Agent 1 Agent 2 Agent Settings MAD Accuracy ∆ Debate Sycophancy C→I I→C Debate
(ARC-Challenge) Rounds (Avg / 1172) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Default 39.51 1.54 ↑ 1.32 1.10 253.00 265 228
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Deterministic 40.78 2.81 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Exploratory 37.54 0.43 ↓ 1.51 1.14 266.00 309 245
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Det. & Exp. 39.85 1.88 ↑ 1.34 1.12 247.00 259 227

Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Default 70.90 1.69 ↑ 0.57 0.58 115.00 249 242
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Deterministic 67.58 1.63 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Exploratory 68.52 0.69 ↓ 0.75 0.70 133.00 296 275
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Det. & Exp. 69.88 0.67 ↑ 0.60 0.61 101.00 262 252

Qwen-2.5-3B Qwen-2.5-3B Both: Default 85.41 1.88 ↑ 0.29 0.29 53.00 114 111
Qwen-2.5-3B Qwen-2.5-3B Both: Deterministic 84.13 0.60 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Both: Exploratory 84.64 1.11 ↑ 0.30 0.27 56.00 116 109
Qwen-2.5-3B Qwen-2.5-3B Both: Det. & Exp. 83.70 0.17 ↑ 0.28 0.23 70.00 79 73

Qwen-2.5-7B Qwen-2.5-7B Both: Default 91.55 4.33 ↑ 0.11 0.11 29.00 46 45
Qwen-2.5-7B Qwen-2.5-7B Both: Deterministic 91.21 3.99 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Both: Exploratory 91.64 4.42 ↑ 0.12 0.11 23.00 53 51
Qwen-2.5-7B Qwen-2.5-7B Both: Det. & Exp. 92.06 4.84 ↑ 0.13 0.12 30.00 48 43

Qwen-2.5-14B Qwen-2.5-14B Both: Default 94.54 4.27 ↑ 0.06 0.05 13.00 24 24
Qwen-2.5-14B Qwen-2.5-14B Both: Deterministic 94.37 4.10 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Both: Exploratory 93.77 3.50 ↑ 0.06 0.07 23.00 24 24
Qwen-2.5-14B Qwen-2.5-14B Both: Det. & Exp. 94.71 4.44 ↑ 0.06 0.06 11.00 22 21

Qwen-2.5-32B Qwen-2.5-32B Both: Default 98.53 3.25 ↑ 0.02 0.06 10.00 14 13
Qwen-2.5-32B Qwen-2.5-32B Both: Deterministic 98.36 3.08 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Both: Exploratory 98.53 3.25 ↑ 0.02 0.06 8.00 14 14
Qwen-2.5-32B Qwen-2.5-32B Both: Det. & Exp. 98.36 3.08 ↑ 0.02 0.04 9.00 10 8

Phi-mini-3.8B Phi-mini-3.8B Both: Default 90.10 5.37 ↑ 0.24 0.34 42.00 75 66
Phi-mini-3.8B Phi-mini-3.8B Both: Deterministic 88.91 4.18 ↑ 0.00 0.00 0.00 0 0
Phi-mini-3.8B Phi-mini-3.8B Both: Exploratory 87.03 2.30 ↑ 0.31 0.40 58.00 107 100
Phi-mini-3.8B Phi-mini-3.8B Both: Det. & Exp. 88.05 3.32 ↑ 0.23 0.31 46.00 69 62

Llama-3.1-3B Llama-3.1-3B Both: Default 75.77 2.65 ↑ 0.46 0.37 93.00 130 126
Llama-3.1-3B Llama-3.1-3B Both: Deterministic 74.66 1.54 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Both: Exploratory 76.19 3.07 ↑ 0.50 0.43 89.00 166 149
Llama-3.1-3B Llama-3.1-3B Both: Det. & Exp. 75.60 2.48 ↑ 0.45 0.34 108.00 129 124

Llama-3.1-8B Llama-3.1-8B Both: Default 87.20 9.55 ↑ 0.26 0.30 45.00 91 88
Llama-3.1-8B Llama-3.1-8B Both: Deterministic 85.75 8.10 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-8B Llama-3.1-8B Both: Exploratory 85.07 7.42 ↑ 0.28 0.32 58.00 96 94
Llama-3.1-8B Llama-3.1-8B Both: Det. & Exp. 86.86 9.21 ↑ 0.23 0.27 56.00 84 80

Mistral-7B Mistral-7B Both: Default 70.48 1.71 ↑ 0.51 0.37 99.00 145 137
Mistral-7B Mistral-7B Both: Deterministic 68.26 0.51 ↓ 0.00 0.00 0.00 0 0
Mistral-7B Mistral-7B Both: Exploratory 72.78 4.01 ↑ 0.58 0.44 106.00 185 177
Mistral-7B Mistral-7B Both: Det. & Exp. 70.82 2.05 ↑ 0.50 0.34 84.00 151 142

Table 25: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the ARC-
Challenge Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p
parameters like Default, Deterministic, Exploratory, and a combination) on the MAD Accuracy of various language
models. The ∆ column quantifies the improvement (or decline) over the single base model performance shown
in parentheses next to each model name. Further metrics include average Debate Rounds, normalized Sycophancy
(per 1172 data points), and transitions between correct (C) and incorrect (I) states (C→I, I→C), highlighting the
nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent Settings MAD Accuracy ∆1 ∆2 Debate Sycophancy C→I I→C Debate
(ARC-Challenge) Rounds (Avg / 1172) Helped

(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Default 58.28 20.31 ↑ 10.93 ↓ 1.27 0.97 193 401 369
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Deterministic 63.57 25.60 ↑ 5.64 ↓ 1.09 0.81 169 375 357
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exploratory 55.80 17.83 ↑ 13.41 ↓ 1.46 1.07 211 418 368
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Det. & Exp. 60.32 22.35 ↑ 8.89 ↓ 1.10 0.94 181 397 360
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exp. & Det. 61.43 23.46 ↑ 7.78 ↓ 1.39 0.95 197 409 387

