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Abstract

Sentence representation learning (SRL) aims
to learn sentence embeddings that conform
to the semantic information of sentences. In
recent years, fine-tuning methods based on
pre-trained models and contrastive learning
frameworks have significantly advanced the
quality of sentence representations. However,
within the semantic space of SRL models,
both word embeddings and sentence represen-
tations derived from word embeddings exhibit
substantial redundant information, which can
adversely affect the precision of sentence rep-
resentations. Existing approaches predomi-
nantly optimize training strategies to alleviate
the redundancy problem, lacking fine-grained
guidance on reducing redundant representa-
tions. This paper proposes a novel approach
that dynamically identifies and reduces redun-
dant information in a dimensional perspective,
training the SRL model to redistribute seman-
tics on different dimensions, and entailing bet-
ter sentence representations. Extensive exper-
iments across seven semantic text similarity
benchmarks demonstrate the effectiveness and
generality of the proposed method. A compre-
hensive analysis of the experimental results is
conducted and the code/data will be released.

1 Introduction

Sentence representation learning (SRL) (Yan et al.,
2021; Zhou et al., 2022) is a fundamental task
that aims to learn sentence embeddings that ben-
efit downstream tasks such as semantic similar-
ity (Agirre et al., 2016; Cer et al., 2017), informa-
tion retrieval (Thakur et al., 2021), and sentiment
analysis (Bao et al., 2023).

Recently, a training paradigm based on pre-
trained models and contrastive learning as a fine-
tuning method has achieved significant success in
SRL. Among these, SimCSE (Simple Contrastive
Learning of Sentence Embeddings) (Gao et al.,
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She was born in the south
but has lived in the north 
for several years..

0.86

Figure 1: Word and sentence embedding redundancy.

2021) stands out as a representative work (Chen
et al., 2020; Sun et al., 2022; Liu et al., 2024). It
proposes a simple yet effective method for con-
structing positive examples, significantly enhanc-
ing the quality of sentence embeddings. Subse-
quently, numerous studies (Chuang et al., 2022; He
et al., 2023; Zhuo et al., 2023; Nguyen et al., 2024;
Xu et al., 2024; Zhu et al., 2024) have focused on
improving the SimCSE method to learn more effec-
tive sentence representations, including using large
language models (LLMs) to evaluate training data
quality (Cheng et al., 2023a) or directly generate
high-quality data (Wang et al., 2024a).

Nevertheless, the contrastive SRL still faces cer-
tain challenges. Firstly, two sentences with signif-
icant semantic differences may still use the same
words, with high-frequency words being the most
common example, as shown in the bottom part of
Figure 1. While some high-frequency words such
as stop words play a crucial role in enhancing sen-
tence coherence and semantic fluency, their contri-
bution to the core semantics of the sentence is lim-
ited (Chen et al., 2022). High-frequency words add
redundant encoded information, making it harder
for SRL models to distinguish sentences with these
overlapping words. Secondly, token embeddings
learned by pre-trained models often exhibit redun-
dant or ineffective information (Shi et al., 2022;
Chen et al., 2023), leading to high similarity be-
tween tokens with different parts of speech and
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meanings (with high-frequency words contributing
to the majority). As shown in Figure 1, the co-
sine similarity between the embeddings of “was”
and “born” reaches 0.79 in the upper left heat map,
and the cosine similarity between “the” and “born”
is 0.84 in the upper right heat map1. Sentence
representation derived from token embeddings is
influenced by the token-level redundant informa-
tion (Tian et al., 2020), making it difficult for the
SRL models to understand the overall semantics.

These two challenges bring unexpected redun-
dant information (Shen et al., 2023), which hinders
the contrastive SRL models from focusing on key
semantic details and acquiring adequate discrimi-
native knowledge (Chen et al., 2022, 2023). For
instance, despite the semantic gap, the cosine simi-
larity between two sentence representations reaches
0.86 in Figure 1. Current studies on contrastive
SRL normally address the redundancy problem by
adjusting training strategies. For example, Chen
et al. (2022) proposes an information minimization-
based contrastive learning method to learn the im-
portant information and drop the redundant infor-
mation; Chen et al. (2023) utilizes hidden represen-
tations from intermediate layers as negative sam-
ples which the final sentence representations should
be away from. However, these training strategies
often lack fine-grained guidance to identify and
reduce redundancy, hindering the model’s ability
to learn better sentence representations.

In this paper, we propose a Redundant
Representation Reduction (3R) approach, which
adopts an explicit signal to guide the reduction
of redundant representations. The 3R method
comprises three steps: (1) constructing a corpus-
level redundant sentence embedding based on high-
frequency words, (2) enabling the model to self-
identify dimensions containing redundant informa-
tion within each training batch, and (3) dynamically
reducing redundant information for each training
sample using the corpus-level redundant embed-
ding and self-identified redundant dimensions. The
3R method helps the SRL model adjust the infor-
mation distribution in different dimensions and en-
hances the ability of SRL models to concentrate
on critical semantic information, thereby learning
better sentence representations.

The 3R method offers several advantages: 1)
it can be implemented with several lines of code;
2) the method is model-agnostic and it requires

1Computed with SimCSE(BERT-base).

no modification to the core network architecture
of SimCSE. Hence, it can be easily adopted to
different contrastive learning-based representation
learning frameworks; 3) experiments show that 3R
can help the contrastive SRL model learn effec-
tive representations that improve downstream task
performance. The contributions of this paper are:

• We propose a Redundant Representation Reduc-
tion (3R) method that dynamically identifies and
reduces redundant information in dimensions,
which helps the contrastive SRL model to fo-
cus on key semantic information and learn better
sentence representation.

