
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31138–31147
November 4-9, 2025 ©2025 Association for Computational Linguistics

DELOC: Document Element Localizer

Hammad Ayyubi1*, Puneet Mathur2, Md Mehrab Tanjim2, Vlad I Morariu2

1Columbia University, 2Adobe Research,
Correspondence: hayyubi@cs.columbia.edu

Abstract

Editing documents and PDFs using natural lan-
guage instructions is desirable for many rea-
sons – ease of use, increasing accessibility to
non-technical users, and for creativity. To do
this automatically, a system needs to first un-
derstand the user’s intent and convert this to an
executable plan or command, and then the sys-
tem needs to identify or localize the elements
that the user desires to edit. While there exist
methods that can accomplish these tasks, a ma-
jor bottleneck in these systems is the inability
to ground the spatial edit location effectively.
We address this gap through our proposed sys-
tem, DELOC (Document Element LOCalizer).
DELOC adapts the grounding capabilities of
existing Multimodal Large Language Model
(MLLM) from natural images to PDFs. This
adaptation involves two novel contributions:
1) synthetically generating PDF-grounding in-
struction tuning data from partially annotated
datasets; and 2) synthetic data cleaning via
Code-NLI, an NLI-inspired process to clean
data using generated Python code. The effec-
tiveness of DELOC is apparent in the >2x zero-
shot improvement it achieves over the next best
MLLM, GPT-4o.

1 Introduction

Editing documents and PDFs via natural language
(Mathur et al., 2023; Suri et al., 2024) is an innova-
tive and user-friendly advancement. This technol-
ogy makes it easier for non-technical people to edit
PDFs, speeds up the editing process, and facilitates
document editing on a mobile device.

Typically, a two-stage process has been followed
to edit PDFs from natural language requests. In
the first stage, a model is required to predict the
edit location (green highlight in Figure 1) spatially
in the PDF. The edit location is a PDF element
(paragraph, line, list, table, etc.). The second stage

*Work done during an internship at Adobe Research, Doc-
ument Intelligence Lab (DIL)

Thrombosis Journal 2004

Accumulating fibrin that polymerizes in the vessel
wall triggers fibrinolysis. Fibrinolytic enzymes tissue
plasminogen activating factor and urokinase
plasminogen activating factor (tPA and uPA,
respectively) are present in intima and are secreted
by endothelial cells and likely play an important role
in vascular remodeling [42-44]. Before addressing
specific study findings a few general observations
deserve attention.

● Strong associations between age and sex
are found.

● D-dimer levels increase with age.

Other findings include:
● D-dimer levels are oftentimes associated

with markers of inflammation
● Elevated levels of D-dimers are usually

considered as a marker of increased
clotting activity.

Change “increase” to “decrease” in the
second list-item of the first list.

Thrombosis Journal 2004

Accumulating fibrin that polymerizes in the vessel
wall triggers fibrinolysis. Fibrinolytic enzymes tissue
plasminogen activating factor and urokinase
plasminogen activating factor (tPA and uPA,
respectively) are present in intima and are secreted
by endothelial cells and likely play an important role
in vascular remodeling [42-44]. Before addressing
specific study findings a few general observations
deserve attention.

● Strong associations between age and sex
are found.

● D-dimer levels decreases with age.

Other findings include:
● D-dimer levels are oftentimes associated

with markers of inflammation
● Elevated levels of D-dimers are usually

considered as a marker of increased
clotting activity.

Edit Location: [55,24,88,36]

Edit Command: Replace

Figure 1: Illustration of a typical PDF edit process.
Models predict Edit Location and Edit Command, which
are combined to effect the required edit. This work fo-
cuses on improving the bottleneck step – Edit Location.
To this end, the proposed system, DELOC, generates
large-scale (3M) synthetic data to instruction tune a Mul-
timodal LLM.

involves predicting the edit command (replace in
Figure 1). The predicted bounding box and edit
command can then be simply combined to effect
the desired change. Existing PDF editing systems
achieve high accuracy (>85%) in predicting edit
commands (Mathur et al., 2023) but struggle with
bounding box precision (<50%) (Suri et al., 2024).
As such, we focus on improving the spatial PDF
element localization for a given edit request.

State-of-the-art systems ground user queries in
images (Wang et al., 2023; You et al., 2023), mobile
UIs (You et al., 2024), and web UIs (Hong et al.,
2023), but they do not transfer directly to PDFs.
PDFs are more verbose, and edit requests follow a
hierarchical structure requiring domain knowledge.
For instance, a request like “first list item of the
third list in Section A.1” demands an understanding
of the composition: section → list → list item.

To address these challenges, we propose DE-
LOC (Document Element LOCalizer), which
adapts the strong grounding capabilities of Mul-

31138

hayyubi@cs.columbia.edu

Thrombosis Journal 2004

Accumulating fibrin that polymerizes in the vessel
wall triggers fibrinolysis. Fibrinolytic enzymes tissue
plasminogen activating factor and urokinase
plasminogen activating factor (tPA and uPA,
respectively) are present in intima and are secreted
by endothelial cells and likely play an important role
in vascular remodeling [42-44]. Before addressing
specific study findings a few general observations
deserve attention.

● Strong associations between age and sex
are found.

● D-dimer levels increase with age.

Other findings include:
● D-dimer levels are oftentimes associated

with markers of inflammation
● Elevated levels of D-dimers are usually

considered as a marker of increased
clotting activity.

