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Abstract

Large language models (LLMs) demonstrate
proficiency across numerous computational
tasks, yet their inner workings remain un-
clear. In theory, the combination of causal
self-attention and multilayer perceptron layers
allows every token to access and compute in-
formation based on all preceding tokens. In
practice, to what extent are such operations
present? In this paper, on mental math tasks
(i.e., direct math calculation via next-token pre-
diction without explicit reasoning), we inves-
tigate this question in three steps: inhibiting
input-specific token computations in the ini-
tial layers, restricting the routes of information
transfer across token positions in the next few
layers, and forcing all computation to happen at
the last token in the remaining layers. With two
proposed techniques, Context-Aware Mean Ab-
lation (CAMA) and Attention-Based Peeking
(ABP), we identify an All-for-One subgraph
(AF1) with high accuracy on a wide variety of
mental math tasks, where meaningful computa-
tion occurs very late (in terms of layer depth)
and only at the last token, which receives infor-
mation of other tokens in few specific middle
layers. Experiments on a variety of models
and arithmetic expressions show that this sub-
graph is sufficient and necessary for high model
performance, transfers across different models,
and works on a variety of input styles. Abla-
tions on different CAMA and ABP alternatives
reveal their unique advantages over other meth-
ods, which may be of independent interest.

1 Introduction

Large language models (LLMs) perform well on
a multitude of computational tasks, and one of the
biggest contributing factors is the transformer ar-
chitecture (Vaswani et al., 2017). Unlike its recur-
rent neural network (RNN) predecessor, a trans-
former allows for any token to immediately access
all preceding tokens for information transfer via
self-attention and enables each token to carry out its
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Figure 1: The full AF1 subgraph consists of three stages.
First, input-specific computation is suppressed where
the input embeddings skip the first Lwait layers with
context-aware mean ablation (CAMA). Then, the result-
ing activations x(Lwait) pass through Ltransfer layers of
attention-based peeking (ABP) where the only cross-
token attentions are those from the last token to preced-
ing ones. Last, for the remaining remaining ABP layers,
the last token only attends to itself without any cross-
token attention to finish computation, ending in the out-
puts. In this diagram, Lwait = 3 and Ltransfer = 2.

independent computation in parallel via multilayer
perceptron (MLP). However, it is not clear to what
extent these operations are actually happening.

In this paper, we focus on “mental math” tasks
of two and three operands (i.e., arithmetic prob-
lems that can be solved with a one token response
without explicit chain-of-thought reasoning by the
model, such as 42 + 20− 15) and investigate the
“least amount of computation” that still allows the
model to perform well. Specifically, we ask the
following questions. First, although each token can
access all preceding tokens at every layer, is such
access actually executed from the beginning? Sec-
ond, do all tokens need to perform computation, or
is the last-token computation sufficient, given that
the next token is predicted from its final residual
stream representation? Last, does the last-token
computation need access to all other tokens in all
layers, or can it function after a (short) period of
information transfer?

To answer these questions, we progressively
modify the vanilla transformer architecture with
two techniques, Context-Aware Mean Ablation
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(CAMA) and Attention-Based Peeking (ABP), and
get a surprisingly sparse subgraph that performs
well on a wide variety of mental math prompts,
with three stages (Fig. 1). First, in the early lay-
ers, all tokens wait to access other tokens and in-
stead perform task-general computation (e.g., un-
derstanding that the next-token prediction requires
three-operand arithmetic) without input-specific in-
formation (e.g., the numerical value of the first
operand) from other input tokens. Second, in a
few middle layers, all tokens transfer their infor-
mation to the last token. Finally, in the remaining
layers, the last token continues the computation to
yield the next token prediction. Since input-specific
computation is only computed at the last token with
information transferred from other tokens, we call
this computation subgraph All-for-One (AF1). We
use Lwait and Ltransfer to represent the number of
layers in the first two stages and study this family
of subgraphs extensively. Notably, for Llama-3-8B
and Llama-3.1-8B (Grattafiori et al., 2024), and,
to a lesser extent, Pythia (Biderman et al., 2023)
and GPT-J (Wang and Komatsuzaki, 2021), the first
stage can be extended quite long, to nearly half of
all layers, while the second stage only needs as few
as two layers to recover high performance.

This paper makes three main contributions. First,
the fact that AF1 works well on a two-hop arith-
metic task (e.g., A + B + C) suggests a lack of
compositionality at different token positions (e.g.,
computing A+B in initial layers, storing it in the
token B and then adding C in later layers). Sec-
ond, the short information transfer period may not
be unique to arithmetic, possibly implying that the
token residual streams spend most time computing
rather than communicating. Last, an ablation study
on CAMA and ABP shows that different alterna-
tive designs fail to uncover this subgraph, making
them potentially useful new tools for investigating
other LLM behaviors as well.