• Extensive experiments on standard semantic tex-
tual similarity (STS) tasks demonstrate that 3R:
1) outperform previous approaches that aim to
improve SRL by reducing redundant informa-
tion; 2) work together with previous methods to
improve performance, demonstrating good gen-
erality. We provide a systematic analysis of the
results. The code and data will be released on
GitHub2.

2 Related Work

2.1 Contrastive Learning

Recently, contrastive learning-based approaches
have become the primary direction in SRL (Gao
et al., 2021). Contrastive learning aims to pull rep-
resentations of similar samples closer while push-
ing representations of dissimilar samples as far
apart as possible. The objective of unsupervised
contrastive learning is shown in Equation (1):

Li = − log
esim(hi,h+

i )/τ

∑N
j=1 esim(hi,h+

j )/τ
, (1)

where hi represents the embedding of sample xi
in the deep learning model, and h+

i denotes the
embedding of the positive example of xi. h+

j is
the embedding of the examples within the same
training batch, j ∈ {1, 2, ...N}. sim(·) is the co-
sine similarity between two representations. τ is a
temperature constant, which adjusts the influence
of the similarity scores on the loss Li. Building on
the unsupervised framework, the objective of super-
vised contrastive learning introduces hard negative
samples (Liu et al., 2025), as shown below:

2https://github.com/malongxuan/3R
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Figure 2: The proposed Redundant Representation Reduction (3R) Method.

− log
esim(hi,h+

i )/τ

∑N
j=1

(
esim(hi,h+

j )/τ+esim(hi,h−
j )/τ

) , (2)

where h−
j represents the embedding of the negative

example x−j for the sample xj in the deep learn-
ing model (Ma et al., 2022). Our method aims
to reduce redundant information of the sentence
representation h, which can be adapted to both
unsupervised and supervised contrastive learning.

2.2 SimCSE and Its Improvements
To make contrastive SRL more effective, consid-
erable research efforts have been paid to construct
high-quality training examples. SimCSE (Gao
et al., 2021) is a representative work that con-
structs positive pairs through the Dropout mech-
anism in neural networks. It feeds the same sen-
tence into the model twice and uses the embed-
dings generated from these two passes as posi-
tive pairs in unsupervised contrastive learning. Wu
et al. (2022) proposes to construct positive pairs
through word repetition, which effectively allevi-
ates the bias issue caused by the length similar-
ity of positive pairs. Wang and Dou (2023) uses
a rule-based method to construct semantically op-
posite but structurally identical sentences as nega-
tives. Xu et al. (2023a) adopts an adversarial learn-
ing framework to construct both positive and neg-
ative pairs. Xu et al. (2023b) improves SRL by
removing the Dropout noise in negative pairs. In
recent years, some studies leverage the LLMs to se-
lect (Cheng et al., 2023a) or construct (Jiang et al.,
2022; Cheng et al., 2023a; Wang et al., 2024a) high-
quality training data, or directly use LLMs as the
base model for contrastive SRL (Li and Li, 2024).

Another line of research aims to improve
the quality of sentence representations by opti-

mizing the contrastive learning objective, such
as integrating semantic information (Tan et al.,
2022), incorporating soft-prompt information (Ou
and Xu, 2024), and introducing additional loss
terms (Chuang et al., 2022; Lee, 2023).

Among the previous work, Chen et al.
(2022), Shen et al. (2023) and Chen et al. (2023)
are similar to ours that try to improve SRL by re-
ducing redundant information. (Chen et al., 2022)
introduces an additional loss function to guide the
model in encoding less redundancy into sentence
embeddings. Shen et al. (2023) proposes a post-
processing method to subtract sentence-level and
corpus-level redundant information in sentence em-
beddings. Chen et al. (2023) treats representations
of sentences from intermediate layers of the model
as additional negative examples and reduces the
redundancy in sentence embeddings by increasing
the distance to these negative examples. However,
the previous work lacks fine-grained guidance (Ma
et al., 2024) on allocating effective semantic infor-
mation. In contrast, 3R provides guidance for the
contrastive SRL to dynamically identify and reduce
redundant information from each dimension.

3 The Proposed 3R Method

As shown in Figure 2, the 3R method consists of
redundant representation construction, redundant
dimension identification, and redundant representa-
tion reduction.

3.1 Redundant Representations Construction

Inspired by the corpus-level redundancy defined
by Shen et al. (2023), to facilitate the model in
identifying and autonomously mitigating the in-
fluence of redundant information, we start with
constructing a set of redundant exemplars derived
from high-frequency lexical items within the train-

31632



ing corpus. This type of exemplar represents both
global semantic statistical information and the role
of a "weak" example, which cannot provide effec-
tive semantic information to distinguish between
positive and negative examples. Reducing this in-
effective semantic information in sentence repre-
sentation can help the model better focus on key
semantics that distinguish different examples.

Step (1). We count the word frequencies in the
unsupervised training dataset of the SimCSE frame-
work (Wiki dataset (Gao et al., 2021)). For exam-
ple, the top 10 high-frequency words and their cor-
responding frequencies are: [“the” (1, 437, 106),
“of” (678, 338), “in” (583, 691), “and” (568, 586),
“a” (413, 817), “to” (408, 457), “was” (250, 346),
“is” (186, 236), “on” (170, 559), “as” (169, 463)].
During the experiments, we select the top 300 most
frequent words for the next step. Using corpus-
level term frequency statistics provides a more ro-
bust and comprehensive representation of the se-
mantic distribution within the corpus.