Qwen-2.5-1.5B Llama-3.1-3B Both: Default 72.35 3.14 ↑ 0.77 ↓ 0.67 0.66 143 216 207
Qwen-2.5-1.5B Llama-3.1-3B Both: Deterministic 74.91 5.70 ↑ 1.79 ↑ 0.51 0.51 135 191 185
Qwen-2.5-1.5B Llama-3.1-3B Both: Exploratory 73.12 3.91 ↑ 0.00 0.78 0.78 153 281 265
Qwen-2.5-1.5B Llama-3.1-3B Both: Det. & Exp. 76.02 6.81 ↑ 2.90 ↑ 0.60 0.66 127 219 205
Qwen-2.5-1.5B Llama-3.1-3B Both: Exp. & Det. 74.15 4.94 ↑ 1.03 ↑ 0.71 0.61 135 291 274

Qwen-2.5-3B Phi-mini-3.8B Both: Default 87.97 4.44 ↑ 3.24 ↑ 0.32 0.31 59 133 130
Qwen-2.5-3B Phi-mini-3.8B Both: Deterministic 88.57 5.04 ↑ 3.84 ↑ 0.31 0.25 58 110 107
Qwen-2.5-3B Phi-mini-3.8B Both: Exploratory 87.03 3.50 ↑ 2.30 ↑ 0.38 0.37 72 173 160
Qwen-2.5-3B Phi-mini-3.8B Both: Det. & Exp. 87.80 4.27 ↑ 3.07 ↑ 0.33 0.30 59 141 139
Qwen-2.5-3B Phi-mini-3.8B Both: Exp. & Det. 89.85 6.32 ↑ 5.12 ↑ 0.34 0.30 50 143 137

Qwen-2.5-1.5B Qwen-2.5-3B Both: Default 82.25 13.04 ↑ 1.28 ↓ 0.51 0.45 80 247 243
Qwen-2.5-1.5B Qwen-2.5-3B Both: Deterministic 82.59 13.38 ↑ 0.94 ↓ 0.42 0.40 80 205 200
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exploratory 81.91 12.70 ↑ 1.62 ↓ 0.66 0.56 94 317 310
Qwen-2.5-1.5B Qwen-2.5-3B Both: Det. & Exp. 83.45 14.24 ↑ 0.08 ↓ 0.47 0.46 66 227 219
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exp. & Det. 83.62 14.41 ↑ 0.09 ↑ 0.62 0.51 67 328 320

Llama-3.1-3B Llama-3.1-8B Both: Default 81.66 8.54 ↑ 4.01 ↑ 0.47 0.41 114 141 133
Llama-3.1-3B Llama-3.1-8B Both: Deterministic 80.46 7.34 ↑ 2.81 ↑ 0.51 0.36 120 135 124
Llama-3.1-3B Llama-3.1-8B Both: Exploratory 75.68 2.56 ↑ 1.97 ↓ 0.48 0.43 107 160 151
Llama-3.1-3B Llama-3.1-8B Both: Det. & Exp. 80.12 7.00 ↑ 2.47 ↑ 0.46 0.37 117 138 132
Llama-3.1-3B Llama-3.1-8B Both: Exp. & Det. 80.97 7.85 ↑ 3.32 ↑ 0.49 0.43 109 159 154

Qwen-2.5-7B Qwen-2.5-14B Both: Default 93.43 6.21 ↑ 3.16 ↑ 0.14 0.11 35 54 53
Qwen-2.5-7B Qwen-2.5-14B Both: Deterministic 93.60 6.38 ↑ 3.33 ↑ 0.13 0.10 24 59 58
Qwen-2.5-7B Qwen-2.5-14B Both: Exploratory 94.45 7.23 ↑ 4.18 ↑ 0.15 0.14 27 67 65
Qwen-2.5-7B Qwen-2.5-14B Both: Det. & Exp. 93.00 5.78 ↑ 2.73 ↑ 0.16 0.13 37 50 49
Qwen-2.5-7B Qwen-2.5-14B Both: Exp. & Det. 93.77 6.55 ↑ 3.50 ↑ 0.15 0.12 26 58 58

Table 26: Comparative Analysis of Mixed Model Pairs in Multi-Agent Debate Settings on the ARC-Challenge
Dataset. This table showcases different model combinations and the impact of various Agent Settings on accuracy.
∆1 represents the improvement over the lower-capability model (the first agent), while ∆2 represents the improve-
ment or decline relative to the higher-capability model (the second agent). Values in parentheses next to each model
name indicate the single-agent baseline performance. The table also shows average Debate Rounds, normalized
Sycophancy (per 1172 data points), and transitions between correct (C) and incorrect (I) states, demonstrating how
mixed-capability agents interact in debate scenarios.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1172) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Default 35.15 2.82 ↓ 2.54 3.14 535 484 283
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Deterministic 40.78 2.81 ↑ 0.00 0.00 0 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Exploratory 35.32 2.65 ↓ 3.12 3.54 587 528 303
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 1 Det. & 2 Exp. 37.20 0.77 ↓ 2.78 3.19 523 503 306
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 2 Det. & 1 Exp. 38.23 0.26 ↑ 1.49 1.75 404 353 219

Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Default 72.53 3.32 ↑ 0.98 1.29 206 454 343
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Deterministic 67.58 1.63 ↓ 0.00 0.00 0 0 0
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Exploratory 72.10 2.89 ↑ 1.37 1.85 235 611 433
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 1 Det. & 2 Exp. 71.93 2.72 ↑ 1.12 1.53 229 520 386
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 2 Det. & 1 Exp. 70.82 1.61 ↑ 0.63 0.93 163 345 245

Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Default 85.75 2.22 ↑ 0.43 0.43 79 197 156
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Deterministic 84.13 0.60 ↑ 0.00 0.00 0 0 0
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Exploratory 86.26 2.73 ↑ 0.50 0.57 96 229 167
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 1 Det. & 2 Exp. 86.26 2.73 ↑ 0.51 0.48 106 193 149
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 2 Det. & 1 Exp. 84.73 1.20 ↑ 0.33 0.31 71 131 101

Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Default 91.81 4.59 ↑ 0.19 0.22 56 84 66
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Deterministic 90.61 3.39 ↑ 0.00 0.00 0 0 0
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Exploratory 91.72 4.50 ↑ 0.23 0.29 66 85 65
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 1 Det. & 2 Exp. 91.04 3.82 ↑ 0.22 0.24 60 80 68
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 2 Det. & 1 Exp. 91.30 4.08 ↑ 0.14 0.15 40 57 40

Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Default 94.20 3.93 ↑ 0.12 0.13 27 54 45
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Deterministic 94.37 4.10 ↑ 0.00 0.00 0 0 0
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Exploratory 94.80 4.53 ↑ 0.10 0.12 28 50 39
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 1 Det. & 2 Exp. 94.54 4.27 ↑ 0.09 0.09 22 41 33
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 2 Det. & 1 Exp. 94.71 4.44 ↑ 0.06 0.06 10 32 26

Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Default 95.82 0.54 ↑ 0.07 0.11 22 36 28
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Deterministic 95.73 0.45 ↑ 0.00 0.00 0 0 0
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Exploratory 95.56 0.28 ↑ 0.08 0.12 28 35 32
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 1 Det. & 2 Exp. 95.56 0.28 ↑ 0.07 0.10 30 29 25
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 2 Det. & 1 Exp. 95.99 0.71 ↑ 0.03 0.04 13 18 14

Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Default 88.91 4.18 ↑ 0.35 0.61 69 130 104
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Deterministic 88.91 4.18 ↑ 0.00 0.00 0 0 0
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Exploratory 88.74 4.01 ↑ 0.50 0.83 85 196 151
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 1 Det. & 2 Exp. 88.74 4.01 ↑ 0.37 0.61 74 155 121
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 2 Det. & 1 Exp. 89.08 4.35 ↑ 0.30 0.52 54 109 81

Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Default 75.77 2.65 ↑ 0.81 0.80 177 244 190
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Deterministic 74.83 1.71 ↑ 0.00 0.00 0 0 0
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Exploratory 75.51 2.39 ↑ 0.90 1.00 196 303 210
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 1 Det. & 2 Exp. 75.17 2.05 ↑ 0.99 0.91 223 262 192
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 2 Det. & 1 Exp. 75.26 2.14 ↑ 0.53 0.43 118 162 117

Mistral-7B Mistral-7B Mistral-7B Default 70.73 1.96 ↑ 0.97 0.94 213 292 207
Mistral-7B Mistral-7B Mistral-7B Deterministic 68.26 0.51 ↓ 0.00 0.00 0 0 0
Mistral-7B Mistral-7B Mistral-7B Exploratory 71.67 2.90 ↑ 1.14 1.20 232 360 249
Mistral-7B Mistral-7B Mistral-7B 1 Det. & 2 Exp. 71.25 2.48 ↑ 1.03 1.03 209 317 227
Mistral-7B Mistral-7B Mistral-7B 2 Det. & 1 Exp. 70.48 1.71 ↑ 0.62 0.66 142 214 136

Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Default 87.46 9.81 ↑ 0.40 0.56 98 145 107
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Deterministic 86.43 8.78 ↑ 0.00 0.00 0 0 0
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Exploratory 86.01 8.36 ↑ 0.52 0.77 127 187 150
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 1 Det. & 2 Exp. 86.69 9.04 ↑ 0.50 0.72 114 174 128
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 2 Det. & 1 Exp. 85.67 8.02 ↑ 0.30 0.46 115 119 73

Table 27: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the ARC-
Challenge Dataset. This table showcases the impact of different Agent Settings (controlling temperature and top_p
parameters) on the Accuracy of various language models in a three-agent configuration. The ∆ column quantifies
the improvement (or decline) over the single base model performance (shown in parentheses after model names).
Further metrics include average Debate Rounds, normalized Sycophancy (per 1172 data points), and transitions
between correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent 3 Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1172) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-3B 82.59 0.94 ↓ 1.41 1.40 148 820 629
Qwen-2.5-0.5B Qwen-2.5-1.5B Llama-3.1-3B 68.00 5.12 ↓ 1.66 1.85 311 641 489
Qwen-2.5-0.5B Qwen-2.5-1.5B Phi-mini-3.8B 82.76 1.97 ↓ 1.48 1.60 170 804 621
Qwen-2.5-0.5B Qwen-2.5-3B Llama-3.1-3B 79.69 3.84 ↓ 1.62 1.50 208 699 581
Qwen-2.5-0.5B Qwen-2.5-3B Phi-mini-3.8B 86.95 2.22 ↑ 1.34 1.23 133 722 631
Qwen-2.5-0.5B Llama-3.1-3B Phi-mini-3.8B 78.41 6.32 ↓ 1.54 1.72 238 683 559
Qwen-2.5-1.5B Qwen-2.5-3B Llama-3.1-3B 82.34 1.19 ↓ 0.98 1.10 180 447 358
Qwen-2.5-1.5B Qwen-2.5-3B Phi-mini-3.8B 87.37 2.64 ↑ 0.71 0.81 105 423 358
Qwen-2.5-1.5B Llama-3.1-3B Phi-mini-3.8B 81.74 3.00 ↓ 0.93 1.19 195 412 341
Qwen-2.5-3B Phi-mini-3.8B Llama-3.1-3B 85.67 2.14 ↑ 0.84 0.89 143 319 244

Qwen-2.5-3B Qwen-2.5-3B Phi-mini-3.8B 87.88 3.15 ↑ 0.50 0.52 110 225 170
Qwen-2.5-3B Phi-mini-3.8B Phi-mini-3.8B 89.33 4.60 ↑ 0.52 0.61 81 214 174

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 69.80 0.59 ↑ 1.66 1.77 231 686 523
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-1.5B 55.97 13.24 ↓ 2.33 2.69 393 680 451

Table 28: Analysis of Mixed-Model Configurations in Multi-Agent Debate Settings on the ARC-Challenge Dataset.
This table examines various heterogeneous model combinations in three-agent debate setups. The ∆ column
quantifies the improvement (or decline) compared to the best single model performance among the three agents
used in each configuration. All agent combinations use the default settings for temperature and top_p. Metrics
include average Debate Rounds, normalized Sycophancy (per 1172 data points), and transitions between correct
(C) and incorrect (I) states (C→I, I→C). Results demonstrate that certain model combinations can achieve higher
accuracy than their constituent models when debating together.
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Agent 1 Agent 2 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1221) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Default 39.80 3.31 ↑ 1.47 1.11 239.00 306 240
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Deterministic 40.87 4.38 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Exploratory 33.50 2.99 ↓ 1.90 1.17 279.00 338 257
Qwen-2.5-0.5B Qwen-2.5-0.5B Both: Det. & Exp. 41.93 5.44 ↑ 1.64 1.08 251.00 355 289

Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Default 67.40 0.88 ↑ 0.44 0.34 110.00 154 154
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Deterministic 68.14 1.62 ↑ 0.00 0.00 0.00 2 1
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Exploratory 67.24 0.72 ↑ 0.60 0.51 143.00 217 201
Qwen-2.5-1.5B Qwen-2.5-1.5B Both: Det. & Exp. 66.67 0.15 ↑ 0.47 0.41 111.00 166 158

Qwen-2.5-3B Qwen-2.5-3B Both: Default 74.37 1.71 ↑ 0.37 0.33 85.00 128 123
Qwen-2.5-3B Qwen-2.5-3B Both: Deterministic 74.77 2.11 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-3B Qwen-2.5-3B Both: Exploratory 73.87 1.21 ↑ 0.39 0.37 93.00 127 120
Qwen-2.5-3B Qwen-2.5-3B Both: Det. & Exp. 75.51 2.85 ↑ 0.35 0.25 73.00 127 123

Qwen-2.5-7B Qwen-2.5-7B Both: Default 81.57 2.01 ↑ 0.15 0.14 38.00 66 64
Qwen-2.5-7B Qwen-2.5-7B Both: Deterministic 81.65 2.09 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-7B Qwen-2.5-7B Both: Exploratory 81.90 2.34 ↑ 0.19 0.19 46.00 78 75
Qwen-2.5-7B Qwen-2.5-7B Both: Det. & Exp. 82.56 3.00 ↑ 0.20 0.19 54.00 62 61

Qwen-2.5-14B Qwen-2.5-14B Both: Default 83.37 1.00 ↑ 0.15 0.15 34.00 43 41
Qwen-2.5-14B Qwen-2.5-14B Both: Deterministic 83.70 1.33 ↑ 0.00 0.00 0.00 0 0
Qwen-2.5-14B Qwen-2.5-14B Both: Exploratory 83.21 0.84 ↑ 0.18 0.19 44.00 66 62
Qwen-2.5-14B Qwen-2.5-14B Both: Det. & Exp. 83.87 1.50 ↑ 0.16 0.15 40.00 59 54

Qwen-2.5-32B Qwen-2.5-32B Both: Default 86.24 0.48 ↑ 0.12 0.17 28.00 47 46
Qwen-2.5-32B Qwen-2.5-32B Both: Deterministic 85.75 0.01 ↓ 0.00 0.00 0.00 0 0
Qwen-2.5-32B Qwen-2.5-32B Both: Exploratory 86.24 0.48 ↑ 0.14 0.20 34.00 46 43
Qwen-2.5-32B Qwen-2.5-32B Both: Det. & Exp. 86.57 0.81 ↑ 0.16 0.24 32.00 55 46

Phi-mini-3.8B Phi-mini-3.8B Both: Default 71.66 1.78 ↑ 0.46 0.68 108.00 100 79
Phi-mini-3.8B Phi-mini-3.8B Both: Deterministic 72.24 2.36 ↑ 0.00 0.00 0.00 0 0
Phi-mini-3.8B Phi-mini-3.8B Both: Exploratory 73.87 3.99 ↑ 0.50 0.70 85.00 141 121
Phi-mini-3.8B Phi-mini-3.8B Both: Det. & Exp. 73.22 3.34 ↑ 0.47 0.66 91.00 124 105

Llama-3.1-3B Llama-3.1-3B Both: Default 68.55 3.51 ↑ 0.44 0.40 107.00 117 110
Llama-3.1-3B Llama-3.1-3B Both: Deterministic 67.40 2.36 ↑ 0.00 0.00 0.00 0 0
Llama-3.1-3B Llama-3.1-3B Both: Exploratory 66.75 1.71 ↑ 0.53 0.48 116.00 131 122
Llama-3.1-3B Llama-3.1-3B Both: Det. & Exp. 67.73 2.69 ↑ 0.47 0.45 105.00 113 109

Mistral-7B Mistral-7B Both: Default 66.34 1.79 ↑ 0.30 0.22 57.00 64 57
Mistral-7B Mistral-7B Both: Deterministic 66.99 2.44 ↑ 0.00 0.00 0.00 0 0
Mistral-7B Mistral-7B Both: Exploratory 65.11 0.56 ↑ 0.38 0.30 81.00 85 80
Mistral-7B Mistral-7B Both: Det. & Exp. 66.42 1.87 ↑ 0.34 0.25 62.00 89 81

Llama-3.1-8B Llama-3.1-8B Both: Default 74.28 1.26 ↑ 0.41 0.47 79.00 114 106
Llama-3.1-8B Llama-3.1-8B Both: Deterministic 75.43 2.41 ↑ 0.00 0.00 0.00 2 1
Llama-3.1-8B Llama-3.1-8B Both: Exploratory 74.86 1.84 ↑ 0.46 0.54 95.00 139 130
Llama-3.1-8B Llama-3.1-8B Both: Det. & Exp. 74.45 1.43 ↑ 0.41 0.48 99.00 112 102

Table 29: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the Com-
monsenseQA Dataset. This table showcases the impact of different Agent Settings (controlling temperature and
top_p parameters like Default, Deterministic, Exploratory, and a combination) on the Accuracy of various language
models. The ∆ column quantifies the improvement (or decline) over the single base model performance. Further
metrics include average Debate Rounds, normalized Sycophancy (per 1221 data points), and transitions between
correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent Settings Accuracy ∆1 ∆2 Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1221) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Default 56.92 20.43 ↑ 9.60 ↓ 1.34 0.84 237.00 370 345
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Deterministic 58.39 21.90 ↑ 8.13 ↓ 1.26 0.63 148.00 326 295
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exploratory 56.91 20.42 ↑ 9.61 ↓ 1.63 0.99 216.00 430 377
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Det. & Exp. 57.08 20.59 ↑ 9.44 ↓ 1.28 0.82 177.00 371 332
Qwen-2.5-0.5B Qwen-2.5-1.5B Both: Exp. & Det. 57.49 21.00 ↑ 9.03 ↓ 1.51 0.87 206.00 407 379