2 Related Work

Mechanistic Interpretability Mechanistic inter-
pretability (MI) seeks to reverse-engineer the inter-
nal mechanisms of LLM behaviors by analyzing
their weights and activations (Bereska and Gavves,
2024; Elhage et al., 2021; Rai et al., 2024). Re-
cent MI work has shed light on a range of LLM
capabilities, including in-context learning (Elhage
et al., 2021; Hendel et al., 2023; Ren et al., 2024),
reasoning (Biran et al., 2024; Dutta et al., 2024;

Nikankin et al., 2024; Rai and Yao, 2024; Stolfo
et al., 2023), and factual recall (Chughtai et al.,
2024; Geva et al., 2023; Hernandez et al., 2023;
Meng et al., 2022). Building on these advances, we
investigate how LLMs perform arithmetic reason-
ing. In addition, prior MI studies have introduced
a range of investigative techniques, including ab-
lation, activation patching, and logit lens (Chan
et al., 2022; Goldowsky-Dill et al., 2023; Li and
Janson, 2024; Meng et al., 2022; nostalgebraist,
2020; Wang et al., 2022). We employ logit lens
in our study and also introduce two new methods:
CAMA, an ablation approach inspired by mean ab-
lation, and ABP, a technique for enforcing selective
information transfer through attention. Relatedly,
Haklay et al. (2025) introduced a position-aware
circuit method with similarities to our ABP tech-
nique, highlighting the position-dependent nuances
that LLMs employ.
Interpreting LLMs in Arithmetic Reasoning
Tasks Several prior studies have examined the
internal mechanisms of LLMs to understand how
they perform arithmetic reasoning (Maltoni and
Ferrara, 2024; Nanda et al., 2023; Rai and Yao,
2024; Wu et al., 2023). Zhou et al. (2024) ob-
served that LLM leverages Fourier space features
to perform addition. Most relevant to our work,
Stolfo et al. (2023) and Zhang et al. (2024) mapped
out the general structure of arithmetic circuits in
LLMs, detailing how operands and operators are
processed, how information is transferred across
layers, and how results are ultimately computed.
Similarly, Nikankin et al. (2024) identified circuits
responsible for arithmetic reasoning, which sug-
gests that LLMs rely on a collection of heuris-
tics, each effective over a limited input distribution,
rather than a single monolithic algorithm. How-
ever, their analysis is restricted to a two-operand
template of A◦B=. In contrast, we identify a general-
purpose subgraph that faithfully handles both two-
and three-operand arithmetic tasks, including both
symbolic (e.g., “3 + 4 + 5”) and verbal (e.g., “The
sum of 3 and 4 is”) formulations.
Interpreting LLMs in Implicit Reasoning Sev-
eral prior studies have investigated how LLMs rea-
son implicitly over parametric knowledge (Li et al.,
2024; Sakarvadia et al., 2023; Yang et al., 2024).
However, they do not track how information flows
across different token positions and layers for multi-
hop reasoning. More relevant to our study, Biran
et al. (2024) and (Wang et al., 2024) studied multi-
hop factual recall and showed that LLMs resolve
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single-hop answers in earlier layers and propagate
the result to final token positions in middle layers,
with second-hop factual recall occurring in later
layers. We build on this line of work to study the
multi-hop reasoning for the three-operand task, but
with contradictory findings suggesting a lack of
such inter-layer hopping behavior. Additionally,
Csordás et al. (2025) observed non-compositional
tendancies in models similar to ours, highlighting
how LLMs often do not rely on systematic compo-
sitional reasoning across novel task formulations.

3 Methods

3.1 LLM Architecture Notation

To standardize presentation, we use the following
notations to describe the LLM architecture (see
Fig. 1). Let x = {x1, ..., xT } be an input sequence
of T tokens. Use x

(0)
t to denote the original (to-

ken and positional) input embedding for token xt.
For L layers, layer l ∈ {0, ..., L − 1} takes in
x
(l)
t and computes x(l+1)

t , resulting in the sequence
of x(1)t , x

(2)
t , ..., x

(L)
t via self-attention and multi-

layer perceptron (MLP), which constitute the resid-
ual stream.1 For model m, we write m(x, t, l) as
the function that computes x(l)t by the first l layers.

3.2 From Transformer to AF1

We develop the AF1 subgraph for Llama-3-8B with
respect to the A + B + C task, where A, B, and
C are numerical tokens. First, we progressively re-
placed the first Lwait layers of the full transformer
with a “waiting” period in which each token can
compute independently but not access any other
tokens. These computations are task-general, such
as understanding numerical tokens and arithmetic
structure, rather than input-specific, such as per-
forming the operation in the input. We continue
this replacement until performance significantly
drops, at which point we conclude that information
transfer is necessary. We propose a novel waiting
mechanism in Sec. 3.3.

In the second phase, with the waiting period in
place, we modify token attentions in all subsequent
layers such that the last token xT can attend to all
tokens, while other tokens x1, ..., xT−1 can only
attend to themselves.2 Despite this drastic attention
pruning, performance on the task remains high,

1We use 1-based indexing for token, and 0-based indexing
for layer (and attention head), following common practice.

2For technical reasons discussed in Sec. 3.4, we also allow
an additional attention to the BOS token.

matching the full-computation case. The attention
pruning is detailed in Sec. 3.4.

Finally, with the previous attention pruning al-
ready in place, we only allow xT to attend to (and
hence receive information from) all tokens dur-
ing the first Ltransfer layers after the waiting, for
Ltransfer ∈ {0, 1, ...,≤ L− Lwait}. In the remain-
ing layers, we force it to only attend to itself,2

similar to all other tokens in these layers. These
Ltransfer layers are thus sufficient for transferring
all input-specific information to xT , whose final
activation x

(L)
T is used by later layers to predict the

next token.
We present the detailed results of these three

steps for Llama-3-8B on the task of A + B + C
in Sec. 4.2. Qualitatively, we observe that Lwait

can be quite long, to almost half of the total num-
ber of layers, while Ltransfer can be as small as
2, suggesting that a very brief burst of informa-
tion transfer is sufficient for this arithmetic task.
More broadly, although self-attention allows for a
quadratic number of information transfer routes,
the sufficiency of only a linear number of such
routes echoes the success of linear attention trans-
formers (Katharopoulos et al., 2020).