LLM

DET

Thrombosis Journal 2004

Accumulating fibrin that polymerizes in the vessel
wall triggers fibrinolysis. Fibrinolytic enzymes tissue
plasminogen activating factor and urokinase
plasminogen activating factor (tPA and uPA,
respectively) are present in intima and are secreted
by endothelial cells and likely play an important role
in vascular remodeling [42-44]. Before addressing
specific study findings a few general observations
deserve attention.

● Strong associations between age and sex
are found.

● D-dimer levels increase with age.

Other findings include:
● D-dimer levels are oftentimes associated

with markers of inflammation
● Elevated levels of D-dimers are usually

considered as a marker of increased
clotting activity.

User: Find the location to perform edit, ‘Move
header to footer’’.
System: The location where "Appendix" is
found is at [76, 76, 179, 95].

paragraph

header

list

list
paragraph

FJ

Figure 2: Overview of DELOC. Document elements, their bounding box, and their hierarchical relations are first
detected (DET) and formatted into a JSON structure (FJ). This JSON is fed to an LLM to generate synthetic data.

timodal Large Language Models (MLLMs) from
natural images to PDFs. This adaptation involves
instruction-tuning an MLLM specifically for PDFs.
Our key contribution is the synthetic generation of
high-quality instruction-tuning data, followed by
an automated cleaning process called Code-NLI.

We first represent PDF elements (paragraphs,
lines, lists, tables, titles, sections) in a spatially
aware hierarchical JSON format (Figure 2), captur-
ing each element’s bounding box and hierarchical
relationships (e.g., paragraph → lines, list → list
items). This information is sourced from partially
annotated PDF Document Analysis datasets (e.g.,
PubLayNet (Zhong et al., 2019)), using existing
annotations and heuristically generating missing
ones. Next, we input this structured PDF represen-
tation into a Large Language Model (LLM) to gen-
erate synthetic user requests for PDF editing, along
with system responses specifying edit locations via
bounding boxes. The hierarchical structure enables
the LLM to produce compositional requests that
resemble real user queries, while the bounding box
data ensures precise edit location predictions.

We further clean noisy generated samples using
a proposed process called Code-NLI (Code-based
Natural Language Inference). Code-NLI (Figure 3)
treats the generated user edit request and system
response as the hypothesis, and the PDF as the
premise. To verify the hypothesis, it leverages an
LLM to generate Python code, which is then exe-
cuted to filter out noisy samples.

To demonstrate the effectiveness of DELOC, we
evaluate it on DocEdit (Mathur et al., 2023). Our
results demonstrate that DELOC outperforms all
existing zero-shot models on PDFs, including pro-
prietary MLLM GPT-4o by >2x. Our ablations
demonstrate DELOC’s performance improves with

data scale and data cleaning via Code-NLI is cru-
cial to its performance.

2 Related Work

There has been a surge of interest in natural
language based PDF edit localization. DocEdit
(Mathur et al., 2023) trains a multimodal trans-
former that directly regresses the edit bounding
box given the document as input. DocEdit-v2 (Suri
et al., 2024) trains an encoder-decoder architec-
ture that outputs a segmentation mask for the edit
location. In training a model from scratch, these
methods fail to utilize the excellent grounding ca-
pabilities of recent MLLMs.

A number of MLLMs (Chen et al., 2023; Zhang
et al., 2023; Yuan et al., 2023; Lv et al., 2023; Lai
et al., 2024; Ma et al., 2024) have been proposed
that have shown impressive grounding abilities on
natural images. Works like Ferret-UI (You et al.,
2024), Cog-Agent (Hong et al., 2023), and MultiUI
(Liu et al., 2024) have successfully adapted these
MLLMs for mobile screens and web pages. We
take inspiration from these works to adapt MLLMs
for PDFs using large-scale synthetic data. In com-
parison, Agent-DocEdit (Wu et al., 2024) finetunes
a grounding model, GLIP (Li* et al., 2022), only
on a small training set.

3 Method

Our method adapts the excellent query understand-
ing and grounding capabilities of existing Mul-
timodal Large Language Models (MLLMs) for
grounding edit queries in PDFs. To this end,
we: 1) generate diverse, compositional, and clean
instruction-tuning data; and, 2) instruction-tune a
MLLM on the generated data. We describe the
synthetic data generation process below.

31139

Thrombosis Journal 2004

Accumulating fibrin that polymerizes in the vessel
wall triggers fibrinolysis. Fibrinolytic enzymes tissue
plasminogen activating factor and urokinase
plasminogen activating factor (tPA and uPA,
respectively) are present in intima and are secreted
by endothelial cells and likely play an important role
in vascular remodeling [42-44]. Before addressing
specific study findings a few general observations
deserve attention.

● Strong associations between age and sex
are found.

● D-dimer levels increase with age.

Other findings include:
● D-dimer levels are oftentimes associated

with markers of inflammation
● Elevated levels of D-dimers are usually

considered as a marker of increased
clotting activity.

Premise

User: Find the specific location requiring
changes to perform this request, 'Delete
the first list item under in the second list’.

System: The first list item under the
second list item can be found at [92, 398,
485, 459].

is_element('list_item',
 [92, 398, 485, 459])

check_element_order_from_top_or_title(
 'top', ‘list’,
 [92, 398, 485, 459], 1)

check_subelement_order_in_element(
 'list_item',
 [92, 398, 485, 459], 1)

Generated Code

Hypothesis

Figure 3: Code-NLI based data cleaning. Generated
data is treated as hypothesis, which is validated by LLM
generated Python code, given PDF premise.