Qwen-2.5-1.5B Llama-3.1-3B Both: Default 66.83 0.31 ↑ 1.79 ↑ 0.59 0.63 168.00 170 165
Qwen-2.5-1.5B Llama-3.1-3B Both: Deterministic 68.63 2.11 ↑ 3.59 ↑ 0.66 0.80 160.00 198 184
Qwen-2.5-1.5B Llama-3.1-3B Both: Exploratory 67.08 0.56 ↑ 2.04 ↑ 0.82 0.90 164.00 237 223
Qwen-2.5-1.5B Llama-3.1-3B Both: Det. & Exp. 69.78 3.26 ↑ 4.74 ↑ 0.61 0.69 140.00 203 193
Qwen-2.5-1.5B Llama-3.1-3B Both: Exp. & Det. 67.73 1.21 ↑ 2.69 ↑ 0.66 0.72 160.00 219 200

Qwen-2.5-3B Phi-mini-3.8B Both: Default 75.02 2.36 ↑ 5.14 ↑ 0.44 0.39 100.00 158 150
Qwen-2.5-3B Phi-mini-3.8B Both: Deterministic 76.09 3.43 ↑ 6.21 ↑ 0.50 0.37 104.00 161 154
Qwen-2.5-3B Phi-mini-3.8B Both: Exploratory 74.69 2.03 ↑ 4.81 ↑ 0.50 0.52 85.00 177 167
Qwen-2.5-3B Phi-mini-3.8B Both: Det. & Exp. 75.76 3.10 ↑ 5.88 ↑ 0.52 0.40 114.00 191 179
Qwen-2.5-3B Phi-mini-3.8B Both: Exp. & Det. 75.10 2.44 ↑ 5.22 ↑ 0.49 0.49 106.00 162 156

Qwen-2.5-1.5B Qwen-2.5-3B Both: Default 73.87 7.35 ↑ 1.21 ↑ 0.51 0.47 100.00 225 217
Qwen-2.5-1.5B Qwen-2.5-3B Both: Deterministic 74.94 8.42 ↑ 2.28 ↑ 0.48 0.40 108.00 191 187
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exploratory 74.12 7.60 ↑ 1.46 ↑ 0.60 0.55 115.00 279 264
Qwen-2.5-1.5B Qwen-2.5-3B Both: Det. & Exp. 74.04 7.52 ↑ 1.38 ↑ 0.51 0.52 106.00 208 204
Qwen-2.5-1.5B Qwen-2.5-3B Both: Exp. & Det. 74.94 8.42 ↑ 2.28 ↑ 0.57 0.42 108.00 251 246

Llama-3.1-3B Llama-3.1-8B Both: Default 72.24 7.20 ↑ 0.78 ↓ 0.54 0.52 119.00 165 153
Llama-3.1-3B Llama-3.1-8B Both: Deterministic 73.79 8.75 ↑ 0.77 ↑ 0.57 0.57 118.00 190 183
Llama-3.1-3B Llama-3.1-8B Both: Exploratory 72.15 7.11 ↑ 0.87 ↓ 0.59 0.58 112.00 167 157
Llama-3.1-3B Llama-3.1-8B Both: Det. & Exp. 70.68 5.64 ↑ 2.34 ↓ 0.60 0.58 131.00 162 154
Llama-3.1-3B Llama-3.1-8B Both: Exp. & Det. 73.96 8.92 ↑ 0.94 ↑ 0.60 0.61 120.00 200 193

Qwen-2.5-7B Qwen-2.5-14B Both: Default 83.37 3.81 ↑ 1.00 ↑ 0.28 0.26 62.00 98 96
Qwen-2.5-7B Qwen-2.5-14B Both: Deterministic 83.78 4.22 ↑ 1.41 ↑ 0.33 0.21 71.00 101 95
Qwen-2.5-7B Qwen-2.5-14B Both: Exploratory 84.19 4.63 ↑ 1.82 ↑ 0.28 0.27 60.00 112 110
Qwen-2.5-7B Qwen-2.5-14B Both: Det. & Exp. 83.37 3.81 ↑ 1.00 ↑ 0.29 0.24 66.00 103 99
Qwen-2.5-7B Qwen-2.5-14B Both: Exp. & Det. 83.29 3.73 ↑ 0.92 ↑ 0.28 0.21 66.00 95 93

Table 30: Comparative Analysis of Mixed Language Model Performance in Multi-Agent Debate Settings on the
CommonsenseQA Dataset. This table showcases the impact of different Agent Settings (controlling temperature
and top_p parameters) on the Accuracy when pairing different language models. The ∆1 column shows the
improvement over the weaker model’s performance, while ∆2 shows comparison to the stronger model. This
highlights whether mixed-agent debates benefit from model complementarity or are constrained by the weaker
model’s capabilities. Further metrics include average Debate Rounds, normalized Sycophancy (per 1221 data
points), and transitions between correct (C) and incorrect (I) states.
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Agent 1 Agent 2 Agent 3 Agent Settings Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1221) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Default 37.76 1.27 ↑ 2.69 3.02 545 538 327
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Deterministic 39.80 3.31 ↑ 0.00 0.00 0 0 0
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B Exploratory 32.60 3.89 ↓ 3.45 3.66 580 604 336
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 1 Det. & 2 Exp. 36.77 0.28 ↑ 3.05 3.11 569 558 317
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-0.5B 2 Det. & 1 Exp. 37.51 1.02 ↑ 1.76 1.84 433 420 237

Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Default 68.80 2.28 ↑ 0.77 0.83 193 333 264
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Deterministic 67.90 1.38 ↑ 0.00 0.00 0 3 1
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B Exploratory 67.57 1.05 ↑ 1.14 1.34 256 429 315
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 1 Det. & 2 Exp. 68.55 2.03 ↑ 0.92 1.01 211 346 270
Qwen-2.5-1.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 2 Det. & 1 Exp. 68.55 2.03 ↑ 0.57 0.57 172 244 179

Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Default 75.18 2.52 ↑ 0.63 0.68 147 225 180
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Deterministic 74.28 1.62 ↑ 0.00 0.00 0 0 0
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B Exploratory 74.37 1.71 ↑ 0.66 0.82 164 248 196
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 1 Det. & 2 Exp. 75.02 2.36 ↑ 0.67 0.66 166 211 163
Qwen-2.5-3B Qwen-2.5-3B Qwen-2.5-3B 2 Det. & 1 Exp. 75.76 3.10 ↑ 0.45 0.44 116 163 115

Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Default 81.90 2.34 ↑ 0.31 0.38 85 122 96
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Deterministic 81.57 2.01 ↑ 0.00 0.00 0 0 0
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B Exploratory 81.98 2.42 ↑ 0.38 0.47 99 147 117
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 1 Det. & 2 Exp. 81.41 1.85 ↑ 0.32 0.38 98 124 99
Qwen-2.5-7B Qwen-2.5-7B Qwen-2.5-7B 2 Det. & 1 Exp. 81.74 2.18 ↑ 0.25 0.26 84 89 65

Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Default 83.05 0.68 ↑ 0.27 0.28 84 85 69
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Deterministic 83.87 1.50 ↑ 0.00 0.00 0 0 0
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B Exploratory 83.13 0.76 ↑ 0.28 0.33 76 100 75
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 1 Det. & 2 Exp. 83.54 1.17 ↑ 0.25 0.25 74 93 77
Qwen-2.5-14B Qwen-2.5-14B Qwen-2.5-14B 2 Det. & 1 Exp. 83.95 1.58 ↑ 0.14 0.12 45 56 46

Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Default 86.00 0.24 ↑ 0.18 0.26 61 80 67
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Deterministic 85.75 0.01 ↓ 0.00 0.00 0 0 0
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B Exploratory 86.57 0.81 ↑ 0.18 0.25 56 87 74
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 1 Det. & 2 Exp. 86.00 0.24 ↑ 0.16 0.21 61 71 57
Qwen-2.5-32B Qwen-2.5-32B Qwen-2.5-32B 2 Det. & 1 Exp. 86.08 0.32 ↑ 0.11 0.14 35 50 41

Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Default 73.22 3.34 ↑ 0.62 1.12 170 171 121
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Deterministic 73.71 3.83 ↑ 0.00 0.00 0 0 0
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B Exploratory 73.96 4.08 ↑ 0.74 1.24 161 231 170
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 1 Det. & 2 Exp. 75.18 5.30 ↑ 0.69 1.21 134 217 159
Phi-mini-3.8B Phi-mini-3.8B Phi-mini-3.8B 2 Det. & 1 Exp. 73.71 3.83 ↑ 0.47 0.86 107 137 97

Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Default 68.39 3.35 ↑ 0.87 0.92 210 237 169
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Deterministic 68.06 3.02 ↑ 0.00 0.00 0 0 0
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B Exploratory 67.65 2.61 ↑ 1.04 1.16 250 261 190
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 1 Det. & 2 Exp. 67.08 2.04 ↑ 0.89 0.95 213 225 165
Llama-3.1-3B Llama-3.1-3B Llama-3.1-3B 2 Det. & 1 Exp. 67.73 2.69 ↑ 0.58 0.58 132 149 105

Mistral-7B Mistral-7B Mistral-7B Default 66.83 2.28 ↑ 0.53 0.57 121 137 99
Mistral-7B Mistral-7B Mistral-7B Deterministic 66.75 2.20 ↑ 0.00 0.00 0 0 0
Mistral-7B Mistral-7B Mistral-7B Exploratory 65.60 1.05 ↑ 0.79 0.83 179 167 119
Mistral-7B Mistral-7B Mistral-7B 1 Det. & 2 Exp. 65.44 0.89 ↑ 0.64 0.70 157 144 97
Mistral-7B Mistral-7B Mistral-7B 2 Det. & 1 Exp. 66.75 2.20 ↑ 0.32 0.35 81 98 68

Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Default 75.92 2.90 ↑ 0.62 0.83 147 211 148
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Deterministic 75.84 2.82 ↑ 0.00 0.00 0 9 3
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B Exploratory 74.12 1.10 ↑ 0.79 1.13 203 246 168
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 1 Det. & 2 Exp. 75.51 2.49 ↑ 0.71 0.94 173 233 161
Llama-3.1-8B Llama-3.1-8B Llama-3.1-8B 2 Det. & 1 Exp. 75.51 2.49 ↑ 0.44 0.60 118 150 92

Table 31: Comparative Analysis of Language Model Performance in Multi-Agent Debate Settings on the Com-
monsenseQA Dataset. This table showcases the impact of different Agent Settings (controlling temperature and
top_p parameters like Default, Deterministic, Exploratory, and combinations) on the Accuracy of various language
models. The ∆ column quantifies the improvement (or decline) over the single base model performance. Further
metrics include average Debate Rounds, normalized Sycophancy (per 1221 data points), and transitions between
correct (C) and incorrect (I) states (C→I, I→C), highlighting the nuanced effects of debate dynamics.
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Agent 1 Agent 2 Agent 3 Accuracy ∆ Debate Sycophancy C→I I→C Debate
Rounds (Avg / 1221) Helped
(Avg) (Overall)

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-3B 72.48 35.99 ↑ 1.64 1.51 228 748 563
Qwen-2.5-0.5B Qwen-2.5-1.5B Llama-3.1-3B 65.03 28.54 ↑ 1.81 1.89 343 622 480
Qwen-2.5-0.5B Qwen-2.5-1.5B Phi-mini-3.8B 70.60 34.11 ↑ 1.68 1.73 246 691 537
Qwen-2.5-0.5B Qwen-2.5-3B Llama-3.1-3B 72.56 36.07 ↑ 1.81 1.59 234 697 544
Qwen-2.5-0.5B Qwen-2.5-3B Phi-mini-3.8B 72.15 35.66 ↑ 1.66 1.59 243 629 517
Qwen-2.5-0.5B Llama-3.1-3B Phi-mini-3.8B 69.12 32.63 ↑ 1.76 1.91 298 617 483
Qwen-2.5-1.5B Qwen-2.5-3B Llama-3.1-3B 73.38 6.86 ↑ 1.08 1.22 230 399 305
Qwen-2.5-1.5B Qwen-2.5-3B Phi-mini-3.8B 75.68 9.16 ↑ 0.95 1.17 202 382 303
Qwen-2.5-1.5B Llama-3.1-3B Phi-mini-3.8B 71.09 4.57 ↑ 1.04 1.42 260 347 273
Qwen-2.5-3B Phi-mini-3.8B Llama-3.1-3B 74.20 1.54 ↑ 1.00 1.15 222 334 253