Step (2). We construct the redundant exemplars
with the top 300 frequent words. We adopt an open-
sourced LLM Deepseek-v33 for this task. Dur-
ing each call to the model, we randomly select 50
words from the 300 high-frequency word list and
then use the chosen words to generate redundant
exemplars4. The specific instruction for using the
large language model is: “Please use the words pro-
vided to generate 5 sentences with different mean-
ings. The requirement is that most of the words
in the sentences should come from the provided
vocabulary, and the other words in the sentences
should also be as common as possible. The sen-
tence length should not exceed 325. The words
provided are: "and, was, ...".”

The reason for constructing “high-redundancy”
sentences, rather than directly using high-frequency
words, is that the goal of contrastive training is
to learn effective sentence representations. Di-
rectly using high-frequency words leads to “redun-
dant” representations that lack sentence-level se-
mantic information. In the experimental section,
we will compare the effect of directly using high-
frequency words to generate redundant representa-
tions (Please refer to section 5.3).

3https://github.com/deepseek-ai/DeepSeek-V3
4The experiments to choose 50 and 300 are shown in Ap-

pendix B and F.
5The maximum sentence truncation length of the SimCSE

model is 32. To ensure the integrity of sentence semantics, we
set 32 as the length threshold for sentence generation.

1: He has worked for this prestigious company in
the city for several years and is highly regarded
for his professionalism.

2: The group of students from the university were
discussing the film until late into the night, trying to
decide if it was the best they had seen this year.

Table 1: Two redundant sentence examples.

Step (3). Repeat step (2) until a sufficient num-
ber of sentences are obtained. We constructed sen-
tences to ensure that they covered the top 300 most
frequent words, and each frequent word was used
at least twice. Finally, we had 646 sentences. Ta-
ble 1 shows two examples of the constructed high-
redundancy sentences. The underlined words are
from the high-frequency word list.

The set of 64 sentences constructed in this sec-
tion will serve as a candidate pool. We randomly
select k sentences (0 < k ≤ 64) from this pool
for each training batch. These sentences will
be input to the encoder to get their embedding7

h̄l, l = {1, 2, ..., k}. The mean encoding result h̄
of the k sentences will be used as the representa-
tive redundant representation for each batch during
training.

3.2 Redundant Dimensions Identification
After obtaining the redundant representation h̄, we
designed a batch-wise redundant dimensions iden-
tification method. It helps the model to identify the
redundant dimensions during training.

According to the fundamental principles of in-
formation theory, a system with higher uncertainty
carries a greater amount of information (MacKay,
2003). Based on this theory, we compute the stan-
dard deviation of the sentence embeddings across
each dimension for the data in the same batch. A
smaller standard deviation indicates a lower vari-
ance in that dimension. Hence the dimension’s
contribution to distinguishing between different
embeddings is minimal. The mean ud and standard
deviation σd of the d-th dimension are computed
with Equation (3):

σd =

√∑N
j=1(h

d
j − ud)2
N

, ud =
1

N

N∑

j=1

hdj , (3)

whereN denotes the number of training data points
6The training batch size of the SimCSE model is 64. Please

refer to section 5.5 for the related experiments.
7All sentence embeddings in the experiments are obtained

with the encoding result of the [CLS] token in BERT (Devlin
et al., 2019) or RoBERTa (Liu et al., 2019).
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in the batch, hj represents the j-th sentence embed-
ding in the batch, j ∈ {1, 2, ..., N}. n is the hidden
size of the sentence embedding. hdj is the value of
the d-th dimension for the embedding of the j-th
sentence, d ∈ {1, 2, ..., n}.

Then, we set up a learnable threshold c (an ex-
plicit signal) to decide which dimension is redun-
dant. Specifically, the dimensions with a standard
deviation smaller than c are defined as redundant
for that training batch. We define S as the set of re-
dundant dimensions selected. If σd− c < 0, d ∈ S,
otherwise d /∈ S.

3.3 Redundant Representations Reduction
After identifying the redundant dimensions, we
propose a simple regularization method to reduce
the redundant information in sentence embeddings.
The regularized sentence embeddings can more
accurately reflect the semantic distribution between
sentences, which benefits the optimizing objective
of contrastive learning.

As shown in Equations (4) and (5), the model
discards redundant information in sentence embed-
dings by subtracting the redundant vector during
the contrastive fine-tuning process. This redun-
dancy reduction strategy is inspired by the work
of (Shen et al., 2023), who used this method as
a post-processing step to reduce redundant infor-
mation in sentence embeddings. However, unlike
their strategy of subtracting the overall vector, we
only perform subtraction on the high-redundancy
dimensions (as selected in Section 3.2).

Li = − log
exp

(
sim(ĥi, ĥ

+

i )/τ
)

∑N
j=1 exp

(
sim(ĥi, ĥ

+

j )/τ
) , (4)

{
ĥdx = hdx − h̄d, if d ∈ S,
ĥdx = hdx, if d /∈ S,

(5)

where hi = (h1i , h
2
i , . . . , h

n
i ) represents the

i-th sentence embedding in the batch, h̄ =
(h̄1, h̄2, . . . , h̄n) denotes the constructed redun-
dancy vector, n is the dimension of the vector, and
h̄d refers to the value at the d-th dimension of h̄.
S is the set of selected redundant dimensions. hx
represents hi , h+

j , or h+
i . ĥ is the reduced sentence

representation we used for contrastive learning.