Given a lack of large-scale instruction-tuning
data for grounding edit queries in PDFs, we build
an automatic synthetic data generation process. We
discuss below the two stages of this process:
LLM powered data generation. We present the
PDF to an LLM and prompt it to generate edit
requests along with the corresponding bounding
box (see Figure 2). Prompt details in Appendix B.
To ensure that the generated edit requests capture
the compositional nature of real user queries, we
structure PDFs in a hierarchical JSON format that
explicitly defines the parent-child relationships of
each element. Each element contains information
about its type (e.g., paragraph, line, list), its bound-
ing box within the PDF, and its subelements (e.g.,
a line is a subelement of a paragraph). Addition-
ally, we organize elements sequentially within the
same hierarchy based on their y-coordinates, en-
abling the LLM to generate edit requests that ref-
erence these elements numerically (e.g., "second
list," "last line"). Moreover, the inclusion of a
bounding box for each element allows the LLM
to generate precise edit location in the system re-
sponse for the corresponding edit query.

To obtain this hierarchical PDF representation,
we require annotations for each PDF element, in-
cluding its type, bounding box, and hierarchical
subelements. However, there does not exist a sin-
gle dataset that contains all this information for all
element types. As such, we use different datasets
– PubLayNet and DocLayNet (Pfitzmann et al.,
2022) – each containing a subset of these elements.
Table 1 shows a non-exhaustive list of these ele-
ments and the corresponding dataset containing
them. If an element’s hierarchical subelements’ an-
notations do not exist natively in the dataset, we use
heuristics to create them. These heuristics are rela-

Title Paragraph List Tables Figures
Datasets Lines List-items

Lines

PubLayNet ✓ ✓ ♠ ✓ ♠ ♠ ✓ ✓

DocLayNet ✓ ✓ ✓ ♠ ✓ ✓ ✓ ✓

Table 1: Datasets and their PDF elements – either na-
tively (✓) present or heuristically created (♠). Multiple
datasets combine to give extensive elements coverage.

tively simple – comparing y-coordinates of words
to create lines within paragraphs, comparing x-
coordinates of lines to create list-items within lists,
and so on. The granularity scope goes as low as
words. This means we have annotations for words,
equations, formulae, footnotes, page numbers, etc.
Essentially, we tried to cover as many PDF ele-
ments as possible with the available datasets and
heuristics. More details in Appendix A.
Data cleaning with Code-NLI. Since the LLM
generates data automatically, it can be noisy—for
instance, an edit request might reference the second
list item while the bounding box corresponds to the
third. To filter out such inconsistencies, we draw
inspiration from Natural Language Inference (NLI)
(Bowman et al., 2015), which predicts whether
a hypothesis aligns with a given premise. Here,
the premise is the PDF, and the hypothesis is the
generated user-system conversation.

To verify these conversations, we generate sub-
statements that must hold true. For example, to
confirm that a bounding box corresponds to the
second list item, a counting statement must evaluate
its position as 2 (Figure 3). These sub-statements
are generated by an LLM as Pythonic function calls,
which are then executed using our implemented
APIs for verification. Pythonic statements makes
verification algorithmic and automatic. API details
and prompts in Appendix C.

Once we have clean synthetic instruction-tuning
data, we finetune a MLLM. The input is an image
of the PDF and a user-edit request. The output is a
bounding box localizing the edit element.

4 Experiments

To balance quality and the cost of long context, we
use LLaMA-3.1 70B (Grattafiori and Team, 2024)
for generating synthetic data. It is run on 40 Nvidia
A100-80 GiB GPUs for 2 days. Next, GPT-4o
(OpenAI, 2024) is used in Code-NLI cleaning as
small context length allows us to optimize for qual-
ity. This results in ~3M samples for instruction tun-
ing. We keep 95% samples for training and the rest

31140

PDF Design
Model A@0.5 A@0.30 A@0.25 A@0.5 A@0.30 A@0.25

Zero-Shot
GPT-4o 5.624 14.258 17.885 28.961 46.766 52.582
CogAgent 4.16 9.42 11.13 - - -
Qwen2.5-VL 2.90 6.97 8.72 - - -
Ferret-UI 0.0 0.22 0.28 - - -
Phi-3-V 0.450 2.727 4.189 10.423 25.264 31.316
DELOC 14.703 30.391 35.198 32.421 51.489 57.445

Finetuned
DocEdit 36.500 - - 34.340 - -
DocEdit-v2 48.690 - - - - -
Phi-3-V 26.567 48.524 54.371 34.523 57.183 62.272
DELOC 49.620 67.023 69.975 57.012 71.566 74.976

Table 2: Comparison of DELOC with state-of-the-art
on DocEdit edit location (bbox) prediction. DELOC
outperforms both existing Multimodal LLMs in zero-
shot setting and specialized models in finetuned setting.
A@X denotes Accuracy at IoU of X.

Model A@0.5

DELOC 6.297
– w/o CODE-NLI Filtering 5.848

Table 3: Ablation of Code-NLI. The filtering step im-
proves DELOC performance.

for validation. More data statistics in Appendix D.
For instruction-tuning Phi-3V (Abdin and Team,

2024) is used as it’s small and thus easy to train.
We use a learning rate of 5e-5, weight decay of
0.12, AdamW optimizer, and a linear scheduler
with a warmup. It takes approximatey 10 hours
to train the model on 128 Nvidia A100-80 GiB
GPUs. More architecture and training details are
in Appendix E and Appendix F.