3.3 Token Waiting with Context-Aware Mean
Ablation (CAMA)

The transformer architecture immediately gathers
and distributes information from and to all tokens
starting from the first self-attention layer.3 How-
ever, such information fusion may not be present,
especially in early layers, which more likely focus
on low-level token features (Tenney et al., 2019).

There are many alternative approaches to test
for the existence of this waiting period, such as to
copy the input embedding directly to the output of
the waiting layers, or to allow each token to only
attend to itself in these layers. However, as Sec. 4.8
shows, none of them preserve model performance
with a long waiting period, most likely because they
lead to out-of-distribution representations. Further-
more, these layers may also perform task-general
computation, such as processing a number token to
“understand” its numerical value.

In this paper, we propose context-aware mean
ablation (CAMA),4 a more “in-distribution” abla-
tion approach which is aware of and tailored to the

3Technically, the causal attention means that a token can
only receive information from its preceding tokens but we
ignore this detail for ease of presentation.

4Fun fact: Cama is a hybrid between a Camel and a Llama.
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input context distribution and also allows for such
task-general computation. Given the distribution
P(x) over all input sequences, making xt wait for
Lwait layers (i.e., layers 0 to Lwait − 1) under the
CAMA means replacing x

(Lwait)
t with

x̃
(Lwait)
t = Ex′∼P(x|xt)

[
m(x′, t, Lwait)

]
. (1)

As CAMA replaces the true x
(Lwait)
t with the

expected representation at the same position over
all inputs conditioned on t-th token being xt, it
preserves the general effect of the context on the
representation and allows for task-general compu-
tation, while erasing any input-specific information
carried by the particular sequence x (other than that
of xt). In other words, given the input distribution,
the CAMA value of a specific token yields no new
information about other tokens in the input.

As we show in Sec. 4.8, the CAMA formulation
is crucial to uncover the minimal AF1 circuit pro-
posed in this paper, with alternative designs being
infeasible, suggesting broader applicability to other
tasks. In addition, it may be generalizable to ablat-
ing out information fusion that does not start in the
first layer, which we leave to future work.

3.4 Selective Information Transfer with
Attention-Based Peeking (ABP)

CAMA enforces waiting of a token by using
context-aware ablation to block a token from ac-
cessing input-specific information from other to-
kens, but it must be applied from the first layer and
runs continuously. Here, we introduce an alterna-
tive mechanism to control information access at
arbitrary layer(s), called attention-based peeking
(ABP). It is implemented by modifying the atten-
tion mask so that, in the target layer, each query
position is allowed to attend only to (or “peek at”)
a subset of previous key positions.

For a (query) token xt, we use Kt ⊆ {1, ..., t}
to denote the index set of (key) tokens whose infor-
mation we want to transfer to xt. Let M ∈ RT×T

be the (pre-softmax) attention matrix for the entire
sequence x and K1, ...,KT be the peeking index
sets. We replace each Mq,k with −∞ if k /∈ Kq,
so the softmax zeroes out the attention to any keys
not in the peek set.

While ABP can be implemented to attend to
any subset of (preceding) tokens, in this paper, we
consider two specific cases, full-peeking, Kt =
{1, ..., t} where xt attends to all tokens (and recov-
ers the standard causal attention) and self-peeking,

Input template Tokenization Operator ◦

“<BOS>A◦B=” <BOS> A ◦ B = +,−, ∗, /

“<BOS>A ◦ B ◦ C = ” <BOS> A ␣◦ ␣ B ␣◦ ␣ C ␣= ␣ +,−

Table 1: The input templates along with their tokeniza-
tion (space represented by ). A, B, and C are ran-
domly selected from {0, 1, ..., 100} with an additional
constraint that the answer from selected input is an in-
teger in the range {0, 1, ..., 999}. The first template
includes spaces around the two operators (which can be
different) and the second template does not contain any
spaces.

Kt = {t} where xt attends only to itself.
First token attention. A common quirk of atten-
tion patterns is the attention sink phenomenon (Can-
cedda, 2024; Xiao et al., 2023), where tokens
strongly attend to the first one, which is often the
special <BOS> token. In our experiments, we find
that removing the attention to <BOS> is indeed dev-
astating to model performance. Thus, we always
keep it with Kt ← Kt ∪ {1}.

4 Experiments

After introducing the experiment setup in Sec. 4.1,
we present the results of our AF1 subgraph dis-
covery process in Sec. 4.2 for Llama-3-8B on the
A+B + C task. Then in subsequent sections, we
study various properties of this subgraph to demon-
strate its generality.

4.1 Experiment Setup
We consider both two- and three-operand arith-
metic, with task templates and their tokenization
summarized in Tab. 1. Each operand is a randomly
sampled integer from 0 to 100, subject to the addi-
tional constraint that the final answer is an integer
from 0 to 999. The CAMA implementation for
these tasks can be found in App. A.1.

We mainly study Llama-3-8B and Llama-3.1-
8B, but, to study cross-model generalization, also
consider two earlier models, Pythia-6.9B and GPT-
J-6B. Since the latter two have very poor three-
operand performance, we only study two-operand
tasks for them. Tab. 2 presents the raw model accu-
racy on randomly sampled legal inputs for all tasks
and models.

As model-task accuracy can vary significantly,
we use the faithfulness of a subgraph s to measure
its performance, defined as its accuracy on prompts
(x, y) for which the full model m is correct:

faith.(s) = Ex,y[s(x) = y|m(x) = y]. (2)
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Operation Model Raw Acc. Operation Model Raw Acc.