4 Experimental setting

4.1 Datasets and Evaluation Metrics
We evaluate the performance of sentence embed-
dings on the standard semantic textual similarity

(STS) task, which includes seven sub-tasks8. Each
sub-task requires the model to output a similarity
score for a given sentence pair, with a score range
from 0 to 5, where 0 indicates no semantic rele-
vance and 5 indicates identical semantics. The eval-
uation metric of the STS task is the Spearman cor-
relation between the predicted scores and human-
annotated scores. We used the open-source code
from (Gao et al., 2021) to compute the model’s
scores. The STS tasks are difficult for not only SRL
models but also the state-of-the-art LLMs. Previ-
ous work (Wang et al., 2024a) shows that Chat-
GPT9 equipped with in-context-learning (Dong
et al., 2023) can only obtain 76.19 Spearman cor-
relation score on this task, which is lower than
many unsupervised methods based on BERT or
RoBERTa (please refer to Table 2). Experiments
on more backbone models and more downstream
tasks are shown in Appendix D and E. All results
are the average of five-times experiments.

Alignment and Uniformity are two metrics for
evaluating the quality of the embedding space.
Specifically, alignment measures the distance be-
tween positive pairs. A smaller alignment value
indicates that semantically similar sentences are
closer together in the vector space. Uniformity, on
the other hand, evaluates the distribution of embed-
dings in the semantic space. A smaller uniformity
value indicates a more uniform distribution of the
vectors. Following (Reimers and Gurevych, 2019)
and (Gao et al., 2021), who proposed the view that
the primary objective of sentence embeddings is
to cluster semantically similar sentences, we take
alignment as the main results. In this study, we
used the open-source code from (Wang and Isola,
2020) to compute the alignment and uniformity
losses. The alignment loss is computed based on
sentence pairs with similarity scores greater than
4 from the STS-B test set. The uniformity loss is
computed with the entire STS-B test set.

4.2 Baselines

We compare with the following baselines.
Unsupervise SRL methods: (1) SimCSE (Gao

et al., 2021) utilizes dropout for data augmen-
tation in contrastive learning; (2) InforMin-
CL (Chen et al., 2022) uses an additional loss

8STS12 (Agirre et al., 2012), STS13 (Agirre et al., 2013),
STS14 (Agirre et al., 2014), STS15 (Agirre et al., 2015),
STS16 (Agirre et al., 2016), STS-Benchmark (Cer et al., 2017),
SICK-Relatedness (Marelli et al., 2014)

9https://openai.com/index/chatgpt/
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Unsupervised Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg(Diff.)

SimCSE-BERTbase* 67.00 81.87 73.20 79.02 78.30 76.26 70.82 75.21
SimCSE-BERTbase*+ 3R 70.51 83.46 75.89 82.06 79.18 78.69 72.84 77.52(+2.31)
InforMin-CL-BERTbase* 66.64 82.10 73.32 78.15 77.33 75.70 71.30 74.93
InforMin-CL-BERTbase*+ 3R 71.52 81.41 75.11 81.84 78.19 79.25 73.34 77.24(+2.31)
RapAL-BERTbase 69.33 78.93 73.95 80.01 79.29 76.00 70.51 75.43
SSCL-SimCSEbase* 70.09 81.52 74.61 81.64 76.71 77.14 69.93 76.10
SSCL-SimCSEbase*+ 3R 71.79 83.62 76.51 83.54 78.61 79.54 71.83 77.60(+1.50)

SimCSE-Robertabase* 69.18 81.71 72.50 81.10 80.31 79.68 69.99 76.35
SimCSE-Robertabase*+ 3R 71.86 82.60 74.30 81.43 81.30 81.41 69.90 77.54(+1.19)
InforMin-CL-Robertabase* 66.76 80.58 71.38 81.21 78.60 78.34 66.05 74.70
InforMin-CL-Robertabase*+ 3R 67.79 82.81 74.33 82.99 79.53 81.71 71.89 77.29(+2.59)

LLM2Vec-LLaMA-2-7B* 70.20 81.76 73.83 81.37 78.32 76.75 70.79 76.15
LLM2Vec-LLaMA-2-7B*+ 3R 70.81 83.46 75.92 82.01 78.99 78.63 72.91 77.53(+1.38)

Supervised Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg(Diff.)

MultiCSRE-BERTbase* 72.48 82.75 75.94 82.51 80.07 81.89 77.38 79.00
MultiCSRE-BERTbase*+ 3R 73.05 81.14 76.23 83.32 80.55 82.43 77.82 79.56(+0.56)
SimCSE-BERTbase* 77.11 80.82 78.42 85.03 80.40 82.69 78.93 80.50
SimCSE-BERTbase*+ 3R 76.13 85.00 80.83 86.06 81.37 84.17 80.16 81.96(+1.46)
Claif-SimCSE-BERTbase* 76.89 79.59 79.06 85.93 81.01 83.68 79.08 80.75
Claif-SimCSE-BERTbase*+ 3R 76.06 84.76 80.99 86.10 81.41 81.81 79.60 81.81(+1.06)
SynCSE-scratch-BERTbase* 74.34 84.37 78.33 83.73 80.22 81.81 76.00 79.83
SynCSE-scratch-BERT-base*+ 3R 76.65 83.26 79.52 84.81 81.02 83.82 79.70 81.27(+1.44)

Table 2: Experimental results on STS tasks. Results with ∗ are reproduced by us. The underlined scores are the
best on each sub-task of each group. "Diff." means the improvement after using 3R method on the baselines.

function to incorporate less useless encodings
into sentence embeddings; (3) RapAL (Shen
et al., 2023) proposes a simple post-processing
method to remove redundant information in sen-
tence embeddings; (4) SSCL (Chen et al., 2023)
reduces redundancy by trains the model away
from similar intermediate layer representations; (5)
LLM2Vec (BehnamGhader et al., 2024) enables
bidirectional attention to decoder-only LLMs such
as LLaMA-2-7B (Touvron et al., 2023) and then
uses LLMs for unsupervised SRL.