We evaluate our proposed approach on the test
set of the DocEdit dataset (Mathur et al., 2023).
The test is split into two subsets: PDFs, which are
more verbose, and Designs, which are graphical.
We use the originally proposed metric of calculat-
ing accuracy by evaluating if the Intersection Over
Union (IoU) between predicted bbox and ground-
truth bbox is greater than a threshold. For baselines,
we select state-of-the-art MLLMs that understand
text well from images. Consequently, we select
GPT-4o, Phi3-V, CogAgent, Ferret-UI, Qwen2.5-
VL (Bai et al., 2025) and Fuyu (Bavishi et al.,
2023). We also consider as baselines specialized
models – DocEdit v1 and v2 – that are finetuned
on DocEdit. We compare DELOC against these
baselines in two settings: zero-shot – where DE-
LOC is not finetuned on the DocEdit train set, and
finetuned – where it is.

Our main results are summarized in Table 2. We
make the following observations: 1) DELOC out-
performs both open-source and proprietary closed-

0 1 2 3
Data Size 1e6

7.5

10.0

12.5

15.0

A
@

 0
.5

Figure 4: Datasize Ablation: DELOC’s performance
improves with data.

Split the last paragraph "
Using Valuable Transmission
Import Paths to Wheel---" into
two paragraphs. New
paragraph start with "During
the same twenty-four hour
interval,----"

The paragraph that requires
splitting is present at [86, 525,
615, 798].

DELOC

Pred:

GT:

Figure 5: Qualitative sample prediction from DELOC.

source MLLM by ~3x on the PDF subset and ~12%
on the Design subset. 2) DELOC outperforms all
specialized finetuned models on both subsets. 3)
DELOC improves over its backbone MLLM, Phi-
3-V by 28x on PDFs and 3x on Designs, under-
scoring the significance of our synthetic instruction
tuning. 4) The best existing zero-shot MLLM per-
formance is at best 5%, indicating grounding in
PDF is challenging. 5) All MLLM perform much
better on the Design subset. This is understandable
given all MLLM have been pretrained on natural
images, which are closer in domain to Designs than
to verbose PDFs. Notably, we found Fuyu to be
quite bad; hence we do not include it in Table 2.
We also don’t compare against Agent-DocEdit as
it includes an additional post-processing step that
assumes availability of ground-truth bbox for all
elements in a PDF.

Our ablation on Code-NLI in Table 3 indicates
the importance of data cleaning to our approach.
We also manually evaluate the quality of Code-
NLI on 25 samples ourselves. Our findings are:
1) Precision is 84%: This implies that most of the
data that Code-NLI predicts as correct is actually
correct; only 16% incorrect data passes through
the Code-NLI filter. 2) Recall is 63.64%: This

31141

implies it rejects a decent amount of good data
(36%). This loss is acceptable for our use case
since we generate a very large amount of synthetic
data. The important consideration for us is that
incorrect data should not be flagged as correct –
which Code-NLI does (84% precision).

Figure 4 demonstrates that performance of DE-
LOC improves with data size. We also provide a
qualitative example in Figure 5 that shows 1) DE-
LOC acquires effective capability of verbose PDF
grounding. 2) Ambiguity in the expected response
can lead to divergence from ground-truth. More
examples in Appendix G.

5 Conclusion

In this work, we propose DELOC, a system to
ground PDF edit request spatially. DELOC lever-
ages spatial and hierarchical structure of PDFs
to generate 3M synthetic instruction tuning data
that successfully adapts existing MLLM for PDF
grounding. Our results demonstrate that DELOC
outperforms both existing MLLMs, including GPT-
4o, and specialized models on DocEdit.

Limitations

We attempted to cover a comprehensive list of PDF
elements in our synthetically generated data. This
coverage is mostly dependent on the element anno-
tation present in PDF analysis datasets we began
with to create our hierarchical representation. As
such, there could be some PDF elements which are
not covered. We leave for future work the addition
of more PDF analysis datasets to increase element
coverage. Furthermore, this method (like most
grounding MLLM approaches) generates bounding
boxes using auto-regressive prediction. The loss
used assigns equal weight to all predictions not
exactly same as ground-truth bbox, irrespective of
their proximity to the ground-truth bbox. Ideally,
the loss should be higher for a predicted bbox that
is farther from the ground-truth than a predicted
box that is closer to ground-truth. Reinforcement
learning based preference optimization could be a
way to address this issue in future works.

References
Marah Abdin and The Phi-3 Team. 2024. Phi-3 techni-

cal report: A highly capable language model locally
on your phone. Preprint, arXiv:2404.14219.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,

Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi
Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu,
Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang
Lin. 2025. Qwen2.5-vl technical report. Preprint,
arXiv:2502.13923.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne,
Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. 2023. Introducing our multimodal
models.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. 2023. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv
preprint arXiv:2306.15195.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang
Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, Hang
Yan, Yang Gao, Zhe Chen, Xinyue Zhang, Wei Li,
Jingwen Li, Wenhai Wang, Kai Chen, Conghui He,
Xingcheng Zhang, Jifeng Dai, Yu Qiao, Dahua Lin,
and Jiaqi Wang. 2024. Internlm-xcomposer2-4khd:
A pioneering large vision-language model handling
resolutions from 336 pixels to 4k hd. Preprint,
arXiv:2404.06512.

Aaron Grattafiori and The LLaMA Team. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and Jie Tang. 2023. Co-
gagent: A visual language model for gui agents.
Preprint, arXiv:2312.08914.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. 2024. Lisa: Reasoning
segmentation via large language model. Preprint,
arXiv:2308.00692.