A+B + C Llama-3-8B 0.994 A+B Llama-3-8B 0.962
A+B − C Llama-3-8B 0.932 A−B Llama-3-8B 0.899
A−B + C Llama-3-8B 0.296 A×B Llama-3-8B 0.937
A−B − C Llama-3-8B 0.748 A÷B Llama-3-8B 0.966

A+B + C Llama-3.1-8B 0.998 A+B Llama-3.1-8B 0.953
A+B − C Llama-3.1-8B 0.956 A−B Llama-3.1-8B 0.518
A−B − C Llama-3.1-8B 0.956 A÷B Llama-3.1-8B 0.814
A−B + C Llama-3.1-8B 0.977 A×B Llama-3.1-8B 0.737

A+B Pythia 0.584 A+B GPT-J 0.559
A−B Pythia 0.226 A−B GPT-J 0.357
A×B Pythia 0.131 A×B GPT-J 0.316
A÷B Pythia 0.220 A÷B GPT-J 0.313

Table 2: Raw accuracy of various models for different
math operations.

To calculate CAMA values for each token, we
draw input x′ with different operand values but of
the same task. In other words, we randomize all
operands (other than the token itself, if applicable)
while fixing the operator(s), along with the equality
sign and any space tokens, when present.

4.2 AF1 Subgraph Discovery Result
Sec. 3.2 details the discovery process of the “All-
for-One” (AF1) subgraph for the three-operand task
A+B +C via a three-phase ablation and peeking
procedure. Here, we present the results for Llama-
3-8B.

Fig. 2 (top) tracks the faithfulness when the first
Lwait layers of the full transformer are replaced
with Context-Aware Mean Ablation (CAMA).
Faithfulness remains high for Lwait ≤ 15 and then
collapses sharply at Lwait = 16, indicating that
no cross-token interaction before layer index 14 is
necessary, but information transfer at layer index
15 is critical (recall that layer index is 0-based).

We then investigate the necessity of information
transfer at layer 15 and onward, replacing the atten-
tion components with full-peeking using ABP. In

5 10 15 20 25 30
Lwait

0.0

0.2

0.4

0.6

0.8

1.0

N/A N/A 0 5 10 15
Ltransfer

0.0

0.2

0.4

0.6

0.8Ac
cu

ra
cy

Figure 2: Top: Llama-3-8B performance after making
tokens to wait for the first Lwait layers with CAMA, as
a function of Lwait. Bottom: for Lwait = 15 and self-
peeking on all non-last tokens, performance of model
with last token full-peeking in the next Ltransfer layers
and self-peeking afterward, as a function of Ltransfer.

Operation Model Faithfulness Operation Model Faithfulness

A+B + C Llama-3-8B 0.995 A+B Llama-3-8B 0.854
A+B − C Llama-3-8B 0.944 A−B Llama-3-8B 0.987
A−B + C Llama-3-8B 0.312 A×B Llama-3-8B 0.710
A−B − C Llama-3-8B 0.995 A÷B Llama-3-8B 0.887

A+B + C Llama-3.1-8B 0.995 A+B Llama-3.1-8B 0.771
A+B − C Llama-3.1-8B 0.974 A−B Llama-3.1-8B 0.889
A−B + C Llama-3.1-8B 0.967 A×B Llama-3.1-8B 0.503
A−B − C Llama-3.1-8B 0.983 A÷B Llama-3.1-8B 0.779

Table 3: AF1llama circuit faithfulness for different math
operations, on both Llama-3-8B and Llama-3.1-8B.

particular, we prohibit all non-last tokens to attend
to any other token except for itself and the BOS
token, while allowing the last token to still attend
to every previous token. This operation drastically
changes the amount of information flow across to-
kens. However, we observe no performance degra-
dation, suggesting that non-last tokens do not need
to receive information from elsewhere and only
need to send information to the last one.

Finally, we incrementally remove the last token
full-peeking and restrict it to self-peeking (where
the last token attends only to itself and the BOS to-
ken) from the back. Fig. 2 (bottom) tracks the
faithfulness when we modify layer Ltransfer to
from 0 to 17 (both inclusive) with the layers L ≥
Ltransfer + Lwait being self-peeking. We find that
performance stays high as long as Ltransfer ≥ 2,
or in other words, the last token can access other
tokens at least layer 15 and 16.

Thus, we have identified a subgraph for Llama-
3-8B on the task of A+B + C that retains almost
full performance, with 14 CAMA layers and 2 in-
formation transfer layers followed by last token
self-computation. We call this AF1llama. In subse-
quent sections, we study its performance on other
tasks for both Llama-3-8B and Llama-3.1-8B, as
well as analogous subgraphs in Pythia and GPT-J.

4.3 AF1llama Subgraph Performance

Tab. 3 presents faithfulness of the same AF1llama

subgraph on eight tasks across both Llama models.
Despite the sparsity of connections, this subgraph
demonstrates high performance in many tasks. The
most notable exception is on A−B+C for Llama-
3-8B, with faithfulness just over 0.3. Consider-
ing that the original model accuracy is below 0.3
(Tab. 2), the low subgraph faithfulness and low
model accuracy may be both caused by inconsistent
problem-solving logic used by the model on these
inputs. By contrast, when Llama-3.1-8B achieves
a high raw accuracy on this task, AF1llama attains
similarly high subgraph faithfulness.