Supervise SRL methods: (1) SimCSE (Gao
et al., 2021); (2) Claif (Cheng et al., 2023b) uses
an LLM to evaluate the quality of training data
for supervised SRL; (3) SynCSE-scratch (Zhang
et al., 2023) uses an LLM to construct training
samples for supervised SRL; (4) MultiCSR (Wang
et al., 2024b) uses an LLM for multiple stages
generating and selecting high-quality sentences.

4.3 Training Details

The experiments were conducted with an RTX
4090 GPU. We followed the hyper-parameter
settings from the previous works (Gao et al.,
2021; Cheng et al., 2023b; Chen et al., 2023;
BehnamGhader et al., 2024), training the unsu-
pervised model with randomly sampled sentences
from Wiki data, training the supervised model
with MNLI and SNLI datasets, using the same

pre-trained checkpoints of BERT (uncased) and
RoBERTa (cased) for different methods.

5 Experimental Results and Analysis

In this section, we aim to answer the following
questions: 1) Does the 3R method outperform the
previous methods that aim at reducing redundant
information in contrastive SRL? (Section 5.1) 2)
Does the 3R method work together with the pre-
vious unsupervised methods (Section 5.1) and su-
pervised methods (Section 5.2)? 3) What are the
advantages of the 3R method? (Section 5.2) 4)
How does each module contribute to the 3R method
i.e. where do the gains come from? (Section 5.3)
5) What can we learn from the case study? (Sec-
tion 5.4) 6) How is the hyper-parameter k decided?
(Section 5.5) 7) How is improvement reflected in
the sentence representation space? (Appendix A)

5.1 Analysis of Unsupervised Methods

The upper half of Table 2 shows the experimen-
tal results with unsupervised methods. Firstly,
the SimCSE+3R outperforms models (InforMin-
CL, RagAL, and SSCL) that also aim at re-
ducing redundant information. The results in-
dicate that reducing redundancy from a fine-
grained dimensional perspective may better mit-
igate the redundancy problem. Secondly, the
proposed 3R method achieves performance im-
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Unsupervised Model STS12 STS13 STS14 STS15 STS16 STSB SICK-R Avg

SimCSE-BERTbase 67.00 81.87 73.20 79.02 78.30 76.26 70.82 75.21
SimCSE-BERTbase(dynamic mask) 68.12 82.53 74.39 80.73 77.77 77.41 72.43 76.20
SimCSE-BERTbase(overall subtraction) 72.09 82.71 74.94 80.96 78.23 78.07 70.88 76.84
SimCSE-BERTbase(token subtraction) 71.38 82.46 75.16 81.30 77.65 78.19 71.62 76.82
SimCSE-BERTbase(static identification) 69.31 81.85 74.88 80.78 78.30 77.31 71.60 76.29
SimCSE-BERTbase(3R) 70.51 83.46 75.89 82.06 79.18 78.69 72.84 77.52

Table 3: Different settings of the proposed 3R method. The underlined scores are the best on each sub-task.

provements on all BERT/RoBERTa/LLaMA mod-
els, showing a good generality on base models.
Thirdly, InforMin-CL+3R outperforms InforMin-
CL 2.31/2.59 on BERT/RoBERTa, respectively.
SSCL-SimCSE+3R outperforms SSCL-SimCSE
1.5. The results demonstrate that our method can
work with other redundant information reduction
methods, further improving performance.

5.2 Analysis of Supervised Methods

The bottom half of Table 2 shows the experimen-
tal results on the STS tasks with supervised meth-
ods. The proposed 3R method achieves perfor-
mance improvements on SimCSE, Claif-SimCSE,
and SynCSE-scratch. SimCSE uses manually an-
notated training data. Claif-SimCSE adopts LLM
to evaluate the quality of training data. SynCSE-
scratch leverages LLM to construct training data.
The effect of the 3R method is less pronounced
under supervised conditions compared to unsuper-
vised ones. One possible reason is that in super-
vised training batches, the semantic relationship
between a sample and its hard negative pair is more
complex. In such cases, the model can already
learn better sentence representations through hard
negative examples, so the improvement that reduc-
ing redundant information can bring is limited.

To sum up, the results in Table 2 show a good
generality of the 3R method: 1) the redundancy
representation is an issue in both unsupervised and
supervised training paradigms and the 3R method
can mitigate the redundant representation problem
in both training paradigms; 2) the 3R method works
for different types of data scenarios, whether au-
tomatically constructed or human annotated; 3)
the 3R method can work together with different
redundancy reducing methods and different data
augmentation methods.

5.3 Different Settings of 3R

Table 3 shows the experiments with different set-
tings of 3R, which explain why 3R works and
where the gains come from.

The “dynamic mask” setting does not perform
Equation (5). Instead of subtracting the identified
redundant dimensions of the redundant represen-
tation h̄, it directly sets the identified redundant
dimension of hx to 0. Hence, this setting can
be seen as removing the Redundant Represen-
tations Construction module of the 3R method.
This setting is better than the baseline model but
worse than the original 3R. The results indicate
that simply removing the identified redundant di-
mensions may also eliminate useful information. A
more refined process for reducing the redundant in-
formation such as the 3R may be more appropriate.

The “overall subtraction” setting subtracts the
constructed redundancy representation h̄ from all
dimensions, instead of only subtracting the identi-
fied ones. This setting removes the Redundant
Dimensions Identification module. The results
are better than the baseline model, which shows
that the constructed redundancy representation ex-
emplifies the redundant information in the training
data. Removing this redundancy helps to learn a
better sentence representation. On the other hand,
the “overall subtraction” setting is inferior to 3R,
which means the learned threshold c helps to iden-
tify which dimension is worth more to reduce.