Liunian Harold Li*, Pengchuan Zhang*, Haotian
Zhang*, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng
Hwang, Kai-Wei Chang, and Jianfeng Gao. 2022.
Grounded language-image pre-training. In CVPR.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu,
Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. 2024. Harnessing web-
page uis for text-rich visual understanding. Preprint,
arXiv:2410.13824.

Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui,
Shuming Ma, Yaoyao Chang, Shaohan Huang, Wen-
hui Wang, Li Dong, Weiyao Luo, et al. 2023.

31142

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2502.13923
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://arxiv.org/abs/2404.06512
https://arxiv.org/abs/2404.06512
https://arxiv.org/abs/2404.06512
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2308.00692
https://arxiv.org/abs/2308.00692
https://arxiv.org/abs/2410.13824
https://arxiv.org/abs/2410.13824

Kosmos-2.5: A multimodal literate model. arXiv
preprint arXiv:2309.11419.

Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and
Xiaojuan Qi. 2024. Groma: Localized visual tok-
enization for grounding multimodal large language
models. arXiv preprint arXiv:2404.13013.

Puneet Mathur, Rajiv Jain, Jiuxiang Gu, Franck Der-
noncourt, Dinesh Manocha, and Vlad Morariu. 2023.
Docedit: Language-guided document editing. In
Thirty-Seventh AAAI Conference on Artificial Intelli-
gence (AAAI).

OpenAI. 2024. Gpt-4o system card. Preprint,
arXiv:2410.21276.

Birgit Pfitzmann, Christoph Auer, Michele Dolfi,
Ahmed S. Nassar, and Peter Staar. 2022. Doclaynet:
A large human-annotated dataset for document-
layout segmentation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, page 3743–3751. ACM.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. Preprint, arXiv:2103.00020.

Manan Suri, Puneet Mathur, Franck Dernoncourt, Rajiv
Jain, Vlad I Morariu, Ramit Sawhney, Preslav Nakov,
and Dinesh Manocha. 2024. DocEdit-v2: Document
structure editing via multimodal LLM grounding.
In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
15485–15505, Miami, Florida, USA. Association for
Computational Linguistics.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi
Li, Yuxiao Dong, Ming Ding, and Jie Tang. 2023.
Cogvlm: Visual expert for pretrained language mod-
els. Preprint, arXiv:2311.03079.

Te-Lin Wu, Rajiv Jain, Yufan Zhou, Puneet Mathur, and
Vlad I Morariu. 2024. Agent-docedit: Language-
instructed LLM agent for content-rich document edit-
ing. In First Conference on Language Modeling.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du,
Bowen Zhang, Zirui Wang, Liangliang Cao, Shih-
Fu Chang, and Yinfei Yang. 2023. Ferret: Refer
and ground anything anywhere at any granularity.
Preprint, arXiv:2310.07704.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,
and Zhe Gan. 2024. Ferret-ui: Grounded mobile
ui understanding with multimodal llms. Preprint,
arXiv:2404.05719.

Yuqian Yuan, Wentong Li, Jian Liu, Dongqi Tang, Xin-
jie Luo, Chi Qin, Lei Zhang, and Jianke Zhu. 2023.
Osprey: Pixel understanding with visual instruction
tuning. Preprint, arXiv:2312.10032.

Ao Zhang, Yuan Yao, Wei Ji, Zhiyuan Liu, and Tat-Seng
Chua. 2023. Next-chat: An lmm for chat, detection
and segmentation. Preprint, arXiv:2311.04498.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes.
2019. Publaynet: largest dataset ever for document
layout analysis. Preprint, arXiv:1908.07836.

31143

https://arxiv.org/abs/2410.21276
https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1145/3534678.3539043
https://doi.org/10.1145/3534678.3539043
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.18653/v1/2024.emnlp-main.867
https://doi.org/10.18653/v1/2024.emnlp-main.867
https://arxiv.org/abs/2311.03079
https://arxiv.org/abs/2311.03079
https://openreview.net/forum?id=1ba209BACA
https://openreview.net/forum?id=1ba209BACA
https://openreview.net/forum?id=1ba209BACA
https://arxiv.org/abs/2310.07704
https://arxiv.org/abs/2310.07704
https://arxiv.org/abs/2404.05719
https://arxiv.org/abs/2404.05719
https://arxiv.org/abs/2312.10032
https://arxiv.org/abs/2312.10032
https://arxiv.org/abs/2311.04498
https://arxiv.org/abs/2311.04498
https://arxiv.org/abs/1908.07836
https://arxiv.org/abs/1908.07836

We provide additional details here for further
clarification.

• Element Creation Heuristics (Appendix A)

• Synthetic Data Generation Prompt (Ap-
pendix B)

• Code-NLI Prompt and Samples (Appendix C)

• Data Statistics (Appendix D)

• Model Architecture (Appendix E)

• Additional Training Details (Appendix F)

• Additional Qualitative Examples (Ap-
pendix G)

Figure 6: Sample output from using our heuristic to
create lines and list-items.

A Element Creation Heuristics

We require annotations for elements in PDFs to
create the spatially-aware hierarchical representa-
tion. While an element annotation may be present
in a dataset, its subelement or parent element may
not have the requisite annotation available. We use
heuristics to create annotations for such elements.
To create lines within a paragraph, we take the
bounding box of every word in the paragraph. All

the words with same y-coordinates are considered
to be in the same line. Similarly, to create lists
from lines, we compare the x-coordinates of the
beginning of the lines. Outliers are considered to
be the beginning of a new list item. We illustrate
the output from such heuristics to create lines and
list-items in Figure 6. While these are simple, they
work quite well.