Qwen-2.5-3B Qwen-2.5-3B Phi-mini-3.8B 74.77 2.11 ↑ 0.73 0.84 200 256 193
Qwen-2.5-3B Phi-mini-3.8B Phi-mini-3.8B 76.09 3.43 ↑ 0.85 1.18 183 258 186

Qwen-2.5-0.5B Qwen-2.5-1.5B Qwen-2.5-1.5B 64.86 28.37 ↑ 1.86 1.50 267 576 447
Qwen-2.5-0.5B Qwen-2.5-0.5B Qwen-2.5-1.5B 55.12 18.63 ↑ 2.41 2.44 384 651 438

Table 32: Comparative Analysis of Mixed Language Model Performance in Multi-Agent Debate Settings on the
CommonsenseQA Dataset. This table presents results for heterogeneous combinations of language models in
debate settings. The ∆ column quantifies the improvement over the performance of the weakest model in each
combination (for combinations with Qwen-2.5-0.5B, the baseline is 36.49%; for others, the baseline corresponds
to the lowest-performing model). All experiments use the default debate setting. The table shows that combining
models of different capacities can lead to significant performance gains, especially when smaller models are paired
with larger ones.
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F Additional Results

F.1 Original MAD Results
We also report our experiments with the original Multi-Agent Debate (MAD) framework across various
model sizes and architectures. Table 33 presents the results on three challenging reasoning benchmarks:
GSM-Plus, GSM8K, and ARC-Challenge.

F.2 Majority Vote@3 Results
To further investigate the impact of stochastic diversity on model performance, we report results on a
Majority Vote@3 approach where we sample three independent responses from each model and take
a majority vote to determine the final answer. Table 34 presents these results across five benchmarks:
GSM8K, GSM-Plus, ARC-Easy, ARC-Challenge, and CommonsenseQA.

The results demonstrate that simple ensemble-based approaches can significantly boost performance
without requiring multi-agent debate or model fine-tuning. Across all model sizes and architectures,
Majority Vote@3 consistently outperforms single-sample inference. The relative improvements are
most pronounced for smaller models, with Qwen-2.5-0.5B gaining up to 4.27 percentage points on
ARC-Challenge and Qwen-2.5-1.5B showing similar substantial improvements across benchmarks.

Interestingly, this pattern holds across model families. Llama-3.1-3B, Phi-3.5-mini, and Mistral-
7B all exhibit significant gains when using majority voting, suggesting that the benefits of ensemble
diversity transcend specific model architectures. The results also indicate diminishing returns for larger
models—Qwen-2.5-14B shows more modest improvements compared to its smaller counterparts, likely
because these larger models already produce more consistent answers across samples.

These findings highlight an important baseline for our research: simple ensemble methods provide
strong performance improvements with minimal computational overhead during inference. However, they
still require multiple forward passes for each query, motivating our DTE approach that aims to distill these
benefits into a single model through training on debate traces.

F.3 Scaling Results for Multiple Agents
We investigated how performance scales with increasing numbers of debating agents (1-7) across different
model sizes and reasoning benchmarks. Table 35 presents these results, revealing several important trends
in multi-agent scaling behavior.

First, we observe that performance generally improves as we add more agents to the debate, but with
diminishing returns. The most significant gains occur when moving from a single agent (equivalent to
standard inference) to two agents, with more modest improvements as additional agents join the debate.
For example, on GSM8K, Qwen-2.5-1.5B shows a substantial jump from 62.77% (1 agent) to 71.57% (2
agents), but only incremental improvements thereafter.

Second, the benefits of additional agents vary across tasks. On more complex tasks like GSM-Plus,
we see continued performance improvements even with 7 agents, particularly for larger models. Qwen-
2.5-14B shows its peak GSM-Plus performance with 7 agents (78.08%), suggesting that more difficult
problems benefit from extended multi-agent collaboration. In contrast, on simpler tasks like ARC-Easy,
performance plateaus more quickly.

Third, we find that model size influences scaling behavior. Smaller models like Qwen-2.5-1.5B show
more variability in performance as agents are added, with occasional performance drops when moving
from 3 to 4 agents. Larger models exhibit more stable scaling patterns, suggesting that they can more
consistently integrate insights from multiple debate participants.

These results have important implications for our DTE framework. They demonstrate that while adding
more agents generally improves performance, the computational costs may outweigh the benefits beyond
3-5 agents for most applications. This insight helped inform our design choices in balancing performance
gains against computational efficiency in our final framework.
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Model Configuration Debate Performance Metrics

Agent 1 Agent 2 Debate Setting Accuracy Delta Debate Rounds Sycophancy Correct→Incorrect Incorrect→Correct Net Benefit

GSM-Plus

Qwen-2.5-0.5B Qwen-2.5-0.5B exploratory 28.12% 3.33 ↑ 3.48 6906 261 575 432
Qwen-2.5-1.5B Qwen-2.5-1.5B exploratory 46.50% 4.50 ↑ 2.33 5642 194 861 670
Qwen-2.5-3B Qwen-2.5-3B exploratory 66.79% 5.04 ↑ 1.34 5315 231 373 187
Qwen-2.5-7B Qwen-2.5-7B exploratory 69.71% 1.09 ↑ 0.76 2967 102 200 121
Qwen-2.5-14B Qwen-2.5-14B exploratory 76.92% 5.13 ↑ 0.61 2722 119 151 47
Phi-mini-3.8B Phi-mini-3.8B exploratory 65.79% 2.37 ↑ 1.07 3620 180 272 136
Llama-3.1-3B Llama-3.1-3B exploratory 42.42% 3.25 ↓ 2.07 5507 379 369 238
Mistral-7B Mistral-7B exploratory 26.35% 11.31 ↑ 1.85 4500 210 290 115
Llama-3.1-8B Llama-3.1-8B exploratory 57.63% 2.01 ↑ 1.75 5667 273 585 351