The “token subtraction” setting uses the 300
high-frequency words to obtain the representa-
tive redundant embedding. It means we do not
construct the redundant sentence pool. We di-
rectly use the average embedding of the 300 high-
frequency words as the redundant embedding h̄.
Then we use the learnable c to decide which dimen-
sion is redundant and should reduced with Equation
(5). We can observe that this setting can still im-
prove the SimCSE model’s performance, which
means the h̄ derived from high-frequency words
can also guide where the redundancy information
is. However, this setting is not comparable to 3R,
which means simply using high-frequency words
could not provide enough sentence-level semantic
information for contrastive SRL.

The “static identification” setting selects redun-
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1. explosion at Venezuela refinery kills at least 39.
2. Venezuela mourns oil refinery blast deaths.

Human-annotated similarity score: 0.56
Similarity score from Claif / Claif+3R: 0.75 / 0.65

Table 4: Similarity score for a random case.
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Figure 3: Token embedding similarity heat maps.

dant dimensions based on the 300 high-frequency
words. Specifically, we do not use the sentence
embeddings in each batch to compute the stan-
dard deviation of each dimension. Instead, we
use the embedding of the 300 high-frequency
words to calculate the standard deviation of each
dimension. Then we use the learnable c to decide
which dimension is redundant and should reduced
with Equation (5). This means the redundant di-
mensions are the same among different batches.
We can observe that this setting can improve the
SimCSE model’s performance, which means the
high-frequency words can guide where the redun-
dancy information is exhibited. However, this set-
ting is not as good as 3R, which means dynamically
determining redundant dimensions in each batch
can better guide the model to learn the subtle se-
mantic differences among different batches.

5.4 Case Study

We randomly select a sentence pair in the STS tasks
for similarity study. As shown in Table 4, the two
sentences have a manually annotated score of 0.56
(For the convenience of comparison, we convert
the manually annotated scores between 0-5 to 0-1).
The similarity score from Claif and Claif+3R is
0.75 and 0.65, respectively. The 3R method helps
the contrastive SRL model to give a score closer to
a human-annotated one.

We also show the word similarity of the sec-
ond sentence “Venezuela mourns oil refinery blast
deaths” in Figure 3. On one side, the 3R method
makes the distinction between token embeddings
with different parts of speech and meanings more
pronounced. For example, the words “mourns”
and “refinery” have a similarity score of 0.76 in

74.4

75.86
76.22

77.52
76.77 76.87 76.79 76.72

74

76

78

1 2 4 16 32
 

646        8

STS average

k value

Figure 4: 3R method performance with different k.

Claif, while the score is 0.69 in Claif+3R. On the
other side, the 3R method retains key semantic in-
formation while reducing the impact of redundant
information. For instance, the words “Venezuela”
and “blast” have a similarity score of 0.88 in both
models. Although the similarity between dissimilar
words has been reduced, there is still room for im-
provement. Further research to reduce unexpected
redundant information is still needed.

5.5 The Hyper-parameter k

There is a hyper-parameter k in the method (section
3.1), which is the number of redundant exemplars
randomly chosen from the redundant sentence pool
for each training batch. Figure 4 shows the average
results on the STS tasks with different k. The ex-
periments are conducted with SimCSE-BERTbase,
which has an average performance of 75.21 on STS.
We can see that the performance of the model grad-
ually increases as k grows. It surpasses SimCSE
when k is 2, which means it takes multiple redun-
dant sentences to obtain corpus-level semantics to
guide the 3R method. It reaches its peak when k
is 6, and then stabilizes as k continues to increase.
When k is 6, the learned variable c (Section 3.2)
will converge to 0.273. c determines whether a
dimension should be reduced with Equation (5).
More experiments about c is in Appendix C.

6 Conclusion

This study optimizes SRL by automatically detect-
ing and reducing redundant information in dimen-
sions. The proposed method helps models adjust
the information distributions among dimensions
and learn better sentence representations. Exten-
sive experiments demonstrate the effectiveness and
generality of the method. We present a systematic
analysis to show why the proposed method works.
Future work includes: 1) investigating more deli-
cate control of the reduction process (For example,
dividing redundant dimensions into multiple redun-
dancy levels); 2) testing the 3R method in more
downstream tasks that apply contrastive learning.
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Limitations

Firstly, our method requires training the parameters
of the SRL model. When applying the proposed
3R method to models with larger sizes (e.g. more
than 7B), the training is expensive. Hence, the
3R method benefits smaller models (e.g. smaller
than 1B), which still show great application value
nowadays in specific tasks, domains, and scenarios.
Secondly, the alignment and uniformity analysis
show that the uniformity score can still improve,
which indicates we can further refine the proposed
3R method to have a better representation space.
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A Alignment and Uniformity Analytics

In this section, we perform Alignment and Unifor-
mity analysis of sentence embeddings with Figure
5. The alignment metric measures the distance
between positive pairs. It drops after using the
3R method with both unsupervised and supervised
models. The reason is that after reducing redun-
dant information, the similarity of positive pairs de-
creases, which encourages the model to represent
more granular semantic information in the positive
pair embeddings. Thus, after redundancy reduc-
tion, semantically related sentences cluster more
tightly in the embedding space. As we introduced
in Section 4.1, a lower alignment score means a
better model performance. Hence, the results show
that the 3R method helps to learn better sentence
representations.