Fig. 3 plots the faithfulness of the subgraph with
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Figure 3: Faithfulness of different AF1 configurations
over Ltransfer ∈ [0, 32], Lwait ∈ [0, 32] for A+B + C
task on Llama-3-8B model. The minimal subgraph
AF1llama is marked with a yellow star. Two condi-
tions are necessary for preserving model accuracy: (1)
Waiting can never occur past layer index 14 (Lwait ≤
15); (2) Information transfer must cover layer 16 (i.e.,
Lwait + Ltransfer ≥ 17).

various Lwait and Ltransfer values (with remaining
layers implementing last-token self-peeking), for
Llama-3-8B on the A+B + C task. We observe
the following necessary conditions for high perfor-
mance: (1) waiting must stop at layer 14 at the
latest (i.e., Lwait ≤ 15), and (2) the subsequent in-
formation transfer must be at least two layers long
(i.e., Lwait + Ltransfer ≥ 17).

Additionally, replacing CAMA layers with infor-
mation transfer layers too early (i.e., at or before
layer 6) actually hurt the performance. Since in
an information transfer layer, each non-last token
can only attend to itself, without access to task-
general context as in CAMA, its ability to perform
task-general computation is limited, which proves
to be important especially for early layers. A full
grid of Lwait, Ltransfer for all other tasks for both
Llama-3-8B and Llama-3.1-8B can be found in
App. A.2.

4.4 Necessity of Information Transfer Layers

To test the necessity of the information transfer lay-
ers identified (layers 15 and 16) in Llama-3-8B, we
run the full model computation but, for each sin-
gle layer, remove the attentions from the last token
to every other non-BOS tokens, while keeping all
other attention connections. The resulting model
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0.2

0.4

0.6

0.8

1.0

Fa
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{A} + {B} + {C} =
{A} + {B} - {C} =
{A} - {B} + {C} =
{A} - {B} - {C} =
{A} + {B} =
{A} - {B} =
{A} * {B} =
{A} / {B} =

Figure 4: Faithfulness of the full Llama-3-8B but with
the attention from the last token to every other non-BOS
token removed individually in each layer.

performances are shown in Fig. 4.
Despite removing only T−2 out of T ·L·N(N−

1)/2 connections, the effect can be drastic. With-
out an exception, removing layer 15 attentions to
a large performance drop on all tasks, while re-
moving layer 16 attentions affects all but two tasks.
This provides further evidence that these two spe-
cific attention layers are indeed critical for infor-
mation transfer. This information, combined with
the model’s inability to wait past layer 14, suggests
special importance of information transfer in layer
15 and 16, agreeing with prior work (Nikankin
et al., 2024) that identifies their attention heads
being responsible for two-operand arithmetic. As
a side note, layer 13 attention is apparently also
important for A−B±C tasks, although AF1llama

(with layer 13 being in the CAMA waiting stage)
performs extremely well on A−B − C. We leave
this investigation to future work.

In AF1llama, since only layer 15 and 16 partici-
pate in information transfer, we further investigate
the importance of each attention head. To this end,
we identify the minimal set of heads that preserves
the model’s performance, through an iterative pro-
cess as follows (in Llama-3-8B). In Llama, each
layer has 32 heads, leading to 64 heads in total for
layers 15 and 16. We start with the full AF1llama

subgraph and remove attention heads iteratively. At
every iteration, for each attention head remaining,
we compute the model accuracy without this head,
and remove the one with the lowest impact. We
repeat this procedure until no head remains.

Tab. 4 shows the accuracy following head re-
moval. We see that very few heads are actually
important for arithmetic computation, with 95%
accuracy preserved after removing nearly 60 heads.
Furthermore, we identified some common heads,
marked with asterisks.
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A+B + C A+B − C

Heads Removed Accuracy Heads Removed Accuracy

59 Least Important 95.5% 56 Least Important 95.0%
L15H31 93.0% L16H20 93.5%
L16H1 * 64.5% L15H6 91.5%
L15H13 * 8.5% L15H3 * 83.5%
L15H3 * 1.5% L16H1 * 46.0%
L16H21 * 0.5% L16H2 30.5%
- - L16H3 3.5%
- - L16H21 * 1.5%
- - L15H13 * 0.5%

Table 4: Preserved accuracy across cumulative head
removals in layers 15 and 16 on AF1llama for A+B+C
and A+B − C. Asterisks denote heads shared across
both tasks.

Further attention analysis on these individual
heads reveals that some mostly attend to the BOS
token, and the remaining heads attend to one of
the numerical operands. For example, we show in
Fig. 5 that heads , L15H13 and L15H3 attend to the
first, second, and third operand respectively, for the
A+B+C task. This lines up quite neatly with our
information transfer hypothesis, with the focused,
operand-heavy attention patterns transferring the
operand information to the last token. While this
analysis is performed on the AF1llama subgraph,
we observe highly similar results for full Llama-
3-8B model as well (App. A.3), suggesting that
AF1llama captures the “essence” of computation.

4.5 Internal Representation Analysis

We probe the final token’s residual stream at each
layer using logit lens analysis, which projects the
residual stream values after each MLP layer to
the vocabulary space with the unembedding ma-
trix (nostalgebraist, 2020). Additionally, we also
apply this technique to each attention head. To ob-
serve the effect of the AF1llama modification, we
compare the results on both the full Llama-3-8B
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Figure 5: Attention patterns for the three key operand
heads in the A + B + C task (Llama-3-8B): L16H21
(left), L15H13 (middle), L15H3 (right), attending from
the last token to the first, second and third operands.
Activation values are averaged across 100 prompts.
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Figure 6: Logit lens top-3 accuracy of for each attention
head and the MLP layer on the full Llama-3-8B model
(top) vs. its AF1 subgraph (bottom) on Llama-3-8B.

model and its AF1llama subgraph.
Fig. 6 depicts the logit lens top-3 accuracy for

the full Llama-8-8B (top) and AF1llama, defined as
the fraction of inputs for which the correct answer
appears among the top-3 vocab logits, at each at-
tention head as well as the MLP layer. We see high
accuracy emerging clearly around layer 24 from
the logit lens analysis in Fig. 6. The similarity of
the two plots suggest AF1’s captures almost the
full prediction power and underlying mechanisms
as the full model, instead of finding an alternative
computational pathway or a “hacky shortcut” to
solve the arithmetic.