B Synthetic Data Generation Prompt

Once we have a hierarchical representation of
the PDF elements along with their corresponding
bounding box annotations, we feed them into an
LLM to generate the instruction tuning data. Apart
from the PDF elements, we input a system prompt
containing the guidelines for generating an instruc-
tion tuning set and a one-shot example of how the
user system conversation should be formatted. The
process is illustrated in Figure 7.

The system prompt contains guidelines describ-
ing the task, input, and expected output. It contains
instructions to generate diverse and compositional
edit requests, to only utilize the information in the
given hierarchical PDF representation, to not hal-
lucinate, and so on. In addition, we provide a one-
shot example to the LLM to further illustrate our
requirements and guide it to follow expected for-
mat.

We provide the system prompt below:

You are an AI visual assistance that can analyze
PDFs. You will receive information describing a
pdf , where each pdf element (text , paragraph ,

header , footer , chart etc.) detection is
represented in a json format. Each element is
denoted by its type , followed by its bounding
box coordinates , followed by its value and/or
its subelements. Bounding box coordinates are
represented as (x1 , y1 , x2, y2). These values
correspond to the top left x, top left y,
bottom right x, and bottom right y. The
subelements are formatted and indented with
spaces. The content of a pdf element is found
at the 'value ' key. The pdf elements are
organized in the order in which they are
present in the pdf: top to bottom , left to
right. The pdfs can be single column , double
column or multiple columns. Judge the number of
columns in the pdfs by looking at the relative
positioning of the pdf elements ' x1.

Using the provided texts and coordinates , design
question and answer pairs simulating the
interactions between a user and system.
Conversations should focus on potential user
edit requests on the pdf elements (vs
perception). Please follow the guidelines below
while generating the conversations:

1. The edit requests should be diverse , requiring
different kind of editing like adding , deleting
, changing ,modifying , swapping , moving ,
replacing , merging , splitting , and so on.

2. Please refer to the pdf -element that needs
editing in diverse compositional ways. For
example , \" delete last line of the third

31144

System Prompt
You are an AI visual assistance that can analyze PDFs. You will
receive information describing a pdf, where each pdf element
(text, paragraph, header, footer, chart etc.) detection is
represented in a json format. Each element is denoted by its
type, followed by its bounding box coordinates, followed by its
value and/or its subelements. Bounding box coordinates are
represented as (x1, y1, x2, y2). These values correspond to the
top left x, top left y, bottom right x, and bottom right y. The
subelements are formatted and indented with spaces. The
content of a pdf element is found at the 'value' key. The pdf
elements are organized in the order in which they are present in
the pdf: top to bottom, left to right. The pdfs can be single
column, double column or multiple columns. Judge the number
of columns in the pdfs by looking at the relative positioning of
the pdf elements' x1. Using the provided texts and coordinates,
design question and answer pairs simulating the interactions
between a user and system. Conversations should focus on
potential user edit requests on the pdf elements (vs perception).

Please follow the guidelines below while generating the
conversations:

1. The edit requests should be diverse, requiring different kind
of editing like adding, deleting, changing, modifying,
swapping, moving, replacing, merging, splitting, and so on.

2. Please refer to the pdf-element that needs editing in diverse
compositional ways. For example, "delete last line of the
third paragraph" or " move the table in between the two
figures from top to bottom ".

….

One Shot Example
<user>
[{'element': 'text',
 'bbox': [84, 382, 484, 413],
 'subelements': [{'element': 'line',
 'bbox': [84, 383, 484, 400],
 'value': 'interactions were then functionally annotated for '
 'the'},
 {'element': 'line',
 'bbox': [84, 397, 377, 414],
 'value': 'functional processes and pathways involved.'}]},
 {'element': 'text',
 'bbox': [84, 410, 484, 498],
 'subelements': [{'element': 'line',
 'bbox': [109, 411, 484, 428],…
<system>
User: Locate where changes are required to perform this query, 'Move
the top figure from the center of the page to left'.
System: The figure that is required to move is located at [241, 88, 756,
323].

User: Find the specific location requiring changes to perform this
request, 'Underline the title "Results and Discussion"'
System: The title "Results and Discussion" can be found at [513, 675,
721, 691].

LLM

User: Locate where changes are required to perform
this query, 'Add "Introduction" as a new title before
"Appendix”’.

System: The location where "Appendix" is found is at
[76, 76, 179, 95].

User: Find the specific location requiring changes to
perform this request, 'Delete the third list item under
"A.1. Environment”’.

System: The third list item under "A.1. Environment"
can be found at [92, 398, 485, 459].

User: Find the place that needs to be edited to
process this query, 'Move the list under "A.1.4.
Brain–Body Interface" to the bottom of the page’.

System: The list under "A.1.4. Brain–Body Interface"
can be found at [514, 175, 926, 531].

User: Please find the area that needs editing to carry
out this user request, 'Merge the two list items under
"A.1.5. Experiment”’.

System: The two list items under "A.1.5. Experiment"
can be found at [530, 568, 923, 658] and [530, 657,
923, 806].

User: Please locate the part that needs modification
to process this query, 'Swap the order of the first two
list items under "A.1. Design and Editing”’.