The uniformity metric evaluates the distribution
of embeddings in the semantic space. The mod-
els trained with 3R show a decrease in the uni-
formity metric compared to the baseline models.
The reason is that the redundancy reduction oper-
ation removes some of the encodings on certain
dimensions of the sentence embeddings, compress-
ing the embedding space. The reduced degrees of
freedom in the compressed embedding space cause
sentence embeddings to cluster more easily. The
results show a trade-off between alignment and
uniformity. However, as pointed out by previous
research (Reimers and Gurevych, 2019; Gao et al.,
2021), the primary objective of sentence embed-
dings is to cluster semantically similar sentences.

Index 100 101 102 103 104
Word before since season second through
Frequency 14143 14053 14020 13874 13788
Changing rate 0.0048 0.0064 0.0024 0.0105 0.0062

Index 197 198 199 200 201
Word another former members York any
Frequency 8143 8140 8060 8025 7978
Changing rate 0.0007 0.0004 0.0099 0.0044 0.0059

Index 297 298 299 300 301
Word head near King Road off
Frequency 5811 5805 5795 5765 5761
Changing rate 0.0036 0.0010 0.0017 0.0052 0.0007

Table 5: Frequency statistics for choosing the top 300
frequency words.

Hence, the results of the alignment-uniformity met-
ric demonstrate the effectiveness of the 3R method
in learning better sentence representations.

B Experiments for choosing top 300
frequency words

Table 5 shows the experiments choosing the top
300 high-frequency words. Firstly, to have enough
words to construct the required high-frequency sen-
tence set, we empirically did not consider word
lists smaller than 100. Then, we calculated the fre-
quency changing rate with ( Tn - Tn+1 ) / Tn+1,
where Tn means the frequency of the n-th high-
frequency word. After the calculation, we found
that the changing rate exhibits local peaks at certain
positions. For example, at 103, 176, 199, 300, 393,
472. Some of the statistics are as follows:

Based on the statistics, we conduct experiments
on these local peaks to choose a number as the
high-frequency word list. The experiments on un-
supervised models are shown in Table 6.

The results show that the 300 setting is the best.
The above statement and experiments are the ra-
tionale behind the value of 300. It is worth noting
that all the settings (103, 176, 199, 300, 393, 472)
are better than the baseline (75.21), which demon-
strates that even if the optimal parameter 300 is not
selected, the proposed method still works.

C Experiments for the learned
parameter c

There is a learned parameter c in section 3.2 that
is randomly initialized. We propose experiments
with c set to different initial values (1.0, 0.5, 0.1,
and 0.0), and the experimental results in one and a
half epochs (Increasing by 0.1) are shown in Table
7. (0.0 is a very small number, such as 0.00001).
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

3R(length=103) 68.80 82.21 74.60 79.87 78.51 77.83 73.18 76.43
3R(length=176) 69.65 82.54 74.81 81.32 78.00 77.37 72.27 76.57
3R(length=199) 69.89 82.78 75.05 81.56 78.24 77.61 72.51 76.81
3R(length=300) 70.51 83.46 75.89 82.06 79.18 78.69 72.84 77.52
3R(length=393) 70.03 82.92 75.19 81.70 78.38 77.75 72.65 76.95
3R(length=472) 69.46 81.98 73.61 81.36 78.90 76.88 70.55 76.11

Table 6: Experiments for choosing the top 300 frequency words. The backbone model is SimCSE-BERT-base.
The "length=" means the number of the top high-frequency words.

Epoch 0.1 0.2 0.3 0.4 0.5
c-initial=1.000 0.865 0.742 0.631 0.532 0.446
c-initial=0.500 0.443 0.365 0.319 0.298 0.285
c-initial=0.100 0.146 0.189 0.217 0.243 0.259
c-initial=0.000 0.032 0.067 0.103 0.142 0.176

Epoch 0.6 0.7 0.8 0.9 1.0
c-initial=1.000 0.373 0.314 0.273 0.273 0.273
c-initial=0.500 0.273 0.273 0.273 0.273 0.273
c-initial=0.100 0.267 0.273 0.273 0.273 0.273
c-initial=0.000 0.205 0.225 0.236 0.241 0.243

Epoch 1.1 1.2 1.3 1.4 1.5
c-initial=1.000 0.273 0.273 0.273 0.273 0.273
c-initial=0.500 0.273 0.273 0.273 0.273 0.273
c-initial=0.100 0.273 0.273 0.273 0.273 0.273
c-initial=0.000 0.255 0.265 0.273 0.273 0.273

Table 7: Experiments for the learned parameter c.

These experiments may provide more insight about
our method.

We can see that c will converge to 0.273 with dif-
ferent initial values. It is worth noting that during
the experiments in the paper, we set c to a random
value between 0 and 1, and it also converges to
0.273.

To verify whether 0.273 is the optimal value. We
conducted a comparison by manually setting the c
value (which means c does not change or update
during the training), and the experimental results
with unsupervised models are shown in Table 8.

When c continues to decrease, the performance
of the model will not improve, and 0.273 is the op-
timal value in our experiments. The best result here
(77.46) is lower than the result (77.52) where c is
automatically learned. It shows that automatically
learn the threshold c helps the model to obtain a
better generalization performance.

D Experiments on different back-bone
models

Our experimental results on the BERT large and
RoBERTa large models showed consistent trends
with other experiments (the results of the Unsuper-
vised models are shown in Table 9), indicating that

using our method would improve the performance
of the model.

For the LLMs, we present the experiments
based on the LLAMA-7B model in Table 2 (i.e.,
LLM2vec) on page 6 of the paper, demonstrating
that our method is also applicable to larger-scale
models.

E Experiments on more downstream
tasks

Following previous works, we evaluated our
method on downstream tasks, and the results of the
Unsupervised baselines and 3R method are shown
in Table 10.