L28H18 and L26H3 are the only attention heads
that consistently predict the correct answer, even
with the answer appearing in the MLP components
at earlier layers. However, attention visualization
on these heads revealed no more insights, as the
pattern shows a common attention sink pattern on
the BOS token (App. A.4). The logit lens analysis
for Llama-3.1-8B yields similar results, as shown
in App. A.5.

4.6 Generalized Arithmetic Inputs

We investigate whether AF1llama can generalize to
other arithmetic forms representing the operations
A + B and A − B on Llama-3-8B. We consider
several input templates such as describing the op-
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Style Task Model Acc. AF1llama Faith. Template and Tokenization

Original
A+B 0.962 0.854 <BOS> A + B =

A−B 0.899 0.987 <BOS> A - B =

Verbal Math
A+B 1.000 1.000 <BOS> The ␣sum ␣of ␣ A ␣and ␣ B ␣is ␣

A−B 1.000 1.000 <BOS> The ␣difference ␣of ␣ A ␣and ␣ B ␣is ␣

Question Answering
A+B 0.999 1.000 <BOS> What ␣is ␣the ␣sum ␣of ␣ A ␣and ␣ B ? ␣Answer : ␣

A−B 0.991 1.000 <BOS> What ␣is ␣the ␣difference ␣of ␣ A ␣and ␣ B ? ␣Answer : ␣

Instruction
A+B 0.999 0.995 <BOS> If ␣you ␣add ␣ A ␣to ␣ B , ␣you ␣will ␣get ␣

A−B 1.000 0.905 <BOS> If ␣you ␣subtract ␣ A ␣to ␣ B , ␣you ␣will ␣get ␣

Math Word Problem
A+B 0.998 0.005 <BOS> John ␣has ␣ A ␣cookies . ␣Jane ␣has ␣ B ␣cookies . ␣Together ␣they ␣have ␣

A−B 0.994 0.020 <BOS> John ␣has ␣ A ␣cookies . ␣He ␣gave ␣Jane ␣ B ␣cookies . ␣John ␣now ␣has ␣

Python Program
A+B 0.999 0.001 <BOS> a ␣= ␣ A ; ␣b ␣= ␣ B ; ␣print (a ␣+ ␣b ) ␣# ␣should ␣print ␣

A−B 1.000 0.020 <BOS> a ␣= ␣ A ; ␣b ␣= ␣ B ; ␣print (a ␣- ␣b ) ␣# ␣should ␣print ␣

Table 5: Prompt templates and results for alternative representations of A + B and A − B tasks on the full
Llama-3-8B model and corresponding AF1llama subgraph. A and B are replaced with actual numerical values, and
everything else is rendered verbatim.

eration verbally and embedding the operation in
word problems or Python code. The concrete tem-
plates and resulting model performance are shown
in Tab. 5. Even for text-based arithmetic prompts,
AF1llama retains considerable accuracy for direct
arithmetic tasks without additional semantic con-
texts. However, it completely fails on tasks requir-
ing semantic understanding such as word problem
and Python, suggesting that additional components
are needed for other capabilities, like understand-
ing natural language or Python program inputs.

4.7 Pythia and GPT-J Models

In addition to extensively exploring the AF1llama
subgraph, we also applied our experimental proce-
dure using CAMA and ABP to investigate if simi-
lar AF1 subgraphs exist in other models, namely
Pythia and GPT-J. Due to their poor performance
on three-operand tasks, we only study two-operand
tasks, as done by Nikankin et al. (2024).

Fig. 7 plots the faithfulness for different AF1
configurations on A+B for Pythia (top) and GPT-
J (bottom). There are several notable differences
from that for Llama in Fig. 3. First, the Pythia and
GPT-J grids don’t have as definitive of a boundary
where performance is nearly completely retained
vs. destroyed. Second, the waiting layer must end
earlier, with maximum Lwait being around 11 to
keep decent performance for both models, suggest-
ing that critical information transfer also happens
earlier. Finally, these models require a larger min-
imum Ltransfer, suggesting that the efficiency of
information transfer is lower in them than in Llama.
Based on these factors, we choose (Lwait, Ltransfer)
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Figure 7: Faithfulness on A+B for different AF1 con-
figurations for Pythia (top) and GPT-J (bottom) explored
across all possible values of Lwait and Ltransfer. Tab. 6
reports the best faithfulness score of the AF1 subgraphs,
marked with a yellow star in the figure.
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Model A+B A−B A×B A÷B

AF1Pythia 0.620 0.551 0.780 0.490
AF1GPT-J 0.647 0.506 0.794 0.440

Table 6: Faithfulness of AF1Pythia and AF1GPT-J for two-
operand arithmetic operations.

to be (9, 7) for AF1Pythia and (9, 8) for AF1GPT-J,
marked by stars in Fig. 7.

The faithfulness of these two AF1 subgraphs
for all two-operand tasks are reported in Tab. 6.
Even though these numbers are usually signifi-
cantly lower than the Llama counterpart in Tab. 3,
we see that they still often recover more than half
of the original model’s accuracy.