System: The first two list items under "A.1. Design
and Editing" can be found at [92, 236, 485, 341] and
[92, 339, 485, 400].

Detections
[{'element': 'title’,
 'bbox': [76, 76, 179, 95],
 'subelements’: [

{'element': 'line’,
 'bbox': [76, 76, 179, 94],
 'value': 'AppenDIX'}]},

 {'element’: ‘paragraph’,
 'bbox': [76, 123, 489, 183],
 'subelements’: [

{'element': 'line’,
 'bbox': [76, 122, 485, 139],
 'value': 'As stated in Section 2.1, the..}…

Figure 7: Illustration of LLM prompting to generate synthetic instruction tuning data.

paragraph \" or \" move the table in between the
two figures from top to bottom \".

3. Please emphasize edit requests that deal with
more abstract pdf elements rather low level
elements like words and lines.

4. Use the x and y coordinates of the pdf -elements
to figure out the relative spatial relations
left of, right of,

top , bottom or to assess which paragraph is first ,
second or third.

5. Please count the number and order of pdf elements
sequentially and correctly. Mistakes in

counting are costly. Please think step by step
while doing it.

6. Please do not generate edit requests that implies
modifying multiple pdf elements when there

exists actually only one , for example , asking
to swap the order of list -items when acutally
there is a single list item.

7. Please do not generate edits that call for left/
right column , where there exists only a single
column.

8. In the presence of list , please generate at least
one edit requests on list bullets. The output

then should also refer only to the bullets , not
the whole list. Check to see whether the

bullets are numeric , alphabetic , or plain
circular bullets before requesting its editing.

9. Please geenrate the minimal bounding box that
suffices to make the edit , i.e. ground the user
request to the most fine -grained pdf -element.

10. Please generate multiple back and forth
conversations. The user query should follow
this format: '<phrase requesting the location >,
\"<user edit query >\". For example: 'Please

find the location to make this edit , \" Change
list bullets to numeric \"'.

11. Only generate questions and answers that can be
answered with the given information , do not use
background information.

12. Please do not hallucinate pdf elements , its
content , its subelements or edit requests.

13. It 's better to not generate requests instead of
generating wrong requests.

C Code-NLI Prompt and Samples

To clean noisy synthetic data, we employe Code-
NLI. The prompt used for Code-NLI includes a
system prompt, that contains Python API function
definitions, and few-shot prompts. We provide the
system prompt given below:

You are an AI visual assistant that can do Natural
Language Inference using python code. You will
receive information describing a hypothesis.
This includes a user edit request on pdf and a
system output specifying the edit location with
a bounding box. Your job is to create a python
code , using listed APIs , that verifies that

the bounding box correctly localizes the edit
target in the user request. Each statement in
the python code needs to be true to verify the
correctness of the hypothesis.

The user edit request focuses on editing different
type of pdf elements: title , paragraph , list ,
figure , and table. The elements could have
subelements: title -> {bullets -> {bullet},
list_item -> {line}}, paragraph -> {line},
title -> {line}. It refers to different
elements in a compositional and hierarchical
manner. For example , last line of second
paragraph , first list -item of third list , etc.
The system output localizes the element/
subelement requiring edit with a bounding box.
The format of the bounding box is [x1 ,y1 ,x2 ,y2]
where (x1 ,y1) is the coordinate of top left

corner and (x2 ,y2) is bottom right corner ,
where x2 >x1 and y2 >y1.

Please use the following APIs to verify that the
output bounding box indeed correctly captures
the edit element/subelement. Please output only
the python code using the listed APIs and

nothing else. The element (dict) follows this
format: {element_type: <element_type >, bbox: <[
x1 ,y1,x2 ,y2]>, value: <value >, subelements :[<
subelement1 ,..]}.

def is_element(element_type: str , bbox: list) ->
bool:
"" checks whether the element in bbox is

element_type ""
""Args:

element_type (str): any element type '
title ', 'paragraph ', 'list ', 'line ',
'figure ', 'table ', 'bullets ', '

31145

list_item ', 'bullet '
bbox (list): a bounding box of the type [

x1, y1, x2, y2]
""

def in_section(section_title: str , bbox: list) ->
bool:
"" checks whether the bbox is in the

section_title ""
""Args:

section_title (str): the string contained
in the title

bbox (list): a bounding box of the type [
x1, y1, x2, y2]

""

def contains_string(string: str , bbox: list) -> bool
:
"" checks whether the element in bbox contains

string ""
""Args:

string (str): string to check
bbox (list): a bounding box of the type [

x1, y1, x2, y2]
""

def check_element_order_from_top_or_title(
top_or_title (str), element_type: str , bbox:
list , order: int , column: str = None) -> bool:
"" checks the sequence order of the element in

bbox of element_type from top of pdf or
the section title where it lies""

""Args:
top_or_title (str): Either 'top ' or 'title

' from where to beign counting
element_type (str): First hierarchy

elements -- 'title ', 'paragraph ', '
list ', 'figure ' or 'table '

bbox (list): a bounding box of the type [
x1, y1, x2, y2]

order (int): denoting the sequence order
of bbox of element_type. 1,2,3 order
counts from top , -1,-2.. order counts
from last

column (str): to check the order in left
or right column. Defaults to None
when pdf is single column.