GSM8K

Qwen-2.5-0.5B Qwen-2.5-0.5B exploratory 45.56% 3.56 ↑ 2.85 3469 175 427 328
Qwen-2.5-1.5B Qwen-2.5-1.5B exploratory 65.81% 3.04 ↑ 1.99 3471 144 650 489
Qwen-2.5-3B Qwen-2.5-3B exploratory 86.96% 1.82 ↑ 0.63 1390 82 165 97
Qwen-2.5-7B Qwen-2.5-7B exploratory 91.74% 1.07 ↑ 0.38 930 64 93 33
Qwen-2.5-14B Qwen-2.5-14B exploratory 94.39% 1.59 ↑ 0.18 448 30 48 18
Phi-mini-3.8B Phi-mini-3.8B exploratory 88.17% 1.29 ↑ 0.45 1050 65 120 65
Llama-3.1-3B Llama-3.1-3B exploratory 67.63% 4.92 ↓ 1.51 2418 238 215 127
Mistral-7B Mistral-7B exploratory 43.44% 22.06 ↑ 1.65 2100 175 235 95
Llama-3.1-8B Llama-3.1-8B exploratory 83.02% 1.29 ↑ 0.94 1587 93 308 236

ARC-Challenge

Qwen-2.5-0.5B Qwen-2.5-0.5B exploratory 38.65% 0.68 ↑ 1.88 2728 272 308 232
Qwen-2.5-1.5B Qwen-2.5-1.5B exploratory 74.15% 0.94 ↑ 0.85 1671 121 231 156
Qwen-2.5-3B Qwen-2.5-3B exploratory 85.41% 1.88 ↑ 0.57 1227 94 135 57
Qwen-2.5-7B Qwen-2.5-7B exploratory 91.47% 6.25 ↑ 0.23 501 41 49 13
Qwen-2.5-14B Qwen-2.5-14B exploratory 94.54% 4.27 ↑ 0.15 326 31 37 9
Phi-mini-3.8B Phi-mini-3.8B exploratory 87.46% 2.73 ↑ 0.15 313 24 47 25
Llama-3.1-3B Llama-3.1-3B exploratory 76.37% 3.25 ↑ 0.73 1525 111 155 69
Mistral-7B Mistral-7B exploratory 73.29% 4.52 ↑ 0.40 795 63 114 73
Llama-3.1-8B Llama-3.1-8B exploratory 86.09% 8.44 ↑ 0.27 514 31 84 58

Table 33: Performance of the original Multi-Agent Debate (MAD) framework across different model sizes and
reasoning benchmarks. Results show accuracy, improvement over single-agent baseline (Delta), average debate
rounds, and debate transition statistics. The Delta column highlights performance changes compared to individual
model accuracy, with green indicating improvement and red indicating decline.

Model Accuracy (%) on Benchmarks

GSM8K GSM-Plus ARC-E ARC-C CQA

Qwen-2.5-0.5B 49.73 30.54 58.71 42.92 42.51
Qwen-2.5-1.5B 75.82 52.08 87.12 73.55 69.62
Qwen-2.5-3B 86.28 64.08 94.19 84.13 76.90
Qwen-2.5-7B 92.19 70.46 96.46 91.21 82.88
Qwen-2.5-14B 94.09 72.54 98.44 94.20 82.15

Llama-3.1-3B 77.03 52.79 88.51 75.00 69.94
Llama-3.1-8B 85.82 60.88 93.56 83.11 74.86
Phi-3.5-mini 87.87 65.79 96.00 86.95 75.10
Mistral-7B 56.86 36.88 87.58 75.68 69.04

Table 34: Performance comparison using Majority Vote@3 approach across different benchmarks. For each model,
we sample three independent responses and determine the final answer through majority voting.
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Table 35: Performance scaling with increasing numbers of debating agents (1-7) across different model sizes and
reasoning benchmarks. Results show accuracy percentages for each configuration.

Model Number of Agents

1 2 3 4 5 6 7

GSM8K Accuracy (%)

Qwen-2.5-1.5B 62.77 71.57 75.13 75.89 75.13 74.98 76.50
Qwen-2.5-3B 85.14 85.52 87.64 87.11 87.04 86.66 87.11
Qwen-2.5-7B 90.67 91.21 92.42 92.49 92.57 92.34 92.72
Qwen-2.5-14B 92.80 93.33 94.84 94.31 94.69 94.62 94.24

GSM-Plus Accuracy (%)

Qwen-2.5-1.5B 42.00 51.62 53.33 50.62 54.21 51.50 52.67
Qwen-2.5-3B 61.75 67.79 68.00 64.21 69.71 64.88 68.54
Qwen-2.5-7B 68.62 74.17 74.96 70.88 71.08 71.38 76.00
Qwen-2.5-14B 71.79 77.25 72.29 72.83 73.29 73.38 78.08

ARC-Challenge Accuracy (%)

Qwen-2.5-1.5B 69.21 68.52 72.10 71.50 72.53 71.50 72.10
Qwen-2.5-3B 82.53 84.64 86.26 85.75 86.26 86.95 87.03
Qwen-2.5-7B 87.22 91.64 91.72 91.47 92.06 91.38 92.32
Qwen-2.5-14B 90.27 93.77 94.80 95.14 94.20 94.62 94.28

ARC-Easy Accuracy (%)

Qwen-2.5-1.5B 86.62 83.42 85.61 86.32 87.46 86.57 87.16
Qwen-2.5-3B 93.06 94.15 94.28 94.32 94.82 94.91 94.99
Qwen-2.5-7B 94.69 96.93 96.55 96.34 96.42 96.25 96.59
Qwen-2.5-14B 95.66 98.15 98.19 98.23 98.15 98.19 98.23
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