4.8 Alternative CAMA Designs

In addition to CAMA, we evaluated several alter-
native waiting mechanisms in AF1llama. Direct
embedding copy (DEC) simply uses the original
embedding x

(0)
t for x̃

(Lwait)
t in Eq. 1. Random

token mean ablation (RTMA) uses completely
random tokens in Eq. 1 rather than those drawn
from the (context-aware) conditional distribution.
Self-peek as waiting (SPAW) uses ABP in ev-
ery waiting layer with Kt = {1, t} to make each
token {xt}Tt=1 attend to only itself and the BOS
token. Isolated forward pass (IFP) runs each to-
ken as a standalone two-token prompt (with BOS
prepended) for Lwait layers and takes the final rep-
resentation as x̃(Lwait)

t in Eq. 1. App. A.6 contains
more detailed explanations of each method.

None of the others achieve any non-zero faith-
fulness. We attribute these failures to two main
shortcomings: DEC and RTMA breaks the model’s
in-distribution assumptions by directly using input
embedding values or averaging over random to-
kens; SPAW and IFP omit the background computa-
tion needed to encode operand structure, providing
only minimal structural cues without actual value
information. By contrast, CAMA both maintains
in-distribution representations via marginalization
and captures the model’s evolving background com-
putation through conditional expectation.

5 Discussion and Conclusion

In this paper, we explored uncovering the least
amount of information transfer and computation
that support mental math tasks, including those
requiring compositional reasoning. Using two
new techniques Context-Aware Mean Ablation

(CAMA) and Attention-Based Peeking (ABP), we
uncovered a highly sparse, three-stage AF1 sub-
graph which allows computation to only happen in
the last token’s residual stream with information
transferred from other tokens in few layers. This
subgraph demonstrates high performance on a wide
variety of arithmetic tasks across model.

The discovery and identification of the AF1 sub-
graph provides significant insight into the compu-
tational flow of LLMs, particularly highlighting
how minimal information transfer periods and tar-
geted, precise computation suffices for high accu-
racy in arithmetic tasks. Our experiments reveal
that although theoretically, tokens can indepen-
dently process and transfer information between
each other from early layers, in practice, meaning-
ful cross-token computation can be (and is) signifi-
cantly deferred. This underscores the importance
of separating task-general computation (such as to-
ken recognition and numerical/structural encoding)
from input-specific computation (such as carrying
out arithmetic operations).

A key feature for AF1 is that all input-specific
computation is carried out in the last token position,
despite every token possessing the ability to imple-
ment its own computation. We hypothesize that the
root cause lies in the training paradigm. Regardless
of pre-training, supervised finetuning or preference
alignment, the model receives token-level signal
– predicting the next token based on the context.
This dense signal could make the model fully fo-
cused on predicting the next token all the time and
thus not able to allocate additional bandwidth for
compositional reasoning. To remedy this, custom
training signals may be explored that places heav-
ier weight on rewarding more “important” tokens,
which may potentially leading to the emergence of
intermediate token computations.

Overall, this work contributes to the mechanis-
tic understanding of arithmetic reasoning in LLMs
and cross-token computation. In addition, it pro-
vides methodological innovations with CAMA and
ABP that can serve broader applications beyond
arithmetic tasks as well.

Limitations

The biggest limitation of this analysis is its depen-
dency on a “cooperative” tokenizer that allocates
a dedicated single token to represent each num-
ber, a common practice for recent studies on LLM
arithmetic (e.g., Nikankin et al., 2024). While the
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tokenizers for Llama, Pythia and GPT-J have this
property, notably exceptions include Qwen (Yang
et al., 2025) and Gemma (Team et al., 2024), which
split numbers into individual digit tokens. Study-
ing these models requires extensions of CAMA
and ABP to handle multi-token numbers, which we
leave to future work.

Additionally, the task scope is limited primar-
ily to arithmetic operations with clearly defined
computational boundaries, which can potentially
limit generalization to more complex reasoning and
more semantically challenging tasks. As demon-
strated in Sec. 4.6, AF1 notably fails on tasks re-
quiring deeper semantic understanding or context
interpretation. Thus, exploring the additional com-
ponents to AF1 that endow models with such capa-
bilities could be useful.
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A Appendix

A.1 Implementation Tricks for CAMA

Recall that CAMA replaces the true representation
x
(Lwait)
t by the conditional expectation

x̃
(Lwait)
t = Ex′∼P(x|xt)

[
m(x′, t, Lwait)

]
, (3)

averaging over in-distribution prompts that fix the
token at position t and vary the rest according to
the task distribution. This preserves task-general
computation while removing input-specific cross-
token information.

Because the self-attention is causal, x(Lwait)
t only

depends on tokens at positions ≤ t. Hence, when
estimating x̃

(Lwait)
t , it suffices to marginalize over

only prefixes x1:(t−1) and not consider the value
(or even presence) of x(t+1):T . Therefore, when
computing the CAMA value for xt, we can safely
consider only the first t tokens, sample x1:t−1 from
P(x1:t−1|xt), and then append the target token
value for xt to the prefix.

Furthermore, there are cases where given a spe-
cific value of xt, the probability of the previous
token xt−1 collapses to a single value, especially if
the task distribution is quite restrictive. For exam-
ple, suppose that the token “stein” can only follow
“anken” in a task containing the word “Franken-
stein”. In this case, we can jointly compute the
CAMA values for xt−1 = “anken”, xt = “stein”
by randomizing their prefix x1:t−2 and appending
“ankenstein” to the input.

More generally, we consider xs:t as one token
group if all of xs:t−1 are fully determined given a
particular value of xt. In this case, computing the
CAMA value involves randomizing x1:s−1 with the
target values of xs:t being appended.