""

def check_subelement_order_from_top_or_title(
top_or_title (str), subelement_type: str , bbox:
list , order: int , column: str = None) -> int:
"" checks the sequence order of the subelement

in bbox of subelement_type from top of pdf
or the section title where it lies""

""Args:
top_or_title (str): Either 'top ' or 'title

' from where to beign counting
subelement_type (str): Second hierarchy

elements -- 'line ' (title and
paragraph subelement), \
'bullets ' (list subelement), '

list_item ' (list subelement)
bbox (list): a bounding box of the type [

x1, y1, x2, y2]
order (int): denoting the sequence order

of bbox of subelement_type. 1,2,3
order counts from top , -1,-2.. order
counts from last

column (str): to check the order in left
or right column. Defaults to None
when pdf is single column.

""

def check_subelement_order_in_element(
subelement_type: str , bbox: list , order: int)
-> int:
"" checks the sequence order of the subelement

in bbox of subelement_type within the
element in which bbox lies""

""Args:
subelement_type (str): Second hierarchy

elements -- 'line ' (title and
paragraph subelement), 'bullets ' (
list subelement), 'list_item ' (list
subelement)

bbox (list): a bounding box of the type [

x1, y1 , x2, y2]
order (int): denoting the sequence order

of bbox of subelement_type. 1,2,3
order counts from top , -1,-2.. order
counts from last

""

def check_subsubelement_order_from_top_or_title(
top_or_title (str), subsubelement_type: str ,
bbox: list , order: int , column: str = None) ->
int:
"" checks the sequence order of the

subsubelement in bbox of
subsubelement_type from top of pdf or the
section title where it lies""

""Args:
top_or_title (str): Either 'top ' or 'title

' from where to beign counting
subsubelement_type (str): Third hierarchy

elements -- 'bullet ' (subsubelement
of bullets), 'line ' (subsubelement of
list_item)

bbox (list): a bounding box of the type [
x1, y1 , x2, y2]

order (int): denoting the sequence order
of bbox of subelement_type. 1,2,3
order counts from top , -1,-2.. order
counts from last

column (str): to check the order in left
or right column. Defaults to None
when pdf is single column.

""

def check_subsubelement_order_in_subelement(
subsubelement_type: str , bbox: list , order: int
) -> int:
"" checks the sequence order of the

subsubelement in bbox of
subsubelement_type within the subelement
in which bbox lies""

""Args:
subsubelement_type (str): Third hierarchy

elements -- 'bullet ' (subsubelement
of bullets), 'line ' (subsubelement of
list_item)

bbox (list): a bounding box of the type [
x1, y1 , x2, y2]

order (int): denoting the sequence order
of bbox of subsubelement_type. 1,2,3
order counts from top , -1,-2.. order
counts from last

""

We also include some sample Python code gen-
erated by Code-NLI for verification in Figure 8.

D Dataset Statistics

The total size of the synthetically generated data
is 3M samples. The topic range is the same as the
topic distribution of the base datasets: scientific
articles, patents, finance, tenders, laws, and man-
uals. Similarly, image resolution is the same as
base datasets: 1025 x 1025 for DocLayNet and
800x600 for PubLayNet.

E Model Architecture

) Our model, DELOC, is based on Phi-3-V model.
The Phi-3-V model’s architecture is essentially
composed of two components – an image encoder
(CLIP ViT-L/14 (Radford et al., 2021)) and a trans-
former decoder (phi-3-mini). The visual tokens
from the image encoder and concatenate with text

31146

User: Please locate the part that needs to be
edited to process this query, 'Delete the last
line of the last paragraph in the left column’.

System: The last paragraph in the left column
is located at [84, 654, 484, 813] and the last
line is at [84, 797, 140, 814].

is_element('list_item',
[92, 398, 485, 459])

in_section('A.1. Environment',
[92, 398, 485, 459])

check_subelement_order_in_element('list_item',
[92, 398, 485, 459],
2)

User: Please find the location that needs to
be edited to process this query, 'Delete the
reference "[23]" from the second paragraph in
the left column’.

System: The second paragraph in the left
column is located at [84, 410, 484, 498] and
the reference "[23]" is at [84, 482, 167, 499].

is_element('paragraph',
[84, 410, 484, 498])

check_element_order_from_top_or_title('top',
'paragraph',
[84, 410, 484, 498],
2, column='left')

contains_string('[23]',
[84, 482, 167, 499])

Code-
NLI

Code-
NLI

Figure 8: Sample verification code generated by Code-NLI.

Moved the text "Golden Chopstick,
Takeaway menu" above the purple line

Moved the placement of top and bottom
text. Top text from left to center

The length of the table "Exhibit 2" is
increased. The spread of the table is
increased towards the left margin.. Pred:GT:

Figure 9: Additional Qualitative sample prediction from DELOC demonstrating its capabilities.

tokens in an interleaved manner and fed to the trans-
former decoder to output the prediction. In total,
the number of parameters totals 4.2B.

The Phi-3-mini is a transformer decoder with
3072 hidden dimension, 32 heads and 32 layers.

F Additional Training Details

The input image to our model is resized to 900x900.
The text-heavy nature of PDF images requires that
the model handle image resolutions dynamically
according to the resolution of the text. Higher res-
olution text should result in higher image input
resolution, and vice versa. This is taken care of by
the dynamic cropping strategy (Dong et al., 2024)
in the Phi-3-V model. It allows the input image to
be dynamically cropped into a 2d array of blocks,
which are then concatenated to represent the whole

image.

G Additional Qualitative Examples

We add more qualitative samples to further illus-
trate the capabilities of DELOC. As can be seen
in Figure 9, DELOC is able to ground user edit re-
quests well both for PDFs and design documents.

31147