We evaluate our model performance on the fol-
lowing transfer tasks: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST-2 (Socher
et al., 2013), TREC (Voorhees and Tice, 2000), and
MRPC (Dolan and Brockett, 2005).

Following previous work (Gao et al., 2021), we
train a logistic regression classifier on top of the
(frozen) sentence embeddings produced by differ-
ent methods. The evaluation follows the default
configuration of SentEval.

The results show that our method can also benefit
the transfer tasks.

F Experiments for choosing
hyper-parameter 50

In this section, we demonstrate how we choose
the hyper-parameter 50. In the experiments, we
randomly select N words from the high-frequency
word list (103, 176, 199, 300, 393, 472) and then
use the chosen words to generate redundant exem-
plars. We tried N = 40, 50, or 60. The experimental
results are in Table 11. N = 30 or 70 were also
tested but the results were much lower than the re-
sults of 40, 50, or 60. Table 11 shows that N = 50 is
the best in all the settings (103, 176, 199, 300, 393,
472). Hence, we chose 50 as a hyper-parameter.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

3R(c=0) 67.00 81.87 73.20 79.02 78.30 76.26 70.82 75.21
3R(c=0.1) 70.82 82.59 73.66 80.29 77.65 78.04 70.71 76.25
3R(c=0.2) 67.97 79.55 72.59 80.55 76.34 76.20 68.95 74.59
3R(c=0.25) 72.11 82.56 75.09 81.24 78.37 77.62 72.02 77.00
3R(c=0.273) 72.03 83.20 75.65 82.05 79.01 78.28 71.97 77.46
3R(c=0.3) 71.35 82.31 74.05 80.79 78.16 77.51 71.53 76.53

Table 8: Experiments for the learned parameter c. The backbone model is SimCSE-BERT-large.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

SimCSE-BERT-large 69.44 83.71 75.74 83.90 78.66 78.53 73.70 77.67
SimCSE-BERT-large +3R 73.58 83.93 76.82 84.25 80.36 80.16 73.65 78.96

SimCSE-Roberta-large 72.18 83.15 75.13 84.11 81.11 81.66 71.01 78.34
SimCSE-Roberta-large +3R 74.36 83.72 76.68 84.53 82.01 82.21 72.56 79.44

MultiCSRE-Robertabase 71.73 82.12 75.54 82.37 79.52 80.97 76.26 78.36
MultiCSRE-Robertabase+3R 73.46 83.74 77.72 83.96 80.74 82.45 77.83 79.99

Table 9: Experiments with different backbone models

Model MR CR SUBJ MPQA STS2 TREC MRPC Avg

SimCSE-BERT-base 81.11 85.56 94.20 89.17 85.56 86.40 74.14 85.16
SimCSE-BERT-base +3R 81.42 86.65 94.53 89.30 86.33 88.21 74.13 85.80

SimCSE-Roberta-base 80.57 86.62 92.27 86.61 85.72 83.20 73.97 84.14
SimCSE-Roberta-base +3R 80.73 86.87 93.42 87.13 86.01 85.37 74.08 84.80

SimCSE-BERT-large 85.05 89.48 95.01 89.29 90.44 88.80 74.20 87.47
SimCSE-BERT-large +3R 85.02 89.53 95.26 89.32 91.13 90.05 74.64 87.85

SimCSE-Roberta-large 82.59 87.47 93.18 88.44 86.66 91.00 76.29 86.52
SimCSE-Roberta-large +3R 83.54 87.65 93.14 88.76 87.02 90.87 76.25 86.75

Table 10: Experiments with different backbone models on downstream tasks.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg

3R(length=103,N=40) 68.62 82.13 74.36 79.69 78.33 77.56 73.01 76.24
3R(length=103,N=50) 68.80 82.21 74.60 79.87 78.51 77.83 73.18 76.43
3R(length=103,N=60) 68.73 82.08 74.52 79.75 78.44 77.71 73.07 76.33

3R(length=176,N=40) 69.54 82.42 74.73 81.21 77.83 77.21 72.10 76.43
3R(length=176,N=50) 69.65 82.54 74.81 81.32 78.00 77.37 72.27 76.57
3R(length=176,N=60) 69.58 82.49 74.73 81.28 77.91 77.32 72.23 76.51

3R(length=199,N=40) 69.73 81.58 74.87 81.36 78.08 77.42 72.34 76.48
3R(length=199,N=50) 69.89 82.78 75.05 81.56 78.24 77.61 72.51 76.81
3R(length=199,N=60) 69.83 82.69 74.94 81.47 78.15 77.54 72.46 76.73

3R(length=300,N=40) 70.48 83.40 75.61 81.58 79.06 78.11 72.77 77.29
3R(length=300,N=50) 70.51 83.46 75.89 82.06 79.18 78.69 72.84 77.52
3R(length=300,N=60) 72.03 83.20 75.65 82.05 79.01 78.28 71.97 77.46

3R(length=393,N=40) 69.78 82.63 74.89 81.45 78.07 77.44 72.40 76.67
3R(length=393,N=50) 70.03 82.92 75.19 81.70 78.38 77.75 72.65 76.95
3R(length=393,N=60) 69.84 82.73 74.94 81.51 78.10 77.52 72.43 76.72

3R(length=472,N=40) 69.29 81.77 73.44 81.15 78.72 76.68 70.36 75.92
3R(length=472,N=50) 69.46 81.98 73.61 81.36 78.90 76.88 70.55 76.11
3R(length=472,N=60) 69.38 81.89 73.53 81.28 78.81 76.76 70.46 76.02

Table 11: Experiments for choosing the 50 words. The backbone model is SimCSE-BERT-base.
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