In our tasks, since we only vary the operand
values and keep everything else in the template
fixed (e.g., the BOS token, operators, or spaces),
we can form token groups of these fixed tokens
and the subsequent operand token. Specifically, we

A+B + C A+B − C

Heads Removed Accuracy Heads Removed Accuracy

59 Least Important 98.8% 58 Least Important 98.6%
L15H31 90.6% L16H1 88.0%
L16H1 54.8% L15H3 57.8%
L15H13 6.6% L16H2 27.0%
L16H21 2.0% L16H3 5.6%
L15H3 0.8% L16H21 3.2%
- - L15H13 2.4%

Table 7: Preserved accuracy across cumulative head
removals in layers 15 and 16 on the full Llama-3-8B
model on tasks A+B −C, A+B +C. All important
heads shown here also appear in the study on AF1llama

as well (Tab. 4).

set up the following token groups for the two- and
three-operand tasks:

<BOS> A + B =

<BOS> A ␣+ ␣ B ␣+ ␣ C ␣= ␣

Light vs. dark shades represent tokenization, as
in Tab. 1, and each background color represents a
particular group.

With both the causal attention and the token
grouping, computing the CAMA values for a spe-
cific group requires the conditional sampling of
all values in preceding groups. For example, if
we want to compute the CAMA value for the
“ + C” group in the three-operand template (green
group), we need to sample conditional values of
the first two groups (blue and orange). Since all
non-operand values are fixed in the template, this
amounts to only sampling values of “A” and “B” to
empirically estimate the expectation in Eq. 1.

A.2 Performance Grid Visualization

Fig. 8 visualize the full grid search across two and
three operand arithmetic tasks respectively. These
grids are computed across both Llama models,
Pythia, and GPT-J. The best AF1 circuit for each
model was obtained by empirical observation of all
grids for each arithmetic task by each model (and
was consistent across both models and all tasks).

A.3 Analysis of Information Transfer Layers
in the Full Llama-3-8B Model

To verify whether the information transfer behavior
observed in AF1llama reflects the mechanisms of
the full Llama-3-8B model, we repeat the head-
importance analysis from Sec. 4.4 on the full Llama
3 8B model, without any AF1 modifications.
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Figure 8: AF1 performance across all models on two- and three-operand tasks.

Results are presented in Tab. 7. We find that,
similar to the AF1 setting, model accuracy remains
above 98% even after 59 of the 64 heads across

the two layers. Furthermore, all of the important
heads are found in the AF1 subgraph analysis (i.e.,
appearing in Tab. 4). This strong correspondence
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Figure 9: Attention pattern for A+B-C, at attention
heads at Layer 26, Head 3 and Layer 28, Head 16 on
both Llama-3-8B and Llama-3.1-8B. Attention values
were averaged over 100 random samples.

indicates that the AF1 subgraph captures the same
core information transfer heads as the full model,
rather than exploiting an alternative mechanism.

These findings reinforce the interpretation that
the AF1 subgraph is not a shortcut, but rather a
faithful, sparsified version of the model’s native
computation: in both the subgraph and the full
model, a small set of heads in layers 15 and 16
mediate the critical information transfer required
for arithmetic reasoning.

A.4 Important Attention Heads Visualization

Fig. 9 visualizes the specific attention pattern in
the heads which were consistently predicting the
right answer (Sec. 4.5). As we can see, there is
no clear or interpretable attention patterns in these
heads barring a heavy reliance on the <BOS> to-
ken, yielding no further insights. Only one prompt
is visualized across both key heads, but all tasks
demonstrated similarly inconclusive patterns.

A.5 Llama-3.1-8B Internal Representation
Analysis

Fig. 10 depicts the internal representation anal-
ysis via logit lens for Llama-3.1-8B. The close
correspondence to the Llama 3 plot in Fig. 6 sug-
gests that Llama-3.1-8B’s arithmetic components
remained largely the same despite the improve-
ments on the A−B − C task.

A.6 Details of Alternative CAMA Designs

Direct embedding copy (DEC) simply uses the
original embedding x

(0)
t for x̃

(Lwait)
t in Eq. 1.
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Figure 10: Logit lens top-3 accuracy of for each atten-
tion head and the MLP layer on the AF1 subgraph on
Llama-3.1-8B.

As mentioned, this likely break’s the model’s in-
distribution assumptions. Even though the informa-
tion represented at later layers may be the same for
these tokens, the embeddings may go through cer-
tain transformations which preserve meaning but
project through different subspaces of the residual
stream.

Random token mean ablation (RTMA) uses
completely random tokens in Eq. 1 rather than
those drawn from the (context-aware) conditional
distribution. That is, instead of drawing tokens
from the distribution P(x), we preserve the prompt
length but draw each other token with equal proba-
bility from the entire vocab space. This too breaks
the in-distribution assumption. While it theoreti-
cally captures how the tokens should be projected
at any given layer, the lack of conditional aware-
ness “pollutes” the context, erasing any arithmetic
meaning encoded.

Self-peek as waiting (SPAW) uses ABP in every
waiting layer with Kt = {1, t} to make each token
{xt}Tt=1 attend to only itself and the BOS token. In
this way, all inter-token computation is erased, but
as a result no arithmetic context is encoded through
background computation. Additionally, a custom
attention mask is directly applied to each token in
every waiting layer in every forward pass, causing
slowdown issues while CAMA simply substitutes
the representations at a key layer.

Isolated forward pass (IFP) runs each token
as a standalone two-token prompt (with BOS
prepended) for Lwait layers and takes the final rep-
resentation as x̃(Lwait)

t in Eq. 1. Similarly to SPAW,
the lack of arithmetic context leads to the inability
of the model to perform the necessary information
transfer in the key layers.
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